WO2020187197A1 - 成像设备的变焦方法、图像处理方法及成像设备 - Google Patents

成像设备的变焦方法、图像处理方法及成像设备 Download PDF

Info

Publication number
WO2020187197A1
WO2020187197A1 PCT/CN2020/079629 CN2020079629W WO2020187197A1 WO 2020187197 A1 WO2020187197 A1 WO 2020187197A1 CN 2020079629 W CN2020079629 W CN 2020079629W WO 2020187197 A1 WO2020187197 A1 WO 2020187197A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging device
zoom
focal length
field
Prior art date
Application number
PCT/CN2020/079629
Other languages
English (en)
French (fr)
Inventor
龚起
马伟民
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to US17/424,437 priority Critical patent/US11588974B2/en
Publication of WO2020187197A1 publication Critical patent/WO2020187197A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/815Camera processing pipelines; Components thereof for controlling the resolution by using a single image

Definitions

  • This application relates to the field of imaging technology, and in particular to a zoom method, image processing method and imaging device of an imaging device.
  • a digital zoom is added after the imaging device reaches the maximum optical zoom.
  • the imaging device here is, for example, a zoom camera or other devices with a zoom function.
  • the so-called digital zoom is to crop the image obtained by the image sensor to achieve the zoom effect, that is, the original image is cropped according to certain rules, and then the area of each pixel in the cropped image is increased through the corresponding image processing algorithm.
  • the area of each pixel can reach the size of the area of multiple pixels in the original picture, so that the resolution of the cropped picture can reach the same resolution as the original picture.
  • This method is similar to that of common image processing software to enlarge the area of the picture. Although the resolution is still the same, the quality and details of the image have been continuously reduced and lost, so that when a certain zoom factor is reached, the output image will be blurred, distortion.
  • a zoom method of an imaging device is provided.
  • the method is applied to the imaging device and includes:
  • the zoom lens on the imaging device If it is in the preset optical zoom area, adjust the focal length of the zoom lens on the imaging device so that the image sensor on the imaging device collects the first image containing the specified target, and compresses the first image into a second image. And output images, where the field of view information of the second image is the same as the field of view information of the first image, and the second resolution of the second image is smaller than the first resolution of the first image;
  • the fourth resolution of the fourth image corresponds to the target sensing area
  • the fourth resolution of the fourth image is smaller than the third resolution of the third image
  • the visual field of the fourth image The field information is smaller than that of the third image.
  • an imaging device including: an imaging part and a display part, the display part is configured to display an output image of the imaging part, and the imaging part includes an image sensor, a lens, A processor and a memory for storing executable instructions of the processor;
  • the processor is configured to:
  • the zoom lens on the imaging device If it is in the preset optical zoom area, adjust the focal length of the zoom lens on the imaging device so that the image sensor on the imaging device collects the first image containing the specified target, and compresses the first image into a second image. And output images, where the field of view information of the second image is the same as the field of view information of the first image, and the second resolution of the second image is smaller than the first resolution of the first image;
  • the fourth resolution of the fourth image corresponds to the target sensing area
  • the fourth resolution of the fourth image is smaller than the third resolution of the third image
  • the visual field of the fourth image The field information is smaller than that of the third image.
  • an image processing method for a zoom imaging device that supports optical zoom in a first focal length interval and digital zoom in a second focal length interval, wherein the The second focal length interval is greater than the first focal length interval, so that the zoom interval of the imaging device is from the minimum value of the first focal length interval to the maximum value of the second focal length interval, and the method includes:
  • the imaging device In the process of controlling the imaging device to reach the designated focal length, when it is determined that the current focal length of the imaging device has changed from falling into the first focal length interval to falling into the second focal length interval, the imaging device is calculated The angle of view at the current focal length;
  • the field angle of the current focal length and the preset image size determine the horizontal size and vertical size corresponding to the image output by the imaging device at the current focal length, so that all the images output by the imaging device in the zoom interval The images are all the same size;
  • crop the image generated by the imaging device at the current focal length crop the cropped image.
  • an imaging device including: an imaging part and a display part, the display part is configured to display an output image of the imaging part, and the imaging part includes an image sensor, a lens, A processor and a memory for storing executable instructions of the processor;
  • the processor is configured to execute any of the method steps in the third aspect.
  • the technical solutions provided by the embodiments of the present application may include the following beneficial effects:
  • the present application designs a zoom method and imaging device of an imaging device. Through optical zoom and an improved image processing method in the digital zoom process, the digital zoom process The visual effect is the same as that of the optical zoom, which enhances the shooting effect of the imaging device and improves the user experience.
  • Fig. 1 is a flowchart of a zoom method of an imaging device according to an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram showing the hardware structure of an imaging device according to an exemplary embodiment of the present application
  • Fig. 3 is a schematic diagram showing zoom control of an imaging device according to an exemplary embodiment of the present application.
  • Fig. 4 is a schematic diagram of a field of view of an optical zoom according to an exemplary embodiment of the present application.
  • Fig. 5 is a schematic diagram showing a relationship between zoom and focus of an imaging device according to an exemplary embodiment of the present application
  • FIG. 6 is a schematic diagram of the relationship between the magnification and the field of view in an optical zoom and a digital zoom of an imaging device according to an exemplary embodiment of the present application;
  • Fig. 7 is a structural block diagram of an imaging device shown in an exemplary embodiment of the present application.
  • Fig. 8 is a flowchart of an image processing method for a zoom imaging device according to an exemplary embodiment of the present application.
  • the zoom method of the imaging device of this application is mainly applied to zooming and focusing imaging devices, and the solution can also be used for fixed-focus imaging devices. In short, it is not limited to specific lens types, but for the completeness of the solution described in this application , This article chooses zoom and focus imaging equipment for detailed description.
  • the zoom method of the imaging device in the embodiment of the present application includes:
  • the imaging device needs to be zoomed in advance to ensure that the captured image is clear.
  • the imaging device confirms zooming according to the zoom instruction.
  • the zoom operation is determined to be performed when a zoom operation instruction from the outside is received, and the zoom operation instruction from the outside may be issued by a third-party control device communicatively connected with the imaging device.
  • the imaging device when the imaging device detects a zoom trigger event, it is determined to perform zooming, and the zoom trigger event may include a manual operation performed by a user or an automatic trigger performed within a preset time.
  • the imaging device may also determine to zoom when it receives a zoom operation instruction from the outside and detects a zoom trigger event at the same time.
  • the zoom operation instruction is mainly used to obtain the information used to control the imaging device such as the speed and direction of the zoom, and this information is the control information used when performing the operation of optical zoom or digital zoom. That is, the zoom operation instruction may include information used to control the imaging device, such as the speed and direction of the zoom, and this information will be used when performing optical zoom or digital zoom operations.
  • the imaging device determines to zoom, it can be checked according to the zoom operation instruction whether the zoom position of the imaging device is currently in the preset optical zoom area or the preset digital zoom area.
  • the zoom position of the imaging device that is, the required zoom factor
  • the zoom position of the imaging device can be calculated through information such as the zoom speed and direction, so as to determine whether to perform optical zoom or digital zoom according to the zoom factor required by the imaging device. For example: after confirming that the zoom factor indicated by the zoom operation instruction is received, if the zoom factor is within the range of the optical zoom factor, an optical zoom operation is required, and if the zoom factor is not within the range of the optical zoom factor, digital zoom is required operating.
  • the imaging device when the zoom position of the imaging device is in the preset optical zoom area, the imaging device performs an optical zoom operation.
  • the focal length of the zoom lens of the imaging device is adjusted so that the image sensor of the imaging device collects the first image containing the specified target.
  • the method when adjusting the focal length of the zoom lens on the imaging device, the method further includes: finding a target focus position corresponding to the current zoom position of the imaging device in the established correspondence between the zoom position and the focus position, Adjusting the focus position of the imaging device to the target focus position for focusing so that the first image collected by the image sensor is clear.
  • Fig. 5 is a zoom and focus control curve of a zoomable imaging device.
  • the abscissa is the zoom position of the camera
  • the ordinate is the focus position of the camera, that is, the focal length value
  • L is the relationship curve between different zoom positions and the corresponding focus values at a certain object distance, where The focus value is also the focus value.
  • compressing the first image into the second image specifically includes: on the premise of maintaining the image size unchanged, compressing the first image of the first resolution to the second resolution by using a pre-designated image reduction algorithm The second image.
  • the second resolution is an image resolution supported by the imaging device.
  • the imaging output method of the imaging device of this application uses a high-resolution image sensor, a high-resolution first image is collected by the image sensor, and then a low-resolution second image is output through a corresponding image reduction algorithm , Among them, the resolution of the second image can be the resolution required for user monitoring.
  • the field of view information of the second image is the same as the field of view information of the first image, that is, the size of the second image and the first graphic are the same.
  • an image sensor with 800W pixels and a size of X*Y mm can output an original 800W image, that is, the first image, but the image required to output in this embodiment is a 200W pixel image, that is, the second image.
  • the size of the screen also corresponds to the X*Y mm size of the image sensor, that is, the 200W output screen has the same field of view as the original 800W output screen.
  • the zoom position of the lens is moved from the zoom position A to the zoom position B in Figure 3 to maximize the optical zoom magnification, that is, the optical zoom magnification has a zoom operation area from A to B .
  • the image reduction algorithm needs to be executed so that the second image output is a low-resolution image, that is, the high-resolution image output by the image sensor is compressed to The low-resolution output image W in FIG. 3, the output image W is the above-mentioned second image. At the same time, it does not affect the quality and clarity of the entire output image.
  • image reduction algorithms such as the existing uniform sampling algorithm, equal interval sampling algorithm, etc., which are not specifically limited here.
  • S103 If it is in a preset digital zoom area, select a target sensing area from the sensing area of the image sensor according to the zoom position, and crop the third image collected by the image sensor according to the target sensing area. And output the fourth image, the fourth resolution of the fourth image is smaller than the third resolution of the third image, and the field of view information of the fourth image is smaller than the field of view information of the third image.
  • the fourth resolution of the fourth image corresponds to the target sensing area.
  • the third image is a high-resolution image
  • the target sensing area selected during the digital zoom operation is that of the high-resolution third image.
  • the fourth image is then cropped on the third image and output.
  • the fourth image is obtained by cropping the third image and increasing the area of each pixel in the cropped area.
  • the size of the cropped area on the third image corresponds to the digital zoom factor, that is, the higher the digital zoom factor, the smaller the cropped area on the third image; the lower the digital zoom factor, the larger the cropped area on the third image. Big.
  • the fourth resolution is greater than or equal to the resolution of the image output by the imaging device, so as to ensure that the resolution of the image output by the digital zoom at the maximum zoom factor is still high, so that not only can the optical zoom to the digital zoom process be guaranteed
  • the smoothness of the image change meets the requirements of the continuity of the field angle change during the digital zoom and the field angle change during the optical zoom process, and the clarity of the output image is always guaranteed during the digital zoom process.
  • the resolution of the fourth image corresponding to the maximum zoom factor D is not less than that of the output image.
  • the resolution of W Due to the high-resolution picture of the picture collected by the original image sensor, even if the pixel area of the cropped picture is increased, it can be ensured that the picture details of the fourth image obtained after the increase are still clear, which guarantees the maximum
  • the image resolution corresponding to the zoom factor is still greater than or equal to the resolution of the output image to avoid the problem of blur and distortion of the output image.
  • selecting a target sensing area from the sensing area of the image sensor according to the zoom position specifically includes: determining the target field of view information corresponding to the zoom position according to the current zoom position of the imaging device; The target field of view information selects a target sensing area from the sensing area of the image sensor.
  • determining the target field of view information corresponding to the zoom position according to the current zoom position of the imaging device includes: in the established correspondence between the zoom position and the field of view information, searching for information corresponding to the current zoom position of the imaging device The field of view information; the searched field of view information is determined as the target field of view information.
  • the field angle information of the digital zoom area can be fitted according to the law of the field angle change of the optical zoom area, as shown in Figure 6, which shows the field angle change according to the optical zoom area
  • the horizontal field angle information table corresponding to the zoom magnification obtained by fitting the law of, the table may be stored in the imaging device in advance.
  • the horizontal field of view information corresponding to the current zoom position of the imaging device can be found in the table in FIG. 6, where the magnification in the table shown in FIG. 6 is the zoom magnification.
  • the zoom factor M is 3
  • it can be determined that the horizontal field of view H is H3 according to the table.
  • selecting the target sensing area from the sensing area of the image sensor according to the target field of view information includes: determining the horizontal pixel value corresponding to the sensing area of the image sensor according to the target field of view information; The horizontal pixel value determines the vertical pixel value corresponding to the sensing area of the image sensor; the area composed of the horizontal pixel value and the vertical pixel value is determined as the target sensing area.
  • each digital zoom factor corresponds to a field angle value.
  • the field angle value can be determined from Figure 6, and then the size of the third image collected by the image sensor can be calculated according to the determined field angle value.
  • is the value of the field of view
  • h is the physical distance corresponding to the horizontal pixels of the image collected by the image sensor
  • h horizontal pixels in Figure 4
  • F is the current focal length of the imaging device, in digital zoom, F is according to The maximum focal length in the optical zoom is calculated.
  • V corresponding to the vertical pixel value of the image collected by the image sensor can be calculated according to the preset image cropping ratio.
  • V vertical pixels.
  • h/V ratio, where ratio The ratio of cropping for the preset image.
  • the imaging device can crop the collected image according to the calculated h and V to obtain an output image, and output the output image.
  • the field angle change during the digital zoom process must still be consistent with the field angle change during the optical zoom process. . Therefore, fitting the field angle information of the digital zoom area according to the law of the field angle change of the optical zoom area can ensure that the field angle setting of the optical zoom and digital zoom in the embodiments of the present application can be set regularly. Change, so that the screen zoom in and zoom out ratio control is smooth when switching between optical zoom and digital zoom.
  • This application designs an imaging device zoom method and imaging device.
  • the visual effect in the digital zoom process is the same as that of the optical zoom, which solves the existing problem.
  • Digital zoom is prone to cause image distortion and blurring, enhances the shooting effect of imaging equipment, and improves user experience.
  • an imaging device is also provided.
  • the imaging device includes an imaging part 10 and a display part 20.
  • the display part 20 is used to display the output image of the imaging part 10, and the imaging part 10 includes an image sensor 12, a lens 11, a processor 13, and a memory (not shown in FIG. 2) for storing executable instructions of the processor.
  • the processor 13 is configured to:
  • the zoom lens on the imaging device If it is in the preset optical zoom area, adjust the focal length of the zoom lens on the imaging device so that the image sensor on the imaging device collects the first image containing the specified target, and compresses the first image into a second image. And output images, where the field of view information of the second image is the same as the field of view information of the first image, and the second resolution of the second image is smaller than the first resolution of the first image;
  • the fourth resolution of the fourth image corresponds to the target sensing area
  • the fourth resolution of the fourth image is smaller than the third resolution of the third image
  • the visual field of the fourth image The field information is smaller than that of the third image.
  • Fig. 7 is a structural block diagram of an imaging device according to an exemplary embodiment of the present application.
  • the imaging device of is usually based on the actual function of the imaging device, and may also include other hardware, such as image sensors, lenses, etc., which will not be repeated here.
  • the memory 830 may store a computer program for executing the zoom method of the imaging device provided in the embodiment of the present application, that is, the zoom device of the imaging device in FIG. 7.
  • an image processing method for a zoom imaging device is also provided.
  • the imaging device supports optical zoom in the first focal length interval and digital zoom in the second focal length interval, wherein the second focal length interval is greater than the first focal length interval, so that the zoom interval of the imaging device is the minimum value of the first focal length interval to the second focal length interval.
  • the maximum value of the focal length interval includes:
  • S801 Acquire a focal length control instruction input from the outside, and parse out the zoom direction, zoom speed, and designated focal length indicated by the focal length control instruction;
  • S802 Control the imaging device to perform zooming according to the zoom direction and the zoom speed, so that the imaging device reaches the designated focal length;
  • S803 In the process of controlling the imaging device to reach the designated focal length, when it is determined that the current focal length of the imaging device has changed from falling into the first focal length interval to falling into the second focal length interval, calculate the The field of view of the imaging device at the current focal length;
  • S804 Determine, according to the field angle of the current focal length and the preset image size, the horizontal size and vertical size corresponding to the image output by the imaging device at the current focal length, so that the imaging device outputs in the zoom interval All images of are the same size;
  • S805 According to the determined horizontal size and vertical size, crop the image generated by the imaging device at the current focal length, and output the cropped image.
  • the imaging device supports optical zoom in the first focal length interval and digital zoom in the second focal length interval, wherein the second focal length interval is greater than the first focal length interval, so that the zoom interval of the imaging device is within the first focal length interval.
  • the minimum value to the maximum value of the second focal length interval. For example, when performing an optical zoom operation, the zoom position of the lens is moved from zoom position A to zoom position B in Figure 3 to maximize the optical zoom magnification, that is, the optical zoom magnification has a zoom from A to B. Operating area.
  • the imaging device needs to be zoomed in advance to ensure that the captured image is clear.
  • the imaging device obtains the focus control instruction input from the outside, it indicates that the zoom operation needs to be performed at this time, and the imaging device can parse out the zoom direction, zoom speed, and designated focal length indicated by the focus control instruction.
  • the imaging device may perform zooming according to the zooming direction and the zooming speed to make the imaging device reach the designated focal length, that is, performing the above step S802. Specifically, the imaging device may determine whether to perform optical zoom or digital zoom according to the designated focal length that needs to be reached. When the designated focal length falls within the first focal length interval, it means that optical zoom is required, and when the designated focal length falls into the second focal length interval, it means that optical zoom is required first, and then digital zoom.
  • the imaging device In the process of the imaging device performing the zoom operation to reach the designated focal length, when it is determined that the current focal length has changed from falling into the first focal length interval to falling into the second focal length interval, it indicates that the imaging device has switched from optical zoom to digital zoom at this time.
  • the imaging device can calculate the field angle of the imaging device at the current focal length.
  • step S804 can be executed, that is, according to the field angle of the current focal length and the preset image size, the horizontal and vertical dimensions corresponding to the image output by the imaging device at the current focal length are determined. So that all images output by the imaging device within the zoom interval have the same size.
  • the schematic diagram of the field of view of the optical zoom shown in Figure 4 shows that the horizontal size and vertical size of the output image are related to the field of view of the imaging device and the focal length of the imaging. Therefore, it can be based on the field of view of the current focal length and the prediction Set the image size to determine the horizontal size and vertical size of the image output by the imaging device at the current focal length. In this way, it can be ensured that all images output by the imaging device in the entire zoom interval have the same size, which meets the needs of users.
  • the imaging device can crop the image generated by the imaging device at the current focal length according to the determined horizontal size and vertical size, and then output the cropped image, which is It is an image required by the user output by the imaging device after zoom processing.
  • the above calculation to obtain the field angle of the imaging device at the current focal length may include:
  • the zoom factor of the imaging device may be determined according to the current focal length of the imaging device. Furthermore, in the established correspondence between the zoom factor and the angle of view corresponding to the second focal length interval, the angle of view corresponding to the zoom factor of the imaging device is searched for as the angle of view of the imaging device at the current focal length.
  • the correspondence between the zoom factor and the angle of view corresponding to the second focal length interval can be established in advance, that is, the correspondence between the zoom factor and the angle of view corresponding to the mathematical zoom of the imaging device. In this way, When zooming, the corresponding relationship can be used to find the field angle of the imaging device at the current focal length.
  • the imaging device can determine the zoom factor of the imaging device according to the current focal length of the imaging device. In the established correspondence between the zoom factor and the field of view corresponding to the second focal length interval, find the The field angle corresponding to the zoom factor is used as the field angle of the imaging device at the current focal length, so that the field angle of the imaging device at the current focal length can be quickly determined.
  • the method for establishing the correspondence between the zoom factor and the field of view corresponding to the second focal length interval includes:
  • the change rule between the zoom factor and the field angle corresponding to the first focal length interval is determined; based on the change rule, the corresponding relationship between the zoom factor and the field angle corresponding to the second focal length interval is obtained by fitting.
  • the field angle information of the digital zoom area can be fitted according to the law of the field angle change of the optical zoom area.
  • the imaging device can determine the zoom factor and the view angle corresponding to the first focal length interval.
  • the law of change between the field angles that is, the law of change between the zoom factor and the field of view angle of the imaging device during the optical zoom process, and then fit the law of the change between the zoom factor and the field of view corresponding to the second focal length interval Correspondence.
  • FIG. 6 is a corresponding relation table of the field angle corresponding to the zoom factor obtained by fitting according to the law of the field angle change of the optical zoom area, and the table may be stored in the imaging device in advance.
  • the viewing angle corresponding to the current zoom position of the imaging device can be found in the table in FIG. 6, where the magnification in the table shown in FIG. 6 is the zoom magnification.
  • the horizontal field of view H can be determined to be H(n+1) according to the table.
  • the rule of change between the zoom factor and the angle of view corresponding to the first focal length interval can be determined in advance, and based on the rule of change, the relationship between the zoom factor and the angle of view corresponding to the second focal length interval can be obtained by fitting.
  • the field of view can be changed regularly during the change process of the optical zoom and digital zoom in the embodiment of the present application, so that the zoom in and zoom out ratio control when switching between the optical zoom and the digital zoom Smooth, to ensure the smoothness of the zoom process.
  • the foregoing determining the horizontal size and vertical size corresponding to the image output by the imaging device at the current focal length based on the field angle of the current focal length and the preset image size may include:
  • the lateral size corresponding to the image output by the imaging device at the current focal length is calculated; according to the preset image size and The horizontal size determines the vertical size corresponding to the output image.
  • the imaging device determines the horizontal size and vertical size corresponding to the image output by the imaging device at the current focal length, it can first calculate the imaging device at the current focal length according to the field angle of the imaging device at the current focal length and the maximum value of the first focal length interval. The horizontal size of the output image.
  • the imaging device may calculate the lateral size corresponding to the image output by the imaging device at the current focal length through a tangent operation based on the field angle of the imaging device at the current focal length and the maximum value of the first focal length interval.
  • is the field of view
  • h is the physical distance corresponding to the horizontal pixels of the image captured by the image sensor
  • F is the focal length of the imaging device.
  • F is based on the maximum focal length in the optical zoom (that is, the first focal length interval). Maximum value) for calculation.
  • h 2Ftan( ⁇ /2). Therefore, when the angle of view ⁇ and the maximum value F of the first focal length interval are known, the horizontal pixel correspondence of the image collected by the image sensor can be calculated
  • the physical distance is the horizontal size corresponding to the image that the imaging device needs to output under the current focal length.
  • the imaging device can determine the vertical size corresponding to the output image according to the preset image size and the horizontal size.
  • the ratio of image cropping may be preset as the preset image size. In this way, after the horizontal size corresponding to the output image is determined, the vertical size of the output image can be calculated.
  • the imaging device can calculate the horizontal size corresponding to the image output by the imaging device at the current focal length according to the maximum value of the field angle of the imaging device at the current focal length and the first focal length interval, and then according to the preset Image size and horizontal size, determine the corresponding vertical size of the output image, in this way, it can ensure that all images output by the imaging device in the zoom interval have the same size, so that the visual effect during digital zoom is the same as that of optical zoom.
  • the current digital zoom is likely to cause image distortion and blurring, enhances the shooting effect of imaging equipment, and improves user experience.
  • an imaging device the imaging device includes: an imaging part and a display part, the display part is used to display the output image of the imaging part, the imaging part includes an image sensor, a lens, a processor And a memory for storing processor executable instructions;
  • the processor is configured to execute the steps of the image processing method for a zoom imaging device described in any of the above embodiments.
  • This application can take the form of a computer program product implemented on one or more storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing program codes.
  • Machine-readable storage media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • machine-readable storage media include, but are not limited to: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only Memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, CD-ROM, digital versatile disc (DVD) or other optical storage , Magnetic cassette tape, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only Memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technologies
  • CD-ROM compact disc
  • DVD digital versatile disc
  • Magnetic cassette tape magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种成像设备的变焦方法、图像处理方法及成像设备,变焦方法包括:在确定进行变焦时,检查当前是处于预设光学变焦区域还是处于预设数字变焦区域;如果是处于预设光学变焦区域,通过图像传感器采集到包含指定目标的第一图像,将所述第一图像压缩为第二图像并输出;如果是处于预设数字变焦区域,则从图像传感器的感应区域中选择目标感应区域,依据所述目标感应区域对所述图像传感器采集的第三图像进行裁剪得到第四图像并输出,第四图像的第四分辨率与所述目标感应区域对应,通过光学变焦及数字变焦过程中对图像的改进处理方式,使数字变焦过程中的视觉效果与光学变焦的视觉效果相同,增强了成像设备的拍摄效果,提高了用户的使用体验。

Description

成像设备的变焦方法、图像处理方法及成像设备
本申请要求于2019年3月19日交中国专利局、申请号为201910206978.6发明名称为“成像设备的变焦方法、装置及成像设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及成像技术领域,尤其涉及一种成像设备的变焦方法、图像处理方法及成像设备。
背景技术
目前为了达到成像设备的变焦效果,会在成像设备达到最大的光学变焦后增加一段数字变焦。这里的成像设备举例为变焦摄像机或者其他具有变焦功能的设备。
所谓数字变焦是通过裁剪图像传感器获取的图像以达到变焦效果,即把原始的画面按照一定的规则进行裁剪,然后再通过相应的图像处理算法把裁剪后的画面中每个像素面积增大,这样,每个像素面积可以达到原始的画面中多个像素点面积的大小,以使裁剪后的画面的分辨率达到和原始画面一样的分辨率。这种方式类似于常见的图像处理软件把图片面积放大一样,虽然分辨率还是一样,但是图像的质量和细节已经在不断的降低和损失,以至于达到一定的变焦倍数时,输出图像会模糊、失真。
发明内容
有鉴于此,根据本申请实施例的第一方面,提供了一种成像设备的变焦方法,该方法应用于成像设备,包括:
在确定进行变焦时,检查所述成像设备的变焦位置当前是处于预设光学变焦区域还是处于预设数字变焦区域;
如果是处于预设光学变焦区域,则调整所述成像设备上变焦镜头的焦距以使所述成像设备上的图像传感器采集到包含指定目标的第一图像,将所述第一图像压缩为第二图像并输出,其中,第二图像的视场信息与第一图像的视场信息相同、且第二图像的第二分辨率小于第一图像的第一分辨率;
如果是处于预设数字变焦区域,则依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域,依据所述目标感应区域对所述图像传感器采集的第三图像进行裁剪得到第四图像并输出,第四图像的第四分辨率与所述目标感应区域对应,所述第四图像的第四分辨率小于所述第三图像的第三分辨率,且所述第四图像的视场信息小于第三图像的视场信息。
根据本申请实施例的第二方面,提供了一种成像设备,包括:成像部分和显示部分,所述显示部分用于显示所述成像部分的输出图像,所述成像部分包括图像传感器、镜头、处理器及用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在确定进行变焦时,检查所述成像设备的变焦位置当前是处于预设光学变焦区域还是处于预设数字变焦区域;
如果是处于预设光学变焦区域,则调整所述成像设备上变焦镜头的焦距以使所述成像设备上的图像传感器采集到包含指定目标的第一图像,将所述第一图像压缩为第二图像并输出,其中,第二图像的视场信息与第一图像的视场信息相同、且第二图像的第二分辨率小于第一图像的第一分辨率;
如果是处于预设数字变焦区域,则依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域,依据所述目标感应区域对所述图像传感器采集的第三图像进行裁剪得到第四图像并输出,第四图像的第四分辨率与所述目标感应区域对应,所述第四图像的第四分辨率小于所述第三图像的第三分辨率,且所述第四图像的视场信息小于第三图像的视场信息。
根据本申请实施例的第三方面,提供了一种用于变焦成像设备的图像处理方法,所述成像设备支持第一焦距区间的光学变焦和第二焦距区间的数字变焦,其中,所述第二焦距区间大于所述第一焦距区间,以使所述成像设备的变焦区间是所述第一焦距区间的最小值至所述第二焦距区间的最大值,所述方法包括:
获取外界输入的焦距控制指令,并解析出所述焦距控制指令指示的变焦方向、变焦速度和指定焦距;
依据所述变焦方向和所述变焦速度,控制所述成像设备执行变焦,以使 所述成像设备到达所述指定焦距;
在控制所述成像设备到达所述指定焦距的过程中,确定所述成像设备当前焦距已由落入所述第一焦距区间变成落入所述第二焦距区间时,计算得到所述成像设备在当前焦距的视场角;
根据所述当前焦距的视场角和预设的图像尺寸,确定所述成像设备在当前焦距时输出图像对应的横向尺寸和纵向尺寸,以使所述成像设备在所述变焦区间内输出的所有图像都具有相同尺寸;以及
根据确定的所述横向尺寸和纵向尺寸,对所述成像设备在当前焦距时生成的图像进行裁剪,输出裁剪后的图像。
根据本申请实施例的第四方面,提供了一种成像设备,包括:成像部分和显示部分,所述显示部分用于显示所述成像部分的输出图像,所述成像部分包括图像传感器、镜头、处理器及用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行第三方面任一所述的方法步骤。
本申请的实施例提供的技术方案可以包括以下有益效果:本申请设计了一种成像设备的变焦方法及成像装置,通过光学变焦及数字变焦过程中对图像的改进处理方式,使数字变焦过程中的视觉效果与光学变焦的视觉效果相同,增强了成像设备的拍摄效果,提高了用户的使用体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
图1是本申请一示例性实施例示出的一种成像设备的变焦方法的流程图;
图2是本申请一示例性实施例示出的一种成像设备的硬件结构示意图;
图3是本申请一示例性实施例示出的一种成像设备的变焦控制示意图;
图4是本申请一示例性实施例示出的一种光学变焦的视场角的示意图;
图5是本申请一示例性实施例示出的一种成像设备的变焦与聚焦关系曲线示意图;
图6是本申请一示例性实施例示出的一种成像设备的光学变焦与数字变焦中倍数与视场角的关系示意图;
图7是本申请一示例性实施例示出的一种成像设备的结构框图;
图8是本申请一示例性实施例示出的一种用于变焦成像设备的图像处理方法的流程图。
具体实施方式
以下将结合附图所示的具体实施方式对本申请进行详细描述。但这些实施方式并不限制本申请,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面结合附图,对本申请的一些实施方式作详细说明,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。本申请成像设备的变焦方法主要是应用在可变焦、聚焦的成像设备上,同时该方案也可用于定焦的成像设备上,总之不限于具体的镜头类型,但是为了本申请方案介绍的完整性,本文选用可变焦、聚焦的成像设备进行详述。
如图1所示,本申请实施例的成像设备的变焦方法包括:
S101、在确定进行变焦时,检查所述成像设备的变焦位置当前是处于预设光学变焦区域还是处于预设数字变焦区域。
本实施例中,在成像设备拍摄过程中,在拍摄图像之前,需要预先对成像设备进行变焦操作,以保证拍摄的图像清晰。当成像设备接收到变焦操作指令时,该成像设备则根据变焦指令确认进行变焦。在一实施例中,当接收到来自外部的变焦操作指令时确定进行变焦,该来自外部的变焦操作指令可以是由与成像设备通信连接的第三方控制设备发出的。
在又一实施例中,当本成像设备检测到变焦触发事件时确定进行变焦, 该变焦触发事件可以包括用户手动操作执行或者预设时间内的自动触发执行。当然,该成像设备也可以在同时接收到来自外部的变焦操作指令和检测到变焦触发事件时确定进行变焦。
其中,该变焦操作指令主要是为了获取变焦的速度、方向等有用于控制成像设备的信息,这些信息是为了执行光学变焦或者数字变焦的操作时用到的控制信息。也就是说,变焦操作指令可以包括变焦的速度、方向等用于控制成像设备的信息,在执行光学变焦或者数字变焦的操作时会用到这些信息。
在成像设备确定进行变焦时,可以根据变焦操作指令检查成像设备的变焦位置当前是处于预设光学变焦区域还是处于预设数字变焦区域。具体来说,通过变焦速度、方向等信息可以计算出该成像设备的变焦位置,即所需的变焦倍数,从而根据成像设备所需的变焦倍数判断出执行光学变焦还是执行数字变焦。例如:当确定接收到变焦操作指令所指示的变焦倍数后,若该变焦倍数位于光学变焦倍数范围内,则需要执行光学变焦操作,若该变焦倍数不在光学变焦倍数范围内,则需要执行数字变焦操作。
S102、如果是处于预设光学变焦区域,则调整所述成像设备上变焦镜头的焦距以使所述成像设备上的图像传感器采集到包含指定目标的第一图像,将所述第一图像压缩为第二图像并输出,其中,第二图像的视场信息与第一图像的视场信息相同、且第二图像的第二分辨率小于第一图像的第一分辨率。
本实施例中,当成像设备的变焦位置处于预设光学变焦区域,那么该成像设备执行光学变焦操作。在执行光学变焦操作时,调整成像设备的变焦镜头的焦距以使成像设备的图像传感器采集到包含指定目标的第一图像。
其中,在调整所述成像设备上变焦镜头的焦距时,该方法进一步包括:在已建立的变焦位置和聚焦位置的对应关系中查找到与所述成像设备当前的变焦位置对应的目标聚焦位置,调整所述成像设备的聚焦位置至所述目标聚焦位置进行聚焦以使所述图像传感器采集的第一图像清晰。
具体如图5所示,图5为可变焦成像设备的变焦及聚焦控制曲线。下面介绍一下这个图的意义:横坐标为摄像机的变焦位置,纵坐标为摄像机的聚焦位置,也就是焦距值,L为某一个物距下不同的变焦位置与对应的聚焦值的关系曲线,其中聚焦值也就是焦点值。
即从图5可见,每一个物距下不同的变焦位置都有一个对应的聚焦位置。所以在从A到B的变焦操作过程中,其实就是在L(L1、L2、L3)曲线上的运动,其中,A、B为不同的变焦位置,L1、L2、L3为不同物距对应的变焦位置与聚焦值的关系曲线。也就是说,当物距为L1对应的物距时,从变焦位置A到变焦位置B的变焦操作过程中,变焦位置与聚焦值的关系按照曲线L1变化;当物距为L2对应的物距时,从变焦位置A到变焦位置B的变焦操作过程中,变焦位置与聚焦值的关系按照曲线L2变化;当物距为L3对应的物距时,从变焦位置A到变焦位置B的变焦操作过程中,变焦位置与聚焦值的关系按照曲线L3变化。
其中需要说明的是,可能有些支持变焦过程中调焦的摄像机的变焦操作过程中,变焦位置与聚焦值的关系会在L1、L2、L3来回跳变调整,具体的跳变原则是参考不同的摄像机当前参数进行调整的。
而后将第一图像压缩为第二图像并输出,其中,第二图像的视场信息与第一图像的视场信息相同、且第二图像的第二分辨率小于第一图像的第一分辨率。该实施例中,将第一图像压缩为第二图像具体包括:在维持图像尺寸不变的前提下,采用预先指定的图像缩小算法将第一分辨率的第一图像压缩至第二分辨率的第二图像。其中,该第二分辨率为成像设备支持的图像分辨率。
由于本申请成像设备的成像输出方式是采用一种高分辨率的图像传感器,通过该图像传感器采集高分辨率的第一图像,然后通过相应的图像缩小算法输出一种低分辨率的第二图像,其中,第二图像的分辨率可以为用户监控使用所需的分辨率。
该第二图像的视场信息与第一图像的视场信息相同,即第二图像与第一图形的尺寸相同。例如:使用一种800W像素,尺寸为X*Y mm的图像传感器可输出800W的原始画面,即第一图像,但是本实施例所需输出的图像是200W的像素画面,即第二图像,同时画面的尺寸也同样对应于图像传感器的X*Y mm的尺寸,即200W的输出画面和原始800W的输出画面的视场角一样。
在执行光学变焦操作时,镜头的变焦位置从图3中的变焦位置A移动到变焦位置B,以使光学变焦的变焦倍数达到最大,即光学变焦的倍数具有从A 到B这段变焦操作区域。其中,图中变焦位置A(zoom=A)为的最小变焦倍数,也就是为光学变焦的最小变焦倍数,图中变焦位置B(zoom=B)为成像设备光学变焦区域最大的变焦倍数,同样也为成像设备的数字变焦的最小变焦倍数,变焦位置D(zoom=D)为成像设备的数字变焦区域的最大的变焦倍数,即从B到C再到D这一段区域均是数字变焦区域。
在摄像机的变焦位置A移动到变焦位置B的变焦操作过程中,还需要执行图像缩小算法,以使最后输出的第二图像是低分辨的图像,即把图像传感器输出的高分辨率画面压缩到图3中的低分辨率的输出图像W,输出图像W即为上述第二图像。同时不影响整个输出图像的画质和清晰度。具体的图像缩小算法目前有很多种,如:现有的均匀采样算法、等间隔采样算法等,在此不做具体限制。
S103、如果是处于预设数字变焦区域,则依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域,依据所述目标感应区域对所述图像传感器采集的第三图像进行裁剪得到第四图像并输出,所述第四图像的第四分辨率小于所述第三图像的第三分辨率,且所述第四图像的视场信息小于第三图像的视场信息。第四图像的第四分辨率与所述目标感应区域对应。
本实施例中,由于本申请图像传感器采用的是高分辨率的图像传感器,因此第三图像为高分辨率图像,数字变焦操作时所选择的目标感应区域为高分辨率的第三图像中的区域,而后在第三图像上裁剪得到第四图像并输出,该第四图像为对第三图像进行裁剪,并将裁剪区域内每个像素面积增大而获得。其中,在第三图像上裁剪区域的大小与数字变焦倍数对应,即数字变焦倍数越高,在第三图像上的裁剪区域越小;数字变焦倍数越低,在第三图像上的裁剪区域越大。
其中,该第四分辨率大于或等于成像设备输出的图像分辨率,如此以保证数字变焦在最大的变焦倍数所输出图像的分辨率依然较高,从而不仅可以保证光学变焦到数字变焦过程中的图像画面变化的平稳性,满足数字变焦过程中视场角变化与光学变焦过程中视场角变化的连贯性的要求,而且数字变焦过程中始终保证输出图像的清晰度。
例如,如图3所示,由于整个数字变焦区域是通过对原始图像传感器采 集的画面进行裁剪后,再进行输出的,而最大的变焦倍数D对应的第四图像的分辨率事不小于输出图像W的分辨率的。由于原始图像传感器采集的画面的高分辨率的画面,即使将裁剪后的画面的像素点面积增大,也可以保证增大后得到的第四图像的画面细节依然清晰,也就保证了最大的变焦倍数对应的画面分辨率依然大于或等于输出图像的分辨率,避免出现输出图像模糊、失真的问题。
在本申请中,依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域具体包括:根据所述成像设备当前的变焦位置确定所述变焦位置对应的目标视场信息;根据所述目标视场信息从所述图像传感器的感应区域中选择目标感应区域。
其中,根据成像设备当前的变焦位置确定所述变焦位置对应的目标视场信息包括:在已建立的变焦位置与视场信息之间的对应关系中,查找与所述成像设备当前的变焦位置对应的视场信息;将查找到的视场信息确定为所述目标视场信息。
为了满足变倍的平稳性,可以根据光学变焦区域的视场角变化的规律拟合出数字变焦区域的视场角信息,如图6所示,图6为根据光学变焦区域的视场角变化的规律拟合得到的变焦倍数对应的水平视场角信息表,该表可以预先存储在成像设备内。通过在图6的表中可以查找到成像设备当前的变焦位置对应的水平视场信息,其中,图6所示表中倍数即为变焦倍数。例如,当变焦倍数M为3时,根据该表可以确定水平视场角H为H3。
其中,根据目标视场信息从所述图像传感器的感应区域中选择目标感应区域包括:根据所述目标视场信息确定所述图像传感器的感应区域对应的水平像素值;根据指定图像裁剪比例和所述水平像素值确定所述图像传感器的感应区域对应的垂直像素值;将所述水平像素值和所述垂直像素值组成的区域确定为所述目标感应区域。
具体地,每一个数字变焦倍数都对应的有一个视场角值,通过图6可以确定视场角值,然后根据确定的视场角值可以推算出图像传感器采集的第三图像所要裁剪的大小。其中,如图4所示的光学变焦的视场角的示意图可知,视场角的计算公式为:α=2*arctan(h/2F)。其中,α为视场角值,h为图像 传感器采集的图像的水平像素对应的物理间距,图4中以h=水平像素表示,F为成像设备当前的焦距,在数字变焦中,F是按照光学变焦中最大焦距进行计算的。
这样,根据图6所示的表格可以确定成像设备的当前的视场角值,进而根据公式α=2*arctan(h/2F)计算得到图像传感器采集的图像的水平像素对应的物理间距h。
而后可以根据预设的图像裁剪的比例计算出图像传感器采集的图像的垂直像素值对应的物理间距V,图4中以V=垂直像素表示,具体来说,h/V=ratio,其中,ratio为预设的图像裁剪的比例。
如此可以获得数字变焦操作中每个变焦倍数对应的裁剪区域的h和V的大小,即可以获得目标感应区域的尺寸。进而,成像设备便可以按照计算得到的h和V对采集的图像进行剪裁,得到输出图像,并将该输出图像进行输出。
其中,为了保证光学变焦到数字变焦的画面变化的平稳性或者是数字变焦到光学变焦的画面变化的平稳性,数字变焦过程中视场角变化依然要保证与光学变焦过程中视场角变化的连贯性。因此根据光学变焦区域的视场角变化的规律拟合出数字变焦区域的视场角信息,可以保证本申请实施例在光学变焦和数字变焦的变焦倍数变化过程中,视场角设置可以呈规律变化,从而使光学变焦与数字变焦之间切换操作时的画面放大和缩小的比例控制流畅。
本申请设计了一种成像设备的变焦方法及成像设备,通过光学变焦及数字变焦过程中对图像的改进处理方式,使数字变焦过程中的视觉效果与光学变焦的视觉效果相同,解决了现有数字变焦容易引起画面失真、模糊的问题,增强了成像设备的拍摄效果,提高了用户的使用体验。
如图2所示,根据本申请实施例的又一方面,还提供了一种成像设备,该成像设备包括成像部分10和显示部分20。显示部分20用于显示所述成像部分10的输出图像,成像部分10包括图像传感器12、镜头11、处理器13及用于存储处理器可执行指令的存储器(图2中未示出)。
其中,所述处理器13被配置为:
在确定进行变焦时,检查所述成像设备的变焦位置当前是处于预设光学变焦区域还是处于预设数字变焦区域;
如果是处于预设光学变焦区域,则调整所述成像设备上变焦镜头的焦距以使所述成像设备上的图像传感器采集到包含指定目标的第一图像,将所述第一图像压缩为第二图像并输出,其中,第二图像的视场信息与第一图像的视场信息相同、且第二图像的第二分辨率小于第一图像的第一分辨率;
如果是处于预设数字变焦区域,则依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域,依据所述目标感应区域对所述图像传感器采集的第三图像进行裁剪得到第四图像并输出,第四图像的第四分辨率与所述目标感应区域对应,所述第四图像的第四分辨率小于所述第三图像的第三分辨率,且所述第四图像的视场信息小于第三图像的视场信息。
图7是本申请根据一示例性实施例示出的成像设备的结构框图,除了图7所示的处理器810、内存830、网络接口820、以及非易失性存储器840之外,本实施例中的成像设备通常根据该成像设备的实际功能,还可以包括其他硬件,例如图像传感器、镜头等,对此不再赘述。
其中,内存830中可以存储用于执行本申请实施例所提供的成像设备的变焦方法的计算机程序,即为图7中成像设备的变焦装置。
如图8所示,根据本申请实施例的又一方面,还提供了一种用于变焦成像设备的图像处理方法。该成像设备支持第一焦距区间的光学变焦和第二焦距区间的数字变焦,其中,第二焦距区间大于第一焦距区间,以使成像设备的变焦区间是第一焦距区间的最小值至第二焦距区间的最大值,所述方法包括:
S801,获取外界输入的焦距控制指令,并解析出所述焦距控制指令指示的变焦方向、变焦速度和指定焦距;
S802,依据所述变焦方向和所述变焦速度,控制所述成像设备执行变焦,以使所述成像设备到达所述指定焦距;
S803,在控制所述成像设备到达所述指定焦距的过程中,确定所述成像设备当前焦距已由落入所述第一焦距区间变成落入所述第二焦距区间时,计 算得到所述成像设备在当前焦距的视场角;
S804,根据所述当前焦距的视场角和预设的图像尺寸,确定所述成像设备在当前焦距时输出图像对应的横向尺寸和纵向尺寸,以使所述成像设备在所述变焦区间内输出的所有图像都具有相同尺寸;以及
S805,根据确定的所述横向尺寸和纵向尺寸,对所述成像设备在当前焦距时生成的图像进行裁剪,输出裁剪后的图像。
可见,本申请的实施例提供的技术方案,通过光学变焦及数字变焦过程中对图像的改进处理方式,使数字变焦过程中的视觉效果与光学变焦的视觉效果相同,增强了成像设备的拍摄效果,提高了用户的使用体验。
在本实施例中,成像设备支持第一焦距区间的光学变焦和第二焦距区间的数字变焦,其中,第二焦距区间大于第一焦距区间,以使成像设备的变焦区间是第一焦距区间的最小值至第二焦距区间的最大值。例如,在执行光学变焦操作时,镜头的变焦位置从图3中的变焦位置A移动到变焦位置B,以使光学变焦的变焦倍数达到最大,即光学变焦的倍数具有从A到B这段变焦操作区域。
其中,图中变焦位置A(zoom=A)为的最小变焦倍数,也就是为光学变焦的最小变焦倍数,图中变焦位置B(zoom=B)为成像设备光学变焦区域最大的变焦倍数,同样也为成像设备的数字变焦的最小变焦倍数,变焦位置D(zoom=D)为成像设备的数字变焦区域的最大的变焦倍数,即从B到C再到D这一段区域均是数字变焦区域。那么第一焦距区间即为区间A到B,第二交局区间即为B到C再到D这一段区域。
在成像设备拍摄过程中,在拍摄图像之前,需要预先对成像设备进行变焦操作,以保证拍摄的图像清晰。在上述步骤S801中,成像设备获取外界输入的焦距控制指令时,说明此时需要执行变焦操作,那么成像设备可以解析出该焦距控制指令指示的变焦方向、变焦速度和指定焦距。
进而,成像设备可以依据变焦方向和变焦速度,执行变焦以使成像设备到达指定焦距,也就是执行上述步骤S802。具体来说,成像设备可以根据所需达到的指定焦距确定执行光学变焦还是数字变焦。当指定焦距落入第一焦 距区间时,说明需要执行光学变焦,当指定焦距落入第二焦距区间时,说明需要先进行光学变焦,再进行数字变焦。
在成像设备执行变焦操作以到达指定焦距的过程中,确定当前焦距已由落入第一焦距区间变成落入第二焦距区间时,说明此时成像设备从光学变焦转换为数字变焦,此时,为了保证变焦操作的平稳性,避免出现输出图像模糊、失真的问题,成像设备可以计算得到成像设备在当前焦距的视场角。
计算得到在当前焦距的视场角后,便可以执行上述步骤S804,即根据当前焦距的视场角和预设的图像尺寸,确定成像设备在当前焦距时输出图像对应的横向尺寸和纵向尺寸,以使成像设备在变焦区间内输出的所有图像都具有相同尺寸。
如图4所示的光学变焦的视场角的示意图可知,输出图像对应的横向尺寸和纵向尺寸与成像设备的视场角与成像的焦距有关,因此,可以根据当前焦距的视场角和预设的图像尺寸,确定成像设备在当前焦距时输出图像对应的横向尺寸和纵向尺寸。这样,可以保证成像设备在整个变焦区间内输出的所有图像都具有相同尺寸,满足用户需求。
确定了输出图像对应的横向尺寸和纵向尺寸后,成像设备便可以根据所确定的横向尺寸和纵向尺寸,对成像设备在当前焦距时生成的图像进行裁剪,进而输出裁剪后的图像,该图像即为变焦处理后的成像设备所输出的用户所需的图像。
作为本发明实施例的一种实施方式,上述计算得到所述成像设备在当前焦距的视场角,可以包括:
根据所述成像设备的当前焦距确定所述成像设备的变焦倍数;在已建立的所述第二焦距区间对应的变焦倍数与视场角的对应关系中,查找与所述成像设备的变焦倍数对应的视场角,作为所述成像设备在当前焦距的视场角。
为了确定成像设备的在当前焦距的视场角,可以根据成像设备的当前焦距确定成像设备的变焦倍数。进而在已建立的第二焦距区间对应的变焦倍数与视场角的对应关系中,查找与成像设备的变焦倍数对应的视场角,作为成像设备在当前焦距的视场角。
为了方便确定成像设备的视场角,可以预先建立第二焦距区间对应的变 焦倍数与视场角的对应关系,也就是成像设备的数学变焦对应的变焦倍数与视场角的对应关系,这样,在进行变焦时,便可以从该对应关系中查找成像设备在当前焦距的视场角。
可见,在本实施例中,成像设备可以根据成像设备的当前焦距确定成像设备的变焦倍数,在已建立的第二焦距区间对应的变焦倍数与视场角的对应关系中,查找与成像设备的变焦倍数对应的视场角,作为成像设备在当前焦距的视场角,这样,可以快速确定成像设备在当前焦距的视场角。
作为本发明实施例的一种实施方式,上述第二焦距区间对应的变焦倍数与视场角的对应关系的建立方式,包括:
确定所述第一焦距区间对应的变焦倍数与视场角之间的变化规律;基于所述变化规律,拟合得到所述第二焦距区间对应的变焦倍数与视场角的对应关系。
为了满足变焦过程的平稳性,可以根据光学变焦区域的视场角变化的规律拟合出数字变焦区域的视场角信息,具体来说,成像设备可以确定第一焦距区间对应的变焦倍数与视场角之间的变化规律,也就是成像设备在光学变焦过程中变焦倍数与视场角之间的变化规律,进而根据该变化规律拟合得到第二焦距区间对应的变焦倍数与视场角的对应关系。
例如,如图6所示,图6为根据光学变焦区域的视场角变化的规律拟合得到的变焦倍数对应的视场角的对应关系表,该表可以预先存储在成像设备内。通过在图6的表中可以查找到成像设备当前的变焦位置对应的视场角,其中,图6所示表中倍数即为变焦倍数。例如,当变焦倍数M为n+1时,根据该表可以确定水平视场角H为H(n+1)。
可见,在本实施例中,可以预先确定第一焦距区间对应的变焦倍数与视场角之间的变化规律,进而基于变化规律,拟合得到第二焦距区间对应的变焦倍数与视场角的对应关系,这样,可以保证本申请实施例在光学变焦和数字变焦的变化过程中,视场角可以呈规律变化,从而使光学变焦与数字变焦之间切换操作时的画面放大和缩小的比例控制流畅,保证变焦过程的平稳性。
作为本发明实施例的一种实施方式,上述根据所述当前焦距的视场角和预设的图像尺寸,确定所述成像设备在当前焦距时输出图像对应的横向尺寸 和纵向尺寸,可以包括:
根据所述成像设备在当前焦距的视场角和所述第一焦距区间的最大值,计算得到所述成像设备在当前焦距时输出图像对应的横向尺寸;根据所述预设的图像尺寸及所述横向尺寸,确定所述输出图像对应的纵向尺寸。
成像设备在确定成像设备在当前焦距时输出图像对应的横向尺寸和纵向尺寸时,可以先根据成像设备在当前焦距的视场角和第一焦距区间的最大值,计算得到成像设备在当前焦距时输出图像对应的横向尺寸。
在一种实施方式中,成像设备可以基于成像设备在当前焦距的视场角和第一焦距区间的最大值,通过正切运算,计算得到成像设备在当前焦距时输出图像对应的横向尺寸。
如图4所示的光学变焦的视场角的示意图可知,成像设备在采集图像时的视场角的计算公式为:α=2*arctan(h/2F)。其中,α为视场角,h为图像传感器采集的图像的水平像素对应的物理间距,F为成像设备的焦距,在数字变焦中,F按照光学变焦中最大焦距(也就是第一焦距区间的最大值)进行计算。
根据上述公式可知,h=2F tan(α/2),因此,在视场角α以及第一焦距区间的最大值F已知的情况下,便可以计算得到图像传感器采集的图像的水平像素对应的物理间距,也就是在当前焦距下,成像设备需要输出的图像对应的横向尺寸。
进而,成像设备可以根据预设的图像尺寸及该横向尺寸,确定输出图像对应的纵向尺寸。在一种实施方式中,可以预先设置图像裁剪的比例ratio,作为预设的图像尺寸,这样,确定了输出图像对应的横向尺寸后,便可以计算得到输出图像的纵向尺寸。
具体来说,成像设备可以根据公式h/V=ratio,计算得到输出图像的垂直像素值对应的物理间距V,也就是输出图像的纵向尺寸。
可见,在本实施例中,成像设备可以根据成像设备在当前焦距的视场角和第一焦距区间的最大值,计算得到成像设备在当前焦距时输出图像对应的横向尺寸,进而根据预设的图像尺寸及横向尺寸,确定输出图像对应的纵向尺寸,这样,可以保证成像设备在变焦区间内输出的所有图像都具有相同尺 寸,使数字变焦过程中的视觉效果与光学变焦的视觉效果相同,解决了目前数字变焦容易引起画面失真、模糊的问题,增强了成像设备的拍摄效果,提高了用户的使用体验。
根据本申请实施例的又一方面,还提供了一种成像设备,该成像设备包括:成像部分和显示部分,显示部分用于显示成像部分的输出图像,成像部分包括图像传感器、镜头、处理器及用于存储处理器可执行指令的存储器;
其中,处理器被配置为执行上述任一实施例所述的用于变焦成像设备的图像处理方法步骤。
可见,本申请的实施例提供的技术方案,通过光学变焦及数字变焦过程中对图像的改进处理方式,使数字变焦过程中的视觉效果与光学变焦的视觉效果相同,增强了成像设备的拍摄效果,提高了用户的使用体验。
本申请可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。机器可读存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。机器可读存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由本申请的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种成像设备的变焦方法,其特征在于,该方法应用于成像设备,包括:
    在确定进行变焦时,检查所述成像设备的变焦位置当前是处于预设光学变焦区域还是处于预设数字变焦区域;
    如果是处于预设光学变焦区域,则调整所述成像设备上变焦镜头的焦距以使所述成像设备上的图像传感器采集到包含指定目标的第一图像,将所述第一图像压缩为第二图像并输出,其中,第二图像的视场信息与第一图像的视场信息相同、且第二图像的第二分辨率小于第一图像的第一分辨率;
    如果是处于预设数字变焦区域,则依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域,依据所述目标感应区域对所述图像传感器采集的第三图像进行裁剪得到第四图像并输出,第四图像的第四分辨率与所述目标感应区域对应,所述第四图像的第四分辨率小于所述第三图像的第三分辨率,且所述第四图像的视场信息小于第三图像的视场信息。
  2. 根据权利要求1所述的方法,其特征在于,所述确定进行变焦包括:
    当接收到来自外部的变焦操作指令时,确定进行变焦;和/或,
    当本成像设备检测到变焦触发事件时,确定进行变焦。
  3. 根据权利要求1所述的方法,其特征在于,所述将所述第一图像压缩为第二图像包括:
    在维持图像尺寸不变的前提下,采用预先指定的图像缩小算法将第一分辨率的第一图像缩小至第二分辨率的第二图像。
  4. 根据权利要求1或3所述的方法,其特征在于,所述成像设备上的图像传感器采集的原始图像的分辨率不低于用户监控使用的分辨率;
    所述第二分辨率大于或等于所述用户监控使用的图像分辨率;
    所述第四分辨率大于或等于所述用户监控使用的图像分辨率。
  5. 根据权利要求1或3所述的方法,其特征在于,在调整所述成像设备上 变焦镜头的焦距时,所述方法还包括:
    在已建立的变焦位置和聚焦位置的对应关系中,查找到与所述成像设备当前的变焦位置对应的目标聚焦位置,调整所述成像设备的聚焦位置至所述目标聚焦位置以使所述图像传感器采集的第一图像清晰。
  6. 根据权利要求1所述的方法,其特征在于,所述依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域包括:
    根据所述成像设备当前的变焦位置确定所述变焦位置对应的目标视场信息;
    根据所述目标视场信息从所述图像传感器的感应区域中选择目标感应区域。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述目标视场信息从所述图像传感器的感应区域中选择目标感应区域包括:
    根据所述目标视场信息确定所述图像传感器的感应区域对应的水平像素值;
    根据指定图像裁剪比例和所述水平像素值确定所述图像传感器的感应区域对应的垂直像素值;
    将所述水平像素值和所述垂直像素值组成的区域确定为所述目标感应区域。
  8. 根据权利要求6所述的方法,其特征在于,所述根据所述成像设备当前的变焦位置确定所述变焦位置对应的目标视场信息包括:
    在已建立的变焦位置与视场信息之间的对应关系中,查找与所述成像设备当前的变焦位置对应的视场信息;
    将查找到的视场信息确定为所述目标视场信息。
  9. 一种成像设备,其特征在于,包括:成像部分和显示部分,所述显示部分用于显示所述成像部分的输出图像,所述成像部分包括图像传感器、镜头、处理器及用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    在确定进行变焦时,检查所述成像设备的变焦位置当前是处于预设光学变焦区域还是处于预设数字变焦区域;
    如果是处于预设光学变焦区域,则调整所述成像设备上变焦镜头的焦距以使所述成像设备上的图像传感器采集到包含指定目标的第一图像,将所述第一图像压缩为第二图像并输出,其中,第二图像的视场信息与第一图像的视场信息相同、且第二图像的第二分辨率小于第一图像的第一分辨率;
    如果是处于预设数字变焦区域,则依据所述变焦位置从所述图像传感器的感应区域中选择目标感应区域,依据所述目标感应区域对所述图像传感器采集的第三图像进行裁剪得到第四图像并输出,第四图像的第四分辨率与所述目标感应区域对应,所述第四图像的第四分辨率小于所述第三图像的第三分辨率,且所述第四图像的视场信息小于第三图像的视场信息。
  10. 一种用于变焦成像设备的图像处理方法,其特征在于,所述成像设备支持第一焦距区间的光学变焦和第二焦距区间的数字变焦,其中,所述第二焦距区间大于所述第一焦距区间,以使所述成像设备的变焦区间是所述第一焦距区间的最小值至所述第二焦距区间的最大值,所述方法包括:
    获取外界输入的焦距控制指令,并解析出所述焦距控制指令指示的变焦方向、变焦速度和指定焦距;
    依据所述变焦方向和所述变焦速度,控制所述成像设备执行变焦,以使所述成像设备到达所述指定焦距;
    在控制所述成像设备到达所述指定焦距的过程中,确定所述成像设备当前焦距已由落入所述第一焦距区间变成落入所述第二焦距区间时,计算得到所述成像设备在当前焦距的视场角;
    根据所述当前焦距的视场角和预设的图像尺寸,确定所述成像设备在当前焦距时输出图像对应的横向尺寸和纵向尺寸,以使所述成像设备在所述变焦区间内输出的所有图像都具有相同尺寸;以及
    根据确定的所述横向尺寸和纵向尺寸,对所述成像设备在当前焦距时生 成的图像进行裁剪,输出裁剪后的图像。
  11. 根据权利要求10所述的方法,其特征在于,所述计算得到所述成像设备在当前焦距的视场角,包括:
    根据所述成像设备的当前焦距确定所述成像设备的变焦倍数;
    在已建立的所述第二焦距区间对应的变焦倍数与视场角的对应关系中,查找与所述成像设备的变焦倍数对应的视场角,作为所述成像设备在当前焦距的视场角。
  12. 根据权利要求11所述的方法,其特征在于,所述第二焦距区间对应的变焦倍数与视场角的对应关系的建立方式,包括:
    确定所述第一焦距区间对应的变焦倍数与视场角之间的变化规律;
    基于所述变化规律,拟合得到所述第二焦距区间对应的变焦倍数与视场角的对应关系。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述根据所述当前焦距的视场角和预设的图像尺寸,确定所述成像设备在当前焦距时输出图像对应的横向尺寸和纵向尺寸,包括:
    根据所述成像设备在当前焦距的视场角和所述第一焦距区间的最大值,计算得到所述成像设备在当前焦距时输出图像对应的横向尺寸;
    根据所述预设的图像尺寸及所述横向尺寸,确定所述输出图像对应的纵向尺寸。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述成像设备在当前焦距的视场角和所述第一焦距区间的最大值,计算得到所述成像设备在当前焦距时输出图像对应的横向尺寸,包括:
    基于所述成像设备在当前焦距的视场角和所述第一焦距区间的最大值,通过正切运算,计算得到所述成像设备在当前焦距时输出图像对应的横向尺寸。
  15. 根据权利要求14所述的方法,其特征在于,所述基于所述成像设备 在当前焦距的视场角和所述第一焦距区间的最大值,通过正切运算,计算得到所述成像设备在当前焦距时输出图像对应的横向尺寸,包括:
    根据公式α=2*arctan(h/2F),计算得到所述成像设备在当前焦距时输出图像对应的横向尺寸;
    其中,α为所述当前焦距的视场角,h为所述成像设备在当前焦距时输出图像对应的横向尺寸,F为所述第一焦距区间的最大值。
  16. 根据权利要求13所述的方法,其特征在于,所述根据所述预设的图像尺寸及所述横向尺寸,确定所述输出图像对应的纵向尺寸,包括:
    根据公式h/V=ratio,计算所述输出图像对应的纵向尺寸;
    其中,h为所述横向尺寸,V为所述输出图像对应的纵向尺寸,ratio为预先设置的图像裁剪比例。
  17. 一种成像设备,其特征在于,包括:成像部分和显示部分,所述显示部分用于显示所述成像部分的输出图像,所述成像部分包括图像传感器、镜头、处理器及用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求10-16任一项所述的方法步骤。
PCT/CN2020/079629 2019-03-19 2020-03-17 成像设备的变焦方法、图像处理方法及成像设备 WO2020187197A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/424,437 US11588974B2 (en) 2019-03-19 2020-03-17 Zooming method for imaging device, and image processing method and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910206978.6A CN111726513A (zh) 2019-03-19 2019-03-19 成像设备的变焦方法、装置及成像设备
CN201910206978.6 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020187197A1 true WO2020187197A1 (zh) 2020-09-24

Family

ID=72519590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079629 WO2020187197A1 (zh) 2019-03-19 2020-03-17 成像设备的变焦方法、图像处理方法及成像设备

Country Status (3)

Country Link
US (1) US11588974B2 (zh)
CN (1) CN111726513A (zh)
WO (1) WO2020187197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11546527B2 (en) * 2018-07-05 2023-01-03 Irisvision, Inc. Methods and apparatuses for compensating for retinitis pigmentosa

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060114341A1 (en) * 2004-11-26 2006-06-01 Konica Minolta Photo Imaging, Inc. Image capturing apparatus
US20120099004A1 (en) * 2010-10-22 2012-04-26 Panasonic Corporation Imaging apparatus and camera body
CN103973972A (zh) * 2013-02-05 2014-08-06 佳能株式会社 立体摄像装置
CN106341593A (zh) * 2016-08-22 2017-01-18 深圳市金立通信设备有限公司 拍照控制方法及终端
CN108141537A (zh) * 2015-10-14 2018-06-08 高通股份有限公司 图像捕获的恒定的视场

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128780A (ja) * 2004-10-26 2006-05-18 Konica Minolta Photo Imaging Inc デジタルカメラ
CN100527792C (zh) * 2006-02-07 2009-08-12 日本胜利株式会社 摄像方法以及摄像装置
JP4995854B2 (ja) * 2009-03-11 2012-08-08 富士フイルム株式会社 撮像装置、画像補正方法および画像補正プログラム
JP5706654B2 (ja) * 2010-09-16 2015-04-22 オリンパスイメージング株式会社 撮影機器、画像表示方法及びプログラム
JP2012160863A (ja) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd 撮像装置、画像再生装置及び画像処理装置
JP2012191463A (ja) * 2011-03-11 2012-10-04 Canon Inc プロジェクタ
EP2779625B1 (en) * 2011-11-08 2016-03-02 Fujifilm Corporation Image pick-up device and control method therefor
JP5872874B2 (ja) * 2011-12-12 2016-03-01 オリンパス株式会社 撮影機器および撮影機器の制御方法
KR101893406B1 (ko) * 2012-03-28 2018-08-30 삼성전자 주식회사 카메라의 이미지처리 장치 및 방법
JP5931619B2 (ja) * 2012-07-17 2016-06-08 オリンパス株式会社 撮像装置
US9197813B2 (en) * 2013-05-15 2015-11-24 Nokia Technologies Oy Method and apparatus for obtaining a digital image
EP3159853B1 (en) * 2015-10-23 2019-03-27 Harman International Industries, Incorporated Systems and methods for advanced driver assistance analytics
CN106791483B (zh) * 2016-12-20 2020-07-10 北京小米移动软件有限公司 图像传输方法及装置、电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060114341A1 (en) * 2004-11-26 2006-06-01 Konica Minolta Photo Imaging, Inc. Image capturing apparatus
US20120099004A1 (en) * 2010-10-22 2012-04-26 Panasonic Corporation Imaging apparatus and camera body
CN103973972A (zh) * 2013-02-05 2014-08-06 佳能株式会社 立体摄像装置
CN108141537A (zh) * 2015-10-14 2018-06-08 高通股份有限公司 图像捕获的恒定的视场
CN106341593A (zh) * 2016-08-22 2017-01-18 深圳市金立通信设备有限公司 拍照控制方法及终端

Also Published As

Publication number Publication date
CN111726513A (zh) 2020-09-29
US20220094854A1 (en) 2022-03-24
US11588974B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
KR102213744B1 (ko) 선명하고 정확한 주밍 메커니즘 구현을 위한 광각 이미지 캡쳐링 요소 및 장초점 이미지 캡쳐링 요소의 활용방법
US9432579B1 (en) Digital image processing
US20230059657A1 (en) Multi-camera zoom control method and apparatus, and electronic system and storage medium
JP6742732B2 (ja) 輝度分布と動きとの間のトレードオフに基づいてシーンのhdr画像を生成する方法
CN107950018B (zh) 图像生成方法和系统、以及计算机可读介质
WO2019071613A1 (zh) 一种图像处理方法及装置
TWI538512B (zh) 調整對焦位置的方法及電子裝置
US20130113962A1 (en) Image processing method for producing background blurred image and image capturing device thereof
WO2014153950A1 (zh) 快速自动聚焦的方法和图像采集装置
CN111062881A (zh) 图像处理方法及装置、存储介质、电子设备
US9762804B2 (en) Image processing apparatus, image pickup apparatus, and image processing method for aberration correction
JP2009193421A (ja) 画像処理装置、カメラ装置、画像処理方法、およびプログラム
WO2021082883A1 (zh) 主体检测方法和装置、电子设备、计算机可读存储介质
CN112261387B (zh) 用于多摄像头模组的图像融合方法及装置、存储介质、移动终端
WO2013151873A1 (en) Joint video stabilization and rolling shutter correction on a generic platform
US20150195482A1 (en) Method, system and smartphone that chooses optimal image to reduce shutter shake
JP2016012811A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
WO2013084593A1 (ja) 画像処理装置、画像処理方法、プログラム
KR20150078275A (ko) 움직이는 피사체 촬영 장치 및 방법
CN111405185A (zh) 一种摄像机变倍控制方法、装置、电子设备及存储介质
JP2017173480A (ja) フォーカス制御装置、撮像装置及びフォーカス制御方法
WO2020187197A1 (zh) 成像设备的变焦方法、图像处理方法及成像设备
CN111131662B (zh) 图像输出方法、装置、摄像机及存储介质
KR101589498B1 (ko) 디지털 카메라 및 그 제어방법
WO2022161250A1 (zh) 摄像控制方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773567

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20773567

Country of ref document: EP

Kind code of ref document: A1