WO2020187278A1 - 阳离子可染聚酯组合物及其制备方法 - Google Patents

阳离子可染聚酯组合物及其制备方法 Download PDF

Info

Publication number
WO2020187278A1
WO2020187278A1 PCT/CN2020/080084 CN2020080084W WO2020187278A1 WO 2020187278 A1 WO2020187278 A1 WO 2020187278A1 CN 2020080084 W CN2020080084 W CN 2020080084W WO 2020187278 A1 WO2020187278 A1 WO 2020187278A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester composition
formula
sulfonate
cationic dyeable
group
Prior art date
Application number
PCT/CN2020/080084
Other languages
English (en)
French (fr)
Inventor
胡永佳
望月克彦
Original Assignee
东丽纤维研究所(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽纤维研究所(中国)有限公司 filed Critical 东丽纤维研究所(中国)有限公司
Priority to CN202080007054.4A priority Critical patent/CN113166387B/zh
Publication of WO2020187278A1 publication Critical patent/WO2020187278A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof

Definitions

  • the invention relates to a cationic polyester composition and a preparation method thereof. More specifically, it relates to a cationic dyeable polyester composition with excellent dyeing stability.
  • Polyester resin due to its excellent mechanical properties and chemical properties, is widely used in industrial fields such as clothing, industrial fibers, magnetic tapes, surface coating films, and tire radials and mesh wires.
  • the isophthalic acid component containing sulfonate group represented by isophthalic acid-5-sodium sulfonate is used as a comonomer to make a copolymerized modification.
  • Cationic dyeable polyester Cationic dyeable polyester.
  • the sulfonate group is prone to physical crosslinking in the polyester, resulting in a significant increase in the melt viscosity of the polyester when the inherent viscosity (IV) is not high, resulting in a lower strength of the final yarn, which limits its use Some applications that require high strength.
  • the cationic dyeable component is a metal salt containing sulfoisophthalic acid and is used as a sulfoisophthalic acid.
  • Compounds such as phosphonium salts of formic acid.
  • This patent uses non-metal ion cationic dyeable components with low ionic bond intermolecular forces to copolymerize with polyester to suppress the increase in polyester viscosity.
  • the isophthalic acid sulfonate phosphonium salt or quaternary ammonium salt is easy to decompose, causing serious yellowing during the polyester polymerization, broken ends and difficult dyeing during spinning.
  • Japanese Patent Laid-Open No. 5-25708 discloses a modified polyester fiber, which uses end-blocking cationic components, polyether and glycol components to modify the polyester, and the cationic groups in the resulting modified polyester are mainly connected to At the end of the molecular chain, there is no interactive physical crosslinking group in the middle of the molecular chain, which greatly reduces the viscosity of the polyester.
  • the obtained cationic polyester fiber has a stronger strength than the existing sulfonate group modified with isophthalic acid.
  • the polyester has been greatly improved, and there is no problem in spinning performance.
  • the modifier used in the patent has the effect of end-capping, especially the presence of a large amount of low molecular weight soluble oligomers, which will cause serious dissolution phenomena during high temperature and high pressure dyeing, making the dyeing stability of polyester extremely poor , The color is uncontrollable.
  • the purpose of the present invention is to provide a cationic dyeable polyester composition with good dyeing stability and a preparation method thereof.
  • the cationic dyeable polyester composition is mainly composed of aromatic dicarboxylic acid units and aliphatic diol units.
  • the polyester composition contains a terminal blockade sulfonate group as shown in formula 1, and the content of the group as shown in formula 1 accounts for 1000 to 5000 ppm of the total polyester composition in terms of sulfur; the polyester composition
  • the sulfur element in the water-soluble oligomer accounts for less than 30.0% of the total sulfur element in the polyester composition
  • Y is an alkyl group, phenyl group or alkylbenzene having 2 to 20 carbon atoms, and Z is Li ion, Na ion or K ion.
  • the content of the group as described in formula 1 preferably accounts for 1000-3500 ppm of the total polyester composition in terms of sulfur element.
  • the sulfur element in the water-soluble oligomer in the polyester composition preferably accounts for 15.0% or less of the total sulfur element in the polyester composition.
  • the invention also discloses a preparation method of the cationic dyeable polyester composition.
  • the oligomer is obtained by esterification or transesterification reaction of aromatic dicarboxylic acid or its esterified derivative and aliphatic diol.
  • the sulfonate shown in formula 2 is added to the above oligomer, and the final reaction is to obtain a polyester composition.
  • the total composition is 1000 ⁇ 5000ppm
  • X is a carboxyl group, methyl formate group, ethyl formate group or ethylene glycol formate group
  • Y is an alkyl group, phenyl group or alkylbenzene with 2 to 20 carbon atoms
  • Z is Li ion, Na Ion or K ion.
  • the addition amount of the sulfonate represented by Formula 2 is preferably 1000 to 3500 ppm in terms of sulfur element relative to the total amount of the polyester composition.
  • the sulfonate salt represented by formula 2 is added 20 minutes to 60 minutes after the start of polymerization.
  • the water-soluble oligomer content in the polyester composition of the present invention is extremely low, the dyeability is good, and the dyeing stability of the blocked cationic polyester is greatly improved.
  • a cationic dyeable component containing a sulfonate group such as isophthalic acid-5-sulfonate
  • isophthalic acid-5-sulfonate is copolymerized into the polyester to give the polyester cationic dyeability.
  • the sulfonate groups are distributed in the middle of the molecular weight of the polyester, and the sulfonate groups are prone to physical crosslinking in the polyester, resulting in an increase in the viscosity of the polyester. The intensity is reduced.
  • the sulfonate groups are distributed in the middle of the polyester molecular weight, the hydrolysis resistance of the polyester will deteriorate.
  • the cationic dyeable component used in the present invention is a sulfonate as shown in formula 2.
  • X is a carboxyl group, methyl formate group, ethyl formate group or ethylene glycol formate group
  • Y is an alkyl group, phenyl group or alkylbenzene with 2 to 20 carbon atoms
  • Z is Li ion, Na Ion or K ion.
  • Specific examples can be sodium 2-carboxybenzenesulfonate, potassium 2-carboxybenzenesulfonate, sodium 3-carboxybenzenesulfonate, lithium 3-carboxybenzenesulfonate, sodium 4-carboxybenzenesulfonate, sodium 2-sulfonate Methyl benzoate, 3-sodium sulfonate methyl benzoate, 4-sodium sulfonate methyl benzoate, 2-sodium sulfonate ethyl benzoate, 2-sulfonate potassium ethylene benzoate, 3-sulfonate Sodium ethyl benzoate, sodium ethylene benzoate 4-sulfonate, ethylene glycol 3-sulfonate lithium benzoate, etc., among which sodium 3-carboxybenzene sulfonate is preferred.
  • Polyester with cationic dyeable ingredients such as the sulfonate shown in formula 2 contains the terminal block sulfonate group as shown in formula 1,
  • Y is an alkyl group, phenyl group or alkylbenzene having 2 to 20 carbon atoms, and Z is Li ion, Na ion or K ion.
  • the content of the terminal blockade sulfonate group as shown in formula 1 in the polyester composition of the present invention accounts for 1000-5000 ppm of the polyester composition in terms of sulfur element.
  • the content of the terminal block sulfonate group shown in formula 1 in the polyester composition is less than 1000 ppm in terms of sulfur element, the resulting product is difficult to achieve a satisfactory color concentration in the subsequent dyeing process; when the polyester composition As shown in formula 1, when the content of the terminal blockade sulfonate group is higher than 5000ppm in terms of sulfur element, it will inhibit the growth of the polyester molecular chain, and the polymerization system will terminate before the target viscosity is reached, and a polyester with good physical properties cannot be obtained. combination.
  • the content of the blocked terminal sulfonate group shown in Formula 1 preferably accounts for 1000-3500 ppm of the polyester composition in terms of sulfur.
  • the sulfur element in the water-soluble oligomer in the polyester composition of the present invention preferably accounts for 30.0% or less of the total sulfur element in the polyester composition.
  • the water-soluble oligomer refers to a polyester terminated prematurely by a sulfonate as shown in Formula 2, and its molecular weight is only 400-1500 g/mol. These water-soluble oligomers are eluted when the polyester composition is dyed at a high temperature, resulting in unstable dyeing of the polyester composition. Therefore, in order to achieve good dyeing stability of the polyester composition, it is necessary to control the content of water-soluble oligomers in the polyester composition.
  • the sulfur element in the water-soluble oligomer in the polyester composition of the present invention preferably accounts for 15.0% or less of the total sulfur element in the polyester composition.
  • the invention also discloses a preparation method of the cationic dyeable polyester composition. Firstly, the oligomer is obtained by esterification or transesterification reaction of aromatic dicarboxylic acid or its esterified derivative and aliphatic diol. , And then add the sulfonate shown in formula 2 to the above-mentioned oligomer after the start of polymerization, and finally react to obtain a polyester composition.
  • X is a carboxyl group, methyl formate group, ethyl formate group or ethylene glycol formate group
  • Y is an alkyl group, phenyl group or alkylbenzene with 2 to 20 carbon atoms
  • Z is Li ion, Na Ion or K ion.
  • Specific examples can be sodium 2-carboxybenzenesulfonate, potassium 2-carboxybenzenesulfonate, sodium 3-carboxybenzenesulfonate, lithium 3-carboxybenzenesulfonate, sodium 4-carboxybenzenesulfonate, sodium 2-sulfonate Methyl benzoate, 3-sodium sulfonate methyl benzoate, 4-sodium sulfonate methyl benzoate, 2-sodium sulfonate ethyl benzoate, 2-sulfonate potassium ethylene benzoate, 3-sulfonate Sodium ethyl benzoate, sodium ethylene benzoate 4-sulfonate, ethylene glycol 3-sulfonate lithium benzoate, etc., among which sodium 3-carboxybenzene sulfonate is preferred.
  • the addition amount of the sulfonate shown in Formula 2 is 1000 to 5000 ppm in terms of sulfur element relative to the total amount of the polyester composition.
  • the addition amount of sulfonate as shown in formula 2 is less than 1000ppm, the resulting product is difficult to achieve satisfactory color concentration in the subsequent dyeing process; when the addition amount of sulfonate as shown in formula 2 is higher than 5000ppm, it will The growth of the polyester molecular chain is inhibited, and the polymerization is terminated before the polymerization system reaches the target viscosity, and a polyester composition with good physical properties cannot be obtained.
  • the addition amount of the sulfonate shown in Formula 2 preferably accounts for 1000-3500 ppm of the polyester composition in terms of sulfur element.
  • the sulfonate shown in Formula 2 of the present invention is added after the start of polymerization. If the sulfonate is added in the esterification or transesterification reaction stage as shown in formula 2, the polyester molecular segment is blocked prematurely, and the polyester in the normal molecular weight range cannot be obtained, resulting in soluble oligomerization in the polyester composition.
  • the sulfur element in the polyester composition exceeds 30.0% of the total sulfur element in the polyester composition, and the dyeing stability of the polyester composition is poor.
  • the sulfonate shown in formula 2 is a powdery substance. Therefore, when adding, according to the conventional method in the field, the sulfonate shown in formula 2 is first dissolved in an aliphatic diol to prepare an aliphatic diol solution , And then add. First, the sulfonate and aliphatic diol as shown in formula 2 are dissolved at a mass ratio of 1:0.5 to 1:10.0 at a temperature between 70 and 198°C to form a homogeneous solution. As shown in Formula 2, the weight ratio of the sulfonate to the aliphatic diol is preferably 1:1.0 to 1:2.0, and the dissolution temperature is preferably 80 to 130°C.
  • the preparation of the aliphatic glycol solution can be carried out according to the above method, but is not limited to the above method.
  • the aromatic dicarboxylic acid or its esterified derivative of the present invention can be terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, dimethyl terephthalate, dimethyl isophthalate, Dimethyl naphthalate, dimethyl phthalate, etc., of which terephthalic acid or dimethyl terephthalate are preferred.
  • the aliphatic diol may be ethylene glycol, propylene glycol, butylene glycol, 1,2-propanediol, pentanediol, neopentyl glycol, 1,2-butanediol, etc., among which ethylene glycol and propylene glycol are preferred Or butanediol.
  • the esterification reaction can be carried out in an esterification reaction tank in which oligomers are pre-existed, while continuously adding a slurry of aliphatic diol and aromatic dicarboxylic acid in a molar ratio of 1.05 to 1.50, while performing the esterification reaction ; It can also be in the esterification reaction tank where the oligomer is pre-existed, before the esterification reaction starts, after all the aliphatic diol and aromatic dicarboxylic acid are added, and then the esterification reaction is carried out.
  • the molar ratio of the aliphatic diol and the aromatic dicarboxylic acid esterified derivative can be adjusted within the range of 1.50-2.50 to control the appropriate transesterification reaction rate.
  • the transesterification catalyst of the present invention may be various well-known catalysts, such as metal oxides such as cobalt, magnesium, manganese, titanium, or their acetates, and they may be used in combination or alone.
  • the polymerization catalyst used in the method for preparing the cationic dyeable polyester composition of the present invention may be various known polymerization catalysts.
  • antimony compounds, germanium compounds, titanium compounds, etc. These catalysts can be used in combination or individually.
  • esterification and polymerization reaction device for the production of the cationic dyeable polyester composition of the present invention various commonly used reaction devices can be used.
  • the cationic dyeable polyester composition of the present invention has good physical properties and excellent dyeability, and by controlling the timing of adding cationic dyeable components, the content of water-soluble oligomers in the polyester composition is low, and the polyester composition Good dyeing stability.
  • the measuring method and evaluation method of each index of the present invention are as follows:
  • the polyester composition is melt-spun into fibers, and then 5g fiber samples are added to a reactor filled with 100 mL of water. After heating the above-mentioned aqueous solution containing fibers at 130°C for 1 hour, the water-soluble oligomerization in the fibers The substance dissolves from the fiber and enters the water. Take out the fiber, rinse the remaining water-soluble oligomers on the fiber into the reactor with clean water, and finally quantitatively analyze the sulfur content in the aqueous solution containing the water-soluble oligomer in the reactor by the ICP element analyzer.
  • the sulfur content in the polymer was quantitatively analyzed by the ICP element analyzer.
  • the polyester composition was spun to obtain a stretched yarn, and then the resulting stretched fiber was twined to make a sock tube under the condition of 22 gauge.
  • the sock tube was dyed (Blue.TR) 3% owf, Dyeing for 60 minutes in a 130°C hot water bath with acetic acid 0.5ml/l, sodium acetate 0.2g/l, bath ratio 1:100. Staining sample after superposed into opaque state after by using spectrophotometric colorimeter (Datacolor Asia Pacific (HK) Ltd . Datacolor manufactured 650) for color measurement at CEI standard light source D65,10 o angle condition obtained L *.
  • the measurement of strength and elongation is calculated according to the standard of JIS L1013: 2010 (Test Method for Long Fiber in Chemical Fiber) 8.8.1.
  • the terephthalic acid (PTA) and ethylene glycol (EG) are mixed uniformly and put into the reactor, and the esterification reaction is carried out at 240-260°C.
  • the reaction product is moved into the polycondensation kettle, the catalyst antimony trioxide and the heat stabilizer trimethyl phosphate are added, and the polycondensation reaction is carried out at 260°C to 290°C.
  • 30 minutes after the start of the polymerization reaction the ethylene glycol solution of the sulfonate shown in Formula 2 is added, and after the polymer reaches the required viscosity, it is discharged and pelletized to obtain the desired polyester composition.
  • the intrinsic viscosity IV of the polyester composition was 0.63 dl/g.
  • the chips are melt-spun at 290°C to obtain cationic dyeable polyester yarn.
  • the sulfur content in the fiber was 2450 ppm, and the sulfur content in the dissolved aqueous solution after hot water treatment was 100 ppm, accounting for 4.1% of the total sulfur content of the polyester composition.
  • the fiber strength and elongation product is 25 and the blue dye concentration is 3.0% o.w.f, the L value after dyeing is 25.
  • Comparative Example 1 because the addition amount of the sulfonate shown in Formula 2 was too small, the content of the S element in the polyester composition was small, and the final fiber had a large L value and poor dyeability.
  • Comparative Example 2 because the addition amount of the sulfonate shown in Formula 2 was too large, the intrinsic viscosity of the polyester was low, and the final fiber strength product was small, and the physical properties were poor.
  • the sulfonate is added in the esterification reaction stage, resulting in a high content of water-soluble oligomers in the polyester, a large L value of the final fiber, and poor dyeing stability.
  • the sulfonate shown in formula 2 was changed to 5-sodium isophthalic acid sulfonate, and the addition period was before polymerization.
  • the other conditions were the same as in Example 1 to prepare the cationic dyeable polyester. See Table 3 for specific physical properties.
  • sodium isophthalic acid-5-sulfonate has a problem of thickening, resulting in a low intrinsic viscosity of the polyester, a small product of strength and elongation of the final fiber, and poor physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本申请公开了一种阳离子可染聚酯组合物及其制备方法。所述阳离子可染聚酯组合物主要由芳香族二元羧酸单元和脂肪族二元醇单元构成,其中含有末端封锁磺酸盐基团。该阳离子可染聚酯组合物的物性良好,染色性优良,且通过控制阳离子染料可染成分的添加时机,使得聚酯组合物中水溶性低聚物的含量低,聚酯组合物的染色稳定性及物性好。

Description

阳离子可染聚酯组合物及其制备方法 技术领域
本发明涉及一种阳离子聚酯组合物及其制备方法。更具体的,涉及一种具有优良染色稳定性的阳离子可染聚酯组合物。
背景技术
聚酯树脂,由于其具有优异的机械力学性能和化学特性,被广泛应用于衣料、产业用纤维,磁带、表面涂层用薄膜,以及轮胎子午线、网线等工业领域。
在作为衣料纤维使用的时候,为了提高聚酯的染色性,以间苯二甲酸-5-磺酸钠为代表的含有磺酸盐基团的间苯二甲酸成分被作成共聚单体制得共聚改性阳离子可染聚酯。但是磺酸盐基团在聚酯中容易发生物理交联,导致聚酯在固有粘度(IV)不高的情况下熔融粘度明显上升,导致最终所得到的纱线强度较低,限制了其在一些对强度要求较高的领域的应用。
为了改善磺酸盐基团所产生的增粘现象,现有技术中比较常见的是向聚酯中添加长直链的聚醚二醇,增加聚酯的柔性,从而降低其粘度。其他方法,比如中国专利CN201110351219.2公开了一种常压阳离子可染性聚酯及纤维,所述阳离子可染成分为含有磺酸基间苯二甲酸的金属盐和作为磺酸基间苯二甲酸的鏻盐等的化合物。该专利通过使用离子键性分子间力小的非金属离子类阳离子可染成分与聚酯共聚从而抑制聚酯粘度的上升。但是间苯二甲酸磺酸磷盐或季铵盐易分解,导致聚酯聚合中会出现严重黄变,纺丝时断头、难染色等一系列问题。
另外,日本专利特开平5-25708公开了一种改性聚酯纤维,通过使用末端封锁阳离子成分、聚醚以及二醇成分进行聚酯改性,所得改性聚酯中的阳离子基团主要接在分子链末端,分子链中间没有相互作用的物理交联基团,大大降低了聚酯的粘度,获得的阳离子聚酯纤维强度较现有磺酸盐基团的间苯二甲酸成分改性的聚酯有大幅度提高,并且纺丝性能也没有问题。但是该专利中使用的改性剂有末端封端的效果,特别是存在大量低分子量的易溶出低聚物,在高温高压染色时会出现比较严重的溶出现象,使得聚酯的染色稳定性极差,颜色不可控。
发明内容
本发明的目的在于提供一种具有良好染色稳定性的阳离子可染聚酯组合物及其制备方法。
本发明的技术解决方案:
阳离子可染聚酯组合物,主要由芳香族二元羧酸单元和脂肪族二元醇单元构成。该聚酯组合物中含有如式1所示末端封锁磺酸盐基团,且如式1所述基团的含量以硫元素计占聚酯组合物总量的1000~5000ppm;该聚酯组合物中水溶性低聚物中的硫元素占聚酯组合物总硫元素的30.0%以下,
Figure PCTCN2020080084-appb-000001
式1中,Y为碳原子数2~20的烷基、苯基或烷基苯,Z为Li离子、Na离子或K离子。
所述如式1所述基团的含量优选以硫元素计占聚酯组合物总量的1000~3500ppm。
该聚酯组合物中水溶性低聚物中的硫元素优选占聚酯组合物总硫元素的15.0%以下。
本发明还公开了一种上述阳离子可染聚酯组合物的制备方法,首先由芳香族二元羧酸或其酯化衍生物与脂肪族二元醇经过酯化或酯交换反应得到低聚物,然后在聚合开始以后向上述低聚物中添加如式2所示的磺酸盐,最终反应得到聚酯组合物,其中式2所示磺酸盐的添加量以硫元素计相对于聚酯组合物总量为1000~5000ppm,
X-Y-SO 3Z  式2,
式2中,X为羧基、甲酸甲酯基、甲酸乙酯基或甲酸乙二醇酯基,Y为碳原子数2~20的烷基、苯基或烷基苯,Z为Li离子、Na离子或K离子。
所述式2所示磺酸盐的添加量优选以硫元素计相对于聚酯组合物总量为1000~3500ppm。
所述如式2所示磺酸盐在聚合开始以后20min~60min添加。
本发明所述聚酯组合物中的水溶性低聚物含量极低,染色性良好,极大的改善了封端类型阳离子聚酯的染色稳定性。
具体实施方式
现有技术中,通过在聚酯中共聚含有磺酸盐基团的阳离子可染成分,如间苯二甲酸-5-磺酸盐等,从而赋予聚酯阳离子可染性能。但是,一般通过这种方式得到的聚酯中,磺酸盐基团分布在聚酯分子量的中间,磺酸盐基团在聚酯中容易发生物理交联,导致聚酯的粘度上升,聚酯强度降低。同时由于磺酸盐基团分布 在聚酯分子量的中间也会导致聚酯耐水解性变差。
为了克服上述问题,本发明所使用的阳离子可染成分为如式2所示的磺酸盐,
X-Y-SO 3Z  式2,
式2中,X为羧基、甲酸甲酯基、甲酸乙酯基或甲酸乙二醇酯基,Y为碳原子数2~20的烷基、苯基或烷基苯,Z为Li离子、Na离子或K离子。具体可以举例的有2-羧基苯磺酸钠、2-羧基苯磺酸钾、3-羧基苯磺酸钠、3-羧基苯磺酸锂、4-羧基苯磺酸钠、2-磺酸钠苯甲酸甲酯、3-磺酸钠苯甲酸甲酯、4-磺酸钠苯甲酸甲酯、2-磺酸钠苯甲酸乙酯、2-磺酸钾苯甲酸乙二醇酯、3-磺酸钠苯甲酸乙酯、4-磺酸钠苯甲酸乙二醇酯、3-磺酸锂苯甲酸乙二醇酯等,其中优选3-羧基苯磺酸钠。
添加了阳离子可染成分如式2所示磺酸盐的聚酯中,含有如式1所示的末端封锁磺酸盐基团,
Figure PCTCN2020080084-appb-000002
式1中,Y为碳原子数2~20的烷基、苯基或烷基苯,Z为Li离子、Na离子或K离子。
本发明所述聚酯组合物中如式1所示末端封锁磺酸盐基团的含量,以硫元素计占聚酯组合物的1000~5000ppm。当聚酯组合物中如式1所示末端封锁磺酸盐基团的含量以硫元素计低于1000ppm时,所得产品在后续的染色过程中难以达到满意的色彩浓度;当聚酯组合物中如式1所示末端封锁磺酸盐基团的含量以硫元素计高于5000ppm时,会抑制聚酯分子链的增长,聚合体系还未达到目标粘度就终止聚合,不能获得物性良好的聚酯组合物。从染色性以及聚酯组合物物性综合考虑,所述如式1所示末端封锁磺酸盐基团的含量优选以硫元素计占聚酯组合物的1000~3500ppm。
本发明的聚酯组合物中水溶性低聚物中的硫元素优选占聚酯组合物总硫元素的30.0%以下。所述水溶性低聚物是指被如式2所示磺酸盐过早封端的聚酯,其分子量只有400~1500g/mol。这些水溶性低聚物在对聚酯组合物进行高温染色时溶出,导致聚酯组合物染色不稳定。因此,为了使得聚酯组合物达到良好的染色稳定性,有必要控制聚酯组合物中水溶性低聚物的含量。本发明的聚酯组合物中水溶性低聚物中的硫元素优选占聚酯组合物总硫元素的15.0%以下。
本发明还公开了一种上述阳离子可染聚酯组合物的制备方法,首先由芳香族 二元羧酸或其酯化衍生物与脂肪族二元醇经过酯化或酯交换反应得到低聚物,然后在聚合开始以后向上述低聚物中添加如式2所示的磺酸盐,最终反应得到聚酯组合物。
X-Y-SO 3Z  式2,
式2中,X为羧基、甲酸甲酯基、甲酸乙酯基或甲酸乙二醇酯基,Y为碳原子数2~20的烷基、苯基或烷基苯,Z为Li离子、Na离子或K离子。具体可以举例的有2-羧基苯磺酸钠、2-羧基苯磺酸钾、3-羧基苯磺酸钠、3-羧基苯磺酸锂、4-羧基苯磺酸钠、2-磺酸钠苯甲酸甲酯、3-磺酸钠苯甲酸甲酯、4-磺酸钠苯甲酸甲酯、2-磺酸钠苯甲酸乙酯、2-磺酸钾苯甲酸乙二醇酯、3-磺酸钠苯甲酸乙酯、4-磺酸钠苯甲酸乙二醇酯、3-磺酸锂苯甲酸乙二醇酯等,其中优选3-羧基苯磺酸钠。
所述如式2所示磺酸盐的添加量以硫元素计相对于聚酯组合物总量为1000~5000ppm。当如式2所示磺酸盐的添加量低于1000ppm时,所得产品在后续的染色过程中难以达到满意的色彩浓度;当如式2所示磺酸盐的添加量高于5000ppm时,会抑制聚酯分子链的增长,聚合体系还未达到目标粘度就终止聚合,不能获得物性良好的聚酯组合物。从染色性以及聚酯组合物物性综合考虑,所述如式2所示磺酸盐的添加量优选以硫元素计占聚酯组合物的1000~3500ppm。
为了降低聚酯组合物中可溶性低聚物的含量,本发明所述如式2所示磺酸盐在聚合开始以后添加。如果如式2所示磺酸盐在酯化或者酯交换反应阶段添加的话,聚酯分子链段被过早封端,无法得到普通正常分子量范围的聚酯,导致聚酯组合物中可溶性低聚物中的硫元素相对于聚酯组合物总硫元素超过30.0%,聚酯组合物的染色稳定性差。如式2所示磺酸盐在聚合开始以后添加的具体时间点,以留有足够的聚合时间使得如式2所示磺酸盐能够充分反应为宜,避免异物的增加。本发明优选如式2所示磺酸盐在聚合开始以后20min~60min添加。
如式2所示磺酸盐为粉状物质,因此在添加时按照本领域的常规做法,先将如式2所示磺酸盐溶解在脂肪族二元醇中制备成脂肪族二元醇溶液,再进行添加。首先将如式2所示磺酸盐和脂肪族二元醇按质量1:0.5~1:10.0的比例,在70~198℃之间进行溶解,形成均一溶液。如式2所示磺酸盐和脂肪族二元醇的重量比优选1:1.0~1:2.0,溶解温度优选80~130℃。脂肪族二元醇溶液的制备可以按照上述方法进行,但不限于上述方法。
本发明所述芳香族二元羧酸或其酯化衍生物可以是对苯二甲酸、间苯二甲酸 酸、萘二甲酸甲酸、对苯二甲酸二甲酯、间苯二甲酸二甲酯、萘二甲酸二甲酯、邻苯二甲酸二甲酯等,其中优选对苯二甲酸或对苯二甲酸二甲酯。所述脂肪族二元醇可以是乙二醇、丙二醇、丁二醇、1,2-丙二醇、戊二醇、新戊二醇、1,2-丁二醇等,其中优选乙二醇、丙二醇或丁二醇。
所述酯化反应,可以是在预先存在低聚物的酯化反应槽中,一边连续添加摩尔比为1.05~1.50的脂肪族二醇和芳香族二元羧酸的浆料,一边进行酯化反应;也可以是在预先存在低聚物的酯化反应槽中,在酯化反应开始前,将脂肪族二醇和芳香族二元羧酸全部添加后,然后再进行酯化反应。
所述酯交换反应,可以通过调整脂肪族二醇和芳香族二元羧酸酯化衍生物的摩尔比为在1.50~2.50范围内,以控制合适的酯交换反应速度。
本发明酯交换反应催化剂可以是各种公知的催化剂,例如钴、镁、锰、钛等金属的氧化物或者其醋酸盐,可以混合使用也可以单独使用。
本发明的阳离子可染聚酯组合物制备方法中使用的聚合催化剂可以是公知的各种聚合催化剂。例如锑化合物、锗化合物、钛化合物等。这些催化剂可以混合使用也可以单独使用。
本发明的阳离子可染聚酯组合物制造用酯化及聚合反应装置,可以使用各种通常使用的反应装置。
本发明的阳离子可染聚酯组合物的物性良好,染色性优良,且通过控制阳离子染料可染成分的添加时机,使得聚酯组合物中水溶性低聚物的含量低,聚酯组合物的染色稳定性好。
本发明各项指标的测定方法及评价方法如下:
(1)特性粘度(IV)
将聚酯组合物切片0.8g溶于10ml邻氯苯酚溶液中,在水浴温度为25±0.2℃条件下,使用乌氏粘度计来测定其特性粘度。
(2)水溶性低聚物中硫元素含量
先将聚酯组合物经熔融纺丝制成纤维,然后取5g纤维样品加入到装有100mL水的反应釜中,将上述含有纤维的水溶液在130℃加热1h后,纤维中的水溶性低聚物从纤维中溶出,进入水中。取出纤维,用清水将纤维上残留的水溶性低聚物冲洗进入反应釜,最后通过ICP元素分析仪对上述反应釜中含有水溶性低聚物的水溶液中的硫元素含量进行定量分析。
(3)聚酯组合物中硫元素含量分析
通过ICP元素分析仪对聚合物中硫元素含量进行定量分析。
(4)染色稳定性评价
将聚酯组合物进行纺丝得到延伸丝,然后将得到的延伸纤维进行2根并丝,在22针距条件下制得袜筒,将此袜筒在染料(Blue.TR)3%owf、醋酸0.5ml/l、醋酸钠0.2g/l、浴比1:100的130℃的热水浴中染色60分。染色后的样品重叠成不透光状后用分光测色计(Datacolor Asia Pacific(H.K.)Ltd.制造的Datacolor 650)在CEI标准光源D65、10 o角条件下进行测色得出L*。
(5)纤维的强伸度积
强度和伸度测定参照JIS L1013:2010(化学纤维中长纤维实验方法)8.8.1的基准算出。通过ORIENTEC Co.,RTC-1225A强伸度试验机测出强度和伸度,强伸度积=强度×(伸度) 0.5
下面将从列举的实施例和比较例对本发明的优点进行详细的说明。本发明并不限于下述的实施例。
实施例1
将对苯二甲酸(PTA)、乙二醇(EG)混合均匀后投入到反应釜中,于240~260℃进行酯化反应。酯化反应结束后,将反应产物移入缩聚釜,添加催化剂三氧化二锑以及热稳定剂磷酸三甲酯,于260℃~290℃进行缩聚反应。在聚合反应开始30min后添加如式2所示磺酸盐的乙二醇溶液,待聚合物达到需要粘度后吐出、切粒,得到所需要的聚酯组合物。聚酯组合物的特性粘度IV为0.63dl/g。
将上述切片在290℃进行熔融纺丝得到阳离子可染聚酯纱线。纤维中硫元素含量为2450ppm,热水处理后溶出水溶液中硫元素含量为100ppm,占聚酯组合物总的硫元素含量的4.1%。纤维的强伸度积为25,蓝色染料浓度3.0%o.w.f时,染色后的L值为25。
实施例2~4
变更芳香族二元羧酸或其酯化衍生物和脂肪族二元醇的种类,其它条件同实施例1制备得到阳离子可染聚酯组合物。具体物性见表1。
实施例5~8
变更如式2所示磺酸盐的添加量,其它条件同实施例1制备得到阳离子可染聚酯组合物。具体物性见表1。
实施例9~12
变更如式2所示磺酸盐的添加时期,其它条件同实施例1制备得到阳离子可 染聚酯组合物。具体物性见表2。
实施例13~16
变更如式2所示磺酸盐的种类,其它条件同实施例1制备得到阳离子可染聚酯组合物。具体物性见表2。
比较例1~2
变更如式2所示磺酸盐的添加量,其它条件同实施例1制备得到阳离子可染聚酯。具体物性见表3。
比较例1中,由于如式2所示磺酸盐的添加量太少,导致聚酯组合物中S元素含量少,最终纤维的L值大,染色性差。
比较例2中,由于如式2所示磺酸盐的添加量太多,导致聚酯的特性粘度小,最终纤维的强伸度积小,物性差。
比较例3
变更如式2所示磺酸盐的添加时期,其它条件同实施例1制备得到阳离子可染聚酯。具体物性见表3。
由于如式2所示磺酸盐在酯化反应阶段添加,导致聚酯中水溶性低聚物的含量多,最终纤维的L值大,染色稳定性不好。
比较例4
将如式2所示磺酸盐变更为间苯二甲酸-5-磺酸钠,添加时期为聚合前添加,其它条件同实施例1制备得到阳离子可染聚酯。具体物性见表3。
与如式2所示磺酸盐相比,间苯二甲酸-5-磺酸钠存在增粘的问题,导致聚酯的特性粘度小,最终纤维的强伸度积小,物性差。
Figure PCTCN2020080084-appb-000003
Figure PCTCN2020080084-appb-000004
附表3(比较例1~4)
Figure PCTCN2020080084-appb-000005

Claims (6)

  1. 阳离子可染聚酯组合物,主要由芳香族二元羧酸单元和脂肪族二元醇单元构成,其特征是:该聚酯组合物中含有如式1所示末端封锁磺酸盐基团,且如式1所述基团的含量以硫元素计占聚酯组合物总量的1000~5000ppm;该聚酯组合物中水溶性低聚物中的硫元素占聚酯组合物总硫元素的30.0%以下;
    Figure PCTCN2020080084-appb-100001
    式1中,Y为碳原子数2~20的烷基、苯基或烷基苯,Z为Li离子、Na离子或K离子。
  2. 根据权利要求1所述的阳离子可染聚酯组合物,其特征是:所述如式1所述基团的含量以硫元素计占聚酯组合物总量的1000~3500ppm。
  3. 根据权利要求1或2所述的阳离子可染聚酯组合物,其特征是:该聚酯组合物中水溶性低聚物中的硫元素占聚酯组合物总硫元素的15.0%以下。
  4. 权利要求1所述阳离子可染聚酯组合物的制备方法,其特征是:首先由芳香族二元羧酸或其酯化衍生物与脂肪族二元醇经过酯化或酯交换反应得到低聚物,然后在聚合开始以后向上述低聚物中添加如式2所示的磺酸盐,最终反应得到聚酯组合物,其中式2所示磺酸盐的添加量以硫元素计相对于聚酯组合物总量为1000~5000ppm,
    X-Y-SO 3Z 式2,
    式2中,X为羧基、甲酸甲酯基、甲酸乙酯基或甲酸乙二醇酯基,Y为碳原子数2~20的烷基、苯基或烷基苯,Z为Li离子、Na离子或K离子。
  5. 根据权利要求4所述阳离子可染聚酯组合物的制备方法,其特征是:所述式2所示磺酸盐的添加量以硫元素计相对于聚酯组合物总量为1000~3500ppm。
  6. 根据权利要求4或5所述阳离子可染聚酯组合物的制备方法,其特征是:所述如式2所示磺酸盐在聚合开始以后20min~60min添加。
PCT/CN2020/080084 2019-03-20 2020-03-19 阳离子可染聚酯组合物及其制备方法 WO2020187278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080007054.4A CN113166387B (zh) 2019-03-20 2020-03-19 阳离子可染聚酯组合物及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910210439 2019-03-20
CN201910210439.X 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020187278A1 true WO2020187278A1 (zh) 2020-09-24

Family

ID=72518988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080084 WO2020187278A1 (zh) 2019-03-20 2020-03-19 阳离子可染聚酯组合物及其制备方法

Country Status (2)

Country Link
CN (1) CN113166387B (zh)
WO (1) WO2020187278A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651176A (zh) * 2022-09-27 2023-01-31 桐昆集团股份有限公司 一种阳离子常压可染生物基共聚酯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721580A (en) * 1987-01-07 1988-01-26 The Procter & Gamble Company Anionic end-capped oligomeric esters as soil release agents in detergent compositions
US4877896A (en) * 1987-10-05 1989-10-31 The Procter & Gamble Company Sulfoaroyl end-capped ester of oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
US4968451A (en) * 1988-08-26 1990-11-06 The Procter & Gamble Company Soil release agents having allyl-derived sulfonated end caps
US5637398A (en) * 1990-11-26 1997-06-10 Toyo Boseki Kabushiki Kaisha Polyester fiber
CN101298493A (zh) * 2007-05-02 2008-11-05 株式会社晓星 可在大气压力下用阳离子染料染色的共聚酯聚合物、其制造方法、及其制得的共聚酯纤维
CN102276814A (zh) * 2010-06-10 2011-12-14 东丽纤维研究所(中国)有限公司 常压阳离子染料可染聚酯及其生产方法和用途
CN107474231A (zh) * 2016-06-07 2017-12-15 东丽纤维研究所(中国)有限公司 一种常压阳离子染料可染聚酯及其生产方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721580A (en) * 1987-01-07 1988-01-26 The Procter & Gamble Company Anionic end-capped oligomeric esters as soil release agents in detergent compositions
US4877896A (en) * 1987-10-05 1989-10-31 The Procter & Gamble Company Sulfoaroyl end-capped ester of oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
US4968451A (en) * 1988-08-26 1990-11-06 The Procter & Gamble Company Soil release agents having allyl-derived sulfonated end caps
US5637398A (en) * 1990-11-26 1997-06-10 Toyo Boseki Kabushiki Kaisha Polyester fiber
CN101298493A (zh) * 2007-05-02 2008-11-05 株式会社晓星 可在大气压力下用阳离子染料染色的共聚酯聚合物、其制造方法、及其制得的共聚酯纤维
CN102276814A (zh) * 2010-06-10 2011-12-14 东丽纤维研究所(中国)有限公司 常压阳离子染料可染聚酯及其生产方法和用途
CN107474231A (zh) * 2016-06-07 2017-12-15 东丽纤维研究所(中国)有限公司 一种常压阳离子染料可染聚酯及其生产方法和用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651176A (zh) * 2022-09-27 2023-01-31 桐昆集团股份有限公司 一种阳离子常压可染生物基共聚酯及其制备方法

Also Published As

Publication number Publication date
CN113166387B (zh) 2023-04-18
CN113166387A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
KR101739402B1 (ko) 코폴리에스테르, 그 제조방법 및 용도
TWI753033B (zh) 一種聚酯
CN101469060A (zh) 一种阳离子可染聚对苯二甲酸1,3-丙二醇酯的制备方法
WO2020187278A1 (zh) 阳离子可染聚酯组合物及其制备方法
CN115362210B (zh) 阳离子可染聚酯组合物及其制备方法和应用
CN111718479B (zh) 一种阳离子可染聚酯组合物及其制备方法
JP2002284863A (ja) 常圧カチオン可染ポリエステル及びその連続製造方法
JP3524480B2 (ja) 改質ポリエステル及びその連続製造方法
CN102453246B (zh) 一种共聚酯及其制备方法和用途
CN103122059A (zh) 一种阳离子可染性阻燃聚酯及其制备方法
JPH0563506B2 (zh)
EP0544032B1 (en) Polyester block copolymer and elastic yarn composed thereof
CN113801309A (zh) 耐水解高强度阳离子可染聚酯组合物及其制备方法和应用
CN114573800A (zh) 阳离子可染聚酯组合物及其制备方法和应用
TWI782605B (zh) 用於製備陽離子染料-聚對苯二甲酸乙二酯的聚酯樹脂及包含其的陽離子染料-聚對苯二甲酸乙二酯複合樹脂
CN102295828B (zh) 一种低温可染聚酯及其用途
KR100313364B1 (ko) 폴리에스테르부분연신사및그제조방법
CN116253867A (zh) 阳离子可染聚酯组合物及其制备方法和应用
CN114516951A (zh) 低温阳离子可染聚酯组合物及其制备方法和应用
TW413706B (en) The process for manufacture of micro slit polyester fabric
CN116836376A (zh) 抗紫外线低温染色阳离子可染聚酯组合物及其制备方法和应用
JPS63256619A (ja) 改質ポリエステルの製造法
CN115124819A (zh) 阳离子可染聚酯组合物及其制备方法
KR100300914B1 (ko) 고속방사용 폴리에스테르 부분연신사의 제조방법
KR970004931B1 (ko) 폴리에스테르 블록 공중합체 및 이들로 구성된 탄성사

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774077

Country of ref document: EP

Kind code of ref document: A1