WO2020189353A1 - 窓ガラスシステム及び窓ガラス - Google Patents

窓ガラスシステム及び窓ガラス Download PDF

Info

Publication number
WO2020189353A1
WO2020189353A1 PCT/JP2020/009848 JP2020009848W WO2020189353A1 WO 2020189353 A1 WO2020189353 A1 WO 2020189353A1 JP 2020009848 W JP2020009848 W JP 2020009848W WO 2020189353 A1 WO2020189353 A1 WO 2020189353A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
window glass
film
antifogging film
time
Prior art date
Application number
PCT/JP2020/009848
Other languages
English (en)
French (fr)
Inventor
和良 野田
哲司 入江
壮志 木村
田中 慎也
相文 李
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080019918.4A priority Critical patent/CN113557150A/zh
Priority to JP2021507211A priority patent/JPWO2020189353A1/ja
Priority to DE112020001244.1T priority patent/DE112020001244T5/de
Publication of WO2020189353A1 publication Critical patent/WO2020189353A1/ja
Priority to US17/472,475 priority patent/US20210402854A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/002Windows; Windscreens; Accessories therefor with means for clear vision, e.g. anti-frost or defog panes, rain shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/023Cleaning windscreens, windows or optical devices including defroster or demisting means
    • B60S1/026Cleaning windscreens, windows or optical devices including defroster or demisting means using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2201/00Application of thermometers in air-conditioning systems
    • G01K2201/02Application of thermometers in air-conditioning systems in vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to a window glass system and a window glass.
  • the state of moisture adhering to the window plate-shaped body attached to the vehicle is detected by the detecting means, and the control means operates the drying means according to the output of the detecting means to adhere to the window plate-shaped body.
  • An anti-fog window system for vehicles that vaporizes the moisture the plate-like body for windows has an anti-fog film on the surface on the vehicle interior side, and the detection means is the moisture adhering to the anti-fog film. It is a moisture detection sensor that detects the amount, and the control means operates so as to emit a signal for operating the drying means when the moisture detecting sensor detects a moisture amount exceeding a threshold value, and the drying means is said.
  • the drying means is activated when the detection value of the moisture detection sensor exceeds the threshold value, but the saturated water absorption amount at which the water absorption performance of the antifogging film (antifogging film) is saturated is determined. It fluctuates depending on the temperature and humidity inside the vehicle.
  • the antifogging film may be fogged.
  • the window glass system includes a window glass attached to a moving body, an antifogging film provided on the indoor surface of the window glass, and a temperature sensor that detects the temperature of the indoor surface of the window glass.
  • the temperature and humidity sensor that detects the temperature and humidity in the room of the moving body, the drying means that vaporizes the moisture adhering to the antifogging film, the glass temperature detected by the temperature sensor, and the temperature and humidity sensor.
  • a control unit having a circuit that estimates the time Ts until the antifogging film becomes cloudy based on the detected temperature and humidity in the room and operates the drying means based on the time Ts is included.
  • the window glass of the embodiment of the present invention includes a glass attached to a moving body, an antifogging film provided on the indoor surface of the glass, and a temperature sensor for detecting the temperature of the indoor surface of the glass. It includes a temperature / humidity sensor that detects the temperature and humidity in the room of the moving body, and a heating wire or a heating film provided in a region overlapping the region where the antifogging film is provided in a plan view.
  • FIG. 1 It is a figure which shows the vehicle 10 which mounted the window glass system 100 of an embodiment. It is a figure which shows an example of the window glass system 100. It is a figure which shows another example of the window glass system 100. It is a figure which shows the flowchart which shows the process which the control unit 150C executes. It is a figure which shows the flowchart which shows the modification of the process executed by the control unit 150C. It is a figure which shows the structure of the bracket 280 and the housing 290 which attach an information acquisition apparatus 270 to a glass body 111. It is a figure which shows the structure of the bracket 280 and the housing 290 which attach an information acquisition apparatus 270 to a glass body 111. It is a figure which shows the structure of the bracket 280 and the housing 290 which attach an information acquisition apparatus 270 to a glass body 111. It is a figure which shows the bracket 280M by the modification of embodiment.
  • FIG. 1 is a diagram showing an example of a vehicle 10 equipped with the window glass system 100 of the embodiment.
  • the window glass system 100 is attached to the vehicle 10 as a windshield as an example.
  • the window glass system 100 includes an anti-fog film 120 and has a drying means for vaporizing the moisture adhering to the anti-fog film 120.
  • the drying means includes a defroster 20 as an example.
  • the defroster 20 is a device that, when activated, blows air dehumidified by the air conditioner toward the window glass system 100 to remove fogging.
  • the vehicle 10 is, for example, an EV (Electric Vehicle) vehicle, a PHV (Plug-in Hybrid Vehicle) vehicle, an HV (Hybrid Vehicle) vehicle, a gasoline vehicle, a diesel vehicle, or the like. Further, the vehicle 10 may be a train or a train.
  • the vehicle 10 is an example of a moving body that carries and moves an occupant.
  • the window glass system 100 may be attached to a moving body (for example, an aircraft, a helicopter, etc.) other than the vehicle 10.
  • a moving body for example, an aircraft, a helicopter, etc.
  • FIG. 2 is a diagram showing an example of the window glass system 100.
  • the window glass system 100 includes a window glass 110, an antifogging film 120, a heating wire 130, a switch 140, and a control unit 150 (temperature sensor 150A, temperature / humidity sensor 150B, control unit 150C).
  • a power supply 160H is connected to the heating wire 130, and a power supply 160L and an ECU (Electronic Control Unit) 170 are connected to the control unit 150.
  • the heating wire 130 is an example of a drying means.
  • the upper portion, the lower portion and the side portion of the glass body 111 mean the upper portion, the lower portion and the side portion in a state of being attached to the vehicle 10, respectively.
  • the window glass 110 has a glass body 111.
  • the window glass 110 may further have a shielding area.
  • the glass body 111 may be a laminated glass in which an interlayer film is sealed.
  • the shielding region is preferably provided along the periphery of the glass body 111 on the surface of the glass body 111 on the vehicle interior (inside the vehicle 10) side.
  • the shielding region is a region where a colored layer is formed or a colored region of an interlayer film.
  • the colored layer is a colored ceramic layer 112 or a colored organic ink layer.
  • the colored ceramic layer 112 is, for example, a fired body of a dark ceramic paste.
  • the shielding area has the purpose of preventing the adhesive from deteriorating due to ultraviolet rays when the glass body 111 is adhered to the vehicle 10, and has an appearance so that the connection portion between the glass body 111 and the vehicle body cannot be seen from the outside of the vehicle 10. It is formed to improve.
  • the central portion 111A of the glass body 111 surrounded by the shielding region is a transparent portion.
  • the colored ceramic layer 112 or the colored organic ink layer is preferably provided so as to be in contact with the interlayer film or on the surface of the glass body 111 on the vehicle interior side.
  • the antifogging film 120 is provided on the indoor surface of the window glass 110. It is preferable that the antifogging film 120 is provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior (inside the vehicle 10) side.
  • FIG. 3 is a diagram showing another example of the window glass system 100.
  • the overlap between the area where the antifogging film 120 is provided and the shielding area is preferably located at the lower part and / or the side part of the glass body 111. Since the overlap is located at the lower part and / or the side portion of the glass body 111, the start of fogging of the window glass 110 can be efficiently delayed.
  • the region where the antifogging film 120 is provided does not overlap with the region heated by the heating wire 130. By not overlapping with the heating region, the visibility of the region where the antifogging film 120 is provided is improved.
  • the antifogging film 120 has water absorption.
  • the antifogging film 120 preferably contains a water-absorbing polymer or a hydrophilic polymer in order to realize high water absorption.
  • the antifogging film 120 may be attached to the window glass 110 via a film having an adhesive layer.
  • the heating wire 130 is an example of a drying means.
  • the heating region by the heating wire 130 overlaps with the region where the antifogging film 120 is provided in a plan view.
  • the area heated by the heating wire 130 and the area where the antifogging film 120 is provided overlap, the moisture contained in the antifogging film 120 evaporates, and the amount of water absorbed by the antifogging film 120 is efficiently reduced.
  • the heating region by the heating wire 130 preferably has a region that does not overlap with the region where the antifogging film 120 is provided in a plan view.
  • the heating wire 130 is preferably provided on the indoor surface of the central portion 111A of the glass body 111.
  • the heating wire 130 is, for example, a tungsten wire, and has terminals 131 at both ends.
  • the heating wire 130 may be a silver conducting wire.
  • the terminal 131 is, for example, a bus bar made of silver foil printed with silver (Ag).
  • One terminal 131 (left in the figure) is connected to the switch 140, and the other terminal 131 (right in the figure) is connected to the power supply 160H.
  • the heating wire 130 exists between two pieces of glass and is sandwiched between an interlayer film for adhering the two pieces of glass.
  • the heating wire 130 may be provided on the surface of the laminated glass on the vehicle interior side. Further, the heating wire 130 may be provided in the shielding region, or may be provided on the colored ceramic layer 112 or the colored organic ink layer.
  • the heating wire 130 may be replaced with a heating film.
  • the electric heating film is preferably provided at the central portion 111A of the glass body 111.
  • the electric heating film is, for example, an ITO (Indium Tin Oxide) transparent film, which is connected to the terminal 131.
  • the electric heating film is an example of a drying means.
  • the switch 140 may be provided in a shielding area on the surface of the glass body 111 on the vehicle interior side.
  • the switch 140 is inserted in series between one terminal of the heating wire 130 or the heating film and the ground potential point of the vehicle 10.
  • the switch 140 is turned on / off by the control unit 150 or the ECU 170.
  • the switching by the ECU 170 may be performed based on the signal output from the control unit 150.
  • the control unit 150 or the ECU 170 may put the heating wire 130 or the heating film attached to the window glass 110 into an energized state or a non-energized state without providing the switch 140.
  • the control by the ECU 170 may be performed based on the signal output from the control unit 150.
  • the control unit 150 may be provided on the surface of the central portion 111A of the glass body 111 on the vehicle interior side.
  • the control unit 150 includes a control unit 150C, a temperature sensor 150A, and a temperature / humidity sensor 150B.
  • the control unit 150C turns on or off the heating wire 130 or the heating film attached to the window glass 110.
  • the temperature sensor 150A is preferably provided on the indoor surface of the window glass 110.
  • the temperature sensor 150A is preferably provided in the shielding region in a plan view. Since the temperature sensor 150A is in the shielded area, it can be made to look good so that it cannot be seen from the outside of the vehicle 10.
  • the temperature sensor 150A may be provided on the colored ceramic layer 112 or the colored organic ink layer provided on the indoor surface of the window glass 110.
  • the temperature sensor 150A is preferably provided at the lower part, the upper part, or the side part of the glass body 111. In particular, by providing the temperature sensor 150A on the upper portion or the side portion, it becomes easier to detect the fogging that occurs when the vehicle travels.
  • the temperature sensor 150A may be provided at all corners of the glass body 111. By providing the temperature sensor 150A at all corners, it becomes easy to detect all the cloudiness that occurs regardless of the structure of the vehicle interior. Further, the temperature sensor 150A may be provided on the driver's seat side of the glass body 111. For example, the temperature sensor 150A is preferably provided on the upper side of the central portion 111A of the glass body 111 near the boundary with the shielding region.
  • the temperature sensor 150A is provided outside the region where the antifogging film 120 is provided in a plan view.
  • the temperature sensor 150A is preferably provided between the shielding region and the region where the antifogging film 120 is provided in a plan view.
  • the temperature sensor 150A may be provided in the heating region by the heating wire 130 or the heating film in a plan view. By providing the temperature sensor 150A in the heating region, it is possible to accurately grasp the timing of turning on the heating wire 130 or the heating film and the timing of turning off the heating film.
  • the control unit 150 may further have a housing 151 fixed to the shielding area.
  • the housing 151 houses the control unit 150C, the temperature sensor 150A, and the temperature / humidity sensor 150B inside. Power is supplied from the power source 160L to the control unit 150C, the temperature sensor 150A, and the temperature / humidity sensor 150B.
  • the control unit 150C is realized by a computer (circuit) including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an internal bus, and the like.
  • the control unit 150C energizes the heating wire 130 or the heating film based on the temperature of the glass body 111 detected by the temperature sensor 150A and the temperature and humidity in the vehicle interior detected by the temperature / humidity sensor 150B for a predetermined time. Control is performed to turn off the power after the lapse of time.
  • the control unit 150C is preferably provided in the vicinity of the ECU 170. Since the ECU 170 is often provided in a place that is not easily affected by sunlight, the control unit 150C can also avoid the influence of sunlight.
  • the temperature sensor 150A is provided in contact with the glass body 111, and the temperature / humidity sensor 150B is provided in the temperature boundary layer of the glass body 111.
  • the temperature of the glass body 111 detected by the temperature sensor 150A will be referred to as a glass temperature.
  • the content of control by the control unit 150C, the predetermined time, and the like will be described later.
  • the control unit 150C may be connected to any one of a plurality of ECUs (Electronic Control Units) mounted on the vehicle 10 via a network. For example, if the control unit 150C is connected to the ECU for the air conditioner, the window glass system 100 can be operated in cooperation with the air conditioner. Further, the power of the entire window glass system 100 may be turned on / off by an operation unit such as an air conditioner.
  • ECUs Electronic Control Units
  • the temperature sensor 150A detects the glass temperature.
  • the temperature sensor 150A is preferably in contact with the glass body 111.
  • the temperature / humidity sensor 150B detects the temperature and humidity in the vehicle interior of the moving body.
  • the temperature / humidity sensor 150B is preferably separated from the glass body 111.
  • a temperature sensor and a temperature / humidity sensor integrated as one chip can be used as the temperature / humidity sensor 150B.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are connected to the control unit 150C, and output data representing the detected glass temperature, the temperature inside the vehicle interior, and the humidity inside the vehicle interior to the control unit 150C.
  • the temperature sensor 150A and the temperature / humidity sensor 150B may be wireless communication type sensors.
  • the temperature / humidity sensor 150B may be a sensor mounted on the vehicle.
  • the temperature sensor 150A and the temperature / humidity sensor 150B are preferably provided next to each other. By providing both sensors next to each other, the wiring structure can be simplified.
  • a separate temperature sensor and humidity sensor may be used instead of the temperature / humidity sensor 150B.
  • a temperature sensor that detects the temperature inside the vehicle interior for example, a thermocouple can be used.
  • a humidity sensor for detecting the humidity in the vehicle interior for example, a sensor that outputs the resistance value of the element that changes according to the change in humidity or a sensor that outputs the capacitance of the element that changes according to the change in humidity is used. be able to.
  • the power supply 160H is connected between the other terminal 131 of the heating wire 130 and the battery and / or generator of the vehicle 10, and transfers the electric power supplied from the battery and / or the generator to the heating wire 130 or the heating film. Supply to.
  • the output voltage of the power supply 160H is higher than the output voltage of the power supply 160L.
  • the power supply 160H supplies electric power having a voltage of 12V to the heating wire 130.
  • the power supply 160L is connected between the control unit 150 and the battery and / or generator of the vehicle 10, and supplies the electric power supplied from the battery and / or the generator to the control unit 150.
  • the output voltage of the power supply 160L is lower than the output voltage of the power supply 160H, and is 5V as an example.
  • the amount of water that can be absorbed by the antifogging film 120 (the amount at which the water absorption performance is saturated (saturated water absorption amount)) varies depending on the temperature and humidity.
  • the antifogging film 120 begins to become cloudy when the amount of water absorption exceeds the saturated amount of water absorption. That is, the anti-fog film 120 can delay the timing of fogging as compared with the window glass on which the anti-fog film 120 is not provided.
  • the control unit 150C has the remaining time from the glass temperature detected by the temperature sensor 150A and the indoor temperature and humidity of the moving body detected by the temperature / humidity sensor 150B until the antifogging film 120 is expected to be fogged. Is calculated. When the remaining time reaches a preset time, the control unit 150C operates the drying means.
  • the drying means includes a defroster 20, a heating wire 130 or a heating film.
  • control unit 150C controls to stop the drying means when a predetermined time elapses after the drying means is operated.
  • the heating wire 130 or the heating film is turned on to raise the glass temperature, the water contained in the antifogging film 120 evaporates and the amount of water absorbed by the antifogging film 120 decreases.
  • the defroster 20 is turned on, the amount of water absorbed by the antifogging film 120 is similarly reduced.
  • the predetermined time from when the control unit 150C operates the drying means to when it stops is, for example, the amount of water absorption of the antifogging film 120 equal to or less than a predetermined ratio (for example, 70% or less) before the heating wire 130 is energized. ) Can be set.
  • a predetermined ratio for example, 70% or less
  • the amount of water absorption of the antifogging film 120 is the maximum amount, what if the time is set so that the heating wire 130 becomes a predetermined ratio or less (for example, 70% or less) before being energized? Even when the amount of water absorption is large, it is possible to make the anti-fog film 120 not fogged for the time being.
  • the present invention is characterized in that the relative water absorption rate on the outermost surface of the antifogging film 120 is used as an index, not the total amount of water adhering to the antifogging film 120 as an index.
  • the moisture diffusion coefficient in the material of the antifogging film 120 is a function of temperature, and the diffusion coefficient becomes smaller as the temperature of the glass substrate becomes lower.
  • the water diffusion coefficient is a function of the activation energy of water in the material, and the diffusion coefficient at a plurality of different temperatures is obtained by a measurement method such as JIS7209-2000 (ISO62-1999) plastic-water absorption rate. Can be done.
  • the moisture absorption rate on the outermost surface of the antifogging film 120 is determined by the difference between the water vapor pressure of air having a certain temperature and humidity and the water vapor pressure on the outermost surface of the antifogging film 120 having a certain temperature and water absorption rate.
  • fogging simply occurs when the glass temperature falls below the dew point of air having a certain temperature and humidity.
  • the antifogging film 120 when the water absorption rate from the air in the vehicle interior toward the outermost surface of the antifogging film 120 is higher than the water diffusion rate from the outermost surface of the antifogging film 120 toward the inside. Even if the antifogging film 120 is not saturated with water absorption, fogging occurs because the outermost surface of the surface is saturated.
  • the relative water absorption FRH on the outermost surface of the antifogging film 120 reaches almost 100%, but the relative water absorption FRH in the film does not reach 100%. Generally, there is room for absorption of water. Further, in the process of drying the antifogging film 120, the outermost surface of the antifogging film 120 is in a dry state, but the relative water absorption FRH in the film of the antifogging film 120 is higher than the relative water absorption FRH on the outermost surface. It is generally in a high state.
  • the outermost surface of the antifogging film 120 becomes cloudy. Even if the above occurs, the relative water absorption rate FRH in the membrane may be about 70%.
  • the relative water absorption FRH of the antifogging film 120 is in equilibrium with the humidity of the air in the vehicle interior. That is, the water vapor pressure of the antifogging film 120 is equal to the water vapor pressure in the vehicle interior. Further, the water vapor pressure is the same from the outermost surface to the deepest part of the antifogging film 120. Even when the glass temperature and the temperature inside the vehicle are different, the water vapor pressure in the film at the glass temperature is equal to and balanced with the water vapor pressure at room temperature.
  • the water concentration distribution after ⁇ t time on the outermost surface, in the film (inside the film), and in the deepest part of the antifogging film 120 is predicted by Fick's law (diffusion equation of concentration gradient).
  • Fick's law diffusion equation of concentration gradient
  • the relative water absorption rate FRH on the outermost surface of the antifogging film 120 is monitored, and when it reaches 100%, it is judged that fogging has occurred.
  • the relative water absorption rate FRH on the outermost surface of the antifogging film 120 is obtained by dividing the water absorption mass concentration FD on the outermost surface of the antifogging film 120 by the saturated water absorption mass concentration FW.
  • the present invention is also characterized in that the relative water absorption rate on the outermost surface of the antifogging film 120 is predicted in the future.
  • the remaining time until the time when cloudiness is expected to occur is set to a preset remaining time (for example, 30 seconds), and when the remaining time becomes zero, the heating wire 130 or the heating film is energized or energized.
  • the antifogging film 120 is set to the drying mode.
  • the remaining time is, for example, 10 minutes or more, so that the relative water absorption rate FRH on the outermost surface of the antifogging film 120 reaches a preset relative water absorption rate (for example, 80%).
  • the heating wire 130 or the heating film is turned on, and when the relative water absorption FRH on the outermost surface becomes less than 80%, the heating wire 130 or the heating film is de-energized. This also applies when the defroster 20 is operated.
  • the flow of water vapor at the interface between the air in the vehicle interior and the outermost surface of the antifogging film 120 is calculated by the following procedure.
  • the gas constant per mole of water vapor 8.3144598 [J / K / mol]
  • the gas constant R 461.5149 [J / K / kg].
  • the specific heat Cw of water is 1007 [J / K / kg]
  • the heat transfer coefficient H of water vapor in a natural convection state with no wind at room temperature is 4.2 [W / m2 / K]
  • the room temperature is Troom [° C]
  • the atmosphere inside the vehicle Let the water vapor pressure ES [Pa] be.
  • the thermal diffusion coefficient TDair of air is expressed by the following equation.
  • TDair (0.1356 x Troom + 18.51) x 10-6 [m2 / s]
  • Hwater H ⁇ (Dair / TDair) (2/3) / (R ⁇ Cw ⁇ (Troom + 273.15) ⁇ Dair) [kg / s / m2 / Pa]
  • the relative water absorption FRH on the outermost surface of the antifogging film 120 in equilibrium with air at a certain relative humidity is approximately equal to the relative humidity of air.
  • the saturated water vapor pressure of air decreases significantly at low temperatures, but the saturated water absorption mass concentration FW of the antifogging film 120 is substantially constant and decreases by the water vapor pressure.
  • the water vapor pressure ES [Pa] of the air in the vehicle interior is expressed by the following equation.
  • ES EW x RH
  • the relative water absorption rate FRH [%] on the outermost surface of the antifogging film 120 is used. ] Is expressed by the following equation.
  • FRH FD / FW
  • Fs EWF x FRH [Pa]
  • FWS (ES-FS) x Hwater
  • the unsteady analysis of the water absorption mass concentration distribution FD (x, t) [kg / m3] of the antifogging film 120 is analyzed by the difference method using the following diffusion equation.
  • FD (x, t) U (x, t) x C [kg / m3]
  • the unsteady analysis is performed in the range where the film thickness x is 0 [m] to d [m].
  • the antifogging film 120 is equally divided in the thickness direction and handled.
  • the film thickness of the antifogging film 120 is 20 ⁇ m, the film is divided into 10 layers from the uppermost layer to the lowermost layer every 2 ⁇ m in the thickness direction.
  • the uppermost layer of the antifogging film 120 means a layer that comes into contact with air when the antifogging film 120 is divided into arbitrary thicknesses in the thickness direction. The arbitrary thickness is appropriately set according to the purpose.
  • the non-stationary analysis is continuously performed after the analysis is first started.
  • the boundary conditions are a change U (0, t) in the water absorption volume concentration in the uppermost layer and a change U (d, t) in the water absorption volume concentration in the lowermost layer.
  • U0 is the initial uniform equilibrium water absorption volume concentration [kg / m3] in the membrane.
  • the limit range of dt of the time forward difference is as follows. dt ⁇ dx2 / 2 / (Hwater ⁇ dx + D) ⁇ C ⁇ ⁇ [s]
  • dx thickness dividing the film thickness [m]
  • Hwater water evaporation rate [kg / s / m2 / Pa]
  • D diffusion coefficient in film [m2 / s]
  • C water density 1000 [kg] / M3]
  • Specific heat of water [J / kg / K].
  • U (0, t + dt) Hwater / C / ⁇ ⁇ (ES-FW) ⁇ dt ⁇ dx + (1-2 ⁇ D / C / ⁇ ⁇ (dt / dx2)) ⁇ U (0, t) + D / C / ⁇ ⁇ (dt / dx2) ⁇ U (dx, t)
  • U (x, t + dt) at time t + dt of the water absorption volume concentration in the film of the antifogging film 120 is expressed by the following equation.
  • control unit 150 may control as follows.
  • the switch 140 is turned on so as to start the drying mode, and the control unit 150C turns on the heating wire 130.
  • FD (0, Tn) [kg / m3] ⁇ FW [kg / m3]
  • the control unit 150C presses the heating wire 130 or the heating film. Turn on the power.
  • the control unit 150C sends the heating wire 130.
  • the electric heating film is de-energized.
  • the heating wire 130 or the heating film is energized in order to dry the antifogging film 120 , but instead of energizing the heating wire 130 or the heating film, the heating wire 130 or the heating film is energized.
  • the defroster 20 is turned on, the inside air circulation mode of the air conditioner is switched to the outside air introduction mode, or the humidifier is stopped. You may.
  • the time Ts until fogging occurs on the antifogging film 120 is repeatedly calculated in a predetermined control cycle after the analysis is first started.
  • FIG. 4 is a diagram showing an example of a flowchart showing the processing executed by the control unit 150C.
  • the control unit 150C starts processing when the power is turned on by the ECU.
  • step S1 determines whether or not the glass temperature exceeds the dew point temperature based on the glass temperature, the temperature and humidity in the vehicle interior detected by the temperature sensor 150A and the temperature / humidity sensor 150B (step S1).
  • step S1 is not an essential process.
  • control unit 150C determines that the glass temperature does not exceed the dew point temperature (S1: NO)
  • the heating wire 130 or the heating film is energized, or the defroster 20 is turned on (step S2).
  • the control unit 150C repeatedly executes the processes of steps S1 and S2 until it is determined that the glass temperature exceeds the dew point temperature (S1: YES).
  • the control unit 150C determines that the glass temperature exceeds the dew point temperature (S1: YES), the water absorption mass concentration FD (x) specified by the glass temperature, the temperature in the vehicle interior, and the humidity, for example, up to 10 minutes later. Is started (step S3). The 10-minute count is performed from the time when the water absorption mass concentration FD (x) is calculated.
  • the time Ts may be determined by the control unit 150C by the method described above.
  • the control unit 150C determines whether the time Ts obtained in step S5 is equal to or shorter than the preset time A (step S6).
  • step S6 If the time Ts is not equal to the preset time A and is not shorter than the time A, the control unit 150C does not proceed to step S7 and repeatedly executes the process of step S6.
  • Step S7 When the control unit 150C determines that the time Ts is equal to or shorter than the preset time A (S6: YES), the heating wire 130 or the heating film is energized, or the defroster 20 is turned on. (Step S7).
  • control unit 150C While the power of the window glass system 100 is turned on, the control unit 150C repeatedly executes the processes of steps S1 to S9 in a predetermined control cycle.
  • the maximum of the antifogging film 120 from the time when the water absorption mass concentration FD (x 0) is predicted based on the glass temperature, the temperature in the vehicle interior, and the humidity, for example, 10 minutes later.
  • the drying mode is started to start the heating wire 130 or electric heating.
  • the membrane is energized or the defroster 20 is turned on.
  • control unit 150 is provided on the surface of the glass body 111 on the vehicle interior side.
  • the control unit 150 is the colored ceramic layer 112 or the colored organic on the vehicle interior side of the glass body 111. It may be provided on the ink layer.
  • the temperature detected by the temperature / humidity sensor 150B is affected by the colored ceramic layer 112 or the colored organic ink layer, the detected temperature may be converted into the value of the central portion 111A.
  • a conversion formula may be used.
  • control unit 150C may be connected to the temperature / humidity sensor 150B via a cable and may not be provided on the glass body 111. Further, the control unit 150C may be provided in the middle of the cable connecting the temperature / humidity sensor 150B or the switch 140 and the ECU of the vehicle 10.
  • control unit 150C energizes the heating wire 130 based on the temperature and humidity detected by the temperature / humidity sensor 150B
  • the defroster 20 of the vehicle 10 may be operated.
  • the control unit 150C estimates the time Ts until fogging occurs on the antifogging film 120 based on the glass temperature, the temperature and humidity in the vehicle interior detected by the temperature sensor 150A and the temperature / humidity sensor 150B.
  • the time Ts may be estimated based on the vehicle speed, the temperature outside the vehicle interior, and the temperature inside the vehicle interior.
  • the glass temperature may be obtained from the vehicle speed, the temperature outside the vehicle interior, and the temperature inside the vehicle interior
  • the time Ts may be estimated based on the obtained glass temperature, the temperature inside the vehicle interior, and the humidity inside the vehicle interior.
  • a vehicle speed sensor for detecting the vehicle speed and an outside temperature sensor for detecting the temperature outside the vehicle interior may be provided instead of the temperature sensor 150A.
  • FIG. 5 is a flowchart showing a process executed by the control unit 150C according to a modified example of the embodiment.
  • control unit 150C starts calculating the water absorption mass concentration FD (x) up to a predetermined time and the time Ts until the antifogging film 120 becomes cloudy (step S21).
  • the control unit 150C determines whether or not the heating wire 130 or the heating film is in the energized state (step S22).
  • control unit 150C determines whether the heating wire 130 or the heating film is in the energized state (S22: YES).
  • step S24 If the time Ts is not longer than the preset time B, the control unit 150C does not proceed to step S24 and repeatedly executes the process of step S23. As a result, the heating wire 130 or the heating film is maintained in an energized state.
  • step S24 When the control unit 150C determines that the time Ts is longer than the preset time B (S23: YES), the heating wire 130 or the heating film is de-energized (step S24). When the control unit 150C finishes the process of step S24, the control unit 150C ends a series of processes (end).
  • step S22 when the control unit 150C determines that the heating wire 130 or the heating film is in a non-energized state (S22: NO), the time Ts is equal to or shorter than the preset time C. Whether or not it is determined (step S25).
  • control unit 150C determines that the time Ts is not equal to the preset time C and is not shorter than the time C (S25: NO), the flow is not advanced to step S26 and the process of step S25 is repeated. Execute. As a result, the heating wire 130 or the heating film is maintained in a non-energized state.
  • step S26 When the control unit 150C determines that the time Ts is equal to or shorter than the preset time C (S25: YES), the heating wire 130 or the heating film is energized (step S26).
  • control unit 150C executes the processes from steps S21 to S24 and the processes from steps S21 to S26 in a predetermined control cycle.
  • the preset time B is longer than the time C.
  • the time B is longer than the time C, the malfunction of the heating wire 130 or the heating film can be suppressed.
  • power consumption can be reduced.
  • the difference between the time B and the time C is preferably 100 seconds or more, and particularly preferably 150 seconds or more.
  • the window glass 110 may be provided with an information acquisition device 270 that acquires information outside the moving body.
  • 6 to 8 are views showing the structures of the bracket 280 and the housing 290 for attaching the information acquisition device 270 to the glass body 111.
  • FIG. 6 is a view showing a cross section taken along the line AA in FIG. 7, and
  • FIG. 7 is a front view.
  • the information acquisition device 270, the bracket 280, and the housing 290 will be described using the vertical direction in a state of being attached to the glass body 111.
  • the left direction in FIG. 6 is the front of the vehicle
  • the right direction is the rear of the vehicle.
  • the direction of penetrating the drawing is the lateral direction (side)
  • the direction of penetrating the drawing from the front to the back is the right direction
  • the direction of penetrating the drawing from the back to the front is the left direction.
  • Left and right are left and right with respect to the traveling direction of the vehicle 10 (see FIG. 1).
  • the front-back direction and the lateral direction (lateral direction) will be described.
  • 6 and 8 show the front-back and left-right directions
  • FIG. 7 shows the left-right directions.
  • the glass body 111 is a laminated glass in which an interlayer film 111C is sealed between the glass plates 111B and 111D.
  • a colored ceramic layer 112 a heating wire 130 (not shown), an antifogging film 220, a temperature sensor 150A, a temperature / humidity sensor 150B, and a wind speed sensor 250D are attached to the surface of the glass plate 111B on the vehicle interior side.
  • the control unit 150C is preferably provided in the vicinity of the information acquisition device 270. Since the information acquisition device 270 is often provided so as not to be affected by the sunlight, the control unit 150C can also avoid the influence of the sunlight.
  • the heating wire 130 may exist between the two pieces of glass. Further, in the window glass system 100 of the present invention, the heating wire 130 may be replaced with a heating film.
  • the colored ceramic layer 112 is attached to the portion where the bracket 280 is attached in a rectangular ring shape when the glass body 111 is viewed from the front.
  • the antifogging film 220 is formed on the surface of the glass plate 111B of the glass body 111 on the vehicle interior side, excluding the upper end side in the region surrounded by the colored ceramic layer 112.
  • the antifogging film 220 is located in front of the information acquisition unit 271 of the information acquisition device 270, and is provided to suppress the occurrence of fogging of the glass body 111 in front of the information acquisition unit 271.
  • the temperature sensor 150A, the temperature / humidity sensor 150B, and the wind speed sensor 250D are provided on the surface of the glass plate 111B of the glass body 111 on the vehicle interior side in a region surrounded by the colored ceramic layer 112, avoiding the antifogging film 220. Has been done.
  • the temperature sensor 150A, the temperature / humidity sensor 150B, and the wind speed sensor 250D are provided above the antifogging film 220.
  • a hot wire type anemometer or an ultrasonic type anemometer can be used as the wind speed sensor 250D.
  • Examples of the information acquisition device 270 include an image pickup device such as a camera, a light receiving device for receiving a signal such as a radar or an optical beacon, and the like.
  • the information acquisition device 270 is fixed to the window glass 110 via the bracket 280 and the housing 290.
  • the bracket 280 and the housing 290 are examples of mounting members.
  • the information acquisition device 270 has an information acquisition unit 271 and acquires information in front of the vehicle 10 by acquiring an image or a signal such as a radar or an optical beacon by the information acquisition unit 271.
  • the area in front of the information acquisition unit 271 is an example of the information acquisition area.
  • the antifogging film 220 will be provided at least in the information acquisition region of the window glass 110.
  • the bracket 280 is a rectangular annular frame-shaped member, and has a recess 281 on the front upper surface side.
  • the bracket 280 is made of resin as an example.
  • the housing 290 has a rectangular plate-shaped bottom portion 291 and a triangular plate-shaped side wall 292, and a rectangular plate-shaped back wall 293.
  • the side wall 292 extends upward from the side of the bottom 291 and the back wall 293 extends upward from the rear of the bottom 291.
  • the space surrounded by the bottom portion 291 and the side wall 292 and the back wall 293 is the storage portion 294, and the information acquisition device 270 fixed to the front surface of the back wall 293 is located in the storage portion 294.
  • the housing 290 is made of resin as an example.
  • the front end of the bottom portion 291 and the upper ends of the side wall 292 and the back wall 293 are adhered to the lower surface of the bracket 280, and the bracket 280 is further attached to the glass plate 111B of the glass body 111 via the adhesive layer 285. It is attached to the colored ceramic layer 112 on the surface on the vehicle interior side.
  • the adhesive layer 285 is divided along the rectangular ring shape of the bracket 280, and is not provided in the portion of the recess 281 of the bracket 280.
  • a gap is created between the recess 281 of the bracket 280 and the surface of the glass plate 111B on the vehicle interior side. .. Further, a gap is generated between the portion of the bracket 280 other than the recess 281 and the surface of the glass plate 111B on the vehicle interior side in a section not adhered by the adhesive layer 285.
  • Air conditioned by, for example, an air conditioner flows into the storage portion 294.
  • the wind speed sensor 250D can detect the wind speed of the wind by the air conditioner.
  • the temperature sensor 150A can detect the temperature near the glass body 111, and the temperature / humidity sensor 150B can detect the temperature and humidity of the space surrounded by the mounting members.
  • the air dehumidified by the defroster 20 flows into the storage portion 294 from the recess 281 and is sprayed onto the antifogging film 220 and flows out from the gaps other than the recess 281.
  • the position where the temperature sensor 150A and the temperature / humidity sensor 150B are provided is preferably within a radius of 50 mm, more preferably within 40 mm, and particularly preferably within 30 mm in a plan view from the gap.
  • the formula for obtaining the heat transfer coefficient H is replaced with the following formula for obtaining the heat transfer coefficient H in consideration of the wind speed V [m / s] in the vehicle interior, and the antifogging film 220 is used.
  • the time Ts until cloudiness occurs can be calculated.
  • H 5.8 + 4.2V [W / m2 / K]
  • the wind speed sensor 250D is preferably provided at a portion through which the air dehumidified by the defroster 20 passes. Therefore, here, as an example, the wind speed sensor 250D is provided closer to the recess 281 of the bracket 280 than the temperature sensor 150A and the temperature / humidity sensor 150B. Further, the wind speed sensor 250D is provided in the vicinity of the gap in the section where the adhesive layer 285 is divided.
  • the position where the wind speed sensor is provided is preferably within a radius of 100 mm, more preferably within 80 mm, and particularly preferably within 50 mm in a plan view from the gap in the section where the adhesive layer 285 is divided.
  • FIG. 9 is a diagram showing a bracket 280M according to a modified example of the embodiment.
  • the bracket 280M has an opening 281M.
  • the air dried by the defroster 20 flows into the space surrounded by the bracket 280M and the housing 290. Therefore, as in the case of using the bracket 280 shown in FIGS.
  • the formula for obtaining the heat transfer coefficient H is replaced with the formula for obtaining the heat transfer coefficient H in consideration of the wind speed V [m / s] in the vehicle interior, and the antifogging film 220 becomes cloudy.
  • the time Ts until it occurs can be calculated.
  • Window glass system 110 Window glass 111 Glass body 111A Central part 112 Colored ceramic layer 120 Anti-fog film 130 Heating wire 140 Switch 150 Control unit 150A Temperature sensor 150B Temperature / humidity sensor 150C Control unit 160H Power supply 160L Power supply

Abstract

防曇性能を改善した窓ガラスシステムを提供する。 窓ガラスシステムは、移動体に取り付けられる窓ガラスと、前記窓ガラスの室内側表面に設けられる防曇膜と、前記窓ガラスの室内側表面の温度を検出する温度センサと、前記移動体の室内の温度及び湿度を検出する温湿度センサと、前記防曇膜に付着する水分を気化する乾燥手段と、前記温度センサによって検出されるガラス温度と、前記温湿度センサによって検出される室内の温度及び湿度とに基づいて前記防曇膜に曇りが生じるまでの時間Tsを推測し、前記時間Tsに基づいて前記乾燥手段を作動させる回路を有する制御部とを含む。

Description

窓ガラスシステム及び窓ガラス
 本発明は、窓ガラスシステム及び窓ガラスに関する。
 従来より、車両に取付けられた窓用板状体に付着する水分の状況を検出手段により検知し、該検出手段の出力に応じ制御手段が乾燥手段を作動させて前記窓用板状体に付着した水分を気化させる車両用防曇窓システムであって、前記窓用板状体は、車室内側表面に防曇性被膜を有し、前記検出手段は、前記防曇性被膜に付着した水分量を検知する水分検出センサであり、前記制御手段は、前記水分検出センサが閾値を超える水分量を検出した際に前記乾燥手段を作動させる信号を発するように動作し、前記乾燥手段は、前記信号に従って作動し前記防曇性被膜に付着した水分を気化させることを特徴とする車両用防曇窓システムがある(例えば、特許文献1参照)。
特開2006-264458号公報
 従来の車両用防曇窓システムは、水分検出センサの検出値が閾値を超えた際に乾燥手段を作動させるが、防曇性被膜(防曇膜)の吸水性能が飽和する飽和吸水量は、車両の室内の温度と湿度によって変動する。
 このため、従来のシステムでは、水分検出センサの検出値が閾値を超えた際には防曇膜に曇りが生じているおそれがある。
 そこで、防曇性能を改善した窓ガラスシステム及び窓ガラスを提供することを目的とする。
 本発明の実施の形態の窓ガラスシステムは、移動体に取り付けられる窓ガラスと、前記窓ガラスの室内側表面に設けられる防曇膜と、前記窓ガラスの室内側表面の温度を検出する温度センサと、前記移動体の室内の温度及び湿度を検出する温湿度センサと、前記防曇膜に付着する水分を気化する乾燥手段と、前記温度センサによって検出されるガラス温度と、前記温湿度センサによって検出される室内の温度及び湿度とに基づいて前記防曇膜に曇りが生じるまでの時間Tsを推測し、前記時間Tsに基づいて前記乾燥手段を作動させる回路を有する制御部とを含む。
 さらに、本発明の実施の形態の窓ガラスは、移動体に取り付けられるガラスと、前記ガラスの室内側表面に設けられる防曇膜と、前記ガラスの室内側表面の温度を検出する温度センサと、前記移動体の室内の温度及び湿度を検出する温湿度センサと、平面視で、前記防曇膜の設けられる領域と重なる領域に設けられる電熱線又は電熱膜と、を含む。
 防曇性能を改善した窓ガラスシステム及び窓ガラスを提供することができる。
実施の形態の窓ガラスシステム100を搭載した車両10を示す図である。 窓ガラスシステム100の一例を示す図である。 窓ガラスシステム100の他の一例を示す図である。 制御部150Cが実行する処理を表すフローチャートを示す図である。 制御部150Cが実行する処理の変形例を表すフローチャートを示す図である。 情報取得装置270をガラス本体111に取り付けるブラケット280及び筐体290の構造を示す図である。 情報取得装置270をガラス本体111に取り付けるブラケット280及び筐体290の構造を示す図である。 情報取得装置270をガラス本体111に取り付けるブラケット280及び筐体290の構造を示す図である。 実施の形態の変形例によるブラケット280Mを示す図である。
 以下、本発明の窓ガラスシステム及び窓ガラスを適用した実施の形態について説明する。
 <実施の形態>
 図1は、実施の形態の窓ガラスシステム100を搭載した車両10の一例を示す図である。窓ガラスシステム100は、一例としてフロントガラスとして車両10に取り付けられる。窓ガラスシステム100は、防曇膜120を含み、防曇膜120に付着する水分を気化する乾燥手段を有する。乾燥手段は、一例としてデフロスタ20を含む。デフロスタ20は、作動状態にされると、エアコンによって除湿された空気を窓ガラスシステム100に向かって送風し、曇りを除去する装置である。
 ここで、車両10は、例えば、EV(Electric Vehicle)車、PHV(Plug-in Hybrid Vehicle)車、HV(Hybrid Vehicle)車、ガソリン車、又はディーゼル車等の自動車である。また、車両10は、電車や汽車であってもよい。車両10は、乗員を運んで移動する移動体の一例である。
 また、ここでは、窓ガラスシステム100が車両10に取り付けられる形態について説明するが、窓ガラスシステム100は、車両10以外の移動体(例えば、航空機やヘリコプター等)に取り付けてもよい。
 図2は、窓ガラスシステム100の一例を示す図である。窓ガラスシステム100は、窓ガラス110、防曇膜120、電熱線130、スイッチ140、制御ユニット150(温度センサ150A、温湿度センサ150B、制御部150C)を含む。電熱線130には電源160Hが接続されており、制御ユニット150には電源160LとECU(Electronic Control Unit:電子制御装置)170が接続されている。電熱線130は、乾燥手段の一例である。
 以下では、車両10に取り付けられた状態における窓ガラスシステム100の上下の関係を用いて説明する。なお、本願発明において、ガラス本体111の上部、下部及び側部は、それぞれ、車両10に取り付けられた状態における上部、下部及び側部を意味する。
 窓ガラス110は、ガラス本体111を有する。窓ガラス110は、さらに遮蔽領域を有していてもよい。ガラス本体111は、中間膜が封入された合わせガラスであってもよい。遮蔽領域は、ガラス本体111の車室内(車両10の室内)側の表面において、ガラス本体111の周囲に沿って設けられていることが好ましい。
 遮蔽領域は、着色層が形成された領域、もしくは中間膜の着色領域である。着色層は、着色セラミック層112又は着色有機インク層である。着色セラミック層112は、一例として、暗色セラミックペーストの焼成体である。遮蔽領域は、ガラス本体111が車両10に接着された状態で接着剤が紫外線により劣化するのを防止する目的と、車両10の外側からガラス本体111と車体との接続部分が見えないよう見栄えを良くするために形成されている。なお、遮蔽領域に囲まれたガラス本体111の中央部111Aは、透明な部分である。また、ガラス本体111が合わせガラスである場合、着色セラミック層112又は着色有機インク層は、中間膜と接するように設けられるか、ガラス本体111の車室内側の表面に設けられることが好ましい。
 防曇膜120は、窓ガラス110の室内側の表面に設けられる。防曇膜120は、ガラス本体111の中央部111Aの車室内(車両10の室内)側の表面に設けられていることが好ましい。
また、防曇膜120の設けられる領域は、図3に示すように、平面視で、遮蔽領域と重なってもよい。図3は、窓ガラスシステム100の他の一例を示す図である。防曇膜120の設けられる領域と遮蔽領域との重なりは、ガラス本体111の下部及び/又は側部にあることが好ましい。該重なりが、ガラス本体111の下部及び/又は側部にあることで、窓ガラス110の曇り始めを効率的に遅延できる。
また、防曇膜120の設けられる領域の少なくとも一部が、電熱線130による加熱領域と重ならないことが好ましい。該加熱領域と重ならないことで、防曇膜120の設けられる領域の視認性が向上する。
防曇膜120は、吸水性を有する。防曇膜120は、高い吸水性を実現するため、吸水性高分子又は親水性高分子を含むことが好ましい。防曇膜120は、粘着剤層を有するフィルムを介して窓ガラス110に取り付けられていてもよい。
 電熱線130は、乾燥手段の一例である。
電熱線130による加熱領域は、平面視で、防曇膜120が設けられる領域と重なる。電熱線130による加熱領域と防曇膜120が設けられる領域とが重なることで、防曇膜120に含まれる水分が蒸発して、防曇膜120の吸水量が効率的に低下する。
電熱線130による加熱領域は、平面視で、防曇膜120が設けられる領域と重ならない領域を有することが好ましい。電熱線130による加熱領域で、防曇膜120が設けられる領域と重ならない領域に、温度センサ150Aを設けることで、温度センサ150Aに対する防曇膜120の影響を低減できる。さらに、電熱線130が設けられる領域が、防曇膜120の設けられる領域を包含していてもよい。
電熱線130は、ガラス本体111の中央部111Aの室内側の表面に設けられていることが好ましい。電熱線130は、一例としてタングステン製の導線であり、両端に端子131を有する。電熱線130は、銀製の導線であってもよい。端子131は、一例として銀(Ag)を印刷した銀箔製のバスバーである。
 一方の端子131(図中左)はスイッチ140に接続され、他方の端子131(図中右)は電源160Hに接続されている。
 ガラス本体111が合わせガラスである場合、電熱線130は、2枚のガラスの間に存在し、両ガラスを接着する中間膜に挟まれて設けられることが好ましい。なお、電熱線130は、合わせガラスの車室内側の表面に設けられていてもよい。また、電熱線130は、遮蔽領域に設けられていてもよく、着色セラミック層112又は着色有機インク層の上に設けられていてもよい。
 本発明の窓ガラスシステム100において、電熱線130を電熱膜に代えてもよい。電熱膜は、ガラス本体111の中央部111Aに設けられることが好ましい。電熱膜は、一例としてITO(Indium Tin Oxide)透明膜であり、端子131に接続されている。電熱膜は、乾燥手段の一例である。
 スイッチ140は、ガラス本体111の車室内側の表面において、遮蔽領域に設けられていてもよい。スイッチ140は、電熱線130又は電熱膜の一方の端子と車両10のグランド電位点との間に直列に挿入される。スイッチ140のオン/オフは、制御ユニット150又はECU170によって切り替えられる。ECU170による切り替えは、制御ユニット150から出力される信号に基づき行われてもよい。なお、スイッチ140を設けず、制御ユニット150又はECU170が、窓ガラス110に取り付けられる電熱線130又は電熱膜を、通電状態又は非通電状態にしてもよい。ECU170による制御は、制御ユニット150から出力される信号に基づき行われてもよい。
 制御ユニット150は、ガラス本体111の中央部111Aの車室内側の表面に設けられていてもよい。制御ユニット150は、制御部150Cと温度センサ150Aと温湿度センサ150Bとを有する。制御部150Cは、窓ガラス110に取り付けられる電熱線130又は電熱膜をオン又はオフにする。
温度センサ150Aは、窓ガラス110の室内側の表面に設けられることが好ましい。温度センサ150Aは、平面視で、遮蔽領域に設けられていることが好ましい。温度センサ150Aが遮蔽領域にあることで、車両10の外側から見えないよう見栄えをよくできる。温度センサ150Aは、窓ガラス110の室内側表面に設けられている着色セラミック層112又は着色有機インク層の上に設けられていてもよい。
温度センサ150Aは、ガラス本体111の下部又は上部若しくは側部に設けられることが好ましい。特に、温度センサ150Aが上部又は側部に設けられることで、車両走行に伴い発生する曇りを検知しやすくなる。なお、温度センサ150Aは、ガラス本体111の全てのコーナー部に設けられていてもよい。温度センサ150Aが全てのコーナーに設けられることで、車室内の構造に関わらず、発生する曇りの全てを検知しやすくなる。さらに、温度センサ150Aは、ガラス本体111の運転者席側に設けられていてもよい。例えば、温度センサ150Aは、ガラス本体111の中央部111Aのうち上部側で遮蔽領域との境界の近くに設けられることが好ましい。
また、温度センサ150Aは、平面視で、防曇膜120の設けられる領域の外側に設けられていることが好ましい。特に、温度センサ150Aは、平面視で、遮蔽領域と防曇膜120が設けられる領域の間に設けられていることが好ましい。温度センサ150Aが遮蔽領域と防曇膜120が設けられる領域の間に設けられることで、ガラス温度を正確に検知できる。
さらに、温度センサ150Aは、平面視で、電熱線130又は電熱膜による加熱領域に設けられていてもよい。温度センサ150Aが加熱領域に設けられることで、電熱線130又は電熱膜を通電状態にするタイミング及び非通電状態にするタイミングを正確に把握できる。
 制御ユニット150は、遮蔽領域に固定される筐体151をさらに有していてもよい。筐体151は、制御部150C、温度センサ150A及び温湿度センサ150Bを、内部に収納する。制御部150C、温度センサ150A及び温湿度センサ150Bには、電源160Lから電力が供給される。
 制御部150Cは、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び内部バス等を含むコンピュータ(回路)によって実現される。制御部150Cは、温度センサ150Aによって検出されるガラス本体111の温度と、温湿度センサ150Bによって検出される車室内の温度及び湿度に基づいて、電熱線130又は電熱膜を通電状態にし、所定時間経過後に非通電状態にする制御を行う。制御部150Cは、ECU170の近傍に設けることが好ましい。ECU170は、日射の影響を受けづらい場所に設けられることが多いため、制御部150Cも同様に、日射の影響を避けることができる。この場合、温度センサ150Aは、ガラス本体111に接触して設けられ、温湿度センサ150Bは、ガラス本体111の温度境界層に設けられることが好ましい。なお、以下では、温度センサ150Aによって検出されるガラス本体111の温度をガラス温度と称す。また、制御部150Cによる制御の内容及び所定時間等については後述する。
 制御部150Cは、車両10に搭載される複数のECU(Electronic Control Unit:電子制御装置)のうちのいずれかにネットワークを介して接続されていてもよい。例えば、制御部150Cをエアコン用のECUに接続しておけば、エアコンと連携して窓ガラスシステム100を作動させることができる。また、窓ガラスシステム100全体の電源のオン/オフは、エアコン等の操作部で行えるようになっていてもよい。
 温度センサ150Aは、ガラス温度を検出する。温度センサ150Aは、ガラス本体111に接触していることが好ましい。温湿度センサ150Bは、移動体の車室内の温度及び湿度を検出する。温湿度センサ150Bは、ガラス本体111から離れていることが好ましい。温湿度センサ150Bとしては、温度センサと温湿度センサとが1つのチップとして一体化されたものを用いることができる。温度センサ150A及び温湿度センサ150Bは制御部150Cに接続されており、検出したガラス温度、車室内の温度、及び車室内の湿度を表すデータを制御部150Cに出力する。なお、温度センサ150A及び温湿度センサ150Bは、無線通信型のセンサであってもよい。温湿度センサ150Bは、車両に搭載されたセンサであってもよい。
また、温度センサ150A及び温湿度センサ150Bは、隣り合って設けられることが好ましい。両センサが隣り合って設けられることで、配線構造を単純化できる。
 なお、温湿度センサ150Bの代わりに別々の温度センサと湿度センサを用いてもよい。車室内の温度を検出する温度センサとしては、例えば熱電対を用いることができる。車室内の湿度を検出する湿度センサとしては、例えば、湿度の変化に応じて変化する素子の抵抗値を出力するセンサ、又は、湿度の変化により変化する素子の静電容量を出力するセンサを用いることができる。
 電源160Hは、電熱線130の他方の端子131と、車両10のバッテリ及び/又は発電機との間に接続されており、バッテリ及び/又は発電機から供給される電力を電熱線130又は電熱膜に供給する。電源160Hの出力電圧は、電源160Lの出力電圧よりも高い。電源160Hは、一例として電圧が12Vの電力を電熱線130に供給する。
 電源160Lは、制御ユニット150と、車両10のバッテリ及び/又は発電機との間に接続されており、バッテリ及び/又は発電機から供給される電力を制御ユニット150に供給する。電源160Lの出力電圧は、電源160Hの出力電圧よりも低く、一例として5Vである。
 まず、制御部150Cが乾燥手段を作動及び停止するタイミングについて説明する。
 防曇膜120は、温度と湿度に応じて吸水できる量(吸水性能が飽和する量(飽和吸水量))が変動する。防曇膜120は、吸水量が飽和吸水量を超えると曇り始める。すなわち、防曇膜120は、防曇膜120が設けられていない窓ガラスに比べて、曇りが生じるタイミングを遅らせることができる。
制御部150Cは、温度センサ150Aによって検出されるガラス温度、及び温湿度センサ150Bによって検出される移動体の室内の温度及び湿度から、防曇膜120に曇りが発生すると予想されるまでの残り時間を算出する。残り時間が予め設定した時間に到達すると、制御部150Cは乾燥手段を作動する。乾燥手段は、デフロスタ20、電熱線130又は電熱膜を含む。
 また、制御部150Cは、乾燥手段を作動してから所定の時間が経過すると、乾燥手段を停止する制御を行う。電熱線130又は電熱膜をオンにしてガラス温度を上昇させると、防曇膜120に含まれる水分が蒸発して防曇膜120の吸水量が低下する。デフロスタ20をオンにすると、同様に防曇膜120の吸水量が低下する。
 このため、制御部150Cが乾燥手段を作動してから停止するまでの所定時間は、例えば、防曇膜120の吸水量が電熱線130を通電状態にする前の所定割合以下(例えば70%以下)になるような時間に設定することができる。
 また、例えば、防曇膜120の吸水量が最大量である場合に、電熱線130を通電状態にする前の所定割合以下(例えば70%以下)になるような時間に設定すれば、どのような吸水量である場合においても、当分の間防曇膜120に曇りが生じない状況にすることができる。
 次に、防曇膜120の曇りの発生を推測する方法について説明する。防曇膜120の曇りの発生を推測するには、防曇膜120全体の吸水状態を指標とするよりも、防曇膜120の最表面における相対吸水率FRHを指標とした方が、急激な温度及び湿度の変化による過渡応答条件や、低温下で水分吸収速度が遅くなっている条件でも、曇りが生じるタイミングをより正確に推測できる。すなわち、本願発明は、防曇膜120に付着した全ての水分量を指標とするのではなく、防曇膜120の最表面における相対吸水率を指標とすることを特徴とする。
 防曇膜120の材料中の水分拡散係数は、温度の関数であり、ガラス基板が低温になると拡散係数は小さくなる。
 水分拡散係数は、材料中の水分の活性化エネルギーの関数であり、JIS7209-2000(ISO62-1999) プラスチック-吸水率の求め方などの計測方法により、複数の異なる温度での拡散係数を求めることができる。
 防曇膜120の最表面における水分吸収速度は、ある温度と湿度とを有する空気の水蒸気圧と、ある温度と吸水率とを有する防曇膜120の最表面の水蒸気圧との差によって決まる。
 防曇膜120を備えない通常のガラスでは、単純に、ガラス温度が、ある温度と湿度とを有する空気の露点以下になると曇りが生じる。これに対して、防曇膜120では、車室内の空気から防曇膜120の最表面に向かう水分吸収速度の方が、防曇膜120の最表面から内部に向かう水分拡散速度より大きい場合は、防曇膜120が吸水飽和していなくても表の最表面が飽和してしまうことで曇りが生じる。
 防曇膜120が曇っている状態では、防曇膜120の最表面の相対吸水率FRHがほぼ100%に到達しているものの、膜内の相対吸水率FRHが100%に達しておらず、水分を吸収する余地が残っていることが一般的である。また、防曇膜120が乾燥する過程では、防曇膜120の最表面が乾燥状態になっているが、防曇膜120の膜内の相対吸水率FRHが最表面の相対吸水率FRHよりも高い状態であることが一般的である。
 車両10に多人数が乗り込んで車内の湿度が急激に上昇した条件や、低温のため飽和水蒸気圧が低くて防曇膜120の水分吸収速度が低い条件では、防曇膜120の最表面に曇りが生じても、膜内の相対吸水率FRHが70%程度である場合がある。
 車両10に乗員が乗り込む直前は、防曇膜120の相対吸水率FRHは、車室内の空気の湿度と平衡状態になっている。すなわち防曇膜120の水蒸気圧は、車室内の水蒸気圧と等しい。また、防曇膜120の最表面から最深部まで等しい水蒸気圧になっている。ガラス温度と車室内の温度とが異なる場合でも、そのガラス温度における膜内水蒸気圧は、室温での水蒸気圧と等しく平衡になっている。
 以上の考え方により、防曇膜120の最表面、膜中(膜内)、最深部におけるΔt時間後の水分濃度分布をフィックの法則(濃度勾配の拡散方程式)で予測する。同条件(ガラス温度と車室内の温度及び湿度とが変化しない状態)が例えば10分間続いた場合の10分先までの水分濃度分布を計算する。
 防曇膜120の最表面の相対吸水率FRHをモニターして100%になったところを曇り発生と判断する。ここで、防曇膜120の最表面の相対吸水率FRHは、防曇膜120の最表面の吸水質量濃度FDを飽和吸水質量濃度FWで除算することで得られる。このように、本願発明は、防曇膜120の最表面における相対吸水率を将来にわたり予測することも特徴とする。
 曇りが発生すると予想される時点までの残り時間をあらかじめ設定した残り時間(例えば30秒)に設定し、残り時間がゼロになった時点で、電熱線130又は電熱膜を通電状態にする、又は、デフロスタ20を作動することで、防曇膜120を乾燥するモードにする。
 電熱線130又は電熱膜を通電状態にすると、残り時間は例えば10分以上になるので、防曇膜120の最表面の相対吸水率FRHがあらかじめ設定した相対吸水率(例えば80%)になるまで電熱線130又は電熱膜をオンにし、最表面の相対吸水率FRHが80%未満になった時点で電熱線130又は電熱膜を非通電状態にする。これは、デフロスタ20を作動する場合も同様である。
 次に、車室内の空気と防曇膜120の最表面との界面における曇りの発生について説明する。車室内の空気と防曇膜120の最表面との界面での水蒸気の流れは次の手順で計算する。
 ここで、水蒸気の分子量を18として、水蒸気の1モルあたりの気体定数(8.3144598[J/K/mol])を1キログラムあたりに換算すると、気体定数Rは461.5149[J/K/kg]である。水の比熱Cwを1007[J/K/kg]、室温で無風の自然対流状態における水蒸気の熱伝達係数Hを4.2[W/m2/K]、室温Troom[℃]、車内の雰囲気中の水蒸気圧ES[Pa]とする。
 空気密度ρairは次式で表される。
ρair=(1.2923/(1+0.00366×T))×((101325-0.378×ES)/101325)[kg/m3]
 大気圧における空気の水拡散係数Dairの実験式は次式で表される。
Dair=0.241×((Troom+273.15)/288)1.75×10-4[m2/s]
 空気の熱拡散係数TDairは次式で表される。
TDair=(0.1356×Troom+18.51)×10-6[m2/s]
 熱伝達率から換算した無風状態の水面上の蒸気圧差に応じた水分蒸発速度Hwaterは次式で表される。Hwater=H×(Dair/TDair)(2/3)/(R×Cw×(Troom+273.15)×Dair)[kg/s/m2/Pa]
 ある相対湿度の空気と平衡状態にある防曇膜120の最表面の相対吸水率FRHは、空気の相対湿度とほぼ等しい。空気の飽和水蒸気圧は、低温になると大幅に低下するが、防曇膜120の飽和吸水質量濃度FWはほぼ一定で水蒸気圧だけ低下する。
 ここで、空気の相対湿度RH[%]、飽和水蒸気圧EW[Pa]を用いると、車室内の空気の水蒸気圧ES[Pa]は次式で表される。ES=EW×RH
 また、防曇膜120の吸水質量濃度FD[kg/m3]、防曇膜120の飽和吸水質量濃度FW[kg/m3]を用いると、防曇膜120の最表面の相対吸水率FRH[%]は次式で表される。FRH=FD/FW
 また、ガラス本体111のある温度における空気の飽和水蒸気圧EWF[Pa]とすると、防曇膜120の水蒸気圧Fsは次式で表される。Fs=EWF×FRH[Pa]
 防曇膜120の最表面での水分移動量FWS(Flow Water Surface)[kg/m2/s]は次式で表される。FWS=(ES-FS)×Hwater
 防曇膜120の膜内の水分拡散吸収D[m2/s]は次のように求めることができる。防曇膜120の最表面での水蒸気の拡散活性化係数α、気体定数R(=461.5149)[J/K/kg]、膜内の水分活性化エネルギーeFilm(=2.8×106)[J]、ガラス温度Tg[K]とすると、水分拡散係数Dは次式で表される。D=α×Exp(-eFilm/R/(Tg+273.15))
 防曇膜120の吸水質量濃度分布FD(x,t)[kg/m3]の非定常解析を、以下の拡散方程式を用いて差分法で解析する。∂FD(x)/∂t=D×∂2FD(x)/∂x2+FWS  (x=0)∂FD(x)/∂t=D×∂2FD(x)/∂x2    (0<x<d)∂FD(x)/∂t=0        (x=d)
 非定常解析は、無次元の吸水体積濃度U(x,t)で解く。防曇膜120の吸水質量濃度FD(x,t)は、下式で与えられる。ここでCは水の密度であり1000[kg/m3]とする。FD(x,t)=U(x,t)×C[kg/m3]
 また、非定常解析は、膜厚xが0[m]~d[m]の範囲で行う。例えば、防曇膜120を厚さ方向に等分割して取り扱う。例えば、防曇膜120の膜厚が20μmである場合、厚さ方向に最上層~最下層まで2μmおきに10分割する。FD(x=0,t)は、防曇膜120の空気と接する最上層における吸水質量濃度である。FD(x=d,t)は、防曇膜120のガラス本体111と接する最下層における吸水質量濃度である。差分解析では、例えば、防曇膜120の最上層における吸水質量濃度FD(x=0,t)について、一定時間評価する。また、時間t=0[s]は、防曇膜120の最上層における吸水質量濃度を予測する時刻を表す。なお、本願発明において、防曇膜120の最上層は、防曇膜120を厚さ方向に任意の厚さで分割した場合に、空気と接する層を意味する。任意の厚さは、目的に応じて適宜設定される。
 非定常解析は、最初に解析を開始した後、継続的に実施することが好ましい。
 この偏微分方程式である拡散方程式を解くには、途中で膜の吸水飽和によって最上層に曇りが発生する、解析的に不連続なポイントがあるため、時間に関して前進差分、空間に関して中心差分で、陽解法で計算するのが適切である。
 時刻t=0における初期条件の吸水体積濃度U(x,0)[kg/m3]は、U(x,0)=U0(0≦x≦d)である。また、境界条件は、最上層での吸水体積濃度の変化U(0,t)、最下層での吸水体積濃度の変化U(d,t)である。なお、U0は膜中の初期の均一な平衡吸水体積濃度[kg/m3]である。
 陽解法の解の安定性の公式から時間前進差分のdtの制限範囲は下記となる。
dt<dx2/2/(Hwater×dx+D)×C×ρ[s]
なお、dx:膜厚を分割する厚さ[m]、Hwater:水分蒸発速度 [kg/s/m2/Pa]、D:膜中拡散係数[m2/s]、C:水の密度1000[kg/m3]、ρ:水の比熱[J/kg/K]である。
 防曇膜120の最表面における吸水体積濃度の時刻t+dtにおけるU(x=0,t+dt)は次式で表される。U(0,t+dt)=Hwater/C/ρ×(ES-FW)×dt×dx+(1-2×D/C/ρ×(dt/dx2))×U(0,t)+D/C/ρ×(dt/dx2)×U(dx,t)
 防曇膜120の膜中(表面から深さxの位置)における吸水体積濃度の時刻t+dtにおけるU(x,t+dt)は次式で表される。U(x,t+dt)=D/C/ρ×(dt/dx2)×U(x-dx,t)+(1-2×D/C/ρ×(dt/dx2))×U(x,t)+D/C/ρ×(dt/dx2)×U(x+dx,t)
 防曇膜120の最下層(x=d)における吸水体積濃度の時刻t+dtにおけるU(x=d,t+dt)は次式で表される。U(x=d,t+dt)=D/C/ρ×(dt/dx2)×U(d-dx,t)+(1-2×D/C/ρ×(dt/dx2))×U(dt)+D/C/ρ×(dt/dx2)×U(d-dx,t)
 以上より、防曇膜120に曇りが生じないようにするために、例えば次のように制御ユニット150で制御すればよい。
 防曇膜120の飽和吸水質量濃度FW[kg/m3]と、防曇膜120の最上層の吸水質量濃度FD(x=0)との比較で、FD(x=0)<FWである場合、曇りは生じない。FD(x=0)≧FWになった段階で、防曇膜120の飽和吸水質量濃度FW以上の凝縮水は曇りとなって表面に析出する。
 FD(x=0)≧FWとなって、防曇膜120に曇りが生じるまでの時間Ts(防曇膜120の最上層の吸水質量濃度FD(x=0)を予測した時刻から、曇りが発生すると予想される時刻までの所要時間)を求め、時間Tsが例えば30秒以下(Ts≦30[s])、好ましくは時間Tsが10秒以下(Ts≦10[s])になったときに乾燥モードを始動させるようにスイッチ140をオンにして制御部150Cが電熱線130を通電状態(オン)にする。
 F(x=0)≧FWとなって、防曇膜120に曇りが生じるまでの時間Tsは、以下のように所定時間(例えば10分)に至るまでの防曇膜120の最表面の吸水質量濃度FD(x=0)を予測することにより、算出する。
 算出時点から10分(600[s])先までの吸水質量濃度FD(x=0)を予測する計算の、i番目の計算ステップにおける時間ステップdtiは可変であるが、ここでは説明の便宜上一定であることとする。
 各時刻ステップt=0、1×dt、2×dt、3×dt、4×dt、5×dt、…、(n-1)×dt、n×dt、(n+1)×dt、…、600[s]において、逐次、防曇膜120の最上層の吸水質量濃度FD(x=0)[kg/m3]を算出する。
 (n-1)ステップの時刻Tn-1=Σdti(Ii=1~n-1)において、防曇層120の最上層の吸水質量濃度FD(0,Tn-1)と飽和吸水質量濃度FWには次の関係が成り立つ。FD(0,Tn-1)[kg/m3]<FW[kg/m3]
 nステップの時刻Tn=Σdti(i=1~n)において、防曇層120の最上層の吸水質量濃度FD(0,Tn)と飽和吸水質量濃度FWに次式が成り立つ。防曇層120の最上層の吸水質量濃度(x=0)を予測した時刻から、時刻Tnまでの所要時間を、防曇膜120に曇りが生じるまでの時間Tsとする。FD(0,Tn)[kg/m3]≧FW[kg/m3]
 すなわち、時間Tsが例えば30秒以下(Ts≦30[s])、好ましくは時間Tsが10秒以下(Ts≦10[s])となった時に、制御部150Cが電熱線130又は電熱膜を通電状態にする。
 そして、計算上、防曇膜120の最表面の相対吸水率FRH(x=0)が例えば80%以下(FRH(x=0)≦80%)になった時点で制御部150Cが電熱線130又は電熱膜を非通電状態にする。
 なお、ここでは、一例として防曇膜120を乾燥させるために、電熱線130又は電熱膜を通電状態にする形態について説明したが、電熱線130又は電熱膜を通電状態にすることの代わりに、又は、電熱線130又は電熱膜を通電状態にすることに加えて、デフロスタ20をオンにすること、エアコンの内気循環モードを外気導入モードに切り替えること、又は、加湿器を停止させること等を行ってもよい。
 また、防曇膜120に曇りが発生するまでの時間Tsは、最初に解析を開始した後、所定の制御周期で繰り返し算出されることが好ましい。
 図4は、制御部150Cが実行する処理を表すフローチャートの一例を示す図である。
 制御部150Cは、ECUによって電源が投入されると処理をスタートする。
 制御部150Cは、温度センサ150A及び温湿度センサ150Bによって検出されるガラス温度、車室内の温度及び湿度に基づいて、ガラス温度が露点温度を超えているかどうかを判定する(ステップS1)。但し、本発明において、ステップS1は必須の処理ではない。
 制御部150Cは、ガラス温度が露点温度を超える条件ではない(S1:NO)と判定すると、電熱線130もしくは電熱膜を通電状態にする、又はデフロスタ20をオンにする(ステップS2)。制御部150Cは、ガラス温度が露点温度を超える条件である(S1:YES)と判定するまでステップS1及びS2の処理を繰り返し実行することになる。
 制御部150Cは、ガラス温度が露点温度を超える条件である(S1:YES)と判定すると、ガラス温度、車室内の温度及び湿度によって特定される例えば10分後までの吸水質量濃度FD(x)の算出を開始する(ステップS3)。10分のカウントは、吸水質量濃度FD(x)を算出した時刻から行う。
 制御部150Cは、10分後までの防曇膜120の最上層の吸水質量濃度FD(x=0)が、予め設定した値以上であるかどうかを判定する(ステップS4)。
 制御部150Cは、10分後までの吸水質量濃度FD(x=0)が、予め設定した吸水質量濃度値以上でない(S4:NO)と判定すると、ステップS5には進まず、ステップS4の処理を繰り返し実行する。
 制御部150Cは、10分後までの吸水質量濃度FD(x=0)が、予め設定した値以上である(S4:YES)と判定すると、防曇膜120に曇りが生じるまでの時間(残り時間)Tsを求める(ステップS5)。時間Tsは、制御部150Cが上述した方法で求めればよい。
 制御部150Cは、ステップS5で求めた時間Tsが、予め設定した時間Aと等しいか、又は、時間Aより短いかどうかを判定する(ステップS6)。
 制御部150Cは、時間Tsが、予め設定した時間Aと等しくなく、かつ、時間Aより短くない場合は、ステップS7には進まず、ステップS6の処理を繰り返し実行する。
 制御部150Cは、時間Tsが、予め設定した時間Aと等しいか、又は、時間Aより短い(S6:YES)と判定すると、電熱線130もしくは電熱膜を通電状態にする、又はデフロスタ20をオンにする(ステップS7)。
 制御部150Cは、継続して算出している10分後までの吸水質量濃度FD(x=0)が、予め設定した値以下であるかどうかを判定する(ステップS8)。制御部150Cは、例えば10分後までの吸水質量濃度FD(x=0)が、予め設定した値を超えている場合は、ステップS9には進まず、ステップS8の処理を繰り返し実行する。
 制御部150Cは、10分後までの吸水質量濃度FD(x=0)が、予め設定した値以下に到達した(S8:YES)と判定すると、電熱線130もしくは電熱膜を非通電状態にする、又はデフロスタ20をオフにする(ステップS9)。
 以上で一連の処理が終了する。窓ガラスシステム100の電源がオンにされている間は、制御部150Cは、ステップS1からS9の処理を所定の制御周期で繰り返し実行する。
 以上のように、実施の形態によれば、ガラス温度、車室内の温度及び湿度に基づき、吸水質量濃度FD(x=0)を予測した時点から例えば10分後までの防曇膜120の最上層の吸水質量濃度FD(x=0)を算出し、防曇膜120の最上層に曇りが生じるまでの時間Tsを求める。
 そして、時間Tsが例えば30秒以下(Ts≦30[s])、好ましくは時間Tsが10秒以下(Ts≦10[s])になったときに乾燥モードを始動させて電熱線130もしくは電熱膜を通電状態とする、又はデフロスタ20をオンにする。
 このため、窓ガラス110の防曇膜120に曇りが生じることを未然に抑制することができる。
 したがって、防曇性能を改善した窓ガラスシステム100を提供することができる。
 なお、以上では、制御ユニット150は、ガラス本体111の車室内側の表面に設けられている形態について説明したが、制御ユニット150は、ガラス本体111の車室内側の着色セラミック層112又は着色有機インク層の上に設けられていてもよい。この場合は、温湿度センサ150Bによって検出される温度が着色セラミック層112又は着色有機インク層の影響を受けるので、検出される温度を中央部111Aの値に換算すればよい。換算には、例えば換算式を用いればよい。
 また、以上では、制御部150Cが制御ユニット150に含まれ、ガラス本体111の車室内側の表面に設けられている形態について説明したが、制御部150Cが設けられる位置はこのような位置に限られるものではない。例えば、制御部150Cは、温湿度センサ150Bにケーブルを介して接続されていて、ガラス本体111には設けられていなくてもよい。また、制御部150Cは、温湿度センサ150B又はスイッチ140と、車両10のECUとを接続するケーブルの途中に設けられていてもよい。
 また、以上では、制御部150Cが温湿度センサ150Bによって検出される温度及び湿度に基づいて電熱線130を通電状態にする形態について説明したが、電熱線130の代わりに、又は、電熱線130に加えて車両10のデフロスタ20を作動させてもよい。
 また、以上では、制御部150Cが、温度センサ150A及び温湿度センサ150Bによって検出されるガラス温度、車室内の温度及び湿度に基づいて防曇膜120に曇りが生じるまでの時間Tsを推測する方法について説明したが、車速と、車室外の温度と、車室内の温度と、に基づいて時間Tsを推測してもよい。例えば、車速と車室外の温度と車室内の温度とからガラス温度を求め、求めたガラス温度と、車室内の温度と、車室内の湿度とに基づいて時間Tsを推測すればよい。この場合、温度センサ150Aに代わり、車速を検出する車速センサ、及び車室外の温度を検出する車外温度センサを備えればよい。
 また、制御部150Cが実行する処理は、図5に示すようにしてもよい。図5は、実施の形態の変形例による制御部150Cが実行する処理を示すフローチャートである。
 制御部150Cは、処理を開始すると、所定時間後までの吸水質量濃度FD(x)、及び防曇膜120に曇りが生じるまでの時間Tsの算出を開始する(ステップS21)。
 制御部150Cは、電熱線130又は電熱膜が通電状態か否かを判定する(ステップS22)。
 制御部150Cは、電熱線130又は電熱膜が通電状態である(S22:YES)と判定すると、時間Tsが予め設定した時間Bよりも長いかどうかを判定する(ステップS23)。
 制御部150Cは、時間Tsが、予め設定した時間Bよりも長くない場合は、ステップS24には進まず、ステップS23の処理を繰り返し実行する。この結果、電熱線130又は電熱膜は通電状態に維持される。
 制御部150Cは、時間Tsが、予め設定した時間Bよりも長い(S23:YES)と判定すると、電熱線130又は電熱膜を非通電状態にする(ステップS24)。制御部150Cは、ステップS24の処理を終えると、一連の処理を終了する(エンド)。
 また、ステップS22において、制御部150Cは、電熱線130又は電熱膜が非通電状態である(S22:NO)と判定すると、時間Tsが予め設定した時間Cと等しいか、又は、時間Cより短いかどうかを判定する(ステップS25)。
 制御部150Cは、時間Tsが、予め設定した時間Cと等しくなく、かつ、時間Cより短くない(S25:NO)と判定すると、フローをステップS26には進行させず、ステップS25の処理を繰り返し実行する。この結果、電熱線130又は電熱膜は非通電状態に維持される。
 制御部150Cは、時間Tsが、予め設定した時間Cと等しいか、又は、時間Cより短い(S25:YES)と判定すると、電熱線130又は電熱膜を通電状態にする(ステップS26)。
 以上で一連の処理が終了する。窓ガラスシステム100の電源がオンにされている間は、制御部150Cは、ステップS21からS24に至る処理、及びステップS21からS26に至る処理を所定の制御周期で実行する。
 ここで、予め設定した時間Bは、時間Cよりも長いことが好ましい。時間Bが時間Cよりも長いことで、電熱線130又は電熱膜の誤作動を抑制できる。また、電力消費量を低減できる。時間Bと時間Cとの差は、100秒以上であることが好ましく、150秒以上であることが特に好ましい。
 また、窓ガラス110は、図6乃至図8に示すように、移動体の外の情報を取得する情報取得装置270を備えてもよい。図6乃至図8は、情報取得装置270をガラス本体111に取り付けるブラケット280及び筐体290の構造を示す図である。図6は、図7におけるA-A矢視断面を示す図であり、図7は正面図である。ここでは、図6に示すように情報取得装置270、ブラケット280、及び筐体290がガラス本体111に取り付けられた状態における上下方向を用いて説明する。また、図6における左方向が車両の前方であり、右方向が車両の後方である。また、図面を貫通する方向が横方向(側方)であり、図面を表から裏に貫通する方向が右方向であり、図面を裏から表に貫通する方向が左方向である。左と右は、車両10(図1参照)の進行方向に対する左と右である。以下では、前後方向と横方向(側方)を用いて説明する。図6及び図8には、前後左右の方向を示し、図7には、左右の方向を示す。
 また、図6では、ガラス本体111は、ガラス板111B、111Dの間に中間膜111Cが封入された合わせガラスである。ガラス板111Bの車室内側の表面には、着色セラミック層112、電熱線130(図示せず)、防曇膜220、温度センサ150A、温湿度センサ150B、及び風速センサ250Dが取り付けられている。なお、制御部150Cも取り付けられる場合、制御部150Cは、情報取得装置270の近傍に設けることが好ましい。情報取得装置270は、日射の影響を受けないように設けられることが多いため、制御部150Cも同様に、日射の影響を避けることができる。なお、電熱線130は、2枚のガラスの間に存在していてもよい。また、本発明の窓ガラスシステム100において、電熱線130を電熱膜に代えてもよい。
 着色セラミック層112は、ブラケット280が取り付けられる部分に、ガラス本体111を正面から見て矩形環状に取り付けられている。
 防曇膜220は、ガラス本体111のガラス板111Bの車室内側の表面における、着色セラミック層112で囲まれた領域内の上端側を除いた部分に形成されている。防曇膜220は、情報取得装置270の情報取得部271の正面に位置しており、情報取得部271の正面におけるガラス本体111の曇りの発生を抑制するために設けられている。
 温度センサ150A、温湿度センサ150B、及び風速センサ250Dは、ガラス本体111のガラス板111Bの車室内側の表面における、着色セラミック層112で囲まれた領域内で、防曇膜220を避けて設けられている。一例として、温度センサ150A、温湿度センサ150B、及び風速センサ250Dは、防曇膜220よりも上側に設けられている。風速センサ250Dとしては、熱線式風速計や超音波式風速計を用いることができる。
 情報取得装置270としては、カメラなどの撮像装置、及び、レーダー又は光ビーコン等の信号を受信する受光装置等が挙げられる。情報取得装置270は、ブラケット280及び筐体290を介して窓ガラス110に固定される。ブラケット280及び筐体290は、取り付け部材の一例である。情報取得装置270は、情報取得部271を有し、情報取得部271で画像や、レーダー又は光ビーコン等の信号を取得することで、車両10の前方の情報を取得する。ガラス本体111のうち、情報取得部271の正面の領域は、情報取得領域の一例である。防曇膜220は、少なくとも窓ガラス110の情報取得領域に設けられることになる。
 ブラケット280は、矩形環状の枠状の部材であり、前方の上面側に凹部281を有する。ブラケット280は、一例として樹脂製である。
 筐体290は、図8に示すように、矩形板状の底部291、三角板状の側壁292、及び矩形板状の背面壁293を有する。側壁292は、底部291の側方から上方向に延在しており、背面壁293は、底部291の後方から上方向に延在している。底部291、側壁292、及び背面壁293で囲まれた空間は、収納部294であり、背面壁293の前側の表面に固定される情報取得装置270は、収納部294内に位置する。筐体290は、一例として樹脂製である。
 このような筐体290は、底部291の前端と、側壁292及び背面壁293の上端とがブラケット280の下面に接着され、さらにブラケット280が接着層285を介してガラス本体111のガラス板111Bの車室内側の表面にある着色セラミック層112に貼り付けられている。接着層285は、ブラケット280の矩形環形状に沿って分断されており、また、ブラケット280の凹部281の部分には設けられていない。
 筐体290が接着されたブラケット280を接着層285でガラス板111Bの車室内側の表面に取り付けると、ブラケット280の凹部281とガラス板111Bの車室内側の表面との間には隙間が生じる。また、ブラケット280の凹部281以外の部分とガラス板111Bの車室内側の表面との間には、接着層285で接着されていない区間において、隙間が生じる。
 このような隙間から筐体290の収納部294には、車室内側の空気が流入する。特に、凹部281の部分の隙間は大きく、前方の斜め下方向を向いているため、収納部294には、例えば空気調節装置で調温された空気が流入する。
 このため、風速センサ250Dで空気調節装置による風の風速を検出することができる。
 また、温度センサ150Aで、ガラス本体111の近くにおける温度を検出でき、温湿度センサ150Bで、取り付け部材に囲まれた空間の温度及び湿度を検出できる。
 また、デフロスタ20をオンにすると、デフロスタ20で除湿された空気は、凹部281から収納部294内に流入し、防曇膜220に吹き付けられ、凹部281以外の隙間から流出するため、防曇膜220の最上層の吸水質量濃度FD(x=0)が効率的に下がり、デフロスタ20の稼働時間を短くできる。
 温度センサ150A及び温湿度センサ150Bは、接着層285が分断された区間の隙間の近傍に設けられることが好ましい。温度センサ150A及び温湿度センサ150Bが接着層285が分断された区間の隙間の近傍に設けられることで、防曇膜220の最上層の吸水質量濃度FD(x=0)を正しく算出できる。温度センサ150A及び温湿度センサ150Bが設けられる位置は、隙間から平面視で半径50mm以内であることが好ましく、40mm以内であることがより好ましく、30mm以内であることが特に好ましい。
 また、風速センサ250Dを用いれば、熱伝達率Hを求める式を、車室内の風速V[m/s]を考慮して熱伝達率Hを求める以下の式に置き換えて、防曇膜220に曇りが生じるまでの時間Tsを算出することができる。H=5.8+4.2V [W/m2/K]
 風速センサ250Dは、デフロスタ20で除湿された空気が通過する部分に設けられることが好ましい。このため、ここでは一例として、風速センサ250Dは、温度センサ150A及び温湿度センサ150Bよりもブラケット280の凹部281に近い側に設けられている。また、風速センサ250Dは、接着層285が分断された区間の隙間の近傍に設けられている。
 風速センサが隙間の近傍に設けられることで、防曇膜220の最上層の吸水質量濃度FD(x=0)をさらに正しく算出できる。風速センサが設けられる位置は、接着層285が分断された区間の隙間から平面視で半径100mm以内であることが好ましく、80mm以内であることがより好ましく、50mm以内であることが特に好ましい。
 なお、図6乃至図8に示すブラケット280の代わりに、図9に示すブラケット280Mを用いてもよい。図9は、実施の形態の変形例によるブラケット280Mを示す図である。
 ブラケット280Mは、開口部281Mを有する。このようなブラケット280Mを用いれば、ブラケット280M及び筐体290で囲まれる空間内に、デフロスタ20で乾燥された空気が流入するので、図6乃至図8に示すブラケット280を用いる場合と同様に、防曇膜220の最上層の吸水質量濃度FD(x=0)が効率的に下がり、デフロスタ20の稼働時間を短くできる。また、風速センサ250Dを用いれば、熱伝達率Hを求める式を、車室内の風速V[m/s]を考慮して熱伝達率Hを求める式に置き換えて、防曇膜220に曇りが生じるまでの時間Tsを算出することができる。
 以上、本発明の例示的な実施の形態の窓ガラスシステム及び窓ガラスについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 なお、本国際出願は、2019年3月15日に出願した日本国特許出願2019-049041と、2019年12月11日に出願した日本国特許出願2019-224051とに基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。
 100 窓ガラスシステム
 110 窓ガラス
 111 ガラス本体
 111A 中央部
 112 着色セラミック層
 120 防曇膜
 130 電熱線
 140 スイッチ
 150 制御ユニット
 150A 温度センサ
 150B 温湿度センサ
 150C 制御部
 160H 電源
 160L 電源

Claims (15)

  1.  移動体に取り付けられる窓ガラスと、
     前記窓ガラスの室内側表面に設けられる防曇膜と、
     前記窓ガラスの室内側表面の温度を検出する温度センサと、
     前記移動体の室内の温度及び湿度を検出する温湿度センサと、
     前記防曇膜に付着する水分を気化する乾燥手段と、
    前記温度センサによって検出されるガラス温度と、前記温湿度センサによって検出される室内の温度及び湿度とに基づいて前記防曇膜に曇りが生じるまでの時間Tsを推測し、前記時間Tsに基づいて前記乾燥手段を作動させる回路を有する制御部と
     を含む、窓ガラスシステム。
  2.  前記時間Tsは、前記防曇膜の最上層における吸水質量濃度FD(x=0)に基づいて推測される、請求項1記載の窓ガラスシステム。
  3.  前記時間Tsは、前記防曇膜の飽和吸水質量濃度をFWとすると、防曇膜の最上層における吸水質量濃度FD(x=0)を予測した時刻から、FD(x=0)≧FWになる時刻までの所要時間である、請求項2記載の窓ガラスシステム。
  4.  前記制御部は、前記時間Tsを繰り返し推測する、請求項1乃至3記載の窓ガラスシステム。
  5.  前記乾燥手段が電熱線又は電熱膜であり、前記温度センサは、平面視で、前記加熱手段による加熱領域に設けられている、請求項1乃至4のいずれか一項記載の窓ガラスシステム。
  6.  前記窓ガラスが遮蔽領域を有し、前記温度センサは、平面視で、前記遮蔽領域に設けられている、請求項1乃至5のいずれか一項記載の窓ガラスシステム。
  7.  前記温度センサは、前記窓ガラスの上部又は側部に設けられている、請求項1乃至6のいずれか一項記載の窓ガラスシステム。
  8.  前記温度センサは、平面視で、前記防曇膜の設けられる領域の外側に設けられている、請求項1乃至7のいずれか一項記載の窓ガラスシステム。
  9.  前記乾燥手段による加熱領域は、平面視で、前記防曇膜の設けられる領域と重ならない領域を有する、請求項5乃至8のいずれか一項記載の窓ガラスシステム。
  10.  前記移動体の室外の情報を取得する情報取得装置と、
     前記情報取得装置を前記窓ガラスに固定する取り付け部材とを有し、
     前記防曇膜は、前記情報取得装置と対向する情報取得領域に設けられ、
     前記温湿度センサは、前記取り付け部材に囲まれた空間内に設けられる、請求項1乃至9のいずか一項記載の窓ガラスシステム。
  11.  前記窓ガラスと前記取り付け部材との間に隙間が存在する、又は、前記取り付け部材は開口部を有する、請求項10記載の窓ガラスシステム。
  12.  前記温度センサ及び前記温湿度センサは、隣り合って設けられる、請求項1乃至12のいずれか一項記載の窓ガラスシステム。
  13.  移動体に取り付けられるガラスと、
     前記ガラスの室内側表面に設けられる防曇膜と、
     前記ガラスの室内側表面の温度を検出する温度センサと、
     前記移動体の室内の温度及び湿度を検出する温湿度センサと、
     平面視で、前記防曇膜の設けられる領域と重なる領域に設けられる電熱線又は電熱膜と、を含む窓ガラス。
  14.  前記温度センサは、平面視で、前記電熱線又は前記電熱膜による加熱領域で、前記防曇膜が設けられる領域の外側に設けられる、請求項13に記載の窓ガラス。
  15.  前記ガラスは、遮蔽領域を有し、
     前記温度センサは、平面視で、前記遮蔽領域に設けられる、請求項13又は14に記載の窓ガラス。
PCT/JP2020/009848 2019-03-15 2020-03-06 窓ガラスシステム及び窓ガラス WO2020189353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080019918.4A CN113557150A (zh) 2019-03-15 2020-03-06 窗玻璃系统和窗玻璃
JP2021507211A JPWO2020189353A1 (ja) 2019-03-15 2020-03-06
DE112020001244.1T DE112020001244T5 (de) 2019-03-15 2020-03-06 Fensterglassystem und Fensterglas
US17/472,475 US20210402854A1 (en) 2019-03-15 2021-09-10 Window glass system and window glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-049041 2019-03-15
JP2019049041 2019-03-15
JP2019-224051 2019-12-11
JP2019224051 2019-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/472,475 Continuation US20210402854A1 (en) 2019-03-15 2021-09-10 Window glass system and window glass

Publications (1)

Publication Number Publication Date
WO2020189353A1 true WO2020189353A1 (ja) 2020-09-24

Family

ID=72520301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009848 WO2020189353A1 (ja) 2019-03-15 2020-03-06 窓ガラスシステム及び窓ガラス

Country Status (5)

Country Link
US (1) US20210402854A1 (ja)
JP (1) JPWO2020189353A1 (ja)
CN (1) CN113557150A (ja)
DE (1) DE112020001244T5 (ja)
WO (1) WO2020189353A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085559A1 (ja) * 2020-10-21 2022-04-28 Agc株式会社 窓ガラスシステム及び窓ガラス
WO2023057246A1 (en) * 2021-10-06 2023-04-13 Agc Glass Europe Heated glazing with temperature control
US20230174421A1 (en) * 2020-04-30 2023-06-08 Saint-Gobain Glass France Anti-fog glass, vehicle and method of manufacturing the anti-fog glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11780594B2 (en) * 2019-10-02 2023-10-10 Ppg Industries Ohio, Inc. Transparency including a wireless sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180761U (ja) * 1986-05-08 1987-11-17
JPH01269646A (ja) * 1988-04-20 1989-10-27 Diesel Kiki Co Ltd 自動車空調用制御装置
JP2010168026A (ja) * 2008-12-26 2010-08-05 Nissan Motor Co Ltd 車両用空調装置
US20140026600A1 (en) * 2012-07-25 2014-01-30 Erik A. Wippler Hvac system of an automotive vehicle and method of operating the same
JP2015000694A (ja) * 2013-06-18 2015-01-05 マツダ株式会社 車両用空調制御装置
JP2016147544A (ja) * 2015-02-10 2016-08-18 株式会社デンソー 車両用空調装置
JP2019026046A (ja) * 2017-07-28 2019-02-21 マツダ株式会社 車両の防曇制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049041A (ja) 2017-09-12 2019-03-28 日立化成株式会社 粉末供給装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180761U (ja) * 1986-05-08 1987-11-17
JPH01269646A (ja) * 1988-04-20 1989-10-27 Diesel Kiki Co Ltd 自動車空調用制御装置
JP2010168026A (ja) * 2008-12-26 2010-08-05 Nissan Motor Co Ltd 車両用空調装置
US20140026600A1 (en) * 2012-07-25 2014-01-30 Erik A. Wippler Hvac system of an automotive vehicle and method of operating the same
JP2015000694A (ja) * 2013-06-18 2015-01-05 マツダ株式会社 車両用空調制御装置
JP2016147544A (ja) * 2015-02-10 2016-08-18 株式会社デンソー 車両用空調装置
JP2019026046A (ja) * 2017-07-28 2019-02-21 マツダ株式会社 車両の防曇制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230174421A1 (en) * 2020-04-30 2023-06-08 Saint-Gobain Glass France Anti-fog glass, vehicle and method of manufacturing the anti-fog glass
WO2022085559A1 (ja) * 2020-10-21 2022-04-28 Agc株式会社 窓ガラスシステム及び窓ガラス
WO2023057246A1 (en) * 2021-10-06 2023-04-13 Agc Glass Europe Heated glazing with temperature control

Also Published As

Publication number Publication date
CN113557150A (zh) 2021-10-26
JPWO2020189353A1 (ja) 2020-09-24
DE112020001244T5 (de) 2021-12-02
US20210402854A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2020189353A1 (ja) 窓ガラスシステム及び窓ガラス
JP5753164B2 (ja) 加熱可能な光透過センサアレイを備える窓ガラス
JP6377115B2 (ja) 電気加熱可能なバッフルプレートを備えたウインドガラス装置、当該ウインドガラス装置の製造方法および使用方法
CN102470802B (zh) 具有光学透明敏感场的板
JP6439471B2 (ja) 車両用防曇解氷装置
JP4670418B2 (ja) 車両用防曇窓システム
JP6610624B2 (ja) 車両の防曇制御装置
JP2020082837A (ja) ウィンドウガラス加熱装置
JP6562045B2 (ja) 車両の防曇制御装置
JP7077882B2 (ja) 測距装置
CN107428314A (zh) 风挡监测系统
CN109969138A (zh) 车辆用车窗装置的绝热结构
US11509800B2 (en) On-board camera device
JP2020038155A (ja) 測距装置
WO2022085559A1 (ja) 窓ガラスシステム及び窓ガラス
WO2021117352A1 (ja) 窓ガラスシステム、及び、窓ガラス装置
JP2006266809A (ja) 結露状態検出センサと車両用窓用板状体
JP3975200B2 (ja) 自動車のウインドガラスの曇りを防止するための方法
US10870399B2 (en) Sensor arrangement for a motor vehicle, motor vehicle and method for operating a sensor device
JP3260833B2 (ja) 車両用空調装置に用いるセンサーユニット
CN104406708A (zh) 电加热玻璃的温度测量系统和方法
JPS6319455U (ja)
WO2021176817A1 (ja) 加熱制御システム及びウインドシールド
CN115474431A (zh) 具有可加热的传感器窗口的片材组件
JP2004035331A (ja) 温度センサ付き合わせガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507211

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20774825

Country of ref document: EP

Kind code of ref document: A1