WO2020191662A1 - 显示基板的制造方法和处理装置 - Google Patents

显示基板的制造方法和处理装置 Download PDF

Info

Publication number
WO2020191662A1
WO2020191662A1 PCT/CN2019/079869 CN2019079869W WO2020191662A1 WO 2020191662 A1 WO2020191662 A1 WO 2020191662A1 CN 2019079869 W CN2019079869 W CN 2019079869W WO 2020191662 A1 WO2020191662 A1 WO 2020191662A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
display substrate
voltage
pole plate
electrical signal
Prior art date
Application number
PCT/CN2019/079869
Other languages
English (en)
French (fr)
Inventor
袁德
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/652,317 priority Critical patent/US11362313B2/en
Priority to CN201980000398.XA priority patent/CN110114883A/zh
Priority to PCT/CN2019/079869 priority patent/WO2020191662A1/zh
Publication of WO2020191662A1 publication Critical patent/WO2020191662A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/831Aging

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a manufacturing method and processing device of a display substrate.
  • AMOLED Active-matrix organic light-emitting diode, active matrix organic light-emitting diode
  • AMOLED has achieved great development and successfully commercialized due to its advantages of high contrast, wide color gamut, and foldability.
  • AMOLED still has some shortcomings. For example, because AMOLED uses organic materials as the main functional layer, its products have the problem of low lifetime. In order to improve the user experience, it is important to improve the life of OLED products.
  • L-Aging Lifetime-Aging
  • a method of manufacturing a display substrate including at least one light-emitting device, and the manufacturing method includes: applying an electrical signal to the display substrate to generate the The aging current of the device, wherein a magnetic field is applied to the display substrate during at least part of the time when an electrical signal is applied to the display substrate, and the magnetic field is used to increase the aging current.
  • the magnetic induction intensity of the magnetic field ranges from 20 mT to 400 mT.
  • the manufacturing method before applying the electrical signal to the display substrate, the manufacturing method further includes: obtaining the magnetic induction intensity of the magnetic field applied to the display substrate; A magnetic field is applied to the substrate.
  • the step of obtaining the magnetic induction intensity of the magnetic field applied to the display substrate includes: obtaining the relationship curve between the magnetic induction intensity of the magnetic field applied to the light emitting device and the current flowing through the light emitting device; and The magnetic induction intensity of the magnetic field applied to the display substrate is obtained according to the relationship curve.
  • the display substrate further includes at least one driving thin film transistor, the first electrode of the driving thin film transistor is electrically connected to a first voltage terminal for providing a first voltage, and the second driving thin film transistor
  • the electrode is electrically connected to the first electrode of the light emitting device
  • the gate of the driving thin film transistor is configured to receive a gate voltage
  • the second electrode of the light emitting device is electrically connected to a second voltage for providing a second voltage
  • the step of applying an electrical signal to the display substrate includes: applying a first voltage to the first voltage terminal, applying a second voltage to the second voltage terminal, and applying a gate to the gate of the driving thin film transistor Pole voltage; wherein the absolute value of the difference between the gate voltage and the first voltage is in an inverse relationship with the magnetic induction intensity of the magnetic field.
  • the first voltage is higher than the second voltage; when the driving thin film transistor is an NMOS transistor, the first voltage Lower than the second voltage.
  • the absolute value of the difference between the gate voltage and the first voltage ranges from 1V to 10V.
  • the duration of applying the electrical signal and the magnetic induction intensity of the magnetic field have an inverse relationship.
  • the manufacturing method before applying the electrical signal to the display substrate, the manufacturing method further includes: performing a packaging process on the display substrate; after applying the electrical signal to the display substrate, the manufacturing method further includes : Perform a module process on the display substrate.
  • a processing device for a display substrate including at least one light emitting device
  • the processing device includes: an electrical signal applying device configured to apply An electrical signal to generate an aging current flowing through the light emitting device; and a magnetic field generating device configured to apply a magnetic field to the display substrate during at least part of the time when the electrical signal applying device applies the electrical signal to the display substrate, The magnetic field is used to increase the aging current.
  • the magnetic field generating device includes at least one magnetic field device pole plate for emitting a magnetic field.
  • the at least one magnetic field device pole includes a first magnetic field device pole and a second magnetic field device pole, wherein the electrical signal applying device is connected to the first magnetic field device pole and the first magnetic field device pole. Between the pole plates of the two magnetic field devices.
  • the first magnetic field device pole plate includes a first coil
  • the second magnetic field device pole plate includes a second coil; wherein, the first coil and the second coil are generated after being energized magnetic field.
  • the magnetic field generating device is configured to adjust the magnitude of the magnetic field applied to the display substrate by adjusting the magnitude of the current flowing through the first coil and the magnitude of the current flowing through the second coil. Magnetic induction.
  • the plane where the pole plate of the first magnetic field device is located is parallel to the plane where the pole plate of the second magnetic field device is located.
  • the processing device further includes a stage configured to carry the display substrate, wherein the electrical signal applying device is integrated on the stage.
  • the pole plate of the first magnetic field device is above the carrier, and the pole plate of the second magnetic field device is below the carrier;
  • the plane on which the loading surface of the carrier is located is parallel, and the plane on which the pole plate of the second magnetic field device is located is parallel to the plane on which the loading surface of the carrier is located.
  • the pole plate of the first magnetic field device is on the left side of the carrier, and the pole plate of the second magnetic field device is on the right side of the carrier; where the pole plate of the first magnetic field device is located
  • the plane is perpendicular to the plane where the loading surface of the carrier is located, and the plane where the pole plate of the second magnetic field device is located is perpendicular to the plane where the loading surface of the carrier is located.
  • the distance between the pole plate of the first magnetic field device and the pole plate of the second magnetic field device ranges from 30 cm to 100 cm.
  • the distance between the carrier and the pole plate of the first magnetic field device is equal to the distance between the carrier and the pole plate of the second magnetic field device.
  • FIG. 1A is an effect diagram showing a life curve of a display substrate without performing a life aging method according to some embodiments
  • 1B is an effect diagram showing a life curve of a display substrate after a life aging method is performed according to some embodiments
  • 2A is a schematic diagram showing the connection between a light emitting device and a driving thin film transistor according to an embodiment of the present disclosure
  • 2B is a schematic diagram showing the connection between a light emitting device and a driving thin film transistor according to another embodiment of the present disclosure
  • FIG. 2C shows current-voltage characteristic curves of driving thin film transistors and OLED devices according to some embodiments of the present disclosure
  • 2D is a graph showing the variation of the threshold voltage V th with increasing operating time under different gate-source voltages V gs of the driving thin film transistor according to some embodiments of the present disclosure
  • 2E is a graph showing I ds -V gs characteristic curves of driving thin film transistors before and after the lifetime aging process according to some embodiments of the present disclosure
  • FIG. 3 is a flowchart showing a manufacturing method for a display substrate according to an embodiment of the present disclosure
  • FIG. 4 is a graph showing current-voltage characteristic curves of a light emitting device with and without applying a magnetic field according to some embodiments of the present disclosure
  • Fig. 5 shows a magneto-current change curve of a light emitting device according to an embodiment of the present disclosure
  • FIG. 6 is a graph showing current-voltage characteristic curves of a light emitting device in the case where a magnetic field is applied and a magnetic field is not applied according to some embodiments of the present disclosure
  • FIG. 7A is a schematic cross-sectional view showing a processing apparatus for a display substrate according to an embodiment of the present disclosure
  • FIG. 7B is a perspective view showing a processing apparatus for a display substrate according to an embodiment of the present disclosure.
  • FIG. 8 is a perspective view showing a processing apparatus for a display substrate according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing the structure of a magnetic field generating device according to an embodiment of the present disclosure.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intermediate device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intermediate device, or may not be directly connected to the other device but has an intermediate device.
  • FIG. 1A is an effect diagram showing a life curve of a display substrate without performing a life aging method according to some embodiments.
  • FIG. 1B is an effect diagram showing a life curve of a display substrate after a life aging method is performed according to some embodiments.
  • the lifetime of AMOLED generally refers to how fast its brightness decays over time.
  • the life can be expressed by LT95, which is the time required for the brightness to drop to 95%.
  • the OLED brightness decay curve generally shows a trend of fast decay first and then slow decay, as shown in Figure 1A.
  • the principle of the life aging (L-Aging) method is to apply a large current for a short time (such as 10 min (minutes) to 30 min) to the light-emitting device of the display substrate (such as an OLED device), so that the defects inside the device tend to be saturated in a short time , Thereby removing the rapid attenuation part of the initial brightness of the light-emitting device before the product leaves the factory.
  • the part inside the circle in FIG. 1A is the part where the initial brightness of the light emitting device is rapidly attenuated. From the comparison of Fig. 1A and Fig. 1B, after implementing the life aging method, the rapid decay part of the initial brightness of the light-emitting device is removed, and the life of the LT95 product is greatly improved.
  • the inventors of the present disclosure have discovered that the above-mentioned life aging method may affect the product characteristics of the display substrate.
  • the specific analysis is as follows:
  • the display substrate further includes at least one driving thin film transistor.
  • FIG. 2A is a schematic diagram showing the connection between a light emitting device and a driving thin film transistor according to an embodiment of the present disclosure.
  • a driving thin film transistor (referred to as DTFT) 210 is connected in series with a light emitting device (for example, an OLED device) 220.
  • the driving transistor 210 may be a PMOS (P-channel Metal Oxide Semiconductor, P-channel Metal Oxide Semiconductor) transistor.
  • a first electrode of the driving thin film transistor (e.g., source) 210 is electrically connected to a first voltage for providing a first voltage V 1 of the terminal 231.
  • the second electrode (for example, the drain) of the driving thin film transistor 210 is electrically connected to the first electrode (for example, the anode) of the light emitting device 220.
  • the gate of the driving thin film transistor 210 is configured to receive a gate voltage V g .
  • the second electrode (for example, the cathode) of the light emitting device 220 is electrically connected to the second voltage terminal 232 for providing the second voltage V 2 .
  • the driving thin film transistor is a PMOS transistor
  • the first voltage V 1 is higher than the second voltage V 2 .
  • the first voltage V 1 is at a high level
  • the second voltage V 2 is at a low level.
  • the gate-source voltage difference V gs of the DTFT needs to be increased. Therefore, the large current applied to the light emitting device 220 is provided by the DTFT 210 under a large gate-source voltage difference.
  • FIG. 2B is a schematic diagram showing the connection between a light emitting device and a driving thin film transistor according to another embodiment of the present disclosure.
  • the driving transistor 240 may be an N-channel Metal Oxide Semiconductor (N-channel Metal Oxide Semiconductor) transistor.
  • the first electrode (for example, the source) of the driving thin film transistor 240 is electrically connected to the first voltage terminal 261 for providing the first voltage V 1 ′.
  • the second electrode (for example, the drain) of the driving thin film transistor 240 is electrically connected to the first electrode (for example, the cathode) of the light emitting device 250.
  • the gate of the driving thin film transistor 240 is configured to receive a gate voltage V g ′.
  • the second electrode (for example, the anode) of the light emitting device 250 is electrically connected to the second voltage terminal 262 for providing the second voltage V 2 ′.
  • the driving thin film transistor is an NMOS transistor
  • the first voltage V 1 ′ is lower than the second voltage V 2 ′.
  • the first voltage V 1 ′ is low level
  • the second voltage V 2 ′ is high level.
  • the gate-source voltage difference V gs ′ of the DTFT needs to be increased. Therefore, the large current applied to the light emitting device 250 is provided by the DTFT 240 under a large gate-source voltage difference.
  • FIG. 2C shows current-voltage characteristic curves of driving thin film transistors (DTFT) and OLED devices according to some embodiments of the present disclosure.
  • DTFT driving thin film transistors
  • the ordinate represents the current, such as the drain-source current I ds of the DTFT. Since the DTFT is connected in series with the OLED device, the drain-source current I ds also flows through the OLED device.
  • the abscissa represents the voltage (for example, the drain-source voltage V ds of the DTFT and the voltage V op across the OLED device).
  • FIG. 2C shows the current-voltage characteristic curve of the DTFT under different gate-source voltages V gs .
  • FIG. 2C also shows the current-voltage characteristic curve 201 of the OLED device.
  • the display substrate for example, a display substrate for an AMOLED panel
  • works at the intersection (point A) of two curves. If the current of the OLED device needs to be increased, the absolute value of the V gs voltage needs to be increased, so that the operating point of the display substrate is changed from point A1 to point Ai (i 2,3,4).
  • the DTFT works in the saturation region, but in the L-Aging process, the DTFT works in the linear region.
  • FIG. 2D is a graph showing the variation of the threshold voltage V th with increasing operating time under different gate-source voltages V gs of the driving thin film transistor according to some embodiments of the present disclosure.
  • a P-type driving thin film transistor is taken as an example for description.
  • the greater the absolute value of the gate-source voltage V gs the more serious the drift of the threshold voltage V th of the DTFT, for example, the more serious the drift in the negative direction.
  • FIG. 2E is a graph showing I ds -V gs (ie, drain-source current-gate-source voltage) characteristic curves before and after the lifetime aging process of the driving thin film transistor according to some embodiments of the present disclosure.
  • the curve 202 is a driving thin film transistor before the lifetime of the aging process I ds -V gs characteristic curve (i.e., not the life of the aging process is performed); I ds -V curve 203 after the driving thin film transistor lifetime aging process gs characteristic curve. It can be seen from FIG. 2E that after the lifetime aging process, the characteristic curve of the driving thin film transistor has drifted.
  • the threshold voltage of the driving thin film transistor shifts to the left, which causes the current I ds to decrease. Since the brightness of the light-emitting device (such as an OLED device) is positively correlated with the current I ds , the brightness of the display substrate (such as a display substrate for an AMOLED panel) will decrease, thereby affecting product performance.
  • the light-emitting device such as an OLED device
  • the display substrate such as a display substrate for an AMOLED panel
  • the embodiments of the present disclosure provide a method for manufacturing a display substrate to reduce the drift of the threshold voltage of the DTFT.
  • the display substrate includes at least one light emitting device.
  • the manufacturing method includes: applying an electrical signal to the display substrate to generate an aging current flowing through the light emitting device.
  • the magnetic field is applied to the display substrate during at least part of the time when the electrical signal is applied to the display substrate. This magnetic field is used to increase the aging current.
  • a magnetic field is also applied to the display substrate during the process of applying the electrical signal to the display substrate. This magnetic field helps increase the aging current. In this way, the applied electrical signal can be reduced (for example, smaller than the electrical signal in the related art), so that the problem of threshold voltage drift of the driving thin film transistor can be alleviated.
  • FIG. 3 is a flowchart showing a manufacturing method for a display substrate according to an embodiment of the present disclosure. As shown in FIG. 3, the manufacturing method may include steps S302 to S306.
  • a packaging process is performed on the display substrate.
  • the packaging process includes: forming an packaging layer on the display substrate.
  • the manufacturing method may further include: performing an evaporation process on the display substrate.
  • the functional layer and the cathode layer are formed by an evaporation process.
  • step S304 an electrical signal is applied to the display substrate to generate an aging current flowing through the light emitting device, wherein a magnetic field is applied to the display substrate during at least part of the time when the electrical signal is applied to the display substrate, and the magnetic field is used to increase the aging current.
  • the step of applying an electrical signal to the display substrate includes: applying a first voltage to the first voltage terminal, applying a second voltage to the second voltage terminal, and applying a gate voltage to the gate of the driving thin film transistor.
  • the driving thin film transistor is a PMOS transistor
  • a first voltage V 1 is applied to the first voltage terminal 231
  • a second voltage V 2 is applied to the second voltage terminal 232
  • a gate is applied to the gate of the driving thin film transistor 210.
  • the pole voltage V g is applied to the driving thin film transistor 210.
  • the driving thin film transistor is an NMOS transistor
  • the first voltage V 1 ′ is applied to the first voltage terminal 261
  • the second voltage V 2 ′ is applied to the second voltage terminal 262
  • the gate of the driving thin film transistor 240 The gate voltage V g 'is applied to the electrode.
  • the absolute value of the difference between the gate voltage and the first voltage has an inverse relationship with the magnetic induction intensity of the magnetic field. That is, the greater the magnetic induction intensity of the magnetic field, the smaller the absolute value of the difference between the gate voltage and the first voltage, which can reduce the problem of threshold voltage drift of the driving thin film transistor.
  • the absolute value of the difference between the gate voltage and the first voltage ranges from 1V to 10V.
  • the difference between the gate voltage and the first voltage ie, the gate-source voltage
  • the difference between the gate voltage and the first voltage ie, the gate-source voltage
  • the difference between the gate voltage and the first voltage ie, the gate-source voltage
  • the magnetic induction intensity of the magnetic field may range from 20 mT (millitesla) to 400 mT.
  • the magnetic induction intensity of the magnetic field may be 50 mT, 100 mT, 200 mT, 300 mT, or the like.
  • the direction of the magnetic field may be perpendicular to the plane where the display substrate is located. In other embodiments, the direction of the magnetic field may be parallel to the plane where the display substrate is located. Of course, those skilled in the art can understand that the direction of the magnetic field can also be other directions. For example, the direction of the magnetic field may not be perpendicular to the plane where the display substrate is located and not parallel to the plane where the display substrate is located.
  • the time of applying the electrical signal to the display substrate and the time of the temporal magnetic field at least partially overlap.
  • a magnetic field can be applied to the display substrate first, and when the display substrate is in a magnetic field environment, an electrical signal is applied to the display substrate .
  • a magnetic field and an electric signal can be applied to the display substrate at the same time.
  • an electrical signal may be applied to the display substrate first, and in the process of applying the electrical signal, a magnetic field may be applied to the display substrate.
  • the time range for applying the magnetic field may be 5 minutes to 30 minutes.
  • a module process is performed on the display substrate.
  • the module process includes: a process of attaching an IC (Integrated Circuit, integrated circuit) to a display substrate.
  • a method for manufacturing a display substrate according to an embodiment of the present disclosure is provided.
  • an electrical signal is applied to the display substrate with the participation of a magnetic field to perform a life aging process.
  • the gate-source voltage of the driving thin film transistor applied to the display substrate can be reduced, thereby reducing the problem of the threshold voltage drift of the driving thin film transistor. This can reduce the problem of the drop in the output current of the driving thin film transistor and the drop in the light-emitting brightness of the light-emitting device caused by the threshold voltage drift, and improve the user experience.
  • the duration of applying the electrical signal and the magnetic induction intensity of the magnetic field have an inverse relationship. That is, the greater the magnetic induction intensity of the magnetic field, the shorter the duration of applying the electrical signal, which can also alleviate the problem of threshold voltage drift of the driving thin film transistor.
  • the duration of applying the electrical signal is basically equal to the duration of the life aging process.
  • the duration of the life aging process can be set according to needs. The longer the life aging process, the more obvious the aging effect.
  • FIG. 4 is a graph showing current-voltage characteristic curves of a light-emitting device with and without applying a magnetic field according to some embodiments of the present disclosure.
  • the life aging method is implemented while the display substrate is placed in a magnetic field environment. Due to the magneto-current characteristics of the OLED device, the I-V characteristic curve of the OLED device will move in the direction of resistance reduction, as shown in Figure 4. It can be seen from FIG. 4 that after the magnetic field is applied, the operating point of the display substrate changes from point P1 to point P2. In this way, the current flowing through the OLED device can be increased without increasing the gate-source voltage of the DTFT, thereby meeting the large current required by the lifetime aging process. In this way, the problem of the drift of the threshold voltage of the DTFT caused by the larger gate-source voltage can be alleviated.
  • the inventors of the present disclosure have discovered through research that electrons and holes are respectively injected from the cathode and anode of the OLED device into the light-emitting layer to form singlet excitons (or pair of singlet polarons) S and triplet excitons (Alternatively called triplet polaron pair) T.
  • S has stronger ionicity than T, that is, S is easier to decompose into free electrons and holes than T. Therefore, S is more easily dissociated into free charges than T and contributes to the conduction current of the device.
  • the singlet excitons S can be converted into triplet excitons T through intersystem crossing, thereby changing the number of S and T in the device, resulting in a corresponding change in the current flowing through the OLED device.
  • the T energy level undergoes Zeeman splitting and decomposes to generate three substates T 1 , T 0 and T -1 .
  • T 0 and T -1 the three substates, only T 0 and the singlet exciton S have similar energies.
  • the amount of free charge decomposed increases, that is, the conduction current of the device increases. Therefore, when the OLED device is in a magnetic field, the magnetic field will suppress the intersystem crossing phenomenon in the device, and the number of singlet excitons S will increase, and the current flowing through the device will increase accordingly.
  • Fig. 5 is a graph showing a magneto-current change curve of a light-emitting device (such as an OLED device) according to an embodiment of the present disclosure.
  • the abscissa represents the magnitude of the magnetic induction intensity, and the positive and negative signs respectively represent the direction of the magnetic field.
  • the ordinate is the relative change in current ( ⁇ I/I).
  • ⁇ I I B -I, where I B is the current of the light-emitting device after the magnetic field is applied, and I is the current of the light-emitting device when the magnetic field is not applied.
  • I B the current of the light-emitting device after the magnetic field is applied
  • I is the current of the light-emitting device when the magnetic field is not applied.
  • the magneto-current change curve detected when a voltage of 4V is applied to the light-emitting device is the magneto-current change curve detected when a voltage of 4V is applied to the light-emitting device.
  • the magneto-current change curve of the light-emitting device will be fixed.
  • FIG. 5 under a constant voltage, the greater the magnetic induction intensity of the magnetic field applied to the light-emitting device, the greater the current flowing through the light-emitting device.
  • FIG. 6 is a graph showing current-voltage (I-V) characteristic curves of a light-emitting device with and without applying a magnetic field according to some embodiments of the present disclosure.
  • the curve 601 is the current-voltage characteristic curve of the OLED device when no magnetic field is applied
  • the curve 602 is the current-voltage characteristic curve of the OLED device when a magnetic field is applied (for example, the magnetic induction intensity is 50 mT).
  • Table 1 can also be used to compare the difference in the life aging process in the case of applying and not applying a magnetic field.
  • the data voltage can be converted into the gate voltage of the DTFT after conversion.
  • the application of a magnetic field can reduce the required data voltage, and accordingly, the required gate-source voltage can be reduced.
  • the current of the OLED device can be increased by applying a magnetic field without increasing the gate-source voltage of the DTFT, so that the OLED device can be
  • the life aging process is carried out under high current.
  • different magnetic field sizes can be used when performing the life aging process.
  • the manufacturing method may further include: obtaining the magnetic induction intensity of the magnetic field applied to the display substrate. In this way, a magnetic field can be applied to the display substrate according to the obtained magnetic induction intensity.
  • the step of obtaining the magnetic induction intensity of the magnetic field may include: obtaining the relationship curve between the magnetic induction intensity of applying a magnetic field to the light-emitting device and the current flowing through the light-emitting device.
  • the relationship curve between the magnetic induction intensity of applying a magnetic field to the light emitting device of the display substrate and the current flowing through the light emitting device under different voltages ie, the voltage applied to the light emitting device
  • the relationship curve between the magnetic induction intensity of applying a magnetic field to the light emitting device of the display substrate and the current flowing through the light emitting device under different voltages ie, the voltage applied to the light emitting device
  • the step of obtaining the magnetic induction intensity of the magnetic field may further include: obtaining the magnetic induction intensity of the magnetic field applied to the display substrate according to the aforementioned relationship curve. For example, according to the above relationship curve, the range of the magnetic induction intensity of the magnetic field that causes the current of the light-emitting device to change significantly can be obtained, and then a suitable magnetic induction intensity can be selected within this range, so as to apply the magnetic field to the display substrate.
  • the embodiment of the present disclosure also provides a processing device for a display substrate (for example, it may be referred to as a lifetime aging device).
  • a processing device for a display substrate for example, it may be referred to as a lifetime aging device.
  • the processing device is described in detail below with reference to the drawings.
  • FIG. 7A is a schematic cross-sectional view showing a processing apparatus for a display substrate according to an embodiment of the present disclosure.
  • FIG. 7B is a perspective view showing a processing apparatus for a display substrate according to an embodiment of the present disclosure.
  • the processing device 700 may include a magnetic field generating device 710 and an electric signal applying device 720.
  • FIGS. 7A and 7B also show at least one display substrate 750.
  • the display substrate 750 includes at least one light emitting device.
  • the electric signal applying device 720 is configured to apply an electric signal (for example, a voltage signal) to the display substrate 750 to generate an aging current flowing through the light emitting device.
  • an electric signal for example, a voltage signal
  • the magnetic field generating device 710 is configured to apply a magnetic field to the display substrate 750 during at least part of the time when the electrical signal applying device 720 applies an electrical signal to the display substrate 750. This magnetic field is used to increase the aging current.
  • the display substrate can display a different screen.
  • the display substrate can be made to display a red screen; when the life of the OLED device of the green sub-pixel of the display substrate needs to be aged, the display substrate can be made to display green Picture:
  • the display substrate can display a blue picture.
  • the electrical signal applying device applies an electrical signal to the display substrate to generate an aging current flowing through the light emitting device
  • the magnetic field generating device applies the electrical signal to the display substrate at least part of the time when the electrical signal applying device applies the electrical signal to the display substrate.
  • This magnetic field is used to increase the aging current.
  • the magnetic field generating device 710 includes at least one magnetic field device pole plate for emitting a magnetic field.
  • the at least one magnetic field device pole may include a first magnetic field device pole 711 and a second magnetic field device pole 712.
  • the electrical signal applying device 720 is between the first magnetic field device plate 711 and the second magnetic field device plate 712.
  • the shapes of the first magnetic field device plate 711 and the second magnetic field device plate 712 are flat plates.
  • the plane where the first magnetic field device plate 711 is located is parallel to the plane where the second magnetic field device plate 712 is located. This is conducive to generating a uniform magnetic field, thereby facilitating the control of the life aging process.
  • the processing apparatus 700 may further include a carrier 730.
  • the stage 730 is configured to carry the display substrate 750.
  • the electrical signal applying device 720 is integrated on the carrier 730.
  • the first magnetic field device pole plate 711 is above the carrier 730, and the second magnetic field device pole 712 is below the carrier 730.
  • the plane where the first magnetic field device plate 711 is located is parallel to the plane where the loading surface of the carrier 730 is located, and the plane where the second magnetic field device pole plate 712 is located is parallel to the plane where the loading surface of the loading platform 730 is located. This is beneficial for applying a magnetic field perpendicular to the display substrate to the display substrate.
  • the direction 761 of the magnetic field is perpendicular to the plane where the display substrate 750 is located. This facilitates the control of the life aging process.
  • the distance d 1 between the carrier 730 and the first magnetic field device plate 711 is equal to the distance d 2 between the carrier 730 and the second magnetic field device plate 712. In this way, the magnetic field received by the display substrate can be made as uniform as possible, thereby facilitating the life aging process on the display substrate.
  • the distance d 3 between the first magnetic field device plate 711 and the second magnetic field device plate 712 ranges from 30 cm to 100 cm.
  • the distance between the electrodes of the two magnetic field devices may be 50 cm, 70 cm, or 90 cm.
  • the electrode of the magnetic field device and the display substrate can be avoided as much as possible, and the magnetic induction intensity of the magnetic field can be made as large as possible, which is beneficial to the implementation of the life aging process.
  • the processing device 700 may further include a mechanical arm (not shown in the figure) connected to the first magnetic field device plate 711 and the second magnetic field device plate 712 respectively.
  • the distance between the first magnetic field device plate 711 and the second magnetic field device plate 712 can be adjusted by the mechanical arm.
  • the processing device 700 may further include a housing 740.
  • the housing 740 surrounds the magnetic field generating device 710, the electrical signal applying device 720 and the carrier 730, and can fix the magnetic field generating device 710 and the carrier 730.
  • FIG. 8 is a perspective view showing a processing apparatus for a display substrate according to another embodiment of the present disclosure.
  • the processing device 800 includes a magnetic field generating device 710, an electrical signal applying device 720 and a carrier 730.
  • the magnetic field generating device 710 may include at least one magnetic field device pole plate for emitting a magnetic field.
  • the at least one magnetic field device pole plate may include a first magnetic field device pole plate 711 and a second magnetic field device pole plate 712.
  • the plane where the pole plate 711 of the first magnetic field device is located is parallel to the plane where the pole plate 712 of the second magnetic field device is located.
  • the first magnetic field device plate 711 is on the left side of the carrier 730, and the second magnetic field device plate 712 is on the right side of the carrier 730.
  • the plane where the first magnetic field device plate 711 is located is perpendicular to the plane where the loading surface of the carrier 730 is located, and the plane where the second magnetic field device pole plate 712 is located is perpendicular to the plane where the loading surface of the carrier 730 is located.
  • the direction 862 of the magnetic field is parallel to the plane where the display substrate 750 is located. This facilitates the control of the life aging process.
  • the direction of the magnetic field is perpendicular or parallel to the plane where the display substrate is located
  • the scope of the embodiments of the present disclosure is not limited to this.
  • the direction of the magnetic field may also be any direction other than the above two directions, that is, the direction of the magnetic field may not be perpendicular to the plane where the display substrate is located and not parallel to the plane where the display substrate is located.
  • FIG. 9 is a schematic diagram showing the structure of a magnetic field generating device according to an embodiment of the present disclosure.
  • the first magnetic field device pole 711 may include a first coil 7112
  • the second magnetic field device pole 712 may include a second coil 7122.
  • the first coil 7112 and the second coil 7122 can generate a magnetic field (for example, a uniform magnetic field) after being energized.
  • the two coils may be Helmholtz coils.
  • currents with the same direction and the same magnitude can be passed into the first coil and the second coil respectively.
  • the magnetic field generating device 710 may be configured to adjust the magnetic induction intensity of the magnetic field applied to the display substrate by adjusting the magnitude of the current flowing through the first coil 711 and the magnitude of the current flowing through the second coil 712 . In this way, the magnetic field generating device can apply magnetic fields of different magnetic induction to the display substrate.
  • the pole plates of the first magnetic field device and the pole plates of the second magnetic field device may respectively include permanent magnets, which can also generate a magnetic field for the life aging process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示基板的制造方法和处理装置,涉及显示技术领域。该显示基板包括至少一个发光器件。该制造方法包括:向显示基板施加电信号以产生流过发光器件的老化电流,其中,在向显示基板施加电信号的至少部分时间内对显示基板施加磁场。该磁场用于增大老化电流。本公开可以减小施加在显示基板的驱动薄膜晶体管的栅源电压,从而减轻该驱动薄膜晶体管的阈值电压漂移的问题。

Description

显示基板的制造方法和处理装置 技术领域
本公开涉及显示技术领域,特别涉及一种显示基板的制造方法和处理装置。
背景技术
AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极体)作为新一代显示技术,因其具有高对比度、宽色域和可折叠等优势已经取得了巨大发展并成功商业化。但是,AMOLED仍然存在一些不足。比如AMOLED因采用有机材料作为主要功能层,其产品存在寿命偏低的问题。为了提高用户体验效果,提高OLED产品寿命变得尤为重要。
目前,为了改善AMOLED的产品寿命,可以采用寿命老化(Lifetime-Aging,可以简称为L-Aging)方法。
发明内容
根据本公开实施例的一个方面,提供了一种显示基板的制造方法,所述显示基板包括至少一个发光器件,所述制造方法包括:向所述显示基板施加电信号以产生流过所述发光器件的老化电流,其中,在向所述显示基板施加电信号的至少部分时间内对所述显示基板施加磁场,所述磁场用于增大所述老化电流。
在一些实施例中,所述磁场的磁感应强度的范围为20mT至400mT。
在一些实施例中,在向所述显示基板施加电信号之前,所述制造方法还包括:获得对所述显示基板所施加的磁场的磁感应强度;其中,根据所获得的磁感应强度对所述显示基板施加磁场。
在一些实施例中,获得对所述显示基板所施加的磁场的磁感应强度的步骤包括:获得对所述发光器件施加磁场的磁感应强度与流过所述发光器件的电流之间的关系曲线;以及根据所述关系曲线获得对所述显示基板所施加的磁场的磁感应强度。
在一些实施例中,所述显示基板还包括至少一个驱动薄膜晶体管,所述驱动薄膜晶体管的第一电极电连接至用于提供第一电压的第一电压端,所述驱动薄膜晶体管的第二电极电连接至所述发光器件的第一电极,所述驱动薄膜晶体管的栅极被配置为接收栅极电压,所述发光器件的第二电极电连接至用于提供第二电压的第二电压端;向所述显示基板施加电信号的步骤包括:向所述第一电压端施加第一电压,向所述第二 电压端施加第二电压,以及向所述驱动薄膜晶体管的栅极施加栅极电压;其中,所述栅极电压与所述第一电压的差值的绝对值与所述磁场的磁感应强度呈反相关的关系。
在一些实施例中,在所述驱动薄膜晶体管为PMOS晶体管的情况下,所述第一电压高于所述第二电压;在所述驱动薄膜晶体管为NMOS晶体管的情况下,所述第一电压低于所述第二电压。
在一些实施例中,所述栅极电压与所述第一电压的差值的绝对值的范围为1V至10V。
在一些实施例中,施加所述电信号的时长与所述磁场的磁感应强度呈反相关的关系。
在一些实施例中,在向所述显示基板施加电信号之前,所述制造方法还包括:对所述显示基板执行封装工艺;在向所述显示基板施加电信号之后,所述制造方法还包括:对所述显示基板执行模组工艺。
根据本公开实施例的另一个方面,提供了一种用于显示基板的处理装置,所述显示基板包括至少一个发光器件,所述处理装置包括:电信号施加装置,被配置为向显示基板施加电信号以产生流过所述发光器件的老化电流;以及磁场发生装置,被配置为在所述电信号施加装置向所述显示基板施加电信号的至少部分时间内对所述显示基板施加磁场,所述磁场用于增大所述老化电流。
在一些实施例中,所述磁场发生装置包括用于发出磁场的至少一个磁场装置极板。
在一些实施例中,所述至少一个磁场装置极板包括第一磁场装置极板和第二磁场装置极板,其中,所述电信号施加装置在所述第一磁场装置极板和所述第二磁场装置极板之间。
在一些实施例中,所述第一磁场装置极板包括第一线圈,所述第二磁场装置极板包括第二线圈;其中,所述第一线圈和所述第二线圈在被通电后产生磁场。
在一些实施例中,所述磁场发生装置被配置为通过调节流过所述第一线圈的电流的大小和流过所述第二线圈的电流的大小来调控对所述显示基板施加的磁场的磁感应强度。
在一些实施例中,所述第一磁场装置极板所在的平面与所述第二磁场装置极板所在的平面平行。
在一些实施例中,所述处理装置还包括:载台,被配置为承载所述显示基板,其中,所述电信号施加装置被集成在所述载台上。
在一些实施例中,所述第一磁场装置极板在所述载台的上方,所述第二磁场装置极板在所述载台的下方;所述第一磁场装置极板所在的平面与所述载台的载物面所在的平面平行,所述第二磁场装置极板所在的平面与所述载台的载物面所在的平面平行。
在一些实施例中,所述第一磁场装置极板在所述载台的左侧,所述第二磁场装置极板在所述载台的右侧;所述第一磁场装置极板所在的平面与所述载台的载物面所在的平面垂直,所述第二磁场装置极板所在的平面与所述载台的载物面所在的平面垂直。
在一些实施例中,所述第一磁场装置极板与所述第二磁场装置极板之间的间距的范围为30cm至100cm。
在一些实施例中,所述载台与所述第一磁场装置极板之间的间距等于所述载台与所述第二磁场装置极板之间的间距。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1A是示出根据一些实施例的显示基板在没有执行寿命老化方法的情况下的寿命曲线效果图;
图1B是示出根据一些实施例的显示基板在执行了寿命老化方法后的寿命曲线效果图;
图2A是示出根据本公开一个实施例的发光器件与驱动薄膜晶体管的连接示意图;
图2B是示出根据本公开另一个实施例的发光器件与驱动薄膜晶体管的连接示意图;
图2C是示出根据本公开一些实施例的驱动薄膜晶体管和OLED器件的电流-电压特性曲线;
图2D是示出根据本公开一些实施例的驱动薄膜晶体管在不同栅源电压V gs下,阈值电压V th随工作时间增加的变化曲线图;
图2E是示出根据本公开一些实施例的驱动薄膜晶体管在寿命老化工艺前后的I ds-V gs特性曲线;
图3是示出根据本公开一个实施例的用于显示基板的制造方法的流程图;
图4是示出根据本公开一些实施例的在施加磁场和未施加磁场的情况下发光器件的电流-电压特性曲线;
图5是示出根据本公开一个实施例的发光器件的磁致电流变化曲线;
图6是示出根据本公开一些实施例的在施加磁场和未施加磁场的情况下的发光器件的电流-电压特性曲线;
图7A是示出根据本公开一个实施例的用于显示基板的处理装置的截面示意图;
图7B是示出根据本公开一个实施例的用于显示基板的处理装置的透视图;
图8是示出根据本公开另一个实施例的用于显示基板的处理装置的透视图;
图9是示出根据本公开一个实施例的磁场发生装置的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不必须按照实际的比例关系绘制。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通 技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
图1A是示出根据一些实施例的显示基板在没有执行寿命老化方法的情况下的寿命曲线效果图。图1B是示出根据一些实施例的显示基板在执行了寿命老化方法后的寿命曲线效果图。
例如,AMOLED的寿命一般指其亮度随时间衰减的快慢程度。通常,该寿命可以用LT95表示,即亮度降到95%所需要的时间。OLED亮度衰减曲线一般呈现先快速衰减再缓慢衰减的趋势,如图1A所示。
寿命老化(L-Aging)方法的原理是向显示基板的发光器件(例如OLED器件)施加短时间(例如10min(分钟)至30min)的大电流,使器件内部的缺陷在短时间内趋于饱和,从而在产品出厂前就去除了在发光器件的初期亮度的快速衰减部分。图1A中在圆圈内的部分即为发光器件的初期亮度的快速衰减部分。从图1A和图1B比较来看,经过实施寿命老化方法,去除了发光器件的初期亮度的快速衰减部分,产品的LT95寿命有很大程度的提升。
本公开的发明人研究发现,上述寿命老化方法可能会影响显示基板的产品特性,具体分析如下:
在一些实施例中,显示基板还包括至少一个驱动薄膜晶体管。
图2A是示出根据本公开一个实施例的发光器件与驱动薄膜晶体管的连接示意图。
如图2A所示,驱动薄膜晶体管(简称为DTFT)210与发光器件(例如OLED器件)220串联。例如该驱动晶体管210可以为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)晶体管。该驱动薄膜晶体管210的第一电极(例如源极)电连接至用于提供第一电压V 1的第一电压端231。该驱动薄膜晶体管210的第二电极(例如漏极)电连接至发光器件220的第一电极(例如阳极)。该驱动薄膜晶体管210的栅极被配置为接收栅极电压V g。发光器件220的第二电极(例如阴极)电连接至用于提供第二电压V 2的第二电压端232。在驱动薄膜晶体管为PMOS晶体管的情况下,第一电压V 1高于第二电压V 2。例如,第一电压V 1为高电平,第二电压V 2为低电平。在该实施例中,如果需要使流过发光器件的电流增加,则需要提高 DTFT的栅源电压差V gs。因此,施加给发光器件220的大电流是由DTFT 210在较大的栅源电压差下提供的。
图2B是示出根据本公开另一个实施例的发光器件与驱动薄膜晶体管的连接示意图。
例如,如图2B所示,驱动晶体管240可以为NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)晶体管。该驱动薄膜晶体管240的第一电极(例如源极)电连接至用于提供第一电压V 1'的第一电压端261。该驱动薄膜晶体管240的第二电极(例如漏极)电连接至发光器件250的第一电极(例如阴极)。该驱动薄膜晶体管240的栅极被配置为接收栅极电压V g'。该发光器件250的第二电极(例如阳极)电连接至用于提供第二电压V 2'的第二电压端262。在驱动薄膜晶体管为NMOS晶体管的情况下,第一电压V 1'低于第二电压V 2'。例如,第一电压V 1'为低电平,第二电压V 2'为高电平。在该实施例中,如果需要使流过发光器件的电流增加,则需要提高DTFT的栅源电压差V gs'。因此,施加给发光器件250的大电流是由DTFT240在较大的栅源电压差下提供的。
图2C是示出根据本公开一些实施例的驱动薄膜晶体管(DTFT)和OLED器件的电流-电压特性曲线。这里是以P型驱动薄膜晶体管为例进行说明的。在图2C中,纵坐标表示电流,例如DTFT的漏源电流I ds。由于DTFT与OLED器件串联,因此该漏源电流I ds也流过OLED器件。横坐标表示电压(例如,DTFT的漏源电压V ds和在OLED器件两端的电压V op)。图2C示出了DTFT在不同栅源电压V gs下的电流-电压特性曲线。例如,图2C示出了DTFT分别在V gs1=-4V、V gs2=-5V、V gs3=-6V和V gs4=-7V的情况下的电流-电压特性曲线。图2C还示出了OLED器件的电流-电压特性曲线201。显示基板(例如,用于AMOLED面板的显示基板)工作在两条曲线的交点(A点)处。如果需要增加OLED器件的电流,则需要增加V gs电压的绝对值,使得显示基板的工作点位由A1点变至Ai点(i=2,3,4…)。需要说明的是,OLED正常工作时,DTFT工作在饱和区,但在L-Aging工艺时,DTFT可工作线性区。
图2D是示出根据本公开一些实施例的驱动薄膜晶体管在不同栅源电压V gs下,阈值电压V th随工作时间增加的变化曲线图。这里是以P型驱动薄膜晶体管为例进行说明的。例如,V gs5=-8V,V gs6=-12V。如图2D所示,栅源电压V gs的绝对值越大,DTFT的阈值电压V th的漂移越严重,例如向负向漂移越严重。
图2E是示出根据本公开一些实施例的驱动薄膜晶体管在寿命老化工艺前后的 I ds-V gs(即漏源电流-栅源电压)特性曲线。如图2E所示,曲线202为驱动薄膜晶体管在寿命老化工艺之前(即未进行寿命老化工艺)的I ds-V gs特性曲线;曲线203为驱动薄膜晶体管在寿命老化工艺之后的I ds-V gs特性曲线。从图2E可以看出,经过寿命老化工艺,驱动薄膜晶体管的特性曲线发生了漂移。例如,该驱动薄膜晶体管的阈值电压发生左移,这导致电流I ds下降。由于发光器件(例如OLED器件)的亮度与电流I ds呈正相关关系,因此会引起显示基板(例如,用于AMOLED面板的显示基板)的亮度降低,从而影响产品性能。
因此,从图2A至图2E可以看出,例如对于P型薄膜晶体管,栅极电压与源极电压的差值V gs的绝对值越大,DTFT的阈值电压V th向负向漂移越严重。这会导致DTFT的输出电流下降,从而引起发光器件(例如OLED器件)的发光亮度降低,影响用户体验。
鉴于此,本公开的实施例提供了一种显示基板的制造方法,以减轻DTFT的阈值电压的漂移问题。
该显示基板包括至少一个发光器件。该制造方法包括:向显示基板施加电信号以产生流过发光器件的老化电流。这里,在向显示基板施加电信号的至少部分时间内对显示基板施加磁场。该磁场用于增大老化电流。在该实施例中,在向显示基板施加电信号的过程中还对显示基板施加磁场。该磁场有助于增大老化电流。这样可以减小所施加的电信号(例如小于相关技术中的电信号),从而可以减轻驱动薄膜晶体管的阈值电压漂移的问题。
图3是示出根据本公开一个实施例的用于显示基板的制造方法的流程图。如图3所示,该制造方法可以包括步骤S302至S306。
在步骤S302,对显示基板执行封装工艺。该封装工艺包括:在显示基板上形成封装层。在一些实施例中,在执行封装工艺之前,所述制造方法还可以包括:对显示基板执行蒸镀工艺。例如通过蒸镀工艺形成功能层和阴极层等。
在步骤S304,向显示基板施加电信号以产生流过发光器件的老化电流,其中,在向显示基板施加电信号的至少部分时间内对显示基板施加磁场,该磁场用于增大老化电流。
前面已经描述了驱动薄膜晶体管与发光器件的电连接关系。在一些实施例中,向显示基板施加电信号的步骤包括:向第一电压端施加第一电压,向第二电压端施加第二电压,以及向驱动薄膜晶体管的栅极施加栅极电压。例如,在驱动薄膜晶体管为 PMOS晶体管的情况下,向第一电压端231施加第一电压V 1,向第二电压端232施加第二电压V 2,以及向驱动薄膜晶体管210的栅极施加栅极电压V g。又例如,在驱动薄膜晶体管为NMOS晶体管的情况下,向第一电压端261施加第一电压V 1',向第二电压端262施加第二电压V 2',以及向驱动薄膜晶体管240的栅极施加栅极电压V g'。
在一些实施例中,栅极电压与第一电压的差值的绝对值与磁场的磁感应强度呈反相关的关系。即,磁场的磁感应强度越大,栅极电压与第一电压的差值的绝对值越小,这样可以减轻驱动薄膜晶体管的阈值电压漂移的问题。
在一些实施例中,栅极电压与第一电压的差值的绝对值的范围为1V至10V。例如,在驱动薄膜晶体管为PMOS晶体管的情况下,栅极电压与第一电压的差值(即栅源电压)的范围为-10V至-1V。又例如,在驱动薄膜晶体管为NMOS晶体管的情况下,栅极电压与第一电压的差值(即栅源电压)的范围为1V至10V。
在一些实施例中,该磁场的磁感应强度的范围可以为20mT(毫特斯拉)至400mT。例如,该磁场的磁感应强度可以为50mT、100mT、200mT或300mT等。
在一些实施例中,该磁场的方向可以与显示基板所在的平面垂直。在另一些实施例中,该磁场的方向可以与显示基板所在的平面平行。当然,本领域技术人员可以理解,该磁场的方向也可以是其他方向。例如,该磁场的方向可以不与显示基板所在的平面相垂直且不与显示基板所在的平面相平行。
这里,对显示基板施加电信号的时间与时间磁场的时间至少部分重叠。例如,在对显示基板施加电信号以产生老化电流(即执行寿命老化工艺)的过程中,可以先对显示基板施加磁场,在显示基板处于磁场环境中的情况下,对该显示基板施加电信号。或者,可以同时对显示基板施加磁场和电信号。又或者,可以先对显示基板施加电信号,并且在施加电信号的过程中,对显示基板施加磁场。在一些实施例中,施加磁场的时间范围可以为5min至30min。
在步骤S306,对显示基板执行模组工艺。例如,模组工艺包括:将IC(Integrated Circuit,集成电路)贴合在显示基板上的工艺等。
至此,提供了根据本公开一个实施例的显示基板的制造方法。在该制造方法中,在对显示基板执行封装工艺之后以及在对显示基板执行模组工艺之前,在磁场的参与下,向显示基板施加电信号以执行寿命老化工艺。这样可以减小施加在显示基板的驱动薄膜晶体管的栅源电压,从而可以减轻该驱动薄膜晶体管的阈值电压漂移的问题。这样可以减少由阈值电压漂移引起的驱动薄膜晶体管的输出电流下降以及发光器件 的发光亮度下降问题,提高用户体验感。
在一些实施例中,施加电信号的时长与磁场的磁感应强度呈反相关的关系。即,磁场的磁感应强度越大,施加电信号的时长越短,这样也可以减轻驱动薄膜晶体管的阈值电压漂移的问题。
这里,施加电信号的时长基本等于寿命老化工艺的时长。该寿命老化工艺的时长可以根据需要而设定。寿命老化工艺的时长越长,老化效果越明显。
下面结合附图分析将显示基板置于磁场环境中执行寿命老化工艺的原理。
图4是示出根据本公开一些实施例的在施加磁场和未施加磁场的情况下发光器件的电流-电压特性曲线。图4中示出了在未施加磁场(即B=0)的情况下的发光器件(例如OLED器件)的电流-电压(I-V)特性曲线,以及在施加磁场(即B≠0)的情况下的发光器件的电流-电压特性曲线。另外,以P型驱动薄膜晶体管为例,图4还示出了DTFT在栅源电压V gs7(例如V gs7=-6V)的情况下的电流-电压特性曲线。
在上述的实施例中,在将显示基板置于磁场环境中的情况下实施寿命老化方法。由于OLED器件的磁致电流特性,OLED器件的I-V特性曲线会向电阻减小的方向移动,如图4所示。由图4可知,在施加磁场后,显示基板的工作点位从P1点变至P2点。这样实现了在不增加DTFT的栅源电压的情况下,使流过OLED器件的电流变大,从而满足寿命老化工艺所需要的大电流。这样,可以减轻因较大的栅源电压所导致的DTFT的阈值电压的漂移问题。
本公开的发明人研究发现,电子和空穴分别从OLED器件的阴极和阳极注入到发光层后,形成单重态激子(或者称为单重态极化子对)S和三重态激子(或者称为三重态极化子对)T。S比T具有更强的离子性,即,S比T更容易分解成自由的电子和空穴。因此,S比T更容易解离为自由电荷并对器件的传导电流产生贡献。单重态激子S可通过系间窜越转化为三重态激子T,从而改变器件中S与T的数量,导致流过OLED器件的电流也发生相应改变。当OLED器件处于恒压驱动且位于磁场中时,T能级发生塞曼分裂而分解生成T 1、T 0和T -1三个亚态。在这三个亚态中,只有T 0和单重态激子S的能量相接近。而T 1与T 0相差一个塞曼能,T -1与T 0也相差一个塞曼能,这样在三个亚态之间产生能级势垒。因此,该塞曼分裂会抑制单重态激子S向三重态激子T(T 1和T -1)的转化,而使单重态激子S的数量发生增加,从而导致器件中由S所分解的自由电荷数量增加,即器件的传导电流增大。因此,当OLED器件处于磁场中时,磁场会抑制器件中的系间窜越现象,而使单重态激子S的数量增加, 流过器件的电流随之变大。
图5是示出根据本公开一个实施例的发光器件(例如OLED器件)的磁致电流变化曲线。如图5所示,横坐标表示磁感应强度的大小,其中,正负号分别表示磁场的方向。如图5所示,纵坐标为电流的相对变化量(ΔI/I)。这里,ΔI=I B-I,其中,I B为施加磁场后的发光器件的电流,I为未施加磁场的情况下的发光器件的电流。例如,图5所示的磁致电流变化曲线是在对发光器件施加4V电压的情况下所检测的磁致电流变化曲线。当发光器件的结构固定且对该发光器件施加恒压偏置时,该发光器件的磁致电流变化曲线将固定不变。如图5所示,在恒定电压下,对发光器件所施加的磁场的磁感应强度越大,流过该发光器件的电流越大。
图6是示出根据本公开一些实施例的在施加磁场和未施加磁场的情况下的发光器件的电流-电压(I-V)特性曲线。例如,曲线601为在未施加磁场的情况下的OLED器件的电流-电压特性曲线,曲线602为在施加磁场(例如磁感应强度为50mT)的情况下的OLED器件的电流-电压特性曲线。
从图6可以获知,与未施加磁场的情况相比,OLED器件在被施加磁场后的电流-电压特性曲线向电流增加的方向移动。即,OLED器件在磁场中表现为该OLED器件的电阻减小。因此,OLED器件在被施加磁场后,流过OLED器件的电流变大。
另外,还可以通过表1来比较在施加磁场和未施加磁场的情况下的寿命老化工艺的不同。如表1所示,为了获得400mA的在寿命老化工艺中的电流(即流过发光器件的电流),在未施加磁场(即B=0)的情况下,需要向显示基板施加3.5V的数据电压。该数据电压经过转换后可以变为DTFT的栅极电压。而为了获得400mA的电流,在施加磁场(例如B=50mT)的情况下,需要向显示基板施加2.2V的数据电压。
表1在施加磁场和未施加磁场的情况下的寿命老化工艺
Figure PCTCN2019079869-appb-000001
因此,在执行寿命老化工艺时,相比未施加磁场的情况,施加磁场可以降低所需的数据电压,相应地,可以降低所需要的栅源电压。
换言之,在对显示基板(例如用于AMOLED面板的显示基板)实施寿命老化工艺时,可以在不增加DTFT的栅源电压的情况下,通过施加磁场来提高OLED器件的 电流,使得该OLED器件可以在大电流下进行寿命老化工艺。此外,对应不同种类的发光器件(例如OLED器件)结构,在执行寿命老化工艺时,可以使用不同的磁场大小。
在一些实施例中,在向显示基板施加电信号之前,所述制造方法还可以包括:获得对该显示基板所施加的磁场的磁感应强度。这样,可以根据所获得的磁感应强度对该显示基板施加磁场。
在一些实施例中,上述获得磁场的磁感应强度的步骤可以包括:获得对发光器件施加磁场的磁感应强度与流过该发光器件的电流之间的关系曲线。例如,可以通过测试的方式,获得在不同的电压(即施加在发光器件上的电压)下对显示基板的发光器件施加磁场的磁感应强度与流过该发光器件的电流之间的关系曲线。
在一些实施例中,上述获得磁场的磁感应强度的步骤还可以包括:根据上述关系曲线获得对显示基板所施加的磁场的磁感应强度。例如,根据上述关系曲线可以得到使得发光器件的电流发生明显变化的磁场的磁感应强度的范围,然后在该范围内选择合适的磁感应强度,从而对显示基板施加磁场。
本公开的实施例还提供了一种用于显示基板的处理装置(例如可以称为寿命老化装置)。下面结合附图详细描述该处理装置。
图7A是示出根据本公开一个实施例的用于显示基板的处理装置的截面示意图。图7B是示出根据本公开一个实施例的用于显示基板的处理装置的透视图。
如图7A和图7B所示,该处理装置700可以包括磁场发生装置710和电信号施加装置720。另外,图7A和图7B还示出了至少一个显示基板750。该显示基板750包括至少一个发光器件。
该电信号施加装置720被配置为向显示基板750施加电信号(例如电压信号)以产生流过发光器件的老化电流。
该磁场发生装置710被配置为在电信号施加装置720向显示基板750施加电信号的至少部分时间内对该显示基板750施加磁场。该磁场用于增大老化电流。
这里,通过向显示基板施加电信号,可以使该显示基板显示不同画面。例如,当需要对显示基板的红色子像素的OLED器件进行寿命老化时,可以使显示基板显示红色画面;当需要对显示基板的绿色子像素的OLED器件进行寿命老化时,可以使显示基板显示绿色画面;当需要对显示基板的蓝色子像素的OLED器件进行寿命老化时,可以使显示基板显示蓝色画面。
至此,提供了根据本公开一些实施例的处理装置。在该处理装置中,电信号施加装置向显示基板施加电信号以产生流过发光器件的老化电流,磁场发生装置在电信号施加装置向显示基板施加电信号的至少部分时间内对该显示基板施加磁场。该磁场用于增大老化电流。利用该处理装置对显示基板实施寿命老化工艺,可以减小施加在显示基板的驱动薄膜晶体管的栅源电压,从而可以减轻该驱动薄膜晶体管的阈值电压漂移的问题,提高用户体验。
在一些实施例中,磁场发生装置710包括用于发出磁场的至少一个磁场装置极板。在一些实施例中,如图7A和图7B所示,所述至少一个磁场装置极板可以包括第一磁场装置极板711和第二磁场装置极板712。该电信号施加装置720在该第一磁场装置极板711和该第二磁场装置极板712之间。例如,该第一磁场装置极板711和该第二磁场装置极板712的形状分别为平板形状。
在一些实施例中,如图7A和图7B所示,第一磁场装置极板711所在的平面与第二磁场装置极板712所在的平面平行。这样有利于产生匀强磁场,从而便于控制寿命老化工艺。
在一些实施例中,如图7A和图7B所示,处理装置700还可以包括载台730。该载台730被配置为承载显示基板750。电信号施加装置720被集成在该载台730上。
在一些实施例中,如图7A和图7B所示,第一磁场装置极板711在载台730的上方,第二磁场装置极板712在载台730的下方。该第一磁场装置极板711所在的平面与载台730的载物面所在的平面平行,该第二磁场装置极板712所在的平面与载台730的载物面所在的平面平行。这有利于对显示基板施加垂直于显示基板的磁场。
例如,如图7B所示,磁场的方向761与显示基板750所在的平面垂直。这样便于控制寿命老化工艺。
在一些实施例中,如图7A所示,载台730与第一磁场装置极板711之间的间距d 1等于载台730与第二磁场装置极板712之间的间距d 2。这样可以尽量使得显示基板受到的磁场均匀,从而便于对显示基板执行寿命老化工艺。
在一些实施例中,如图7A所示,第一磁场装置极板711与第二磁场装置极板712之间的间距d 3的范围为30cm至100cm。例如,这两个磁场装置电极之间的间距可以为50cm、70cm或90cm等。在该间距范围内,可以尽量避免磁场装置电极与显示基板接触,又可以使得磁场的磁感应强度尽量大,有利于寿命老化工艺的执行。
在一些实施例中,该处理装置700还可以包括与第一磁场装置极板711和第二磁 场装置极板712分别连接的机械臂(图中未示出)。通过该机械臂可以调节第一磁场装置极板711和第二磁场装置极板712之间的间距。
在一些实施例中,如图7A所示,该处理装置700还可以包括外壳740。该外壳740将磁场发生装置710、电信号施加装置720和载台730包围起来,并且可以固定该磁场发生装置710和该载台730。
图8是示出根据本公开另一个实施例的用于显示基板的处理装置的透视图。
如图8所示,该处理装置800包括磁场发生装置710、电信号施加装置720和载台730。该磁场发生装置710可以包括用于发出磁场的至少一个磁场装置极板。例如,该至少一个磁场装置极板可以包括第一磁场装置极板711和第二磁场装置极板712。例如,该第一磁场装置极板711所在的平面与该第二磁场装置极板712所在的平面平行。
在一些实施例中,如图8所示,第一磁场装置极板711在载台730的左侧,第二磁场装置极板712在载台730的右侧。该第一磁场装置极板711所在的平面与载台730的载物面所在的平面垂直,该第二磁场装置极板712所在的平面与载台730的载物面所在的平面垂直。
在一些实施例中,如图8所示,磁场的方向862与显示基板750所在的平面平行。这样便于控制寿命老化工艺。
需要说明的是,虽然上面描述了磁场的方向与显示基板所在的平面垂直或平行,但是本公开实施例的范围并不仅限于此。例如,磁场的方向还可以是除上述两种方向之外的其他任意方向,即,磁场的方向可以不与显示基板所在的平面相垂直且不与显示基板所在的平面相平行。
图9是示出根据本公开一个实施例的磁场发生装置的结构示意图。
如图9所示,该第一磁场装置极板711可以包括第一线圈7112,该第二磁场装置极板712可以包括第二线圈7122。该第一线圈7112和该第二线圈7122在被通电后可以产生磁场(例如匀强磁场)。例如,这两个线圈可以为亥姆霍兹线圈。例如,可以将方向相同且大小相等的电流分别通入第一线圈和第二线圈。
在一些实施例中,磁场发生装置710可以被配置为通过调节流过该第一线圈711的电流的大小和流过该第二线圈712的电流的大小来调控对显示基板施加的磁场的磁感应强度。这样,磁场发生装置可以对显示基板施加不同磁感应强度的磁场。
在另一些实施例中,第一磁场装置极板和第二磁场装置极板可以分别包括永磁体, 这样也可以产生用于寿命老化工艺的磁场。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (20)

  1. 一种显示基板的制造方法,所述显示基板包括至少一个发光器件,所述制造方法包括:
    向所述显示基板施加电信号以产生流过所述发光器件的老化电流,其中,在向所述显示基板施加电信号的至少部分时间内对所述显示基板施加磁场,所述磁场用于增大所述老化电流。
  2. 根据权利要求1所述的制造方法,其中,
    所述磁场的磁感应强度的范围为20mT至400mT。
  3. 根据权利要求1所述的制造方法,其中,
    在向所述显示基板施加电信号之前,所述制造方法还包括:获得对所述显示基板所施加的磁场的磁感应强度;
    其中,根据所获得的磁感应强度对所述显示基板施加磁场。
  4. 根据权利要求1所述的制造方法,其中,获得对所述显示基板所施加的磁场的磁感应强度的步骤包括:
    获得对所述发光器件施加磁场的磁感应强度与流过所述发光器件的电流之间的关系曲线;以及
    根据所述关系曲线获得对所述显示基板所施加的磁场的磁感应强度。
  5. 根据权利要求1所述的制造方法,其中,
    所述显示基板还包括至少一个驱动薄膜晶体管,所述驱动薄膜晶体管的第一电极电连接至用于提供第一电压的第一电压端,所述驱动薄膜晶体管的第二电极电连接至所述发光器件的第一电极,所述驱动薄膜晶体管的栅极被配置为接收栅极电压,所述发光器件的第二电极电连接至用于提供第二电压的第二电压端;
    向所述显示基板施加电信号的步骤包括:向所述第一电压端施加第一电压,向所述第二电压端施加第二电压,以及向所述驱动薄膜晶体管的栅极施加栅极电压;
    其中,所述栅极电压与所述第一电压的差值的绝对值与所述磁场的磁感应强度呈 反相关的关系。
  6. 根据权利要求5所述的制造方法,其中,
    在所述驱动薄膜晶体管为PMOS晶体管的情况下,所述第一电压高于所述第二电压;
    在所述驱动薄膜晶体管为NMOS晶体管的情况下,所述第一电压低于所述第二电压。
  7. 根据权利要求5所述的制造方法,其中,
    所述栅极电压与所述第一电压的差值的绝对值的范围为1V至10V。
  8. 根据权利要求1所述的制造方法,其中,
    施加所述电信号的时长与所述磁场的磁感应强度呈反相关的关系。
  9. 根据权利要求1所述的制造方法,其中,
    在向所述显示基板施加电信号之前,所述制造方法还包括:对所述显示基板执行封装工艺;
    在向所述显示基板施加电信号之后,所述制造方法还包括:对所述显示基板执行模组工艺。
  10. 一种用于显示基板的处理装置,所述显示基板包括至少一个发光器件,所述处理装置包括:
    电信号施加装置,被配置为向所述显示基板施加电信号以产生流过所述发光器件的老化电流;以及
    磁场发生装置,被配置为在所述电信号施加装置向所述显示基板施加电信号的至少部分时间内对所述显示基板施加磁场,所述磁场用于增大所述老化电流。
  11. 根据权利要求10所述的处理装置,其中,
    所述磁场发生装置包括用于发出磁场的至少一个磁场装置极板。
  12. 根据权利要求11所述的处理装置,其中,
    所述至少一个磁场装置极板包括第一磁场装置极板和第二磁场装置极板,
    其中,所述电信号施加装置在所述第一磁场装置极板和所述第二磁场装置极板之间。
  13. 根据权利要求12所述的处理装置,其中,
    所述第一磁场装置极板包括第一线圈,所述第二磁场装置极板包括第二线圈;
    其中,所述第一线圈和所述第二线圈在被通电后产生磁场。
  14. 根据权利要求13所述的处理装置,其中,
    所述磁场发生装置被配置为通过调节流过所述第一线圈的电流的大小和流过所述第二线圈的电流的大小来调控对所述显示基板施加的磁场的磁感应强度。
  15. 根据权利要求12所述的处理装置,其中,
    所述第一磁场装置极板所在的平面与所述第二磁场装置极板所在的平面平行。
  16. 根据权利要求10所述的处理装置,还包括:
    载台,被配置为承载所述显示基板,其中,所述电信号施加装置被集成在所述载台上。
  17. 根据权利要求16所述的处理装置,其中,
    所述第一磁场装置极板在所述载台的上方,所述第二磁场装置极板在所述载台的下方;
    所述第一磁场装置极板所在的平面与所述载台的载物面所在的平面平行,所述第二磁场装置极板所在的平面与所述载台的载物面所在的平面平行。
  18. 根据权利要求16所述的处理装置,其中,
    所述第一磁场装置极板在所述载台的左侧,所述第二磁场装置极板在所述载台的右侧;
    所述第一磁场装置极板所在的平面与所述载台的载物面所在的平面垂直,所述第 二磁场装置极板所在的平面与所述载台的载物面所在的平面垂直。
  19. 根据权利要求15所述的处理装置,其中,
    所述第一磁场装置极板与所述第二磁场装置极板之间的间距的范围为30cm至100cm。
  20. 根据权利要求16所述的处理装置,其中,
    所述载台与所述第一磁场装置极板之间的间距等于所述载台与所述第二磁场装置极板之间的间距。
PCT/CN2019/079869 2019-03-27 2019-03-27 显示基板的制造方法和处理装置 WO2020191662A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/652,317 US11362313B2 (en) 2019-03-27 2019-03-27 Manufacturing method and processing device for display substrate each applying magnetic field during aging current being generated
CN201980000398.XA CN110114883A (zh) 2019-03-27 2019-03-27 显示基板的制造方法和处理装置
PCT/CN2019/079869 WO2020191662A1 (zh) 2019-03-27 2019-03-27 显示基板的制造方法和处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079869 WO2020191662A1 (zh) 2019-03-27 2019-03-27 显示基板的制造方法和处理装置

Publications (1)

Publication Number Publication Date
WO2020191662A1 true WO2020191662A1 (zh) 2020-10-01

Family

ID=67495916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079869 WO2020191662A1 (zh) 2019-03-27 2019-03-27 显示基板的制造方法和处理装置

Country Status (3)

Country Link
US (1) US11362313B2 (zh)
CN (1) CN110114883A (zh)
WO (1) WO2020191662A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993654B (zh) * 2019-11-22 2022-08-09 京东方科技集团股份有限公司 显示装置及其制作方法
CN110942739B (zh) * 2019-12-18 2023-05-30 京东方科技集团股份有限公司 晶体管的控制电压的判定方法
CN114373427B (zh) * 2022-01-26 2022-12-06 深圳市华星光电半导体显示技术有限公司 Oled驱动电路、显示面板、制备方法及显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153886A (zh) * 2007-10-26 2008-04-02 东莞宏威数码机械有限公司 用于平面显示器件,尤其是oled显示面板的老化与分检装置
JP2009237026A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 表示装置
CN105788510A (zh) * 2014-12-17 2016-07-20 昆山国显光电有限公司 Oled显示装置及其老化方法
CN106250641A (zh) * 2016-08-04 2016-12-21 京东方科技集团股份有限公司 一种oled器件衰减分析装置及衰减分析方法
CN107393481A (zh) * 2017-08-23 2017-11-24 京东方科技集团股份有限公司 有机发光二极管oled的寿命老化方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116768A (ja) * 2004-10-20 2006-05-11 Seiko Epson Corp 発光装置及びラインヘッドの輝度補正方法
JP2007258275A (ja) * 2006-03-20 2007-10-04 Institute Of Physical & Chemical Research 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子のエイジング方法、有機エレクトロルミネッセンス素子の評価方法およびその装置
EP3036974B1 (en) * 2013-08-19 2017-02-22 Philips Lighting Holding B.V. Led driver, lighting system and driving method with prolonged lifetime of luminous output.
CN106648277B (zh) * 2016-11-11 2019-05-03 京东方科技集团股份有限公司 电子装置及其制造方法和操作方法、电子复写系统
CN106384787B (zh) * 2016-11-30 2018-09-04 成都京东方光电科技有限公司 有机发光二极管组件和灯具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153886A (zh) * 2007-10-26 2008-04-02 东莞宏威数码机械有限公司 用于平面显示器件,尤其是oled显示面板的老化与分检装置
JP2009237026A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 表示装置
CN105788510A (zh) * 2014-12-17 2016-07-20 昆山国显光电有限公司 Oled显示装置及其老化方法
CN106250641A (zh) * 2016-08-04 2016-12-21 京东方科技集团股份有限公司 一种oled器件衰减分析装置及衰减分析方法
CN107393481A (zh) * 2017-08-23 2017-11-24 京东方科技集团股份有限公司 有机发光二极管oled的寿命老化方法和系统

Also Published As

Publication number Publication date
CN110114883A (zh) 2019-08-09
US20210242435A1 (en) 2021-08-05
US11362313B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2020191662A1 (zh) 显示基板的制造方法和处理装置
US11404001B2 (en) Pixel driving circuit and method, display panel
US10204558B2 (en) Pixel circuit, driving method thereof, and display apparatus
WO2016050021A1 (zh) 一种像素驱动电路及其驱动方法、像素单元、显示装置
US10380946B2 (en) OLED pixel circuitry, driving method thereof and display device
TWI479467B (zh) 畫素及其畫素電路
CN110070833B (zh) Oled显示面板及其驱动方法
CN109256092B (zh) 基于otft的实现阈值电压补偿的像素驱动电路及驱动方法
US8766883B2 (en) Dual-mode AMOLED pixel driver, a system using a dual-mode AMOLED pixel driver, and a method of operating a dual-mode AMOLED pixel driver
CN108597444B (zh) 一种硅基oled像素电路及其补偿oled电学特性变化的方法
US9978978B2 (en) OLED display panel and manufacturing method thereof
CN105528992A (zh) 像素补偿电路、方法、扫描驱动电路及平面显示装置
TWM573056U (zh) Pixel circuit and display device
US10977992B2 (en) Circuit drive compensation method, circuit drive method and device, and display device
CN109273493A (zh) Oled显示基板及其制作方法、显示装置
US20170330506A1 (en) Pixel Compensation Circuit, Method And Flat Display Device
US11322083B2 (en) OLED display panel and driving method thereof
CN107195274B (zh) 像素补偿电路、扫描驱动电路及显示装置
CN102881253B (zh) 一种像素电路和薄膜晶体管背板
US10223967B1 (en) OLED pixel driving circuit and pixel driving method
JP2017072860A (ja) 表示装置
CN107967894B (zh) 像素驱动电路及其驱动方法、显示面板及显示装置
CN102592532A (zh) 有机电致发光显示单元和电子设备
US8921139B2 (en) Manufacturing method of organic light emitting diode display
US20210327991A1 (en) Display panel and method of fabricating thin film transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921244

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19921244

Country of ref document: EP

Kind code of ref document: A1