WO2020189762A1 - 高マンガン鋼鋳片の製造方法、高マンガン鋼鋼片および高マンガン鋼鋼板の製造方法 - Google Patents

高マンガン鋼鋳片の製造方法、高マンガン鋼鋼片および高マンガン鋼鋼板の製造方法 Download PDF

Info

Publication number
WO2020189762A1
WO2020189762A1 PCT/JP2020/012345 JP2020012345W WO2020189762A1 WO 2020189762 A1 WO2020189762 A1 WO 2020189762A1 JP 2020012345 W JP2020012345 W JP 2020012345W WO 2020189762 A1 WO2020189762 A1 WO 2020189762A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
high manganese
manganese steel
molten steel
Prior art date
Application number
PCT/JP2020/012345
Other languages
English (en)
French (fr)
Inventor
陽一 伊藤
則親 荒牧
孝一 中島
茂樹 木津谷
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2020556826A priority Critical patent/JP7126077B2/ja
Priority to CN202080011614.3A priority patent/CN113366138A/zh
Priority to KR1020217023389A priority patent/KR20210105418A/ko
Publication of WO2020189762A1 publication Critical patent/WO2020189762A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention is a steel that is a high manganese steel material for structural steel used in cryogenic environments such as nuclear fusion facilities, roadbeds for linear motor cars, mechanical structural members such as nuclear magnetic resonance fault chambers, and liquefied gas storage tanks.
  • the present invention relates to a method for producing pieces and steel plates, and a method for producing high manganese steel slabs used for producing these pieces.
  • High manganese steel which has an austenitic single-phase structure and non-magnetic properties, is in increasing demand as an inexpensive steel material to replace conventional austenitic stainless steels, 9% nickel steels, and 5000 series aluminum alloys. ..
  • the steel slabs used as the raw material for these high manganese steels are generally manufactured by obtaining slabs by the ingot method and hot slabbing rolling, but recently, productivity improvement and cost From the viewpoint of reduction, production from slabs obtained by the continuous casting method has become indispensable.
  • productivity improvement and cost From the viewpoint of reduction, production from slabs obtained by the continuous casting method has become indispensable.
  • surface cracks of the slabs during continuous casting and surface cracks of steel pieces and steel sheets during hot rolling occur frequently and cracks occur. Increased maintenance for removing flaws and reduced yield are problems. Therefore, there has been a strong demand for the production of high manganese steel slabs capable of suppressing surface cracks during the production of steel slabs or steel sheets.
  • Patent Document 1 states that one or more of Mg, Ca, and REM are 0.0002% or more in total.
  • a high Mn steel having excellent low temperature toughness is disclosed, which contains components satisfying 30C + 0.5Mn + Ni + 0.8Cr + 1.2Si + 0.8Mo ⁇ 25 and O / S ⁇ 1.
  • Patent Document 1 achieves excellent fine crystal grains by containing the above components, but controls the types of inclusions and precipitates that determine the crystal grain size as targeted. There was a problem that it was not enough.
  • the present invention has been made in view of this situation, and is a method for producing high manganese steel pieces and steel sheets capable of controlling inclusions and precipitates that determine the crystal grain size and suppressing the occurrence of surface scratches, and production thereof. It is an object of the present invention to provide a method for producing a high manganese steel slab used in the above.
  • C 0.10% or more and 1.3% or less
  • Si 0.10% or more and 0.90% or less
  • Mn 10% or more and 35% or less
  • P 0.030% or less
  • S 0.0070% or less
  • Al 0.01% or more and 0.1% or less
  • Cr 10% or less
  • Ca 0.0001% or more and 0.010% or less
  • Mg 0.0001% or more and 0.010 %
  • Ti 0.001% or more and 0.03% or less
  • N 0.0001% or more and 0.20% or less
  • O 0.0100% or less
  • the balance is composed of iron and unavoidable impurities.
  • the ACR of the above formula (1) is calculated by the following formula (2).
  • ACR ⁇ [% Ca]-(0.18 + 130 x [% Ca]) x [% O] ⁇ / (1.25 x [% S]) ...
  • [% Ca] in the above formula (2) is the content of Ca in the molten steel (mass%)
  • [% O] is the content of O in the molten steel (mass%)
  • [% S] Is the content (mass%) of S in the molten steel.
  • [2] The method for producing a high manganese steel slab according to [1], wherein the Ti, Mg and N contents of the molten steel in the tundish further satisfy the following formula (3).
  • [% Ti] in the above formula (3) is the content of Ti in the molten steel (mass%)
  • [% N] is the content of N in the molten steel (mass%)
  • [% Mg] Is the Mg content (mass%) in the molten steel.
  • Nb 0.001% or more and 0.01% or less
  • V 0.001% or more and 0.03% or less
  • Cu 0.01% or more and 1.00% or less
  • Ni 0
  • Mo 0.05% or more and 2.00% or less
  • W 0.05% or more and 2.00% or less.
  • high manganese steel slabs can be produced while suppressing the occurrence of surface scratches. Further, when the high manganese steel slab is hot-rolled into a steel slab or a steel plate, the high manganese steel slab or a steel plate can be produced while suppressing the occurrence of surface scratches during rolling.
  • FIG. 1 is a diagram summarizing the formation behavior of inclusions and precipitates of high manganese steel in the solidification process from molten steel in the conventional example and the invention example.
  • the high manganese steel according to the present embodiment has C: 0.10% or more and 1.3% or less, Si: 0.10% or more and 0.90% or less, Mn: 10% or more and 35% or less, P: 0.030.
  • % Or less S: 0.0070% or less, Al: 0.01% or more and 0.1% or less, Cr: 10% or less, Ca: 0.0001% or more and 0.010% or less, Mg: 0.0001% or more It contains 0.010% or less, Ti: 0.001% or more and 0.03% or less, N: 0.0001% or more and 0.20% or less, O: 0.0001% or more and 0.0100% or less, and the balance is It has a component composition consisting of iron and unavoidable impurities.
  • the composition of the above components is Nb: 0.001% or more and 0.01% or less, V: 0.001% or more and 0.03% or less, Cu: 0.01% or more and 1.00% or less, Ni: 0.01%.
  • One or more selected from 0.50% or more, Mo: 0.05% or more and 2.00% or less, and W: 0.05% or more and 2.00% or less may be contained. “%” Representing the content of a component in the component composition means “mass%” unless otherwise specified. The content of all components is a total value, not a dissolved amount.
  • C 0.10% or more and 1.3% or less C is added for the purpose of stabilizing the austenite phase and improving the strength. If the C content is less than 0.10%, the required strength cannot be obtained. On the other hand, if the C content exceeds 1.3%, the amount of carbides and cementite precipitated becomes excessive and the toughness decreases. Therefore, the content of C needs to be 0.10% or more and 1.3% or less, and preferably 0.30% or more and 0.8% or less.
  • Si 0.10% or more and 0.90% or less Si is added for the purpose of deoxidation and solid solution strengthening. In order to obtain this effect, the Si content needs to be 0.10% or more.
  • Si is a ferrite stabilizing element, and when added in a large amount, the austenite structure of high manganese steel becomes unstable. Therefore, the Si content needs to be 0.90% or less. Therefore, the Si content needs to be 0.10% or more and 0.90% or less, and preferably 0.20% or more and 0.60% or less.
  • Mn 10% or more and 35% or less Mn is an element that stabilizes the austenite structure and brings about an increase in strength.
  • Mn content 10% or more
  • the characteristics such as non-magnetism and low temperature toughness expected of austenitic steel can be obtained.
  • austenitic steel generally has poor hot workability, and among them, high manganese steel is known as a material having high crack sensitivity during continuous casting and hot rolling.
  • the Mn content needs to be 10% or more and 35% or less, and preferably 20% or more and 28% or less.
  • P 0.030% or less
  • P is an impurity element contained in steel, which causes a decrease in toughness and hot embrittlement. Therefore, the smaller the P content, the better, but up to 0.030% is acceptable. Therefore, the content of P needs to be 0.030% or less, preferably 0.015% or less.
  • S 0.0070% or less
  • S is an impurity element contained in steel, and sulfides such as MnS serve as a starting point to reduce toughness. Therefore, the smaller the S content, the better, but up to 0.0070% is acceptable. Therefore, the content of S needs to be 0.0070% or less, and preferably 0.0030% or less.
  • Al 0.01% or more and 0.1% or less Al is added for the purpose of deoxidation.
  • the Al content must be 0.01% or more.
  • the Al content needs to be 0.01% or more and 0.1% or less, and preferably 0.02% or more and 0.05% or less.
  • the Cr content needs to be 10% or less, preferably 7% or less.
  • Ca 0.0001% or more and 0.010% or less
  • the Ca content needs to be 0.0001% or more.
  • the Ca content needs to be 0.010% or less.
  • the Ca content is preferably 0.0005% or more and 0.0050% or less.
  • Mg 0.0001% or more and 0.010% or less Mg, like Ca, is very easy to bond with O and S elements and forms fine oxides and sulfides, so grain boundary embrittlement due to precipitation inclusions Can be expected to be suppressed. Therefore, the Mg content needs to be 0.0001% or more. On the other hand, if the Mg content is excessive, the reaction with the molten steel becomes violent at the time of addition, which not only raises a concern that the cleanliness of the molten steel is adversely deteriorated, but also has a concern that the precipitated inclusions are coarsened. Therefore, the Mg content needs to be 0.010% or less.
  • the Mg content is preferably 0.0005% or more and 0.0020% or less.
  • Ti 0.001% or more and 0.03% or less Ti binds to C and N elements under high temperature conditions, so it is effective in suppressing the formation of huge carbides and the precipitation of Nb and V carbonitrides with high crack sensitivity. Is. Therefore, the Ti content needs to be 0.001% or more. On the other hand, when a large amount of Ti is added, a huge carbonitride is generated, and deterioration of low temperature toughness becomes a problem. Therefore, the Ti content needs to be 0.03% or less. The Ti content is preferably 0.001% or more and 0.02% or less.
  • N 0.0001% or more and 0.20% or less N stabilizes the austenite structure and increases the strength by solid solution and precipitation. Aiming at this effect, the content of N needs to be 0.0001% or more. On the other hand, if the N content exceeds 0.20%, the hot workability is lowered. Therefore, the content of N needs to be 0.0001% or more and 0.20% or less.
  • the content of N is preferably 0.0050% or more and 0.10% or less.
  • the O content is a value determined by the degree of deoxidation and removal of inclusions in the molten steel stage, and the O content is preferably smaller from the viewpoint of cleanliness.
  • the content of O is the total content of O including O as an oxide (inclusion). If the content of O is too large, not only the above-mentioned elements such as Ca and Mg cannot generate a sufficient effect, but also solidification defects such as cavities are likely to occur frequently in the slab. Therefore, the content of O needs to be 0.0100% or less.
  • the O content is preferably 0.0030% or less.
  • the high manganese steel according to the present embodiment may contain one or more selected from the following elements, if necessary.
  • Nb 0.001% or more and 0.01% or less
  • V 0.001% or more and 0.03% or less
  • Both Nb and V produce carbonitrides, and the produced carbonitrides trap diffusible hydrogen. Since it acts as a site, it has the effect of suppressing stress corrosion cracking. In order to obtain this effect, it is preferable to contain Nb: 0.001% or more and 0.01% or less, and V: 0.001% or more and 0.03% or less.
  • Cu 0.01% or more and 1.00% or less
  • Ni 0.01% or more and 0.50% or less
  • Cu and Ni stabilize the austenite structure and contribute to the suppression of carbide precipitation.
  • Mo 0.05% or more and 2.00% or less
  • W 0.05% or more and 2.00% or less Mo and W contribute to the improvement of the base metal strength.
  • the rest other than the above is iron and unavoidable impurities.
  • the high manganese steel is an austenite single-phase steel, an austenite structure having a large crystal grain size is generated from the surface of the slab. Since the austenite grain size is coarse, the high-temperature ductility is low as compared with general steel, and impurity elements such as P and S are concentrated at the grain boundaries. The concentration of this impurity element makes the grain boundaries fragile, and surface cracks occur in the form of propagating the fragile grain boundaries.
  • the high manganese steel has a high Mn concentration in the steel and has a high reactivity with S, so that the formation of MnS is more remarkable than that of the general steel. It also produces M 23 C 6 carbides (M: Mn, Cr, Fe, Mo). These precipitates are likely to precipitate at the grain boundaries of high manganese steel, and even when coarse sulfide or carbide precipitates are concentrated at the grain boundaries, the grain boundaries become fragile and surface cracks occur. Occurs.
  • the austenite structure develops rapidly from just below the solidus temperature, so it is important to deposit inclusions that are pinning nuclei at least to the solidus temperature. .. Furthermore, it suppresses the precipitation of coarse sulfides and carbides that are harmful to cracks from concentrating on the grain boundaries, and finely deposits them in the crystal grains to disperse the strain concentrated on the grain boundaries. It is also important to let them do it.
  • a method of suppressing the formation of MnS As a method of suppressing the formation of MnS, a method of adding Ca to steel is known. Suppression of MnS formation by the addition of Ca is performed with steel for sour line pipes and the like. Ca / S and ACR indexes (atomic concentration ratio indexes) are known as indexes of Ca addition. It is known that it is effective to add Ca so as to satisfy Ca / S> 2 or to satisfy the following equation (4) in order to suppress the formation of MnS.
  • ACR ⁇ [% Ca]-(0.18 + 130 x [% Ca]) x [% O] ⁇ / (1.25 x [% S]) ...
  • [% Ca] in the above formula (2) is the content of Ca in the molten steel (mass%) in the tundish
  • [% O] is the content of O in the molten steel (mass%) in the tundish
  • [% S] is the content (mass%) of S in the molten steel in the tundish.
  • the Al 2 O 3 inclusions in the molten steel are morphologically controlled by CaO ⁇ Al 2 O 3 oxide, and the precipitation of MnS during solidification is suppressed by CaS.
  • This idea also applies to high manganese steel.
  • CaS-MnS is produced at the molten steel stage. CaS-MnS produced in the molten steel stage is easily agglomerated and coalesced and easily floated and removed. Even when it is incorporated into the slab after solidification, it is unlikely to become a pinning nucleus for grain refinement.
  • Ca is added to the high manganese steel molten steel
  • the Ca, O, and S contents of the high manganese steel molten steel in the tundish are expressed by the following equation (1). Adjust the ingredient composition to your satisfaction.
  • the composition of the molten steel can be measured by component analysis of the molten steel sampled from inside the tundish.
  • TLL liquidus temperature
  • TSL solidus temperature
  • the above-mentioned precipitates finely dispersed in the crystal grains also act as pinning nuclei for crystal grain refinement, the crystal grain size is refined and the weakening of the crystal grain boundaries due to the concentration of impurity elements is avoided. it can. As a result, the occurrence of surface cracks due to grain boundary cracks is further suppressed.
  • the Ca, O and S contents of the high manganese steel molten steel in the tundish are set to ACR ⁇ 0.4, the amount of Ca added is too small, so that fine CaO / MnO / Al 2 O 3 intervening No substance is produced, and MnS is mainly produced at the grain boundaries after solidification.
  • ACR> 1.4 CaS is likely to be generated at the molten steel stage, so that it does not function as a pinning nucleus for grain size miniaturization and the crystal grain size cannot be miniaturized.
  • the Ca, O and S contents of the high manganese steel molten steel in the tundish preferably satisfy the following formula (5), whereby the pinning effect due to the fine MnS is enhanced and the crystal grain size can be further made finer. ..
  • the temperature at which CaO, MnO, and Al 2 O 3 are precipitated is preferably between TLL and TSL, at which the solid phase ratio of the high manganese steel molten steel is 0.3 or more. This is because a solid phase ratio of 0.3 or more is close to the flow limit phase rule of molten steel, and the precipitated inclusions remain at the precipitated position without being washed away by the molten steel.
  • Ti and N may be added to the molten steel to finely disperse the precipitates with MgO and TiN as nuclei.
  • Ti and N are added to molten steel to reach the solubility product at a high temperature of 1300 to 1400 ° C. to precipitate TiN, and the precipitate is used as a pinning nucleus for grain refinement. Since fine TiN is stably generated in the presence of MgO, it is effective to include Mg in addition to Ti and N.
  • the contents of Ti, Mg and N of the molten steel of high manganese steel in the tundish satisfy the following equation (3). In this case, it was found that MgO-TiN was finely dispersed and precipitated in the crystal grains immediately after solidification.
  • [% Ti] is the Ti content (mass%) in the molten steel in the tundish
  • [% N] is the N content (mass%) in the molten steel in the tundish
  • [% Mg] is the content (mass%) of Mg in the molten steel in the tundish.
  • Ti is set to 0.0001% by mass even when Ti is not added, and Mg is set to 0.0001% by mass even when Mg is not added.
  • MgO-TiN takes the form of depositing MnS and CaS-MnS around the precipitates. Therefore, by finely dispersing the MgO-TiN precipitate in the crystal grains, it is possible to suppress the precipitation of coarse MnS precipitates at the crystal grain boundaries. Since the MgO-TiN precipitate functions as a pinning nucleus, the crystal grain size is further refined. As a result, the occurrence of surface cracks due to grain boundary cracks is further suppressed.
  • FIG. 1 is a diagram summarizing the formation behavior of inclusions and precipitates of high manganese steel in the solidification process from molten steel in the conventional example and the invention example.
  • Inclusions in the molten steel of a high manganese steel is Al 2 O 3 -MnO inclusions is oxide, are present in the molten steel of 1500 ⁇ 1600 ° C..
  • Ca is added to adjust the composition of the components so that the Ca, O and S contents of the high manganese steel molten steel in the tundish satisfy the above equation (1).
  • the Al 2 O 3 -MnO inclusions become CaO / MnO / Al 2 O 3 inclusions between the TLL and the TSL and are finely dispersed and precipitated in the crystal grains and at the grain boundaries.
  • Ti, Mg and N are added to adjust the composition of the components so that the Ti, Mg and N contents of the high manganese steel molten steel in the tundish satisfy the above equation (3).
  • MgO-TiN inclusions are finely dispersed and precipitated in the crystal grains and at the grain boundaries between TLL and TSL.
  • the MnS, CaS, and M 23 C 6 that are precipitated thereafter are precipitated around the CaO / MnO / Al 2 O 3 precipitate and the MgO-TiN precipitate, so that the MnS precipitate is dispersed in the crystal grains and is coarse. It is suppressed that MnS precipitates are concentrated at the grain boundaries.
  • the crystal grain size is also miniaturized.
  • High manganese steel was melted using a 150-ton converter, an electrode-heated ladle smelter, and an RH vacuum degassing device, and after adjusting the molten steel composition and temperature, a tundish with a capacity of 30 tons was used, and the radius of curvature was 10.
  • a slab having a cross-sectional size of 1250 mm width ⁇ 250 mm thickness was continuously cast using a 5 mR curved continuous casting machine. The casting speed was in the range of 0.7 to 0.9 m / min, and the amount of secondary cooling water was in the range of 0.3 to 0.6 L / kg.
  • the slab is once lowered to a cold slab by slow cooling, the slab is charged into the heating furnace for a predetermined time so as to reach a predetermined target temperature, and then hot-rolled at a total reduction ratio of 48%.
  • Table 1 shows the composition of the molten steel sampled from the tundish in Invention Examples 1 to 39, the calculated values of equations (1) and (3), and the investigation results of surface cracks.
  • Tables 2 and 3 show the composition of the molten steel sampled from the tundish in Comparative Examples 1 to 70, the calculated values of the above equations (1) and (3), and the investigation results of surface cracks.

Abstract

結晶粒径を決定づける介在物、析出物を制御し、表面傷の発生を抑制できる高マンガン鋼鋼片や鋼板の製造方法およびこれらの生産に用いられる高マンガン鋼鋳片の製造方法を提供する。 高マンガン鋼鋳片の製造方法であって、特定の成分組成を含有する溶鋼を連続鋳造するにあたり、タンディッシュにおける溶鋼のCa、OおよびSの含有量が下記(1)式を満足する、高マンガン鋼鋳片の製造方法。 0.4≦ACR≦1.4・・・(1) 上記(1)式のACRは、下記(2)式で算出される。 ACR={[%Ca]-(0.18+130×[%Ca])×[%O]}/(1.25×[%S])・・・(2) 上記(2)式の[%Ca]は前記溶鋼中のCaの含有量(質量%)であり、[%O]は前記溶鋼中のOの含有量(質量%)であり、[%S]は前記溶鋼中のSの含有量(質量%)である。

Description

高マンガン鋼鋳片の製造方法、高マンガン鋼鋼片および高マンガン鋼鋼板の製造方法
 本発明は、核融合施設やリニアモータカー用路盤、核磁気共鳴断層室等の機械構造用部材ならびに液化ガス貯蔵用タンク等の極低温環境で使用される構造用鋼の高マンガン鋼素材となる鋼片や鋼板の製造方法およびこれらの生産に用いられる高マンガン鋼鋳片の製造方法に関する。
 オーステナイト単相組織で非磁性特性を有する高マンガン鋼は、従来のオーステナイト系ステンレス鋼や、9%ニッケル鋼、5000系アルミニウム合金などの極低温用金属材料に代わる安価な鋼材として要望が高まっている。
 従来、これら高マンガン鋼の素材となる鋼片は、インゴット法で鋳片を得、これを熱間で分塊圧延して製造することが一般的であったが、最近では生産性向上やコスト低減の観点から、連続鋳造法で得た鋳片からの製造が不可欠となってきている。高マンガン鋼の鋼片や鋼板を連続鋳造法で得た鋳片から製造する場合、連続鋳造時の鋳片の表面割れや、熱間圧延時の鋼片や鋼板の表面割れが多発し、割れ疵除去のための手入れ増大ならびに歩留り低下が問題となる。このため、鋼片または鋼板製造時における表面割れを抑制できる高マンガン鋼鋳片の製造が強く望まれていた。
 高マンガン鋼の連続鋳造鋳片を、表面割れを発生させずに熱間圧延する技術として、特許文献1には、Mg、Ca、REMの1種または2種以上を合計で0.0002%以上含有し、30C+0.5Mn+Ni+0.8Cr+1.2Si+0.8Mo≧25とO/S≧1とを満足する成分を含有する低温靱性に優れた高Mn鋼が開示されている。
特開2016-196703号公報
 特許文献1に開示された高Mn鋼は、上記成分を含有することで、優れた微細結晶粒を達成するものであるが、結晶粒径を決定づける介在物、析出物の種類を目標通りに制御するには不十分である、といった課題があった。
 本発明は、かかる状況を鑑みてなされたものであり、結晶粒径を決定づける介在物、析出物を制御し、表面傷の発生を抑制できる高マンガン鋼鋼片や鋼板の製造方法およびこれらの生産に用いられる高マンガン鋼鋳片の製造方法を提供することを目的とする。
 このような課題を解決するための本発明の特徴は、以下の通りである。
[1]質量%で、C:0.10%以上1.3%以下、Si:0.10%以上0.90%以下、Mn:10%以上35%以下、P:0.030%以下、S:0.0070%以下、Al:0.01%以上0.1%以下、Cr:10%以下、Ca:0.0001%以上0.010%以下、Mg:0.0001%以上0.010%以下、Ti:0.001%以上0.03%以下、N:0.0001%以上0.20%以下、O:0.0100%以下を含有し、残部が鉄および不可避的不純物からなる成分組成を有する溶鋼を連続鋳造するにあたり、タンディッシュにおける前記溶鋼のCa、OおよびSの含有量が下記(1)式を満足する、高マンガン鋼鋳片の製造方法。
 0.4≦ACR≦1.4・・・(1)
 上記(1)式のACRは、下記(2)式で算出される。
 ACR={[%Ca]-(0.18+130×[%Ca])×[%O]}/(1.25×[%S])・・・(2)
 上記(2)式の[%Ca]は前記溶鋼中のCaの含有量(質量%)であり、[%O]は前記溶鋼中のOの含有量(質量%)であり、[%S]は前記溶鋼中のSの含有量(質量%)である。
[2]前記タンディッシュにおける前記溶鋼のTi、MgおよびNの含有量がさらに下記(3)式を満足する、[1]に記載の高マンガン鋼鋳片の製造方法。
 [%Ti]×[%N]×[%Mg]≧2.0×10-8・・・(3)
 上記(3)式の[%Ti]は前記溶鋼中のTiの含有量(質量%)であり、[%N]は前記溶鋼中のNの含有量(質量%)であり、[%Mg]は前記溶鋼中のMgの含有量(質量%)である。
[3]さらに質量%で、Nb:0.001%以上0.01%以下、V:0.001%以上0.03%以下、Cu:0.01%以上1.00%以下、Ni:0.01%以上0.50%以下、Mo:0.05%以上2.00%以下、W:0.05%以上2.00%以下のうちから選ばれる1種または2種以上を含有する成分組成を有する溶鋼を連続鋳造する、[1]または[2]に記載の高マンガン鋼鋳片の製造方法。
[4][1]から[3]の何れか1つに記載の高マンガン鋼鋳片の製造方法で製造された鋳片を熱間圧延して鋼片を製造する、高マンガン鋼鋼片の製造方法。
[5][1]から[3]の何れか1つに記載の高マンガン鋼鋳片の製造方法で製造された鋳片を熱間圧延して鋼板を製造する、高マンガン鋼鋼板の製造方法。
 本発明の実施により、表面傷の発生を抑制しながら高マンガン鋼鋳片を製造できる。さらに、当該高マンガン鋼鋳片を鋼片または鋼板に熱間圧延するに際し、圧延時の表面傷の発生を抑制しながら、高マンガン鋼鋼片または鋼板を製造できる。
図1は、従来例および発明例における溶鋼から凝固過程の高マンガン鋼の介在物および析出物の生成挙動をまとめた図である。
 以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されない。本実施形態に係る高マンガン鋼は、C:0.10%以上1.3%以下、Si:0.10%以上0.90%以下、Mn:10%以上35%以下、P:0.030%以下、S:0.0070%以下、Al:0.01%以上0.1%以下、Cr:10%以下、Ca:0.0001%以上0.010%以下、Mg:0.0001%以上0.010%以下、Ti:0.001%以上0.03%以下、N:0.0001%以上0.20%以下、O:0.0001%以上0.0100%以下を含有し、残部が鉄および不可避的不純物からなる成分組成を有する。上記成分組成は、Nb:0.001%以上0.01%以下、V:0.001%以上0.03%以下、Cu:0.01%以上1.00%以下、Ni:0.01%以上0.50%以下、Mo:0.05%以上2.00%以下およびW:0.05%以上2.00%以下のうちから選ばれる1種または2種以上を含有してもよい。成分組成における成分の含有量を表す「%」は、特に断わらない限り「質量%」を意味する。全ての成分の含有量は、溶存量ではなくトータル値である。
 C:0.10%以上1.3%以下
 Cは、オーステナイト相の安定化と強度の向上を目的として添加される。Cの含有量が0.10%未満では必要な強度が得られない。一方、Cの含有量が1.3%を超えると炭化物やセメンタイトの析出量が過大となり靱性が低下する。このため、Cの含有量は0.10%以上1.3%以下である必要があり、0.30%以上0.8%以下であることが好ましい。
 Si:0.10%以上0.90%以下
 Siは、脱酸と固溶強化を目的として添加される。この効果を得るには、Siの含有量が0.10%以上である必要がある。一方、Siは、フェライト安定化元素であり、多量に添加すると高マンガン鋼のオーステナイト組織が不安定になる。このため、Siの含有量は0.90%以下である必要がある。したがって、Siの含有量は0.10%以上0.90%以下である必要があり、0.20%以上0.60%以下であることが好ましい。
 Mn:10%以上35%以下
 Mnは、オーステナイト組織を安定化し、強度の増加をもたらす元素である。特に、Mnの含有量を10%以上とすることによって、オーステナイト鋼に期待される非磁性および低温靱性といった特性が得られる。一方で、一般にオーステナイト鋼は熱間加工性に乏しく、中でも高マンガン鋼は連続鋳造や熱間圧延時の割れの感受性が高い材料として知られている。特に、Mnの含有量が35%を超えると加工性が著しく低下する。従って、Mnの含有量は10%以上35%以下である必要があり、20%以上28%以下であることが好ましい。
 P:0.030%以下
 Pは、鋼中に含まれる不純物元素であり、靱性の低下や熱間脆化を招く。このため、Pの含有量は少ないほどよいが、0.030%までは許容できる。したがって、Pの含有量は、0.030%以下である必要があり、0.015%以下であることが好ましい。
 S:0.0070%以下
 Sは、鋼中に含まれる不純物元素であり、MnS等の硫化物が起点となって靱性を低下させる。このため、Sの含有量は少ないほどよいが、0.0070%までは許容できる。したがって、Sの含有量は、0.0070%以下である必要があり、0.0030%以下であることが好ましい。
 Al:0.01%以上0.1%以下
 Alは、脱酸を目的として添加される。必要な脱酸効果を得るには、Alの含有量が0.01%以上である必要がある。一方、Alの含有量が0.1%を超えるほど添加されても脱酸効果は頭打ちとなると同時に過剰なAlNが生成して熱間加工性が低下する。したがって、Alの含有量は0.01%以上0.1%以下である必要があり、0.02%以上0.05%以下であることが好ましい。
 Cr:10%以下
 Crは、固溶強化を目的として添加される。一方、Crを多量に添加すると高マンガン鋼のオーステナイト組織が不安定になり、脆化の原因となる粗大炭化物が析出する。したがって、Crの含有量は10%以下が必要であり、7%以下であることが好ましい。
 Ca:0.0001%以上0.010%以下
 Caは、適量添加すると微細な酸化物や硫化物を形成し、析出介在物による粒界脆化を抑制する。このため、Caの含有量は0.0001%以上である必要がある。一方、Caの含有量が過剰になると、析出介在物が粗大化し、逆に粒界脆化を促進する。このため、Caの含有量は0.010%以下である必要がある。Caの含有量は、0.0005%以上0.0050%以下であることが好ましい。
 Mg:0.0001%以上0.010%以下
 Mgは、Caと同様でO、S元素と非常に結合しやすく、微細な酸化物や硫化物を形成することから析出介在物による粒界脆化の抑制が期待できる。このため、Mgの含有量は0.0001%以上である必要がある。一方、Mgの含有量が過剰になると、添加時に溶鋼との反応が激しくなって溶鋼清浄を逆に悪化させる懸念を生じさせるだけでなく、析出介在物を粗大化させる懸念もある。このため、Mgの含有量は0.010%以下である必要がある。Mgの含有量は、0.0005%以上0.0020%以下であることが好ましい。
 Ti:0.001%以上0.03%以下
 Tiは、高温条件でC、N元素と結合するので、巨大な炭化物の生成抑制や割れ感受性の高いNb、Vの炭窒化物の析出抑制に有効である。このため、Tiの含有量は0.001%以上である必要がある。一方、Tiを大量に添加すると巨大な炭窒化物を生成することになり、低温靱性の劣化が問題になる。このため、Tiの含有量は0.03%以下である必要がある。Tiの含有量は、0.001%以上0.02%以下であることが好ましい。
 N:0.0001%以上0.20%以下
 Nは、オーステナイト組織を安定化させ、固溶および析出によって強度を増加させる。この効果を狙って、Nの含有量は0.0001%以上である必要がある。一方、Nの含有量が0.20%を超えると熱間加工性が低下する。このため、Nの含有量は0.0001%以上0.20%以下である必要がある。Nの含有量は、0.0050%以上0.10%以下であることが好ましい。
 O:0.0100%以下
 Oの含有量は、溶鋼段階の脱酸ならびに介在物浮上除去の程度により決まる値であり、清浄性の観点からOの含有量はより少ないことが好ましい。ここで、Oの含有量は、酸化物(介在物)としてのOを含むトータルOの含有量である。Oの含有量が多すぎると上述したCa、Mgなどの元素が十分な効果を発生できなくなるばかりでなく、鋳片に巣などの凝固欠陥が多発しやすくなる。このため、Oの含有量は0.0100%以下であることが必要である。Oの含有量は、0.0030%以下であることが好ましい。
 さらに、本実施形態に係る高マンガン鋼は、必要に応じて以下の元素から選ばれる1種または2種以上を含有してもよい。
 Nb:0.001%以上0.01%以下、V:0.001%以上0.03%以下
 NbおよびVは、いずれも炭窒化物を生成し、生成した炭窒化物が拡散性水素のトラップサイトとして作用するので、応力腐食割れを抑制する効果を有する。この効果を得るには、Nb:0.001%以上0.01%以下、V:0.001%以上0.03%以下で含有することが好ましい。これら成分組成範囲であれば、表面傷の発生を抑制しながら高マンガン鋼鋳片を製造すること、および、当該高マンガン鋼鋳片を鋼片または鋼板に熱間圧延するに際し、圧延時の表面傷の発生を抑制しながら、高マンガン鋼鋼片または鋼板を製造することには影響しない。
 Cu:0.01%以上1.00%以下、Ni:0.01%以上0.50%以下
 CuおよびNiは、オーステナイト組織を安定化し、炭化物の析出抑制に寄与する。これらの効果を得るには、Cu:0.01%以上1.00%以下、Ni:0.01%以上0.50%以下で含有することが好ましい。これら成分組成範囲であれば、表面傷の発生を抑制しながら高マンガン鋼鋳片を製造すること、および、当該高マンガン鋼鋳片を鋼片または鋼板に熱間圧延するに際し、圧延時の表面傷の発生を抑制しながら、高マンガン鋼鋼片または鋼板を製造することには影響しない。
 Mo:0.05%以上2.00%以下、W:0.05%以上2.00%以下
 MoおよびWは、母材強度の向上に寄与する。これらの効果を得るには、Mo:0.05%以上2.00%以下、W:0.05%以上2.00%以下で含有することが好ましい。これら成分組成範囲であれば、表面傷の発生を抑制しながら高マンガン鋼鋳片を製造すること、および、当該高マンガン鋼鋳片を鋼片または鋼板に熱間圧延するに際し、圧延時の表面傷の発生を抑制しながら、高マンガン鋼鋼片または鋼板を製造することには影響しない。
 上記以外の残部は、鉄および不可避的不純物である。このような成分組成の溶鋼を連続鋳造して得られた鋳片を観察した結果、以下の知見を得た。高マンガン鋼は、オーステナイト単相鋼であるので、大きな結晶粒径のオーステナイト組織が鋳片表面から生成される。オーステナイト粒径が粗大なため、一般鋼に比較して高温延性が低いことに加え、PやS等の不純物元素が結晶粒界に濃化する。この不純物元素の濃化によって結晶粒界が脆弱となり、この脆弱な結晶粒界を伝播する形で表面割れが発生する。
 さらに、高マンガン鋼は、鋼中のMn濃度が高くSとの反応性が高いのでMnSの生成が一般鋼よりも顕著となる。M23炭化物(M:Mn、Cr、Fe、Mo)も生成する。これらの析出物は、高マンガン鋼の結晶粒界に析出しやすく、粗大な硫化物や炭化物の析出物が結晶粒界に集中して析出した場合にも結晶粒界が脆弱となって表面割れが発生する。
 したがって、連続鋳造および熱間圧延での表面割れを抑制するには、結晶粒径を微細化し、不純物元素の濃化による結晶粒界の脆弱化を回避することが重要になる。特にオーステナイト単相鋼である高マンガン鋼は、固相線温度直下からオーステナイト組織が急激に発達するので、ピンニング核となる介在物を少なくとも固相線温度までに析出させておくことが重要になる。さらに、割れに対して有害となる粗大な硫化物や炭化物の析出物が結晶粒界に集中して析出することを抑制し、結晶粒内に微細析出させることで粒界に集中する歪を分散させることも重要になる。
 MnSの生成を抑制する方法として、鋼にCaを添加する方法が知られている。Caの添加によるMnS生成の抑制は、耐サワーラインパイプ用鋼などで行われている。Ca添加の指標としては、Ca/S、ACR指標(原子濃度比指標)が知られている。MnSの生成の抑制には、CaをCa/S>2を満たすように添加することや、下記(4)式を満たすように添加することが有効であることが知られている。
 1≦ACR<3・・・(4)
 上記ACRは、下記(2)式で算出される。
 ACR={[%Ca]-(0.18+130×[%Ca])×[%O]}/(1.25×[%S])・・・(2)
 上記(2)式の[%Ca]はタンディッシュにおける溶鋼中のCaの含有量(質量%)であり、[%O]は、タンディッシュにおける溶鋼中のOの含有量(質量%)であり、[%S]はタンディッシュにおける溶鋼中のSの含有量(質量%)である。
 Caの添加により、溶鋼中のAl介在物がCaO・Al酸化物に形態制御され、凝固時のMnSの析出がCaSにより抑制される。この考えは高マンガン鋼にも適用できる。しかしながら、上記(4)式を満たすように高マンガン鋼の溶鋼にCaを添加するとCaS-MnSが溶鋼段階で生成する。溶鋼段階で生成したCaS-MnSは、凝集合体しやすく浮上除去されやすい。凝固後に鋳片中に取り込まれた場合にも、結晶粒微細化のピンニング核となりにくい。
 このため、本発明に係る高マンガン鋼鋳片の製造方法では、高マンガン鋼溶鋼にCaを添加し、タンディッシュにおける高マンガン鋼溶鋼のCa、OおよびSの含有量が下記(1)式を満足するように成分組成を調整する。溶鋼の成分組成は、タンディッシュ内からサンプリングした溶鋼を成分分析して測定できる。
 0.4≦ACR≦1.4・・・(1)
 上記ACRは、上記(2)式で算出される。
 これにより、CaO・MnO・Al介在物を高マンガン鋼の液相線温度(以後、TLLと記載する)から固相線温度(以後、TSLと記載する)までの間に析出させることができる。TLLからTSLまでの間に析出する介在物は、鋳片内の結晶粒内および結晶粒界に微細分散されて析出する。完全凝固後に析出するMnS、CaSおよびM23は、CaO・MnO・Al析出物の周囲にも析出するので、MnSやM23が微細分散される。これにより、粗大な硫化物や炭化物が結晶粒界に析出することが抑制され、粒界割れに起因する表面割れの発生が大きく抑制される。
 さらに、結晶粒内に微細分散された上記析出物は、結晶粒微細化のピンニング核としても作用するので、結晶粒径が微細化され、不純物元素の濃化による結晶粒界の脆弱化も回避できる。この結果、結晶粒界割れに起因する表面割れの発生がさらに抑制される。
 一方、タンディッシュにおける高マンガン鋼溶鋼のCa、OおよびSの含有量がACR<0.4となるようにすると、Caの添加量が少なすぎるため、微細なCaO・MnO・Al介在物が生成されず、MnSは、凝固後の結晶粒界に主に生成する。ACR>1.4の場合には、溶鋼段階でCaSが生成しやすくなるので、結晶粒径微細化のピンニング核として機能せず、結晶粒径を微細化できない。タンディッシュにおける高マンガン鋼溶鋼のCa、OおよびSの含有量は、下記(5)式を満たすことが好ましく、これにより、微細なMnSによるピンニング効果が高められ、結晶粒径をより微細化できる。
 0.4≦ACR≦0.9・・・(5)
 CaO・MnO・Alを析出させる温度は、TLLからTSLまでの間であって、高マンガン鋼溶鋼の固相率が0.3以上となる温度とすることが好ましい。固相率0.3以上は、溶鋼の流動限界固相率に近く、析出した介在物が溶鋼に流されることなく析出した位置に留まるからである。固相率とは、鋼のTLL以上で固相率=0、鋼のTSL以下で固相率=1.0と定義されるものである。
 さらに、溶鋼にTi、Nを添加して、MgO、TiNを核に析出物を微細分散させてもよい。溶鋼にTi、Nを添加して、1300~1400℃の高温で溶解度積に到達させてTiNを析出させ、当該析出物をピンニング核として結晶粒微細化を図るものである。MgOが存在すると微細なTiNが安定して生成されるので、Ti、Nに加えMgを含有させることが有効である。高マンガン鋼の溶鋼のTi、NおよびMgの含有量を変化させた実験を行い調査した結果、タンディッシュにおける高マンガン鋼の溶鋼のTi、MgおよびNの含有量が下記(3)式を満たす場合に、凝固直後にMgO-TiNが結晶粒内に微細分散して析出することがわかった。
 [%Ti]×[%N]×[%Mg]≧2.0×10-8・・・(3)
 上記(3)式において[%Ti]はタンディッシュにおける溶鋼中のTiの含有量(質量%)であり、[%N]はタンディッシュにおける溶鋼中のNの含有量(質量%)であり、[%Mg]はタンディッシュにおける溶鋼中のMgの含有量(質量%)である。分析下限を考慮し、Tiが無添加の場合であってもTiを0.0001質量%とし、Mgが無添加の場合であってもMgを0.0001質量%とする。
 MgO-TiNは、CaO・MnO・Al析出物と同様に、その周囲にMnSやCaS-MnSが析出する形態をとる。このため、MgO-TiN析出物を結晶粒内に微細分散させることで粗大なMnS析出物が結晶粒界に析出することを抑制できる。MgO-TiN析出物がピンニング核として機能するので、結晶粒径がさらに微細化される。これにより、粒界割れに起因する表面割れの発生がさらに抑制される。
 図1は、従来例および発明例における溶鋼から凝固過程の高マンガン鋼の介在物および析出物の生成挙動をまとめた図である。高マンガン鋼の溶鋼中の介在物は、酸化物であるAl-MnO介在物であり、1500~1600℃の溶鋼中に存在している。
 Caを添加しない従来例(比較例)では、結晶粒径微細化のピンニング核となるCaO・MnO・Al介在物が生成されず結晶粒径の微細化がなされない。さらに、凝固後の結晶粒界にMnSやM23が粗大な析出物となって析出する。この結果、結晶粒界が脆弱となって表面割れが顕著になる。
 これに対し、本発明例では、Caを添加してタンディッシュにおける高マンガン鋼溶鋼のCa、OおよびSの含有量が上記(1)式を満足するように成分組成を調整する。これにより、Al-MnO介在物は、TLLからTSLの間にCaO・MnO・Al介在物となって結晶粒内および結晶粒界に微細分散されて析出する。
 さらに、本発明例では、Ti、MgおよびNを添加して、タンディッシュにおける高マンガン鋼溶鋼のTi、MgおよびNの含有量が上記(3)式を満たすように成分組成を調整する。これにより、MgO-TiN介在物は、TLLからTSLの間に結晶粒内および結晶粒界に微細分散されて析出する。
 その後に析出するMnSおよびCaSやM23は、CaO・MnO・Al析出物およびMgO-TiN析出物の周囲に析出するので、MnS析出物が結晶粒内に分散され、粗大なMnS析出物が結晶粒界に集中して析出することが抑制される。
 さらに、結晶粒内に分散された微細な析出物は、結晶粒径微細化のピンニング核として機能するので結晶粒径も微細化される。この粗大なMnS析出物の結晶粒界への析出抑制と結晶粒微細化により高マンガン鋼の鋳片製造時の表面割れが抑制され、高マンガン鋼鋳片を連続鋳造する際、および、当該鋳片を熱間圧延して鋼片または鋼板を製造する際の表面割れが抑制される。
 150トン転炉、電極加熱式取鍋精錬炉およびRH真空脱ガス装置を用いて高マンガン鋼を溶製し、溶鋼成分、温度を調整した後に容量30トンのタンディッシュを用い、湾曲半径10.5mRの湾曲連続鋳造機を用いて断面サイズ1250mm幅×250mm厚の鋳片を連続鋳造した。鋳造速度は0.7~0.9m/minの範囲とし、2次冷却水量は0.3~0.6L/kgの範囲とした。その後、鋳片を徐冷により一旦冷片に降ろし、所定の目標温度になるように、所定の時間、加熱炉内に鋳片を装入した後、全圧下率48%で熱間圧延して鋼片を製造した。圧延後の鋼片の表面割れの有無の調査を浸透液試験(PT)により実施した。
 発明例1~39におけるタンディッシュからサンプリングした溶鋼の成分組成、(1)式および(3)式の計算値および表面割れの調査結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、(1)式を満足する発明例1~39の高マンガン鋼では、熱間圧延後の鋼片の表面割れは軽微または表面割れ無しであった。さらに、(1)式および(3)式を満足する発明例1、2、5~15、27、29~39の高マンガン鋼では、熱間圧延後の鋼片の表面割れは無しであった。発明例1~39において、鋳造後の鋳片の凝固組織調査を行った所、結晶粒が通常の場合よりも微細化していることが確認された。
 比較例1~70におけるタンディッシュからサンプリングした溶鋼の成分組成、上記(1)式および(3)式の計算値および表面割れの調査結果を表2と表3に示す。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表2、3に示すように、上記(1)式を満足しない比較例1~70の高マンガン鋼では、熱間圧延後の鋼片に表面割れが発生し、いずれもグラインダーによる重度な手入れ作業が必要となりコストならびに工程上の負荷が多大であった。
 これらの結果から、タンディッシュにおける溶鋼の成分組成が上記(1)式を満足することで、熱間圧延後の鋼片の表面割れを抑制できることが確認された。上記確認は鋳片から製造された鋼片によるものであるが、鋳片から製造される鋼板であっても同様に鋼板の表面割れを抑制できる。圧延後の鋼片に表面割れ無しもしくは軽微であったことから、連続鋳造された鋳片においても表面割れ無しもしくは表面割れが軽微であることがわかる。このように、タンディッシュにおける溶鋼の成分組成が上記(1)式および上記(3)式を満足することで、熱間圧延後の鋼片の表面割れをさらに抑制できることが確認された。このように、圧延後の鋼片および鋼板の表面割れを抑制できれば、連続鋳造→加熱炉→本圧延といった直送製造プロセスが可能となり、エネルギーコストの大幅削減が可能となる。

Claims (5)

  1.  質量%で、
     C:0.10%以上1.3%以下、
     Si:0.10%以上0.90%以下、
     Mn:10%以上35%以下、
     P:0.030%以下、
     S:0.0070%以下、
     Al:0.01%以上0.1%以下、
     Cr:10%以下、
     Ca:0.0001%以上0.010%以下、
     Mg:0.0001%以上0.010%以下、
     Ti:0.001%以上0.03%以下、
     N:0.0001%以上0.20%以下、
     O:0.0100%以下を含有し、残部が鉄および不可避的不純物からなる成分組成を有する溶鋼を連続鋳造するにあたり、タンディッシュにおける前記溶鋼のCa、OおよびSの含有量が下記(1)式を満足する、高マンガン鋼鋳片の製造方法。
     0.4≦ACR≦1.4・・・(1)
     上記(1)式のACRは、下記(2)式で算出される。
     ACR={[%Ca]-(0.18+130×[%Ca])×[%O]}/(1.25×[%S])・・・(2)
     上記(2)式の[%Ca]は前記溶鋼中のCaの含有量(質量%)であり、[%O]は前記溶鋼中のOの含有量(質量%)であり、[%S]は前記溶鋼中のSの含有量(質量%)である。
  2.  前記タンディッシュにおける前記溶鋼のTi、MgおよびNの含有量がさらに下記(3)式を満足する、請求項1に記載の高マンガン鋼鋳片の製造方法。
     [%Ti]×[%N]×[%Mg]≧2.0×10-8・・・(3)
     上記(3)式の[%Ti]は前記溶鋼中のTiの含有量(質量%)であり、[%N]は前記溶鋼中のNの含有量(質量%)であり、[%Mg]は前記溶鋼中のMgの含有量(質量%)である。
  3.  さらに質量%で、
     Nb:0.001%以上0.01%以下、
     V:0.001%以上0.03%以下、
     Cu:0.01%以上1.00%以下、
     Ni:0.01%以上0.50%以下、
     Mo:0.05%以上2.00%以下、
     W:0.05%以上2.00%以下のうちから選ばれる1種または2種以上を含有する成分組成を有する溶鋼を連続鋳造する請求項1または請求項2に記載の高マンガン鋼鋳片の製造方法。
  4.  請求項1から請求項3の何れか一項に記載の高マンガン鋼鋳片の製造方法で製造された鋳片を熱間圧延して鋼片を製造する、高マンガン鋼鋼片の製造方法。
  5.  請求項1から請求項3の何れか一項に記載の高マンガン鋼鋳片の製造方法で製造された鋳片を熱間圧延して鋼板を製造する、高マンガン鋼鋼板の製造方法。
PCT/JP2020/012345 2019-03-19 2020-03-19 高マンガン鋼鋳片の製造方法、高マンガン鋼鋼片および高マンガン鋼鋼板の製造方法 WO2020189762A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020556826A JP7126077B2 (ja) 2019-03-19 2020-03-19 高マンガン鋼鋳片の製造方法、高マンガン鋼鋼片および高マンガン鋼鋼板の製造方法
CN202080011614.3A CN113366138A (zh) 2019-03-19 2020-03-19 高锰钢铸片的制造方法、高锰钢钢片及高锰钢钢板的制造方法
KR1020217023389A KR20210105418A (ko) 2019-03-19 2020-03-19 고망간강 주편의 제조 방법, 고망간강 강편 및 고망간강 강판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019051238 2019-03-19
JP2019-051238 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020189762A1 true WO2020189762A1 (ja) 2020-09-24

Family

ID=72520255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012345 WO2020189762A1 (ja) 2019-03-19 2020-03-19 高マンガン鋼鋳片の製造方法、高マンガン鋼鋼片および高マンガン鋼鋼板の製造方法

Country Status (4)

Country Link
JP (1) JP7126077B2 (ja)
KR (1) KR20210105418A (ja)
CN (1) CN113366138A (ja)
WO (1) WO2020189762A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107844B (zh) * 2021-10-12 2022-11-11 广西富川正辉机械有限公司 一种高纯净锰25高锰钢

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084529A (ja) * 2014-10-22 2016-05-19 新日鐵住金株式会社 高Mn鋼材及びその製造方法
JP2016196703A (ja) * 2015-04-02 2016-11-24 新日鐵住金株式会社 極低温用高Mn鋼材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100622888B1 (ko) * 2002-09-04 2006-09-14 제이에프이 스틸 가부시키가이샤 대입열용접용 강재 및 그 제조방법
JP5439887B2 (ja) * 2008-03-31 2014-03-12 Jfeスチール株式会社 高張力鋼およびその製造方法
JP5807624B2 (ja) * 2012-07-30 2015-11-10 新日鐵住金株式会社 冷延鋼板およびその製造方法
US20160312327A1 (en) * 2013-12-12 2016-10-27 Jfe Steel Corporation Steel plate and method for manufacturing same (as amended)
JP6229640B2 (ja) * 2014-11-14 2017-11-15 Jfeスチール株式会社 継目無鋼管およびその製造方法
CN108138280B (zh) * 2015-09-30 2019-11-12 日本制铁株式会社 奥氏体系不锈钢以及奥氏体系不锈钢的制造方法
WO2018104984A1 (ja) * 2016-12-08 2018-06-14 Jfeスチール株式会社 高Mn鋼板およびその製造方法
BR112019022088A2 (pt) * 2017-04-26 2020-05-05 Jfe Steel Corp aço alto mn e método de produção do mesmo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084529A (ja) * 2014-10-22 2016-05-19 新日鐵住金株式会社 高Mn鋼材及びその製造方法
JP2016196703A (ja) * 2015-04-02 2016-11-24 新日鐵住金株式会社 極低温用高Mn鋼材

Also Published As

Publication number Publication date
CN113366138A (zh) 2021-09-07
JPWO2020189762A1 (ja) 2021-05-20
JP7126077B2 (ja) 2022-08-26
KR20210105418A (ko) 2021-08-26

Similar Documents

Publication Publication Date Title
JP2017160510A (ja) 低温用ニッケル鋼板およびその製造方法
KR20180132910A (ko) 고장력강 및 해양 구조물
JP6951060B2 (ja) 鋳片の製造方法
CN111433381B (zh) 高Mn钢及其制造方法
CN111926259A (zh) 一种大线能量焊接用低合金钢及其制备方法
JP6842257B2 (ja) Fe−Ni−Cr−Mo合金とその製造方法
AU2011259992B2 (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
JP5708349B2 (ja) 溶接熱影響部靭性に優れた鋼材
WO2020189762A1 (ja) 高マンガン鋼鋳片の製造方法、高マンガン鋼鋼片および高マンガン鋼鋼板の製造方法
JP5331700B2 (ja) 溶接部の加工性及び鋼材の耐食性に優れたフェライト系ステンレス鋼及びその製造方法
JP6665658B2 (ja) 高強度厚鋼板
JP7063401B2 (ja) 高マンガン鋼鋳片の製造方法、および、高マンガン鋼鋼片または鋼板の製造方法
JP7223210B2 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
CN111051555A (zh) 钢板及其制造方法
JP2008248293A (ja) 耐表面割れ特性に優れた高強度溶接構造用鋼とその製造方法
JP2018114528A (ja) 鋼の連続鋳造鋳片およびその製造方法
JP3854412B2 (ja) 溶接熱影響部靱性に優れた耐サワー鋼板およびその製造法
CN115992330B (zh) 一种高氮低钼超级奥氏体不锈钢及其合金成分优化设计方法
JP2003342670A (ja) 靭性の優れた非調質高張力鋼
JP6642118B2 (ja) 耐サワー鋼板
CN114875329B (zh) 一种单轴拉伸下高温蠕变性能优异的耐蚀耐火钢及其生产方法
JP3535026B2 (ja) 介在物性欠陥の少ない薄鋼板用鋳片およびその製造方法
JP4959401B2 (ja) 耐表面割れ特性に優れた高強度溶接構造用鋼とその製造方法
JP6086036B2 (ja) 溶接熱影響部靱性に優れた厚板鋼材とその溶製方法
JP5821792B2 (ja) Bを含有する鋼の連続鋳造鋳片の製造方法及びその連続鋳造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556826

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217023389

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772579

Country of ref document: EP

Kind code of ref document: A1