JP2016012811A - 撮像装置及びその制御方法、プログラム、記憶媒体 - Google Patents

撮像装置及びその制御方法、プログラム、記憶媒体 Download PDF

Info

Publication number
JP2016012811A
JP2016012811A JP2014133246A JP2014133246A JP2016012811A JP 2016012811 A JP2016012811 A JP 2016012811A JP 2014133246 A JP2014133246 A JP 2014133246A JP 2014133246 A JP2014133246 A JP 2014133246A JP 2016012811 A JP2016012811 A JP 2016012811A
Authority
JP
Japan
Prior art keywords
image
shake
amount
imaging
metadata
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014133246A
Other languages
English (en)
Other versions
JP6355454B2 (ja
Inventor
賢一 宮迫
Kenichi Miyasako
賢一 宮迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014133246A priority Critical patent/JP6355454B2/ja
Priority to GB1603183.3A priority patent/GB2533237B/en
Priority to GB1510614.9A priority patent/GB2528382B/en
Priority to KR1020150088187A priority patent/KR101847392B1/ko
Priority to CN201510354536.8A priority patent/CN105323465B/zh
Priority to US14/749,066 priority patent/US9723208B2/en
Priority to DE102015110326.5A priority patent/DE102015110326A1/de
Publication of JP2016012811A publication Critical patent/JP2016012811A/ja
Application granted granted Critical
Publication of JP6355454B2 publication Critical patent/JP6355454B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Television Signal Processing For Recording (AREA)

Abstract

【課題】撮影した動画像から容易に静止画として最適な画像を選択することができる撮像装置を提供する。
【解決手段】動画を撮像可能な撮像部と、撮像部により撮像された動画の各フレームの画像の撮影状態の良否を示すメタデータを生成する生成部と、動画の各フレームの画像と、画像の撮影状態の良否を示す生成手段により生成されたメタデータとを関連付けて記録する記録部とを備え、生成部は、画像の撮影状態を示す少なくとも1つのデータについて許容値を設定し、少なくとも1つのデータを許容値を用いて正規化してメタデータを生成する。
【選択図】 図1

Description

本発明は、撮影された動画像から静止画を生成する技術に関するものである。
近年、動画撮影が可能な撮像装置の多画素化が急速に進んでいる。FullHDサイズの動画を撮影する撮像装置は既に広く普及し、4K、2K動画撮影が可能な撮像装置も徐々に市場に出始めている。
このような動画像の高精細化によって、動画像の各フレームの画像も静止画として使用するのに十分な画素数を有するようになってきている。これによって、動画像の各フレームから静止画を生成する使用方法が今後更に広がっていくものと考えられる。
特開2010−252078号公報
動画像から静止画を生成する際の課題として、どのフレームの画像が静止画として最適な画像なのかを判断することが、ユーザーにとって難しいという点がある。例えば動画として見た場合には、画像が常に遷移していくために気付かない画像の振れやピントズレなどが、静止画としてみたときに許容できないレベルである場合も多い。それを1フレームずつチェックしていくのはユーザーにとって非常に煩わしい作業となる。
このような課題に対し、例えば特許文献1では、次のような方法が開示されている。即ち、動画記録中に記録しておいたカメラ画像ステータス情報を動画再生中に読み込む。そして、静止画記録用スイッチの押下動作の前後のフレームから、静止画としてふさわしい画像をピックアップする。
しかしながら、上記従来例においては、AF、AE、AWB、振れ等のステータス情報を動画像と同期して記録し、動画再生時に静止画を選択する際に用いるという概念自体は開示されているものの、ステータス情報の生成方法が具体的に記載されていない。
本発明は上述した課題に鑑みてなされたものであり、その目的は、撮影した動画像から容易に静止画として最適な画像を選択することができる撮像装置を提供することである。
本発明に係わる撮像装置は、動画を撮像可能な撮像手段と、前記撮像手段により撮像された動画の各フレームの画像の撮影状態の良否を示すメタデータを生成する生成手段と、前記動画の各フレームの画像と、該画像の撮影状態の良否を示す前記生成手段により生成されたメタデータとを関連付けて記録する記録手段とを備え、前記生成手段は、画像の撮影状態を示す少なくとも1つのデータについて許容値を設定し、前記少なくとも1つのデータを前記許容値を用いて正規化して前記メタデータを生成することを特徴とする。
本発明によれば、撮影した動画像から容易に静止画として最適な画像を選択することができる撮像装置を提供することが可能となる。
本発明の撮像装置の一実施形態であるビデオカメラの構成を示すブロック図。 フォーカス用のメタデータの演算方法の例を説明するための図。 露出用のメタデータの演算方法の例を説明するための図。 ホワイトバランス用のメタデータの演算方法の例を説明するための図。 振れ用のメタデータの演算を行うためのブロック構成を示す図。 振れ補正量演算部と振れ量演算部の出力を説明するための図。 振れ用のメタデータの演算方法の例を説明するための図。 振れ用のメタデータの演算方法の別の例を説明するための図。 パンニング速度を演算する方法について説明するための図。 パンニング速度を考慮した振れ量演算部の演算を説明するための図。 メタデータを用いて動画像から静止画を生成するときのフローチャート。 静止画としての適切度をユーザーに報知する表示例を示す図。
以下、本発明の一実施形態について、添付図面を参照して詳細に説明する。図1は、本発明の撮像装置の一実施形態である動画を撮像可能なビデオカメラの構成を示すブロック図である。図1は、動画撮影時に使用する撮像装置の各ブロックを示している。図1を用いて、撮像装置100の構成と、動画撮影時における動作について具体的に説明する。
図1において、撮像装置100は、光軸方向に、変倍レンズ101、補正光学系102、絞り103、及びフォーカスレンズ104が順次配置され、これらと図示しないその他の光学系によって撮影光学系が構成される。
変倍レンズ101は、光軸方向に移動して変倍を行うレンズである。フォーカスレンズ104は、変倍に伴う焦点面の移動を補正する機能とフォーカシングの機能とを兼ね備えたレンズである。絞り103は、入射する光量を調整する絞り羽根などである。
フォーカスレンズ105の背部には、撮像素子105が配置されている。撮像素子105は、光電変換により被写体の撮像を行う。撮像素子105は、例えばXYアドレス方式のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等で構成される。撮像素子105で光電変換された信号は、撮像素子105内部でデジタル信号に変換された後、信号処理部111に供給される。信号処理部111は、撮像素子105から出力された画像情報に対してガンマ補正、色補正等種々の信号処理を行う。
システム制御部121は、撮像装置100全体の制御を司る。例えば、システム制御部121は、信号処理部111からの輝度値・色等の情報を受けて、各種の演算処理を行う。システム制御部121が行う制御の詳細については後述する。
ズーム駆動部106は、変倍レンズ101を移動させるための駆動源であり、システム制御部121の指示に従って、ズーミング動作が行われる。システム制御部121は、ユーザーによる図示しないズーム操作部の操作に従って、ズーム駆動部に対して指示を送る。
フォーカス駆動部109は、フォーカスレンズ104を移動させるための駆動源であり、システム制御部121の指示に従って駆動が行われる。システム制御部121は、距離情報生成部117から供給される信号に従って、フォーカスレンズ104の駆動位置を決定する。距離情報生成部117は、撮像素子105により取得された画像信号に対して、信号処理部111において信号処理を行った結果から、撮像装置100と被写体との距離を示す距離情報を生成する。距離情報は、撮像素子105上の複数の画素を用いて位相差AFを行う方法等、公知の方法を用いればよい。また、位相差AF専用のセンサや赤外線センサなどの距離情報取得装置を用いて距離情報を生成してもよい。
絞り駆動部108は、絞り103を駆動して撮像素子105に入射される光量を調整するための駆動源であり、システム制御部121の指示に従って駆動が行われる。撮像素子駆動部110は、システム制御部121の指示に従って、撮像素子105を駆動するための駆動パルス等を撮像素子105へ供給し、撮像素子105に蓄積された電荷の読み出しや露出時間即ちシャッタ速度の調整を行う。撮像素子105では、一般にシャッタパルスが印加されることにより、画素内に蓄積された信号電荷が掃き捨てられる電子シャッター動作が行われ、次の読み出しまでの期間において光学像を光電変換し電荷の蓄積が行われる。この蓄積期間が上記シャッタ速度となる。被写体輝度が低輝度時に適切なシャッタースピードが設定できない場合は、撮像素子105から出力される画像信号のレベル調整即ちゲイン調整を行うことにより、露光不足による不適正露出が補正される。
AE用信号生成部118は、画素毎のデジタル信号の累積加算を主体とする演算処理を行うことにより、被写体の明るさに応じた測光値を算出してシステム制御部121に供給する。システム制御部121は、AE用信号生成部118によって生成された測光値に基づいて、絞り駆動部108及び撮像素子駆動部110を駆動させ、絞り103、シャッタ速度、撮像素子105のゲインを設定し、露出を制御する。
AWB用信号生成部119は、撮像素子105から信号処理部111に供給されるR/G/Bの各画素信号を、輝度Y、色差信号(R−Y,B−Y)に変換する。そして黒体放射軌跡を基準として無彩色かどうかを判定し、無彩色と判定された画素の色差信号を全て積算して平均値をとることでAWB用信号が生成される。信号処理部111は、R/G/B各色独立したゲインを掛けることができる回路ブロックを有しており、システム制御部121は、上記AWB用信号に基づいて、撮像素子105から出力される画像データにおける白色を正しく表示できるように制御するためのホワイトバランス制御を行う。
補正光学系102は、光軸と垂直な方向に移動されることにより光軸の向きを偏向する、光学的に振れ補正可能な補正系である。補正光学系駆動部107は、補正光学系102を移動させるための駆動源であり、システム制御部121の指示に従って駆動が行われる。角速度センサ120は、撮像装置100に加わる振れを角速度信号として検出し、その角速度信号をシステム制御部121に供給する。システム制御部121は、上記角速度信号から撮像面上での被写体像の移動を補正するように補正光学系102を移動させるため、補正光学系駆動部107への制御信号を生成する。この結果、装置の振れ等により生じる撮像面上の被写体像の移動が補正され、撮像素子105に結像される。なお、補正光学系102は、撮像素子105を撮影光学系に対して、相対的に光軸と垂直方向に移動する構成に置き換えてもよい。
メタデータ生成部113は、システム制御部121から供給されるデータに基づいて撮像画像の撮影状態の良否を示す所定のメタデータを生成し、信号処理部111から出力される動画像データと対応づけて記録媒体109に記録する。メタデータ生成部113で扱うメタデータの詳細については後述する。記録媒体114は、ハードディスク等の磁気記録媒体や半導体メモリ等の情報記録媒体である。また表示デバイス112は液晶表示素子(LCD)等により信号処理部111から出力される画像を表示する。
次に、メタデータ生成部113に供給されるメタデータの演算方法について、詳細を説明する。メタデータは、システム制御部121内部で、フォーカス、露出、WB(ホワイトバランス)、振れの4種類のデータが演算され、メタデータ生成部113に供給される。静止画撮影においては、これらの制御パラメータは、露光時に演算された制御目標値にできるだけ誤差なく追従するように設定される。一方動画撮影においては、これらの制御パラメータを急峻に変化させてしまうと、動画としては映像が急に変化するため、不自然に見えてしまう。そのため、一般的に制御目標値に向かって徐々にパラメータを変化させていく制御が行われる。メタデータ生成部113は、このときに生じる静止画として最適な制御目標値と動画として自然に見せるための実際の設定値との差分についてのメタデータを、以下に説明する方法で演算して、動画像データと関連付けて記録媒体114に記録する。
図2を用いてフォーカスのメタデータ生成方法について詳細を説明する。説明を分かりやすくするため、以下のように記号を定義する。
Dt…距離情報生成部117によって検出される被写体距離
Dl…フォーカスレンズ104の位置によって決まる撮影被写体距離
Df…被写界深度(無限遠側)
Dn…被写界深度(至近側)
図2(a)は、横軸をDl−Dt、即ち目標となる被写体距離とフォーカスレンズ104の位置によって決まる撮影被写体距離との差分とし、縦軸を生成されるメタデータMdata_focusとしたグラフの一例を示している。Dl−Dtが0のときは、ピントが完全に合っている状態を示しており、このとき、Mdata_focus=0となる。図2(a)において、Mdata_focusは、以下の計算式で演算する。
Mdata_focus=|(Dl−Dt)/(Df−Dt)|
ただし、Dl−Dt≧0
Mdata_focus=|(Dl−Dt)/(Dn−Dt)|
ただし、Dl−Dt<0
つまり、撮影被写体距離の目標値からのズレ量を被写界深度の深さで正規化している。これによって、Mdata_focusは0に近いほどピントが合っており、1よりも大きくなるほどピンボケになっていることを示すデータとなる。
図2(b)は、横軸と縦軸は図2(a)と共通で、Mdata_focusの演算方法の他の例を示したグラフである。図2(b)は、Dx<(Dl−Dt)<Dyの範囲では、Mdata_focusの演算方法は図2(a)と共通であり、それ以外の範囲では、Dl−Dtが変化したときのMdata_focusの変化量(ゲイン)を大きくしている。これは、撮像装置100内部の画像処理やPCの画像処理ソフト等によって、多少のピンボケ画像は輪郭強調などを行うことによって容易に補正ができるが、ボケ量が大きい画像では輪郭強調を行ったときの疑似輪郭等が目立ち、静止画としての画質の劣化度合いが大きくなるためである。
図3を用いて露出のメタデータ生成方法について詳細を説明する。図3(a)乃至図3(c)のグラフの横軸はAPEX(Additive System of Photographic Exposure)システムを用いた単位系で表現している。各々の記号の定義は以下の通りである。
Ev_now…現在の絞りとシャッタ速度によって決まる露出値
Ev_target…AE用信号生成部118の出力によって決まる適正露出値
図3(a)は、横軸をEv_target−Ev_now、即ち適正露出値と現在の露出値との差分とし、縦軸を生成されるメタデータMdata_exposureとしたグラフの一例を示している。横軸は、プラス方向に大きくなると露出オーバーとなり、マイナス方向に小さくなると露出アンダーとなり、0のときは露出が正確に合っている状態を示している。このとき、Mdata_exposure=0となる。図3(a)において、Mdata_exposureは、以下の計算式で演算する。
Mdata_exposure=|Ev_target−Ev_now|/(1/3)
つまり、現在の露出の適正露出からのズレ量を所定のEv値(ここでは1/3Ev)で正規化している。ここで、1/3Evで正規化したのは、あくまでも一例である。本数値は、ユーザーが任意で設定できるようにしてもよいし、被写体の輝度分布により可変にしてもよい。例えば、1/3Evずれると白飛びや黒つぶれが発生してしまう場合は、1/5Evで正規化する等の方法を採用することも可能である。本演算により、Mdata_exposureは0に近いほど露出が適正になっており、1よりも大きいほど露出アンダーあるいはオーバーになっていることを示すデータとなる。
図3(b)は、横軸と縦軸は図3(a)と共通で、Mdata_exposureの演算方法の他の例を示したグラフである。図3(b)は、−1<(Ev_target−Ev_now)<1の範囲では、Mdata_exposureの演算方法は図3(a)と共通であり、それ以外の範囲では、Ev_target−Ev_nowが変化したときのMdata_exposureの変化量(ゲイン)を大きくしている。これは、撮像装置100内部の画像処理やPCの画像処理ソフト等によって、多少の露出ズレであれば、画像の輝度レベルを調整することによって容易に補正ができるが、露出ズレが大きい画像では黒つぶれや白飛びを補正することができない、補正してもノイズが目立つ等、静止画としての画質の劣化度合いが大きくなるためである。
図3(c)は、横軸と縦軸は図3(a)、図3(b)と共通で、Mdata_exposureの演算方法の更に他の例を示したグラフである。図3(c)において、Mdata_exposureは、以下の計算式で演算する。
Mdata_exposure=(2(|Ev_target−Ev_now|)−1)/(2(1/3)−1)
Ev値は、撮像素子に入射される光量を底を2とした対数で表現した単位系である。つまりEv値が1変化すると、光量は2倍あるいは1/2倍となる。上式はAPEXシステムの単位系を実際の光量の単位系に変換した後に正規化を行っており、より正確に露出のズレ量をメタデータMdata_exposureで表現することができる。
図4を用いてホワイトバランスのメタデータ生成方法について詳細を説明する。図4(a)のグラフはR−Y、B−Yの色差を座標としている。上述したAWB用信号の座標が、図4(a)の原点O付近に位置しているときは、RGBのバランスが取れている、即ちホワイトバランスが合っていることを示している。逆に原点Oから離れているほど、ホワイトバランスがズレていることを示している。AWB用信号の図4(a)の座標上でのベクトルをWB_Vectorと定義する。
図4(b)、図4(c)のグラフの横軸はWB_Vectorの大きさとし、縦軸を生成されるメタデータMdata_wbとしたグラフの一例を示している。上述したように横軸は、値が大きくなるほどホワイトバランスがズレた画像となる。図4(b)において、Mdata_wbは、以下の計算式で演算する。
Mdata_wb=|WB_Vector|/WB_TH
つまり、ホワイトバランスの最適値からのズレ量を所定の閾値WB_THで正規化している。ここで、WB_THは、ホワイトバランスのズレ量の許容値として設定される。色のズレ量の許容値は個人差も大きく一意に決めるのは困難であるため、ユーザーが任意で設定できるようにしてもよい。また光源によっては、原点に収束し得ない場合もあるため、その場合は、WB_THの閾値を広げてもよいし、図4(a)の原点を光源に合わせてシフトさせてもよい。本演算により、Mdata_wbは0に近いほどホワイトバランスが適正になっており、1よりも大きいほどホワイトバランスがズレていることを示すデータとなる。
図4(c)は、横軸と縦軸は図4(b)と共通で、Mdata_wbの演算方法の他の例を示したグラフである。図4(c)は、|WB_Vector|<WB_TH2の範囲では、Mdata_wbの演算方法は図4(b)と共通であり、それ以外の範囲では、|WB_Vector|が変化したときのMdata_wbの変化量(ゲイン)を大きくしている。これは、撮像装置100内部の画像処理やPCの画像処理ソフト等によって、多少の色ズレであれば、画像の色レベルを調整することによって容易に補正できるが、色ズレが大きい画像ではノイズが目立つようになる等、静止画としての画質の劣化度合いが大きくなるためである。
図5乃至図10を用いて像振れのメタデータ生成方法について詳細を説明する。図5(a)は、像振れのメタデータを生成するためのブロック図の一例である。図5(a)は、図1に対してシステム制御部121内部の処理を追加したものであり、システム制御部121外部のブロックは、図1で説明した通りであるため説明は省略する。
振れ補正量演算部201は、角速度センサ120の角速度検出結果に基づいて、補正光学系102の駆動位置を算出し、補正光学系駆動部107に駆動指示を送る。振れ量演算部202は、角速度センサ120の出力に基づいて、撮像素子105の電荷蓄積時間中の撮像装置100に加えられた振れ量を演算する。メタデータ生成部203は、振れ補正量演算部201と振れ量演算部202の出力に基づいて、メタデータ生成部113に渡す像振れのメタデータを演算する。
図6(a)乃至図6(c)は、メタデータの演算タイミングを説明するためのグラフである。図6(a)は、横軸を時間、縦軸を撮像素子105の各ライン毎の電荷蓄積及び読出しタイミングとし、2フレーム分の画像の動作タイミングを示したグラフである。説明を分かりやすくするため、時間的に前のフレームの画像をフレーム1、後のフレームの画像をフレーム2とする。
図6(a)において、時間T10は撮像素子105のフレーム1の一方の端のラインの電荷蓄積が始まるタイミングを示しており、他方の端に向かって順次時系列に、斜線の平行四辺形の左側の辺のタイミングで電荷の蓄積が開始されていく。時間T11は時間T10で電荷蓄積が始まったラインについて、電荷の読出しが開始されるタイミングを示しており、時間T11から始まる太線部は、各ラインの電荷の読出しが行われるタイミングを示している。時間T10とT11の間の時間はシャッタ速度となる。時間T12は、フレーム1の全ラインの電荷蓄積及び読出しが終了したタイミングとなる。時間T20、T21、T22は、フレーム2における撮像素子105の電荷蓄積開始、電荷読出し開始(電荷蓄積終了)、全電荷読出し終了の各タイミングを示している。
図6(b)は、横軸を時間、縦軸を振れ補正量演算部201の出力を撮像面上での移動画素数に換算した結果とし、その時間による変化を示したグラフである。図6(c)の実線グラフは、横軸を時間、縦軸を振れ量演算部202の出力を撮像面上での移動画素数に換算した結果とし、その時間による変化を示したグラフである。
図6(b)は、補正光学系102によって像振れ補正がどれだけ行われたかを示している。図6(c)の実線グラフは、上記フレーム1及びフレーム2の電荷蓄積開始から電荷読出し終了までの時間中に、撮像装置100にどれだけの振れが生じたかを示している。そのため、フレーム1の振れ量は時間T10から始まり、時間T12で終了するグラフとなっており、フレーム2の振れ量は時間T20から始まり、時間T22で終了するグラフとなっている。動画像の振れ量を評価する場合は、フレーム1とフレーム2の間に生じる振れ量即ち、T10とT12の中間の時間から、T20とT22の中間の時間に生じる振れ量を演算する必要がある。一方本実施形態は、動画像の各フレームから静止画を生成する用途に関する発明であるため、各フレームの画像を生成する時間内に生じる振れ量の演算を行っている。
図6(b)と図6(c)のグラフを比較すると、フレーム1とフレーム2について、撮像装置100に加えられた振れをどれだけ正確に補正したかを求めることができる。フレーム1については、図6(b)の点Aから点Cまでの振れ補正量の軌跡と図6(c)のフレーム1の振れ軌跡がほぼ一致しており、フレーム1の最終的な振れ量は小さくなっている。一方フレーム2については、図6(b)の点Bから点Dまでの振れ補正量の軌跡と図6(c)のフレーム2の振れ軌跡は以下に説明するように、一致しない軌跡となっている。
まず、点Bの縦軸の座標は、点Aとは異なり、0ではない数値B0となっている。そのため、図6(c)のT20からの振れ軌跡と比較するためには、このB0を図6(b)のグラフから減算する必要がある。この減算を行った結果を、図6(c)の点線グラフで表記する。図6(c)の点線と実線のグラフを比較すると、両者には差異が生じている。これは、以下の理由による。動画像の振れ補正は、補正限界まで100%の振れ補正を継続すると振れ補正ができなくなり、振れが補正された状態と補正されない状態が繰り返され、品位の悪い映像となってしまう。これを回避するため、補正光学系102が補正限界に近づく際、振れ補正量演算部201内部の低周波数帯域遮断用のフィルタの遮断周波数を変更する等の制御を行い、振れ補正効果を弱め、補正光学系102を連続的に動作させ続ける制御が一般的に行われる。一方静止画の振れ補正は、静止画露光中は補正限界まで、できるだけ100%に近い振れ補正を行うことが要求される。この動画像と静止画の振れ補正の考え方の差異によって、図6(c)の差異が生じる。即ち、フレーム2において、本来静止画としての振れ補正を行うためには、図6(c)の実線の軌跡に従って補正光学系102を制御することが望ましいが、動画撮影においては、補正限界に近づかないように点線の軌跡に従って制御している。そして、両者の差異がフレーム2の振れ量となる。
図7(a)のグラフは、横軸が撮像素子105の横方向の振れ量、縦軸は縦方向の振れ量(単位は画素)を示している。図6(b)、図6(c)のグラフが、撮像素子105の横あるいは縦のどちらか一方の振れ補正量、振れ量を示しているとすると、フレーム2の一方の軸の最終的な振れ量は図6(c)のShake_Amountとなる。これを縦横両方の軸で演算すると、動画像の各フレームの振れ量は図7(a)に示すように二次元の座標上で表現することができる。この二次元座標上での振れのベクトルをShake_Vectorと定義する。当然のことながら、Shake_Vectorの座標が原点に近いほど、振れは小さくなる。
図7(b)、図7(c)のグラフの横軸をShake_Vectorの大きさとし、縦軸を生成されるメタデータMdata_shakeとしたグラフの一例を示している。上述したように横軸は、値が大きくなるほど振れが大きい画像となる。図7(b)において、Mdata_shakeは、以下の計算式で演算する。
Mdata_shake=|Shake_Vector|/Shake_TH
つまり、撮像素子105上での振れ量を所定の閾値Shake_THで正規化している。ここで、Shake_THは、撮像面上での許容振れ量として設定される。振れ量の許容値は撮像素子105の画素数や撮影光学系の解像度等にも依存するため、一意に決めるのは困難であるが、例えば許容錯乱円の半径の数値等とする。また、ユーザーが任意で設定できるようにしてもよい。本演算により、Mdata_shakeは0に近いほど振れ量が静止画として問題ないレベルになっており、1よりも大きいほど振れが大きい画像になっていることを示すデータとなる。
図7(c)は、横軸と縦軸は図7(b)と共通で、Mdata_shakeの演算方法の他の例を示したグラフである。図7(c)は、|Shake_Vector|<Shake_TH2の範囲では、Mdata_shakeの演算方法は図7(b)と共通である。しかし、それ以外の範囲では、|Shake_Vector|が変化したときのMdata_shakeの変化量(ゲイン)を大きくしている。これは、撮像装置100内部の画像処理やPCの画像処理ソフト等によって、多少の振れであれば、公知の画像復元の技術等を用いて容易に補正ができるが、振れが大きい画像では疑似輪郭やノイズ等が目立つようになり、静止画としての画質の劣化度合いが大きくなるためである。
図8のグラフを用いて、Mdata_shakeの演算方法の他の例について説明する。図7においては、振れ補正量演算部201で補正した振れ補正量と振れ量演算部202で検出した振れ量との全電荷読出し終了時点での差分を用いて、Mdata_shakeの演算を行った。多くの場合には、この演算方法で正しく動画像の各フレームの振れ量を表現できるが、図8(a)に示すように正しく表現することができない場合もある。図8(a)は、横軸と縦軸は図7(b)と共通であり、撮像素子105の電荷蓄積開始から全電荷読出し終了までの、撮像面上での振れ軌跡の例を示したグラフである。図8(a)の例では、全電荷読出し終了は点A0であり、原点Oから近い点になっているが、途中の軌跡はA0よりも原点Oから離れた座標を通っている。シャッタ速度が速い場合には頻度は非常に少ないが、シャッタ速度が遅くなるにつれて、このような軌跡を描く頻度が増えていく。この場合全電荷読出し終了時点のA0だけでは、動画像の各フレームの振れ量を正しく表現することができない。
そこで、上記Shake_Amountに代わる振れ量の演算方法を図8(b)を用いて説明する。図8(b)のグラフは、図8(a)の振れ軌跡について、所定時間毎の移動位置をA1〜A7でプロットしたグラフである。そして、振れ量の演算式を以下の式とする。
|A1−O|+|A2−A1|+|A3−A2|+|A4−A3|+|A5−A4|+|A6−A5|+|A7−A6| …(式1)
(式1)は、所定時間毎の撮像面上での振れの大きさを、電荷蓄積開始から全電荷読出し終了まで順次積算していく式(積分値)となっている。(式1)によれば、振れ軌跡の全移動距離を算出することができ、上述した動画像の各フレームの振れ量を正しく表現することができない問題を回避することができる。なお、図7(b)あるいは図7(c)において、(式1)の演算結果を|Shake_Vector|と置きかえることによって、Mdata_shakeを算出することができる。
上記Shake_Amountに代わる振れ量の演算方法の別の例を図8(c)を用いて説明する。図8(c)は、図8(b)の原点OからA2までの振れ軌跡を拡大表示したグラフである。図に示すように、横軸とベクトルA1−Oとが成す角度をθ0、横軸とベクトルA2−A1が成す角度をθ1、ベクトルA1−OとベクトルA2−A1との相対角度をθ2とすると、θ2=θ0−θ1となる。振れ量の画像平面上でのベクトルの軌跡が直線に近い場合、撮像装置100内部の画像処理やPCの画像処理ソフト等で振れのない画像へ復元することは比較的容易であるが、複雑な軌跡を描くほど、復元は困難になっていく。よって、所定時間毎(単位時間あたり)の撮像面上での振れの大きさを積算する際に、差分ベクトルの角度変化θ2が大きくなるに従って値が大きくなるゲインを乗算する、という処理を行うことによって、復元の困難さを考慮したデータにすることができる。例えば、|A1−O|に対して|A2−A1|を積算する際に、以下のような演算を行う方法が考えられる。
|A1−O|+|A2−A1|(1+sinθ2)
本式によれば、θ2が0degのときはsinθ2=0であり、θ2が90degのときはsinθ2=1となり、θ2の大きさに応じたゲインを設定することができる。本演算を電荷蓄積開始から全電荷読出し終了まで行い、その結果を図7(b)あるいは図7(c)の|Shake_Vector|と置きかえることによって、振れの復元の容易さまで考慮したMdata_shakeを算出することができる。
Mdata_shakeの演算方法のさらに他の例について説明する。図5(b)は、振れのメタデータを生成するためのブロック図の一例である。図5(b)は、図5(a)に対して符号301乃至303の各ブロックを追加したものであるため、その他のブロックについての説明は省略する。
動きベクトル検出部303は、信号処理部111で生成された現在の映像信号に含まれる輝度信号と、動きベクトル検出部303内部の画像メモリに格納された1フレーム前の映像信号に含まれる輝度信号に基づいて画像の動きベクトルを検出する。動きベクトル検出部303によって検出された動きベクトル出力は、パンニング判定部301、パンニング速度演算部302に供給される。なお、動きベクトル検出部303は必須の構成ではない。
パンニング判定部301は、角速度センサ120あるいは動きベクトル検出部303の出力に基づいて、撮像装置100がパンニング状態であるかどうかの判定を行う。パンニング速度演算部302は、パンニング判定部301により撮像装置100がパンニング状態であるという判定が行われているときは、現在のパンニング速度を演算して、振れ量演算部202に供給する。パンニング状態でないという判定のときは、パンニング速度はゼロとする。パンニング速度の演算は、角速度センサ120の出力あるいは動きベクトル検出部303の出力、またはその両方から演算する。振れ補正量演算部202は、パンニング速度演算部302によって演算されたパンニング速度を考慮した振れ量の演算を行う。
動画像の撮影においては、静止画撮影とは異なりパンニング動作は頻繁に行われる。主被写体が動く場合、主被写体を画面内の中央付近に保持するような撮影は特に頻繁に行われる。このとき、上述した撮像面上での振れ量を正規化してメタデータとして保持する方法のみを用いると、パンニングを行っている間は、全て振れが大きいことを示すデータとなってしまう。主被写体の動きに合わせてパンニングを行っている場合は、所謂静止画の流し撮り撮影と同じ撮影を行っている状態となるため、パンニングを行っている間の動画像の各フレームが全て振れが大きいと判定されることは適切ではない。
そこで、パンニング判定部301ではまず、撮像装置100がパンニングされている状態であるかどうかの判定を行う。パンニングの判定方法には公知の方法を用いればよい。例えば、角速度センサ120の出力あるいは動きベクトル検出部303の出力、又はその積分出力(積分値)が所定値を超えたとき、パンニングと判定する方法等がある。
パンニング速度演算部302では、パンニングの速度を演算する。パンニングの速度は、角速度センサ120の出力の平均値を演算すれば算出することができる。また、動きベクトル検出部303の出力を用いてもよい。動きベクトル検出部303の出力を用いたパンニング速度の演算方法について、図9を用いて説明する。図9(a)は、画面中央の移動している乗り物を、画面中央に保持するように撮影している画像を示している。動きベクトル検出には画像を複数ブロックに分割し、各ブロック毎に動きベクトルを算出するブロックマッチング法を用いることとし、点線は動きベクトル検出を行う各ブロックを示している。
図9(b)は、各ブロックにおける動きベクトル検出の結果を、矢印の方向と大きさで示している。太線枠内の動きベクトルは、乗り物の動きベクトルを示し、太線枠外の動きベクトルは、それ以外の背景領域の動きベクトルを示している。背景領域の動きベクトルの平均値をVector_Backとし、乗り物の領域の動きベクトルの平均値をVector_Carとすると、パンニング速度は、Vector_Back−Vector_Carで演算することができる。上式は、乗り物の領域の動きベクトルをゼロにするためのパンニング速度である。乗り物の領域の動きベクトルがゼロの場合は、乗り物の動きに対して撮影が100%追従していることを示し、理想的な流し撮りに近い状態になっているということができる。
図10を用いて、図5(b)の振れ量演算部202におけるパンニング速度を考慮した振れ量の演算について説明する。図10(a)は、横軸を時間、縦軸を角速度としたときの、角速度センサ120の出力(実線)、パンニング速度演算部302により演算されるパンニング速度(点線)の出力を示したグラフである。図10(a)は、撮像装置100がパンニングされているときのグラフを示しており、角速度センサの出力はパンニング速度に対して周波数の高い振れ角速度信号が重畳された波形となっている。
ここで、時間T30を撮像素子105の電荷蓄積開始、時間T31を全電荷読出し終了のタイミングとする。このとき、図6(c)を使って説明した、パンニング速度を考慮しない演算方法で振れ量の演算を行うと、その結果は図10(b)に示すグラフとなる。図10(a)はパンニング速度が常に発生している状態のグラフであるため、これを積分して振れ量を算出するとパンニングによる撮像装置100の動きが積分され、振れ量は図10(b)に示すように大きな値となる。補正光学系102は、通常パンニングの動きは補正しないように制御するため、図10(b)に示す振れ量と振れ補正量演算部201の差分に基づいて演算されるメタデータMdata_shakeも大きな値となる。
一方、図10(c)は、角速度センサ120の出力からパンニング速度を減算した結果を積分して、振れ量を算出したグラフである。図10(c)は、パンニングの動き成分を除外した振れ量となっている。補正光学系102は、通常パンニングの動きは補正しないように制御するため、図10(c)に示す振れ量と振れ補正量演算部201の出力は近い出力となり、両者の差分に基づいて演算されるメタデータMdata_shakeは小さな値となる。
これによって、ユーザーがパンニングを行った場合に、常にMdata_shakeが大きな値となり、振れが大きいと判定されてしまう現象を回避することができる。なお、主被写体が存在せず、風景のみをパンニングして撮影する場合は、上述した流し撮りにはならず、各フレームの画像は単純に風景が振れた画像になっている。このような場合には、パンニング判定部301でパンニングではないという判定を行うことで、画像の振れが大きいのにもかかわらず小さいと判定されてしまう現象の発生を防ぐことができる。この判定は、図9で説明した動きベクトルを用いることで行うことができる。例えば、画面全体の動きベクトルが同じ方向を向いている場合は、主被写体を追いかけた撮影ではないと判断することができる。
ここまでの説明においては、補正光学系102あるいは撮像素子105を駆動する機構があることを前提に説明してきた。このような振れを光学的に補正する手段を有していない撮像装置の場合は、図5(a)、図5(b)において、振れ補正量演算部201がない構成となる。そのため、Mdata_shakeの演算は、振れ量演算部202の出力のみを用いて行えばよく、それ以外の演算方法は振れを光学的に補正する手段を有している場合と同じとなる。
次に、ユーザーが動画像の中から最適な静止画を選ぶことができるようにするための、上記4種類のメタデータMdata_focus、Mdata_exposure、Mdata_wb、Mdata_shakeの利用方法の例について説明する。
まず、図11にユーザーが動画像データから静止画を生成するまでのフローチャートを示す。S100はユーザー操作であり、ユーザーが撮像装置100の操作部材(不図示)を操作し、撮影された動画像から静止画を生成するためのモードに設定し、静止画を生成するための動画像を選択することによって、本フローチャートの処理が開始される。S101では、システム制御部121はS100で選択された動画像の全フレームのメタデータを読み込む。S102では、S101で読み込んだメタデータを用いて、ユーザーが最適な静止画を選択するためのアシスト機能を提供する。S103はユーザー操作であり、S102の機能を利用して、ユーザーにより静止画を生成するためのフレームが決定される。S104では、S103でユーザーによって決定されたフレームの画像から、1枚の静止画を作るデコードと、デコードされた画像を更にJPEG圧縮するエンコードが行われる。S105ではS104で生成された静止画が、記録媒体114に記録される。S105の処理の後、本フローチャートの処理は終了となる。
S102のアシスト機能の例を、以下に示す。最も単純な例としては、図12に示すように、Mdata_focus、Mdata_exposure、Mdata_wb、Mdata_shakeの数値を、ダイヤモンド型のグラフに表示し、動画像の再生と同時に表示デバイス112に表示する方法があげられる。ユーザーは、動画像の再生時に、全ての数値が最も内側のダイヤモンドに近い配置となっているフレームの画像を選択することで、静止画として最適なフレームを選択することができる。
また、撮像装置100側で、メタデータが示す評価が高い画像を自動選択する方法も考えられる。例えば、評価が高いフレームの画像から順に表示デバイス112に表示し、ユーザーが優先的に選択することができるようにしたり、評価が高いフレームの画像は目立つように色付けした外枠をつける等の方法を取ることもできる。また、評価が高いフレームが連続して続くと、同じような画像ばかりが抽出される事態が生じるため、公知のシーン切替検知を用いて、各シーンにつき1枚のフレームを選択するようにしてもよい。更に、公知の顔認識機能を用いて、特定の人物の顔が映っている中から、メタデータの評価が高い画像を自動選択するようにしてもよい。
ここで、4つのメタデータから最終的な評価を決定する方法の例について説明する。最も単純な例としては、4つのメタデータMdata_focus、Mdata_exposure、Mdata_wb、Mdata_shakeを足し算した結果を用いる。0に近いほど評価が高く、数値が大きいほど評価の低い画像となる。また、4つのメタデータを掛け算してもよい。1よりも小さいほど評価が高く、数値が大きいほど評価の低い画像となる。また、ユーザーが重みづけを決定することができるようにしてもよい。例えば、故意に露出をずらしたり、故意に色味を変更する場合もあるため、露出ズレは評価対象としない、WBはMdata_wbに1よりも小さい係数を掛けて使用するなどとしてもよい。
このように、4つのメタデータを様々な形で用いることによって、ユーザーが動画像から静止画として最適な画像を容易に選択することができる様々なシステムを提供することができる。
以上説明してきたように、本実施形態においては、フォーカスズレ、露出ズレ、WBズレ、振れの4種類のカメラパラメータについて、静止画として適切な画像かどうかを判断するためのメタデータとして、各々の特性を考慮して最適な演算方法を示した。また、これらの4種類のカメラパラメータについて、動画像撮影時の各フレーム毎に、許容値からのズレ量を当該許容値で正規化して、動画像の各フレームと関連付けて記録するようにした。これによって、上記4種類のパラメータを同じ尺度で判断することができ、どのフレームの画像が静止画として最適であるかを、ユーザーに適切に報知することができる。そして、ユーザーは容易に動画像から最適な静止画を生成することができる。
以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。例えば、上記の4種類のパラメータは全てを生成する必要はなく、いずれか1種類以上のパラメータを用いるシステムであってもよい。
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
100:撮像装置、102:補正光学系、103:絞り、104:フォーカスレンズ、105:撮像素子、110:撮像素子駆動部、111:信号処理部、113:メタデータ生成部、117:距離情報生成部、118:AE用信号生成部、119:AWB用信号生成部、120:角速度センサ、121:システム制御部

Claims (11)

  1. 動画を撮像可能な撮像手段と、
    前記撮像手段により撮像された動画の各フレームの画像の撮影状態の良否を示すメタデータを生成する生成手段と、
    前記動画の各フレームの画像と、該画像の撮影状態の良否を示す前記生成手段により生成されたメタデータとを関連付けて記録する記録手段とを備え、
    前記生成手段は、画像の撮影状態を示す少なくとも1つのデータについて許容値を設定し、前記少なくとも1つのデータを前記許容値を用いて正規化して前記メタデータを生成することを特徴とする撮像装置。
  2. ユーザが前記記録手段に記録された動画から静止画を生成する操作を行う場合に、前記メタデータを用いて、前記動画の各フレームの画像の撮影状態の良否または撮影状態が良いフレームの画像をユーザに報知する報知手段をさらに備えることを特徴とする請求項1に記載の撮像装置。
  3. 前記撮影状態を示す少なくとも1つのデータは、フォーカスのズレ量、露出のズレ量、ホワイトバランスのズレ量、画像の振れ量のいずれか1つ以上のデータであることを特徴とする請求項1または2に記載の撮像装置。
  4. 前記撮像装置の振れを検出する振れ検出手段をさらに備え、前記生成手段は、前記振れ検出手段の出力に基づいて、動画の各フレームにおける、前記撮像手段の電荷蓄積開始から電荷蓄積終了までの間の撮像面上での画像の振れの大きさを示すデータを算出し、前記画像の振れ量とすることを特徴とする請求項3に記載の撮像装置。
  5. 撮像画像に生じる振れを補正する振れ補正手段をさらに備え、前記生成手段は、前記振れ検出手段の出力に基づいて、前記振れ補正手段の振れ補正量および前記撮像装置の振れ量を算出し、前記振れ補正量と前記撮像装置の振れ量の差分に基づいて前記画像の振れ量を算出することを特徴とする請求項4に記載の撮像装置。
  6. 前記生成手段は、前記振れ補正量と前記撮像装置の振れ量の単位時間あたりの差分の積分値を前記画像の振れ量とすることを特徴とする請求項5に記載の撮像装置。
  7. 前記生成手段は、前記振れ補正量と前記撮像装置の振れ量の差分ベクトルの単位時間あたりの角度変化が大きいほど、前記積分値が大きくなるように前記画像の振れ量を算出することを特徴とする請求項6に記載の撮像装置。
  8. 前記撮像装置がパンニング状態であるか否かを判定する判定手段をさらに備え、前記撮像装置がパンニング状態であると判定された場合、前記生成手段は、前記振れ検出手段の出力に基づいてパンニング速度を算出し、撮像面上での画像の振れの大きさを示すデータから前記パンニングによる動き量を減算したデータを前記画像の振れ量とすることを特徴とする請求項4乃至8のいずれか1項に記載の撮像装置。
  9. 動画を撮像可能な撮像手段を備える撮像装置を制御する方法であって、
    前記撮像手段により撮像された動画の各フレームの画像の撮影状態の良否を示すメタデータを生成する生成工程と、
    前記動画の各フレームの画像と、該画像の撮影状態の良否を示す前記生成工程により生成されたメタデータとを関連付けて記録する記録工程とを備え、
    前記生成工程では、画像の撮影状態を示す少なくとも1つのデータについて許容値を設定し、前記少なくとも1つのデータを前記許容値を用いて正規化して前記メタデータを生成することを特徴とする撮像装置の制御方法。
  10. 請求項9に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。
  11. 請求項9に記載の制御方法の各工程をコンピュータに実行させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。
JP2014133246A 2014-06-27 2014-06-27 撮像装置及びその制御方法、プログラム、記憶媒体 Expired - Fee Related JP6355454B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014133246A JP6355454B2 (ja) 2014-06-27 2014-06-27 撮像装置及びその制御方法、プログラム、記憶媒体
GB1603183.3A GB2533237B (en) 2014-06-27 2015-06-17 Image processing apparatus, method for controlling the same, and storage medium
GB1510614.9A GB2528382B (en) 2014-06-27 2015-06-17 Image processing apparatus, method for controlling the same, and storage medium
KR1020150088187A KR101847392B1 (ko) 2014-06-27 2015-06-22 화상처리장치 및 그 제어 방법
CN201510354536.8A CN105323465B (zh) 2014-06-27 2015-06-24 图像处理装置及其控制方法
US14/749,066 US9723208B2 (en) 2014-06-27 2015-06-24 Image processing apparatus, method for controlling the same, and storage medium
DE102015110326.5A DE102015110326A1 (de) 2014-06-27 2015-06-26 Bildverarbeitungsvorrichtung, Verfahren zum Steuern derselben und Speichermedium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133246A JP6355454B2 (ja) 2014-06-27 2014-06-27 撮像装置及びその制御方法、プログラム、記憶媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018084451A Division JP6541835B2 (ja) 2018-04-25 2018-04-25 画像処理装置及びその制御方法、プログラム、記憶媒体

Publications (2)

Publication Number Publication Date
JP2016012811A true JP2016012811A (ja) 2016-01-21
JP6355454B2 JP6355454B2 (ja) 2018-07-11

Family

ID=53784861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133246A Expired - Fee Related JP6355454B2 (ja) 2014-06-27 2014-06-27 撮像装置及びその制御方法、プログラム、記憶媒体

Country Status (6)

Country Link
US (1) US9723208B2 (ja)
JP (1) JP6355454B2 (ja)
KR (1) KR101847392B1 (ja)
CN (1) CN105323465B (ja)
DE (1) DE102015110326A1 (ja)
GB (2) GB2528382B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134177A (ja) * 2016-01-26 2017-08-03 キヤノン株式会社 像振れ検出装置及び方法、及び撮像装置
JP2017139702A (ja) * 2016-02-05 2017-08-10 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
WO2022019197A1 (ja) * 2020-07-21 2022-01-27 ソニーグループ株式会社 撮像装置、レンズ鏡筒装置、撮像方法、送信方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355454B2 (ja) 2014-06-27 2018-07-11 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
CN111028188B (zh) * 2016-09-19 2023-05-02 杭州海康威视数字技术股份有限公司 分光融合的图像采集设备
CN108333848A (zh) * 2017-01-19 2018-07-27 日本电产三协电子(东莞)有限公司 带抖动修正功能光学设备的抖动修正特性评价装置
US10666955B2 (en) * 2017-02-23 2020-05-26 Panasonic Intellectual Property Management, Co., Ltd. Still image generating apparatus and information recording medium used in still image generating apparatus
CN108881703B (zh) * 2017-05-09 2020-07-21 杭州海康威视数字技术股份有限公司 防抖控制方法和装置
JP2019109813A (ja) * 2017-12-20 2019-07-04 京セラドキュメントソリューションズ株式会社 画像処理装置、画像処理方法、画像形成装置及び画像処理プログラム
EP3952276B1 (en) * 2019-03-28 2024-03-27 Sony Group Corporation Image processing device, image processing method, and program
CN111432118B (zh) * 2020-03-26 2021-08-17 Oppo广东移动通信有限公司 图像防抖处理方法、装置、电子设备和存储介质
CN112272297B (zh) * 2020-10-28 2023-01-31 上海科江电子信息技术有限公司 嵌入在解码器端的图像质量静止帧检测方法
JP2023060430A (ja) * 2021-10-18 2023-04-28 キヤノン株式会社 撮像装置の振れ補正効果の評価方法、評価装置およびプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243579A (ja) * 2006-03-08 2007-09-20 Matsushita Electric Ind Co Ltd 撮像装置
JP2010273037A (ja) * 2009-05-20 2010-12-02 Hoya Corp 撮像装置
JP2011022353A (ja) * 2009-07-15 2011-02-03 Canon Inc ブレ補正装置
JP2011023812A (ja) * 2009-07-13 2011-02-03 Nikon Corp 画像記録装置及び画像表示装置
JP2013070265A (ja) * 2011-09-22 2013-04-18 Olympus Corp 画像読出し装置及び画像処理システム
JP2013229856A (ja) * 2012-03-28 2013-11-07 Panasonic Corp 画像処理装置、撮像装置、サーバ装置およびコンピュータプログラム
JP2013232696A (ja) * 2012-04-27 2013-11-14 Canon Inc 記録再生装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385769B2 (ja) * 2004-01-13 2009-12-16 ソニー株式会社 撮像装置
JP2005283965A (ja) * 2004-03-30 2005-10-13 Pentax Corp ブレ量表示装置
JP4446193B2 (ja) * 2005-11-11 2010-04-07 ソニー株式会社 画像処理装置および方法、並びにプログラム
JP5105844B2 (ja) * 2006-12-05 2012-12-26 キヤノン株式会社 撮像装置及び方法
JP2010252078A (ja) * 2009-04-16 2010-11-04 Canon Inc 撮像システム
JP2011137996A (ja) * 2009-12-28 2011-07-14 Canon Inc レンズ装置
JP5600516B2 (ja) * 2010-08-09 2014-10-01 キヤノン株式会社 撮像装置
JP5269034B2 (ja) * 2010-10-19 2013-08-21 キヤノン株式会社 像振れ補正装置およびその制御方法、光学機器、撮像装置
JP5868060B2 (ja) * 2011-08-02 2016-02-24 キヤノン株式会社 像ぶれ補正装置および方法、並びに光学機器、撮像装置
US8896713B2 (en) * 2011-08-15 2014-11-25 Apple Inc. Motion-based video stabilization
JP6355454B2 (ja) * 2014-06-27 2018-07-11 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243579A (ja) * 2006-03-08 2007-09-20 Matsushita Electric Ind Co Ltd 撮像装置
JP2010273037A (ja) * 2009-05-20 2010-12-02 Hoya Corp 撮像装置
JP2011023812A (ja) * 2009-07-13 2011-02-03 Nikon Corp 画像記録装置及び画像表示装置
JP2011022353A (ja) * 2009-07-15 2011-02-03 Canon Inc ブレ補正装置
JP2013070265A (ja) * 2011-09-22 2013-04-18 Olympus Corp 画像読出し装置及び画像処理システム
JP2013229856A (ja) * 2012-03-28 2013-11-07 Panasonic Corp 画像処理装置、撮像装置、サーバ装置およびコンピュータプログラム
JP2013232696A (ja) * 2012-04-27 2013-11-14 Canon Inc 記録再生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134177A (ja) * 2016-01-26 2017-08-03 キヤノン株式会社 像振れ検出装置及び方法、及び撮像装置
JP2017139702A (ja) * 2016-02-05 2017-08-10 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
WO2022019197A1 (ja) * 2020-07-21 2022-01-27 ソニーグループ株式会社 撮像装置、レンズ鏡筒装置、撮像方法、送信方法

Also Published As

Publication number Publication date
US20150381893A1 (en) 2015-12-31
CN105323465A (zh) 2016-02-10
GB2528382A (en) 2016-01-20
US9723208B2 (en) 2017-08-01
JP6355454B2 (ja) 2018-07-11
CN105323465B (zh) 2019-03-12
GB201510614D0 (en) 2015-07-29
GB2533237A (en) 2016-06-15
KR20160001655A (ko) 2016-01-06
GB201603183D0 (en) 2016-04-06
GB2528382B (en) 2016-12-21
KR101847392B1 (ko) 2018-04-10
DE102015110326A1 (de) 2015-12-31
GB2533237B (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6355454B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP6271990B2 (ja) 画像処理装置、画像処理方法
JP4900401B2 (ja) 撮影装置およびプログラム
EP2171685B1 (en) Image processor, image processing method, digital camera, and imaging apparatus
JP6124538B2 (ja) 撮像装置、撮像装置の制御方法、およびプログラム
JP6385212B2 (ja) 画像処理装置及び方法、撮像装置、及び画像生成装置
JP6308748B2 (ja) 画像処理装置、撮像装置及び画像処理方法
JP5453573B2 (ja) 撮像装置、撮像方法およびプログラム
JP2008294785A (ja) 画像処理装置、撮像装置、画像ファイル及び画像処理方法
US20180182075A1 (en) Image processing apparatus, image capturing apparatus, method of image processing, and storage medium
KR101728042B1 (ko) 디지털 촬영 장치 및 이의 제어 방법
JP6541835B2 (ja) 画像処理装置及びその制御方法、プログラム、記憶媒体
WO2013094552A1 (ja) 撮像装置、その制御方法およびプログラム
JP2016142999A (ja) 撮像装置及びその制御方法
JP2011066827A (ja) 画像処理装置、画像処理方法及びプログラム
JP2006253970A (ja) 撮像装置、シェーディング補正データ作成方法およびプログラム
JP2013192121A (ja) 撮像装置及び撮像方法
US11727545B2 (en) Image processing apparatus and image capturing apparatus
RU2761187C1 (ru) Устройство обработки изображения и устройство захвата изображения
JP6584259B2 (ja) 像ブレ補正装置、撮像装置および制御方法
JP6294607B2 (ja) 撮像装置およびその制御方法、プログラム並びに記憶媒体
JP6486453B2 (ja) 画像処理装置、画像処理方法、プログラム
JP6245847B2 (ja) 画像処理装置および画像処理方法
JP2017183983A (ja) 撮像装置、その制御方法、および制御プログラム
JP2008283477A (ja) 画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R151 Written notification of patent or utility model registration

Ref document number: 6355454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees