WO2020186864A1 - 空调系统及其冷媒量的控制方法 - Google Patents

空调系统及其冷媒量的控制方法 Download PDF

Info

Publication number
WO2020186864A1
WO2020186864A1 PCT/CN2019/127452 CN2019127452W WO2020186864A1 WO 2020186864 A1 WO2020186864 A1 WO 2020186864A1 CN 2019127452 W CN2019127452 W CN 2019127452W WO 2020186864 A1 WO2020186864 A1 WO 2020186864A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
conditioning system
heat exchanger
air conditioning
port
Prior art date
Application number
PCT/CN2019/127452
Other languages
English (en)
French (fr)
Inventor
汪俊勇
熊建国
胡知耀
李志强
彭斌
莫灼均
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020186864A1 publication Critical patent/WO2020186864A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to the field of air conditioning technology, and relates to an air conditioning system and a method and equipment for controlling the amount of refrigerant thereof, and a computer-readable storage medium.
  • the standard connecting pipe between the inside and outside of the ordinary air conditioner is 5 meters when it leaves the factory.
  • the internal and external units of the air conditioner are installed separately for a long distance. It is often necessary to install the connecting pipes of 10 meters, 20 meters, and 30 meters. The connecting pipes between the internal and external units exceed a certain length. Additional refrigerant is required.
  • an air conditioning system is provided.
  • the air conditioning system also includes:
  • the on-off valve is set on the refrigerant supplement pipeline.
  • the accumulator is connected in series between the first heat exchanger and the second heat exchanger, and is pre-filled with a preset amount of refrigerant; the accumulator has three ports, and the first port of the accumulator passes The first pipeline is connected to the outlet of the first heat exchanger, the second port of the accumulator is connected to the inlet of the second heat exchanger through the second pipeline, the first throttling device is arranged on the second pipeline, and the accumulator The third port is connected to the suction port of the compressor through a refrigerant supplementary pipeline.
  • a method for controlling the amount of refrigerant in an air conditioning system including:
  • the on-off valve is opened, so that the refrigerant pre-filled in the accumulator is replenished to the refrigerant circulation of the air conditioning system through a refrigerant supplement pipeline.
  • a refrigerant volume control device for an air conditioning system including: at least one processor, at least one memory, and computer program instructions stored in the memory.
  • the computer program instructions When the computer program instructions are When the processor is executed, the method for controlling the amount of refrigerant described in the foregoing embodiment is implemented.
  • a computer-readable storage medium having computer program instructions stored thereon, and when the computer program instructions are executed by a processor, the method for controlling the amount of refrigerant described in the above embodiments is implemented.
  • Fig. 1 is a schematic structural diagram of an air conditioning system according to some embodiments of the present disclosure
  • Fig. 2 is a schematic structural diagram of an air conditioning system according to other embodiments of the present disclosure.
  • FIG. 3 is a flowchart of a method for controlling the amount of refrigerant in an air conditioning system according to some embodiments of the present disclosure
  • Fig. 4 is a schematic structural diagram of an air conditioning system according to still other embodiments of the present disclosure.
  • Fig. 5 is a schematic diagram of the hardware structure of a refrigerant quantity control device according to an embodiment of the present disclosure.
  • the present disclosure provides an air conditioning system and its refrigerant quantity control method, equipment, and computer readable storage medium, so as to at least solve the need to add refrigerant in the engineering installation process for air conditioners with internal and external captain connecting pipes in the related art
  • the project installation is difficult and costly.
  • the air-conditioning system of the embodiment of the present disclosure includes: an accumulator pre-filled with refrigerant, which is arranged in the high-pressure zone of the air-conditioning system, and a refrigerant supplement pipe that connects the accumulator and the suction port of the compressor and is provided with an on-off valve Through the opening and closing control of the on-off valve to the refrigerant supplementary pipeline, the amount of refrigerant participating in the refrigerant cycle is controlled, thereby solving the need for additional refrigerant in the installation process of the air conditioner with the inner and outer captain connecting pipe.
  • the problem of high cost reduces the difficulty and cost of engineering installation of the air-conditioning system; and the above-mentioned air-conditioning system realized by adopting a three-port accumulator, an on-off valve and a refrigerant supplementary pipeline is compared with the two-hole liquid storage in the related technology
  • the air-conditioning system of the embodiment of the present disclosure has a simpler structure, reduces the number of two-way valves, and simplifies the control process.
  • FIG. 1 is a structural diagram of an air conditioning system according to an embodiment of the present disclosure.
  • the air conditioning system includes a compressor 1, a first heat exchanger 2, and a first throttling device 3.
  • the second heat exchanger 4 and a pipeline for connecting the compressor 1, the first heat exchanger 2, the first throttling device 3 and the second heat exchanger 4 in sequence.
  • the air-conditioning system also includes: an accumulator 5 with three ports, a refrigerant supplement pipeline 9 and an on-off valve 6, among which,
  • the accumulator 5 is connected in series in the high-pressure zone pipeline of the air conditioning system through the first port 51 and the second port 52, and a certain amount of refrigerant is pre-filled in the accumulator 5; and the first port 51 of the accumulator 5 passes through the first port 51
  • a pipeline 21 is connected to the outlet of the first heat exchanger 2
  • the second port 52 of the accumulator 5 is connected to the inlet of the second heat exchanger 4 through a second pipeline 41, and the second pipeline 41 is provided with a first Throttle device 3
  • one port of the refrigerant supplement pipeline 9 is connected to the third port 53 of the accumulator 5, and the other port of the refrigerant supplement pipeline 9 is connected to the suction port of the compressor 1
  • the switch valve 6 is set in the refrigerant Supplement the pipeline 9.
  • the high-pressure zone of the air conditioning system refers to the refrigerant circulation area starting from the outlet of the compressor, along the direction of refrigerant flow, to the throttling device installed at the inlet of the heat exchange device as the evaporator; starting from the throttling device, along the refrigerant In the direction of flow, the refrigerant circulation area to the suction port of the compressor is the low pressure area of the air conditioning system.
  • the two ends of the refrigerant circulation pipeline 9 are respectively connected to the accumulator 5 in the high pressure zone and the compressor suction port in the low pressure zone, that is, There is a high and low pressure difference between the two ends of the refrigerant circulation pipeline 9.
  • the switch valve 6 on the refrigerant circulation pipeline 9 is opened, the refrigerant is affected by the high and low pressure difference, and the refrigerant in the accumulator 5 is supplemented to the compressor
  • the supplementary refrigerant participates in the refrigerant circulation of the air conditioning system, thus realizing the control of the refrigerant quantity in the refrigerant circulation.
  • the air-conditioning system provided by the embodiments of the present disclosure has a simple structure and reduces the number of two-way valves. Simplifies the control process.
  • the switch valve 6 is a two-way valve, including but not limited to an electromagnetic two-way valve.
  • the first throttle device 3 includes but is not limited to an electronic expansion valve or a capillary tube.
  • the first heat exchanger 2 is an indoor heat exchanger
  • the second heat exchanger 4 is an outdoor heat exchanger
  • the air conditioning system further includes: a first temperature sensor 7 and a second temperature sensor 8, wherein the first temperature sensor 7 is arranged on the first heat exchanger 2 for detecting the The temperature value of the refrigerant in the middle.
  • the first heat exchanger 2 is formed by connecting multiple sets of U-shaped tubes.
  • the first temperature sensor 7 can be located in the middle of any set of U-shaped tubes along the length direction; the second temperature sensor 8 is provided The outlet of the first heat exchanger 2 is used to detect the temperature value of the refrigerant at the outlet of the first heat exchanger 2.
  • the degree of subcooling of the air conditioning system can be estimated, and the air conditioner can be judged based on the degree of subcooling. Is the amount of refrigerant in the system appropriate?
  • the air conditioning system further includes: a first pressure sensor 19 and a second temperature sensor 8, wherein the first pressure sensor 19 is arranged at the outlet of the first heat exchanger 2 for detecting the first heat exchanger The pressure value of the refrigerant at the outlet of 2; the second temperature sensor 8 is arranged at the outlet of the first heat exchanger 2 to detect the temperature of the refrigerant at the outlet of the first heat exchanger 2.
  • the pressure value of the refrigerant at the outlet of the first heat exchanger 2 can determine the saturation temperature of the refrigerant at this pressure value, and the difference between the saturation temperature and the temperature of the refrigerant at the outlet of the first heat exchanger 2 is The degree of subcooling of the air conditioning system, that is, the degree of subcooling of the air conditioning system can be accurately calculated by this method, so as to determine whether the amount of refrigerant in the air conditioning system is appropriate according to the degree of subcooling.
  • the air conditioning system is provided with the first temperature sensor 7, the second temperature sensor, and the first pressure sensor at the same time, so that the user can choose the method of estimating or calculating the degree of subcooling, or to realize the redundancy of detecting and calculating the degree of subcooling. design.
  • the outlet of the heat exchanger in the embodiments of the present disclosure refers to The outlet determined by the actual flow direction of the refrigerant in the case of cooling or heating.
  • the refrigerant flows through the first heat exchanger 2 from bottom to top.
  • Heater 2 functions as a condenser, and its outlet refers to the port above the condenser in Figure 1.
  • the air conditioning system adds: The third temperature sensor 17 and the fourth temperature sensor 18, or the second pressure sensor 20 and the fourth temperature sensor 17, or the third temperature sensor 17, the second pressure sensor and the fourth temperature sensor 18.
  • the third temperature sensor 17 is arranged in the middle of the second heat exchanger 4 for detecting the temperature of the refrigerant in the middle of the second heat exchanger 4.
  • the second heat exchanger 4 passes through Multiple sets of U-shaped pipes are connected, and the third temperature sensor 17 can be located at the middle position of any set of U-shaped pipes along the length direction; or the third temperature sensor 17 can be replaced by the second pressure sensor 20, and the second pressure sensor 20 can be provided in the first
  • the outlet of the second heat exchanger 4 is used to detect the pressure value of the refrigerant at the outlet of the second heat exchanger 4; the fourth temperature sensor 18 is provided at the outlet of the second heat exchanger 4 to detect the second heat exchanger 4 The temperature value of the refrigerant at the outlet of the heater 4.
  • a four-way valve 12 is generally provided in the air-conditioning system, wherein the outlet of the compressor 1 and the first port of the four-way valve 12 A is connected by a pipeline, the suction port of the compressor 1 is connected with the second port B of the four-way valve 12 by a pipeline; a port of the first heat exchanger 2 and the third port C of the four-way valve 12 are connected by a pipeline Connected, the other port of the first heat exchanger 2 is connected to the first port 51 of the accumulator 5 through a pipeline; one port of the second heat exchanger 4 is connected to the fourth port D of the four-way valve 12 through a pipeline , The other port of the second heat exchanger 4 is connected to the second port 52 of the accumulator 5 through a pipeline;
  • the accumulator 5 is located in the high pressure area in the cooling mode;
  • the throttle device 3 is fully opened, the accumulator 5 is located in the high pressure area in the heating mode.
  • the air-conditioning system further includes: a gas-liquid separator 11, wherein the gas-liquid separator 11 is provided between the refrigerant supplementary pipe 9 and the suction port of the compressor 1, and its function is to separate the refrigerant supplementary pipe
  • the liquid in the refrigerant supplemented by line 9 can prevent the compressor from liquid shock and protect the compressor.
  • the quality of the pre-filled refrigerant in the accumulator 5 is determined according to the different cooling capacities of the models used in the air conditioning system, and the higher the cooling capacity, the higher the quality of the pre-filled refrigerant. For example, when the mass of the refrigerant pre-filled in the accumulator is 0.5 kg to 30 kg, it can at least meet the requirement for additional refrigerant within 30 meters of the connecting pipe between the indoor unit and the outdoor unit.
  • FIG. 3 is a flowchart of a method for controlling the amount of refrigerant in an air-conditioning system according to an embodiment of the present disclosure. As shown in FIG. 3, the process includes the following steps :
  • Step S301 judging whether the amount of refrigerant in the air conditioning system is appropriate
  • step S302 when it is determined that the amount of refrigerant in the air-conditioning system is low, the on-off valve 6 is opened so that the refrigerant pre-filled in the accumulator 5 is replenished to the refrigerant cycle of the air-conditioning system through the refrigerant replenishing pipeline 9.
  • the above process further includes the following steps:
  • step S303 when it is determined that the amount of refrigerant in the air-conditioning system is too high, the on-off valve 6 is closed so that the excess refrigerant in the refrigerant cycle of the air-conditioning system is stored in the accumulator 5 with three ports.
  • step S301 of the embodiment of the present disclosure the following methods are used to flexibly determine whether the amount of refrigerant in various types of air-conditioning systems is appropriate: Determine whether the amount of refrigerant in the air-conditioning system is appropriate according to the degree of subcooling Wherein, when the degree of subcooling is less than the first preset value t1, it indicates that the amount of refrigerant in the air conditioning system is low, and when the degree of subcooling is greater than or equal to the second preset value t2, it indicates that the amount of refrigerant in the air conditioning system is high.
  • the degree of subcooling is calculated by one of the following methods: the degree of subcooling is the difference between the temperature of the refrigerant in the middle of the heat exchanger as the condenser and the temperature of the refrigerant at the outlet of the heat exchanger as the condenser Difference; or the degree of subcooling is the difference between the saturation temperature of the refrigerant and the temperature of the refrigerant at the outlet of the heat exchanger as the condenser, where the saturation temperature corresponds to the pressure value of the refrigerant at the outlet of the heat exchanger as the condenser The saturation temperature.
  • the value range of the first preset value t1 is 0°C ⁇ t1 ⁇ 7°C; the value range of the second preset value t2 is t2 ⁇ 7°C. It should be noted that the value ranges of the first preset value t1 and the second preset value t2 mentioned above are selected as other reasonable value ranges as required.
  • the air-conditioning system runs the proper quantity of refrigerant according to the degree of system subcooling. If the long connecting pipe is installed and the circulating refrigerant quantity in the system is insufficient, the on-off valve 6 is opened to supplement the refrigerant in the accumulator 5 to the system for circulation. If it is installed with a short connecting pipe, the system circulation volume may be too large, and the degree of subcooling will be too large. At this time, the on-off valve 6 is closed, and the excess refrigerant in the system is stored in the accumulator 5.
  • the air conditioning system shown in Figure 1 can only achieve the control and adjustment function of the refrigerant volume in the cooling mode. If the connecting pipe between the internal and external units is too long (for example, 20 meters) and the amount of circulating refrigerant in the system is too small, the air conditioning system's subcooling degree ⁇ T detected by the first temperature sensor 7 and the second temperature sensor 8 will be lower (for example, the subcooling degree ⁇ T ⁇ t1, the value of t1 ranges from 0°C to 7°C), the system opens the two-way valve (equivalent to the above-mentioned on-off valve 6) to supply refrigerant to the system.
  • the connecting pipe between the internal and external units is too long (for example, 20 meters) and the amount of circulating refrigerant in the system is too small, the air conditioning system's subcooling degree ⁇ T detected by the first temperature sensor 7 and the second temperature sensor 8 will be lower (for example, the subcooling degree ⁇ T ⁇ t1, the value of t1 ranges from
  • the system When the degree of subcooling ⁇ T reaches a certain range value, the system considers it If the refrigerant circulation is normal, close the two-way valve. If the connecting pipe between the internal and external units is too short (for example, 3 meters), the amount of refrigerant circulating in the system will be too high, and the air conditioning system's subcooling degree ⁇ T detected by the first temperature sensor 7 and the second temperature sensor 8 will be too high (for example, overcooling). If the temperature is ⁇ T>b, the value of b is in the range of ⁇ 7°C), the two-way valve is closed, and the excessive refrigerant will eventually be stored in the reservoir 5.
  • the system shown in Figure 1 is transformed into the system shown in Figure 4 after adding a four-way valve.
  • the two-way valve (equivalent to the above-mentioned on-off valve 6) remains closed.
  • the amount of refrigerant in the air conditioning system cannot be adjusted.
  • the air-conditioning system shown in Figure 2 can realize the control of the amount of refrigerant in both the cooling mode and the heating mode.
  • the first throttling device 3 plays the role of throttling, and the second throttling device 3'is fully opened.
  • the connecting pipe between the internal and external units is too long (for example, 20 meters)
  • the amount of circulating refrigerant in the system will be too small, and the air conditioning system's subcooling degree ⁇ T detected by the first temperature sensor 7 and the second temperature sensor 8 will be too low (for example, overcooling).
  • Degree ⁇ T ⁇ t1 the value of t1 ranges from 0°C ⁇ 7°C
  • the system will automatically open the two-way valve to supply refrigerant to the system.
  • the degree of subcooling ⁇ T reaches a certain range value, the system considers that the circulation of refrigerant is normal, then Close the two-way valve.
  • the connecting pipe between the internal and external units is too short (for example, 3 meters)
  • the amount of refrigerant circulating in the system will be too high, and the air conditioning system's subcooling degree ⁇ T detected by the first temperature sensor 7 and the second temperature sensor 8 will be too high (for example, overcooling).
  • the degree ⁇ T>t2 and the value range of t2 is ⁇ 7°C
  • the two-way valve is closed, and the excessive refrigerant will eventually be stored in the reservoir 5.
  • the connecting pipe between the internal and external units is too long (for example, 20 meters)
  • the amount of circulating refrigerant in the system will be too small, and the air conditioning system subcooling degree ⁇ T detected by the third temperature sensor 17 and the fourth temperature sensor 18 will be too low (for example, overcooling).
  • Degree ⁇ T ⁇ t1 the value of t1 ranges from 0°C ⁇ 7°C
  • the system will automatically open the two-way valve to supply refrigerant to the system.
  • the degree of subcooling ⁇ T reaches a certain range value, the system considers that the circulation of refrigerant is normal, then Close the two-way valve.
  • the connecting pipe between the internal and external machines is too short (for example, 3 meters)
  • the amount of circulating refrigerant in the system will be too high, and the air conditioning system's subcooling degree ⁇ T detected by the third temperature sensor 17 and the fourth temperature sensor 18 will be too high (for example, overcooling).
  • the degree ⁇ T>t2 and the value range of t2 is ⁇ 7°C
  • the two-way valve is closed, and the excessive refrigerant will eventually be stored in the reservoir 5.
  • Fig. 5 shows a schematic diagram of the hardware structure of a refrigerant quantity control device provided by an embodiment of the present disclosure.
  • the refrigerant quantity control device includes a processor 51 and a memory 52 storing computer program instructions.
  • the aforementioned processor 51 may include a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present disclosure.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 52 may include mass storage for data or instructions.
  • the memory 52 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive, or two or more Multiple combinations of these.
  • the storage 52 may include removable or non-removable (or fixed) media.
  • the memory 52 may be internal or external to the data processing device.
  • the memory 52 is a non-volatile solid state memory.
  • the memory 52 includes read-only memory (ROM).
  • the ROM includes: mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM) or flash memory or A combination of two or more of these.
  • the processor 51 reads and executes the computer program instructions stored in the memory 52 to implement any one of the refrigerant quantity control methods in the foregoing embodiments.
  • the refrigerant quantity control device may further include a communication interface 53 and a bus 50. Among them, as shown in FIG. 5, the processor 51, the memory 52, and the communication interface 53 are connected through the bus 50 and complete the communication between them.
  • the communication interface 53 is mainly used to implement communication between various modules, devices, units and/or devices in the embodiments of the present disclosure.
  • the bus 50 includes hardware, software, or both, and couples the components of the refrigerant quantity control device to each other.
  • the bus may include accelerated graphics port (AGP) or other graphics bus, enhanced industry standard architecture (EISA) bus, front side bus (FSB), hypertransport (HT) interconnect, industry standard architecture (ISA) Bus, unlimited bandwidth interconnect, low pin count (LPC) bus, memory bus, microchannel architecture (MCA) bus, peripheral component interconnect (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • the bus 50 may include one or more buses.
  • the refrigerant quantity control device can execute the refrigerant quantity control method in the embodiment of the present disclosure based on the acquired data, thereby realizing the refrigerant quantity control method described in conjunction with FIG. 3.
  • the embodiments of the present disclosure may provide a computer-readable storage medium for implementation.
  • the computer-readable storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the refrigerant quantity control methods in the foregoing embodiments is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开提供了一种空调系统及其冷媒量的控制方法、设备及计算机可读存储介质。其中,该空调系统包括:设置在空调系统的高压区中的、预先灌注有冷媒的储液器,以及连通储液器和压缩机的吸气口、且设置有开关阀的冷媒补充管路,通过开关阀对冷媒补充管路的开闭控制实现参与冷媒循环的冷媒量的控制。

Description

空调系统及其冷媒量的控制方法
本公开是以申请号为 201910219236.7,申请日为 2019年3月21日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空调技术领域,涉及一种空调系统及其冷媒量的控制方法、设备及计算机可读存储介质。
背景技术
一般普通空调出厂时内外机之间的标准连接管是5米。然而,发明人所知晓的相关技术中存在空调内外机分开长距离安装的情况,经常需要10米、20米、30米等长连接管安装,这种内外机之间的连接管超过一定长度后需要额外追加冷媒。
发明内容
根据本公开的第一方面,提供了一种空调系统,
包括压缩机、第一换热器、第一节流装置、第二换热器,以及用于连接压缩机、第一换热器、第一节流装置和第二换热器的管路,其中,空调系统还包括:
冷媒补充管路;
开关阀,设置在冷媒补充管路上;和
储液器,串联在第一换热器和第二换热器之间,且储液器中预先灌注有预设量的冷媒;储液器具有三个端口,且储液器的第一端口通过第一管路与第一换热器的出口连接,储液器的第二端口通过第二管路与第二换热器的入口连接,第二管路上设置第一节流装置,储液器的第三端口通过冷媒补充管路与压缩机的吸气口连接。
根据本公开的第二方面,提供了一种基于上述实施例所述空调系统的冷媒量控制方法,包括:
判断空调系统的冷媒量是否适量;
在判断出所述空调系统的冷媒量偏低的情况下,打开所述开关阀,以使得所述储液器中预先灌注的冷媒通过冷媒补充管路补充到所述空调系统的冷媒循环中。
根据本公开的第三方面,提供了一种空调系统的冷媒量控制设备,包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现上述实施例所述的冷媒量控制方法。
根据本公开的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被处理器执行时实现上述实施例所述的冷媒量控制方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开一些实施例的空调系统的结构示意图;
图2是根据本公开另一些实施例的空调系统的结构示意图;
图3是根据本公开一些实施例的空调系统的冷媒量控制方法的流程图;
图4是根据本公开再一些实施例的空调系统的结构示意图;
图5是根据本公开实施例的冷媒量控制设备的硬件结构示意图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例,为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细描述。应理解,此处所描述的具体实施例仅用于解释本公开,并不用于限定本公开。对于本领域技术人员来说,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包 括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对于空调内外机分开长距离安装的情况,需要更长的连接管安装,内外机之间的连接管超过一定长度后需要额外追加冷媒,否则空调系统缺冷媒允差,存在可靠性和制冷效果差的风险。然而工程安装现场额外追加冷媒将会导致工程安装难度和成本增加。
有鉴于此,本公开提供了一种空调系统及其冷媒量的控制方法、设备及计算机可读存储介质,以至少解决相关技术中具有内外机长连接管的空调需要在工程安装过程中追加冷媒导致的工程安装难度高、成本大的问题。
本公开实施例的空调系统包括:设置在空调系统的高压区中的、预先灌注有冷媒的储液器,以及连通储液器和压缩机的吸气口、且设置有开关阀的冷媒补充管路,通过开关阀对冷媒补充管路的开闭控制实现参与冷媒循环的冷媒量的控制,从而解决了具有内外机长连接管的空调需要在工程安装过程中追加冷媒导致的工程安装难度高、成本大的问题,降低了空调系统的工程安装难度和成本;并且采用具有三个端口的储液器、开关阀和冷媒补充管路实现的上述空调系统相较于相关技术中采用两孔储液器和多个二通阀组合实现的类似系统而言,本公开实施例的空调系统结构更简单,减少了二通阀的数量,也简化了控制过程。
在一些实施例中,本公开提供了一种空调系统,图1是根据本公开实施例的空调系统的结构示意图,该空调系统包括压缩机1、第一换热器2、第一节流装置3、第二换热器4,以及用于依次连接压缩机1、第一换热器2、第一节流装置3和第二换热器4的管路。在此基础上,该空调系统还包括:具有三个端口的储液器5、冷媒补充管路9和开关阀6,其中,
储液器5通过第一端口51和第二端口52串联在空调系统的高压区管路中,且储液器5中预先灌注有一定量的冷媒;且储液器5的第一端口51通过第一管路21与第一换热器2的出口连接,储液器5的第二端口52通过第二管路41与第二换热器4的入口连接,第二管路41上设置第一节流装置3;冷媒补充管路9的一端口与储液器5的第三端口53连接,冷媒补充管路9的另一端口与压缩机1的吸气口连接;开关阀6设置在冷媒补充管路9上。
空调系统的高压区是指自压缩机的出口开始,沿冷媒流动方向,到作为蒸发器的换热装置的入口上设置的节流装置为止的冷媒循环区域;自该节流装置开始,沿冷媒 流动方向,到压缩机的吸气口为止的冷媒循环区域为空调系统的低压区。
对于上述实施例的空调系统,由于储液器5设置在高压区中,而冷媒循环管路9两端分别连接高压区中的储液器5和低压区中的压缩机吸气口,即在冷媒循环管路9两端之间存在高低压差,此时若打开冷媒循环管路9上的开关阀6,则冷媒受到高低压差的作用,将储液器5中的冷媒补充到压缩机的吸气口处,补充的冷媒参与空调系统的冷媒循环,从而实现了实现冷媒循环中冷媒量的控制。通过上述结构,在空调系统的工程安装过程中,不再需要追加冷媒,解决了具有内外机长连接管的空调需要在工程安装过程中追加冷媒导致的工程安装难度高、成本大的问题,降低了空调系统的工程安装难度和成本。
另外,相较于相关技术中采用两孔储液器和多个二通阀来实现相似功能的空调系统而言,本公开实施例提供的空调系统结构简单,并且减少了二通阀的数量,简化了控制过程。
在一些实施例中,开关阀6为二通阀,包括但不限于电磁二通阀。第一节流装置3包括但不限于电子膨胀阀或毛细管。
在本实施例中,第一换热器2为室内换热器,第二换热器4为室外换热器。
在一些实施例中,空调系统还包括:第一温度传感器7和第二温度传感器8,其中,第一温度传感器7设置在第一换热器2上,用于检测第一换热器2的中部的冷媒的温度值,例如,第一换热器2通过多组U形管连接形成,第一温度传感器7可设在任一组U形管沿长度方向的中间位置;第二温度传感器8设置在第一换热器2的出口处,用于检测第一换热器2的出口处的冷媒的温度值。通过第一换热器2的中部的冷媒的温度值与第一换热器2的出口处的冷媒的温度值的差值,能够估算出空调系统的过冷度,从而根据过冷度判断空调系统的冷媒量是否适量。
在一些实施例中,空调系统还包括:第一压力传感器19和第二温度传感器8,其中,第一压力传感器19设置在第一换热器2的出口处,用于检测第一换热器2的出口处的冷媒的压力值;第二温度传感器8设置在第一换热器2的出口处,用于检测第一换热器2的出口处的冷媒的温度值。通过第一换热器2的出口处的冷媒的压力值可以确定该冷媒在该压力值下的饱和温度,而饱和温度与第一换热器2的出口处的冷媒的温度值的差值就是空调系统的过冷度,即通过该方式能够准确计算出空调系统的过冷度,从而根据过冷度判断空调系统的冷媒量是否适量。
在一些实施例中,空调系统同时设置第一温度传感器7、第二温度传感器和第一 压力传感器,以供用户选择估算或者计算过冷度的方式,或者实现过冷度检测和计算的冗余设计。
对于能够同时实现制冷和制热的空调系统而言,在制冷和制热时,冷媒在换热器中流动的方向是相反的,因此,本公开实施例中的换热器的出口是指在制冷或者制热情况下冷媒实际流动方向所确定的出口。
例如,在上述实施例中,以图1中第一换热器2为室外换热器为例,在空调系统制冷时,冷媒由下至上流过第一换热器2,此时第一换热器2起冷凝器的作用,其出口是指图1中冷凝器上方的端口。
为了能够让上述的空调系统能够在制热模式下也实现冷媒追加,则需要在冷媒流向转向、第二换热器4作为冷凝器时也能够计算出过冷度,则空调系统中增加:第三温度传感器17和第四温度传感器18,或者第二压力传感器20和第四温度传感器17,或者第三温度传感器17、第二压力传感器和第四温度传感器18。
如图2所示,其中,第三温度传感器17设置在第二换热器4的中部,用于检测第二换热器4的中部的冷媒的温度值,例如,第二换热器4通过多组U形管连接形成,第三温度传感器17可设在任一组U形管沿长度方向的中间位置;或者用第二压力传感器20替代第三温度传感器17,第二压力传感器20设置在第二换热器4的出口处,用于检测第二换热器4的出口处的冷媒的压力值;第四温度传感器18设置在第二换热器4的出口处,用于检测第二换热器4的出口处的冷媒的温度值。
参考图2,为了实现在空调系统制冷模式和制热模式下的冷媒流动方向转向,在空调系统中一般设置有四通阀12,其中,压缩机1的出口与四通阀12的第一端口A通过管路连接,压缩机1的吸气口与四通阀12的第二端口B通过管路连接;第一换热器2的一个端口与四通阀12的第三端口C通过管路连接,第一换热器2的另一个端口与储液器5的第一端口51通过管路连接;第二换热器4的一个端口与四通阀12的第四端口D通过管路连接,第二换热器4的另一个端口与储液器5的第二端口52通过管路连接;
在上述具有四通阀12的空调系统中,为了保持让储液器5位于空调系统的高压区,在连接第二换热器4的另一个端口与储液器5的第一端口52的第二管路41上设置有第一节流装置3,和在连接第一换热器2的另一个端口与储液器5的第一端口51的第一管路21上设置有第二节流装置3’。这样,如果第二节流装置3’全开而第一节流装置3节流工作,则在制冷模式下储液器5位于高压区;如果第二节流装置3’ 节流工作而第一节流装置3全开,则在制热模式下储液器5位于高压区。
在一些实施例中,空调系统还包括:气液分离器11,其中,气液分离器11设置在冷媒补充管路9和压缩机1的吸气口之间,其作用是分离从冷媒补充管路9补充过来的冷媒中的液体,以避免压缩机液击,从而保护压缩机。
在一些实施例中,储液器5中预先灌注的冷媒的质量是根据空调系统所应用的机型的不同冷量大小确定的,冷量越大的机型预先灌注的冷媒的质量越多。例如,储液器中预先灌注的冷媒的质量为0.5kg~30kg时,至少能够满足室内机和室外机连接管30米以内的冷媒追加的需求。
在本实施例中提供了一种上述的空调系统的冷媒量控制方法,图3是根据本公开实施例的空调系统的冷媒量控制方法的流程图,如图3所示,该流程包括如下步骤:
步骤S301,判断空调系统的冷媒量是否适量;
步骤S302,在判断出空调系统的冷媒量偏低的情况下,打开开关阀6,以使得储液器5中预先灌注的冷媒通过冷媒补充管路9补充到空调系统的冷媒循环中。
在一些实施例中,上述流程还包括如下步骤:
步骤S303,在判断出空调系统的冷媒量偏高的情况下,关闭开关阀6,以使得空调系统的冷媒循环中过量的冷媒存储到具有三个端口的储液器5中。
判断冷媒量是否适量的方式有多种,例如,根据内外机长连接管的长度以及安装经验确定当前空调系统机型的冷媒是否适量。在一些实施例中,在本公开实施例的步骤S301中,通过下列方式来实时而灵活地判断各种不同型号的空调系统的冷媒量是否适量:根据过冷度判断空调系统的冷媒量是否适量;其中,当过冷度小于第一预设值t1时表示空调系统的冷媒量偏低,当过冷度大于或等于第二预设值t2时表示空调系统的冷媒量偏高。
在一些实施例中,过冷度是通过下列之一的方式计算的:过冷度为作为冷凝器的换热器的中部的冷媒温度与作为冷凝器的换热器的出口处的冷媒温度的差值;或者过冷度为冷媒的饱和温度与作为冷凝器的换热器的出口处的冷媒温度的差值,其中,饱和温度是作为冷凝器的换热器的出口处的冷媒压力值对应的饱和温度。
在一些实施例中,第一预设值t1的取值范围为0℃≤t1≤7℃;第二预设值t2的取值范围为t2≥7℃。需要说明的是,上述的第一预设值t1和第二预设值t2的取值范围根据需要选取为其他合理的数值范围。
通过上述的冷媒量控制方法,当机组运行后,根据系统过冷度来决定是否空调系 统运行冷媒量适量。如果是长连接管安装时,系统循环冷媒量不足时,则打开开关阀6,把储液器5中的冷媒补充到系统中进行循环。如果是短连接管安装时,系统循环量可能会偏多,过冷度会偏大,此时关闭开关阀6,将系统中过多的冷媒储存到储液器5中。
具体而言,图1所示的空调系统只能在制冷模式实现冷媒量的控制调节功能。如果内外机连接管过长(例如20米),系统循环冷媒量偏少时,通过第一温度传感器7和第二温度传感器8检测的空调系统过冷度△T会偏低(例如过冷度△T<t1,t1值范围在0℃~7℃),系统打开二通阀(相当于上述的开关阀6)给系统补冷媒,当过冷度△T达到某一范围值后,系统认为冷媒循环量正常,则关闭二通阀。如果内外机连接管过短时(例如3米),系统循环冷媒量会偏多,通过第一温度传感器7和第二温度传感器8检测的空调系统过冷度△T会偏高(例如过冷度△T>b,b值范围在≥7℃),则关闭二通阀,过多冷媒会最终存储在储液器5中。
图1所示的系统增加四通阀之后变形为图4所示的系统,图4所示的空调系统在制热模式过程中,二通阀(相当于上述的开关阀6)保持关闭,此时不能调节空调系统的冷媒量。
图2所示的空调系统在制冷模式和制热模式下都能实现冷媒量的控制。
1)在制冷模式下:第一节流装置3起节流作用,第二节流装置3’全开。
如果内外机连接管过长(例如20米),系统循环冷媒量会偏少时,通过第一温度传感器7和第二温度传感器8检测的空调系统过冷度△T会偏低(例如过冷度△T<t1,t1值范围在0℃~7℃),系统自动会打开二通阀给系统补冷媒,当过冷度△T达到某一范围值后,系统认为冷媒循环量正常,则关闭二通阀。
如果内外机连接管过短时(例如3米),系统循环冷媒量会偏多,通过第一温度传感器7和第二温度传感器8检测的空调系统过冷度△T会偏高(例如过冷度△T>t2,t2值范围在≥7℃),则关闭二通阀,过多冷媒会最终存储在储液器5中。
2)在制热模式下:第二节流装置3’起节流作用,第一节流装置3全开。
如果内外机连接管过长(例如20米),系统循环冷媒量会偏少时,通过第三温度传感器17和第四温度传感器18检测的空调系统过冷度△T会偏低(例如过冷度△T<t1,t1值范围在0℃~7℃),系统自动会打开二通阀给系统补冷媒,当过冷度△T达到某一范围值后,系统认为冷媒循环量正常,则关闭二通阀。
如果内外机连接管过短时(例如3米),系统循环冷媒量会偏多,通过第三温度 传感器17和第四温度传感器18检测的空调系统过冷度△T会偏高(例如过冷度△T>t2,t2值范围在≥7℃),则关闭二通阀,过多冷媒会最终存储在储液器5中。
通过实验测试表明,至少在空调系统的内外机30米长连接管以内的情况下,利用上述的空调系统及其冷媒量控制方法,能够免追加冷媒,确保系统循环的冷媒量满足需求。上述的冷媒量控制方法还有控制简单的优点。
另外,例如,结合图3描述的本公开实施例的冷媒量控制方法由冷媒量控制设备来实现。图5示出了本公开实施例提供的冷媒量控制设备的硬件结构示意图。
在一些实施例中,冷媒量控制设备包括处理器51以及存储有计算机程序指令的存储器52。
具体地,上述处理器51可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本公开实施例的一个或多个集成电路。
存储器52可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器52可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器52可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器52可在数据处理装置的内部或外部。在特定实施例中,存储器52是非易失性固态存储器。在特定实施例中,存储器52包括只读存储器(ROM)。在合适的情况下,该ROM包括:掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器51通过读取并执行存储器52中存储的计算机程序指令,以实现上述实施例中的任意一种冷媒量控制方法。
在一些实施例中,冷媒量控制设备还可包括通信接口53和总线50。其中,如图5所示,处理器51、存储器52、通信接口53通过总线50连接并完成相互间的通信。
通信接口53,主要用于实现本公开实施例中各模块、装置、单元和/或设备之间的通信。
总线50包括硬件、软件或两者,将冷媒量控制设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA) 总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线50可包括一个或多个总线。尽管本公开实施例描述和示出了特定的总线,但本公开考虑任何合适的总线或互连。
该冷媒量控制设备能够基于获取到的数据,执行本公开实施例中的冷媒量控制方法,从而实现结合图3描述的冷媒量控制方法。
另外,结合上述实施例中的冷媒量控制方法,本公开实施例可提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种冷媒量控制方法。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种空调系统,包括压缩机(1)、第一换热器(2)、第一节流装置(3)、第二换热器(4),以及用于连接所述压缩机(1)、所述第一换热器(2)、所述第一节流装置(3)和所述第二换热器(4)的管路,其中,所述空调系统还包括:
    冷媒补充管路(9);
    开关阀(6),设置在所述冷媒补充管路(9)上;和
    储液器(5),串联在所述第一换热器(2)和所述第二换热器(4)之间,且所述储液器(5)中预先灌注有预设量的冷媒;所述储液器(5)具有三个端口,且所述储液器(5)的第一端口(51)通过第一管路(21)与所述第一换热器(2)的出口连接,所述储液器(5)的第二端口(52)通过第二管路(41)与所述第二换热器(4)的入口连接,所述第二管路(41)上设置所述第一节流装置(3),所述储液器(5)的第三端口(53)通过所述冷媒补充管路(9)与所述压缩机(1)的吸气口连接。
  2. 根据权利要求1所述的空调系统,还包括第一温度传感器(7)以及第二温度传感器(8),在所述空调系统制冷时,所述第一换热器(2)作为冷凝器,其中,
    所述第一温度传感器(7)用于检测所述第一换热器(2)内的冷媒的温度值;
    所述第二温度传感器(8)用于检测所述第一换热器(2)的出口处的冷媒的温度值。
  3. 根据权利要求1所述的空调系统,还包括第一压力传感器以及第二温度传感器(8),在所述空调系统制冷时,所述第一换热器(2)作为冷凝器,其中,
    所述第一压力传感器(19)用于检测所述第一换热器(2)的出口处的冷媒的压力值;
    所述第二温度传感器(8)用于检测所述第一换热器(2)的出口处的冷媒的温度值。
  4. 根据权利要求1所述的空调系统,还包括:第三温度传感器(17)以及第四温度传感器(18),在所述空调系统制热时,所述第二换热器(4)作为冷凝器,其中,
    所述第三温度传感器(17)用于检测所述第二换热器(4)内的冷媒的温度值;
    所述第四温度传感器(18)用于检测所述第二换热器(4)的出口处的冷媒的温度值。
  5. 根据权利要求1所述的空调系统,还包括:第二压力传感器以及第四温度传感 器(18),在所述空调系统制热时,所述第二换热器(4)作为冷凝器,其中,
    所述第二压力传感器(20)用于检测所述第二换热器(4)的出口处的冷媒的压力值;
    所述第四温度传感器(18)用于检测所述第二换热器(4)的出口处的冷媒的温度值。
  6. 根据权利要求1所述的空调系统,其特征在于,所述空调系统还包括四通阀(12),其中,
    所述压缩机(1)的出口与所述四通阀(12)的第一端口(A)通过管路连接,所述压缩机(1)的吸气口与所述四通阀(12)的第二端口(B)通过管路连接;
    所述第一换热器(2)的一个端口与所述四通阀(12)的第三端口(C)通过管路连接,所述第一换热器(2)的另一个端口与所述储液器(5)的第一端口(51)通过管路连接;
    所述第二换热器(4)的一个端口与所述四通阀(12)的第四端口(D)通过第一管路(21)管路连接,所述第二换热器(4)的另一个端口与所述储液器(5)的第二端口(52)通过第二管路(41)管路连接。
  7. 根据权利要求6所述的空调系统,还包括第二节流装置(3’),设在连接所述第二换热器(4)的另一个端口与所述储液器(5)的第二端口(51)的管路上。
  8. 根据权利要求1所述的空调系统,还包括:气液分离器(11),设置在所述冷媒补充管路(9)和所述吸气口之间。
  9. 根据权利要求1至8中任一项所述的空调系统,其中所述储液器(5)中预先灌注的冷媒的质量为0.5kg~30kg。
  10. 根据权利要求1至8中任一项所述的空调系统,其特征在于,其中所述第一换热器(2)和所述第二换热器(4)之间的管路总长度小于或者等于30米。
  11. 一种权利要求1至10中任一项所述的空调系统的冷媒量控制方法,包括:
    判断空调系统的冷媒量是否适量;
    在判断出所述空调系统的冷媒量偏低的情况下,打开所述开关阀(6),以使得所述储液器(5)中预先灌注的冷媒通过冷媒补充管路(9)补充到所述空调系统的冷媒循环中。
  12. 根据权利要求11所述的冷媒量控制方法,其中,
    在判断出所述空调系统的冷媒量偏高的情况下,关闭所述开关阀(6),以使得 所述空调系统的冷媒循环中过量的冷媒存储到所述储液器(5)中。
  13. 根据权利要求11所述的冷媒量控制方法,其中判断空调系统的冷媒量是否适量包括:
    根据过冷度判断所述空调系统的冷媒量是否适量;其中,当所述过冷度小于第一预设值时表示所述空调系统的冷媒量偏低,当所述过冷度大于或等于第二预设值时表示所述空调系统的冷媒量偏高;其中,所述第二预设值大于或等于所述第二预设值。
  14. 根据权利要求13所述的冷媒量控制方法,其中所述过冷度是通过下列之一的方式计算的:
    所述过冷度为作为冷凝器的换热器内的冷媒温度与作为冷凝器的换热器的出口处的冷媒温度的差值;或者
    所述过冷度为冷媒的饱和温度与作为冷凝器的换热器的出口处的冷媒温度的差值,其中,所述饱和温度是作为冷凝器的换热器的出口处的冷媒压力值对应的饱和温度。
  15. 根据权利要求13所述的冷媒量控制方法,其中所述第一预设值t1的取值范围为:0℃≤t1≤7℃。
  16. 根据权利要求13所述的冷媒量控制方法,其中所述第二预设值t2的取值范围为:t2≥7℃。
  17. 一种空调系统的冷媒量控制设备,包括:至少一个处理器(51)、至少一个存储器(52)以及存储在所述存储器(52)中的计算机程序指令,当所述计算机程序指令被所述处理器(51)执行时实现如权利要求11至16中任一项所述的冷媒量控制方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被处理器执行时实现如权利要求11至16中任一项所述的冷媒量控制方法。
PCT/CN2019/127452 2019-03-21 2019-12-23 空调系统及其冷媒量的控制方法 WO2020186864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910219236.7 2019-03-21
CN201910219236.7A CN109899940A (zh) 2019-03-21 2019-03-21 空调系统及其冷媒量的控制方法

Publications (1)

Publication Number Publication Date
WO2020186864A1 true WO2020186864A1 (zh) 2020-09-24

Family

ID=66953421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127452 WO2020186864A1 (zh) 2019-03-21 2019-12-23 空调系统及其冷媒量的控制方法

Country Status (2)

Country Link
CN (1) CN109899940A (zh)
WO (1) WO2020186864A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899940A (zh) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 空调系统及其冷媒量的控制方法
CN110553427B (zh) * 2019-08-16 2021-07-20 盾安环境技术有限公司 空调系统及控制方法
CN113405243A (zh) * 2020-03-16 2021-09-17 青岛海尔空调电子有限公司 空调系统的控制方法
CN112361669B (zh) * 2020-11-26 2023-07-28 珠海格力电器股份有限公司 多联机系统及其控制方法
CN113587253B (zh) * 2021-07-05 2023-03-21 青岛海信日立空调系统有限公司 一种空调器
CN114674095B (zh) * 2022-03-16 2024-04-23 青岛海尔空调器有限总公司 空调器、用于控制空调冷媒的方法、装置和存储介质
CN114739061B (zh) * 2022-04-26 2023-03-21 珠海格力电器股份有限公司 一种灌注量自动匹配装置、方法、控制装置和制冷设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044489A1 (en) * 2005-08-24 2007-03-01 Lg Electronics Inc. Method for controlling amount of refrigerant of dual type unitary air conditioner
CN101839580A (zh) * 2009-03-20 2010-09-22 珠海格力电器股份有限公司 空调系统及判断制冷剂灌注量是否合适的方法
CN102472538A (zh) * 2009-12-10 2012-05-23 三菱重工业株式会社 空调装置及空调装置的制冷剂量检测方法
CN109114757A (zh) * 2018-10-08 2019-01-01 广东美的暖通设备有限公司 空调系统控制方法
CN109899940A (zh) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 空调系统及其冷媒量的控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1952537A (zh) * 2005-10-17 2007-04-25 海尔集团公司 用于多联空调的冷媒循环量控制装置及控制方法
CN201053785Y (zh) * 2007-06-11 2008-04-30 广东美的电器股份有限公司 一种热泵空调器
CN101749825B (zh) * 2008-12-04 2012-10-03 珠海格力电器股份有限公司 用于复合型空调器的冷媒追加控制方法
EP2484995B1 (en) * 2009-09-30 2018-09-19 Mitsubishi Electric Corporation Heat-source-side unit and refrigeration air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044489A1 (en) * 2005-08-24 2007-03-01 Lg Electronics Inc. Method for controlling amount of refrigerant of dual type unitary air conditioner
CN101839580A (zh) * 2009-03-20 2010-09-22 珠海格力电器股份有限公司 空调系统及判断制冷剂灌注量是否合适的方法
CN102472538A (zh) * 2009-12-10 2012-05-23 三菱重工业株式会社 空调装置及空调装置的制冷剂量检测方法
CN109114757A (zh) * 2018-10-08 2019-01-01 广东美的暖通设备有限公司 空调系统控制方法
CN109899940A (zh) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 空调系统及其冷媒量的控制方法

Also Published As

Publication number Publication date
CN109899940A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020186864A1 (zh) 空调系统及其冷媒量的控制方法
JP4762797B2 (ja) マルチ式空気調和システム
US10082324B2 (en) Refrigeration apparatus having leakage or charge deficiency determining feature
EP2891849A1 (en) Heat reclaim for a multifunction heat pump and a multifunction air conditioner
JP2019086251A (ja) マルチ型空気調和装置の制御装置、マルチ型空気調和装置、マルチ型空気調和装置の制御方法及びマルチ型空気調和装置の制御プログラム
JP5885944B2 (ja) マルチ形空気調和装置及びマルチ形空気調和装置の制御方法
CN111397239A (zh) 多联机空调系统及降低多联机空调系统噪音的方法
JP6479181B2 (ja) 空気調和装置
WO2022179607A1 (zh) 三管式多联机空调机组的控制方法
JP5949831B2 (ja) 冷凍装置
CN104583684A (zh) 空调机
CN103913005A (zh) 制冷系统及其控制方法和具该制冷系统的空调
JP6643630B2 (ja) 空気調和装置
CN209101597U (zh) 多联机循环系统及多联机空调
CN114025976A (zh) 用于管理用于机动车辆的热管理装置的方法
CN109387103B (zh) 一种防止空调室内管路温度过高的方法及空调器
CN106813416B (zh) 多联机系统及降低多联机系统中冷媒流动声音的装置
US9939180B2 (en) Heat-recovery-type refrigeration apparatus
CN210951666U (zh) 空调系统
JP2015218954A (ja) 冷凍サイクル装置
JP2019020089A (ja) 冷凍装置
US20200208927A1 (en) Fluid control for a variable flow fluid circuit in an hvacr system
WO2020065766A1 (ja) 空気調和装置
JP2015017722A (ja) 熱交換器及びそれを用いた冷暖房空調システム
JP2020148361A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920475

Country of ref document: EP

Kind code of ref document: A1