WO2020186784A1 - 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用 - Google Patents

一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用 Download PDF

Info

Publication number
WO2020186784A1
WO2020186784A1 PCT/CN2019/117839 CN2019117839W WO2020186784A1 WO 2020186784 A1 WO2020186784 A1 WO 2020186784A1 CN 2019117839 W CN2019117839 W CN 2019117839W WO 2020186784 A1 WO2020186784 A1 WO 2020186784A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
amino acid
broad
antibacterial agent
spectrum antibacterial
Prior art date
Application number
PCT/CN2019/117839
Other languages
English (en)
French (fr)
Inventor
钱勇
邱学青
杨东杰
楼宏铭
刘伟峰
方志强
李致贤
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020186784A1 publication Critical patent/WO2020186784A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids

Definitions

  • the invention belongs to the technical field of natural polymer antibacterial agents, and particularly relates to an amino acid modified lignin broad-spectrum antibacterial agent, and a preparation method and application thereof.
  • Lignin is a kind of natural polymer with polyphenol structure. It has abundant reserves, stable chemical properties and good biocompatibility. It can be used in cosmetics, medicine and food and health care. In recent years, lignin antibacterial materials have also been widely studied. Guo et al. compared the antibacterial activity of commercial water-soluble lignin and self-extracted non-water-soluble lignin and found that the antibacterial effect of water-soluble lignin was significantly better than that of non-water-soluble lignin (Applied Biochemistry and Biotechnology.184(1): 350 -365). Dong et al.
  • antimicrobial peptides are widespread in nature. They are part of the innate immune response to bacterial infections, and are mainly composed of lysine, arginine and a certain proportion of hydrophobic residues. Different from the metabolism of traditional antibiotics, antibacterial peptides exert their antibacterial activity by destroying the plasma membrane of the cell. This mode of antibacterial activity can slow the emergence of bacterial resistance.
  • the high toxicity, short cycle half-life (susceptible to protease hydrolysis) and high production cost of antimicrobial peptides limit its application.
  • the primary objective of the present invention is to provide a method for preparing an amino acid-modified lignin broad-spectrum antibacterial agent.
  • the natural polyphenol structure of lignin makes it have certain antibacterial activity; at the same time, the method of the present invention utilizes the ortho position of the phenolic hydroxyl group in the phenylpropane skeleton of lignin to undergo Mannich reaction, and the natural antibacterial peptide
  • the active amino acids of the present invention are grafted onto the lignin skeleton to improve the antibacterial activity of lignin and expand its antibacterial species; on the other hand, the main raw material lignin of the present invention is derived from plants, has abundant reserves, good biocompatibility, and grafted wood Vegetarian can not only reduce toxicity, but also reduce costs.
  • Another object of the present invention is to provide the amino acid modified lignin broad-spectrum antibacterial agent prepared by the above method.
  • the amino acid-modified lignin broad-spectrum antibacterial agent of the present invention has high antibacterial activity, inhibits both Gram-positive bacteria and negative bacteria, has low toxicity and good biocompatibility.
  • Another object of the present invention is to provide the application of the above-mentioned amino acid-modified lignin broad-spectrum antibacterial agent in the fields of biomedicine, food and cosmetics; it has low toxicity and good biocompatibility, and has a huge application prospect.
  • a preparation method of amino acid modified lignin broad-spectrum antibacterial agent including the following steps:
  • the aldehyde can be formaldehyde, dialdehyde, such as formaldehyde, glyoxal, malondialdehyde, succinaldehyde, glutaraldehyde, etc.; more preferably, it is a low-toxic dialdehyde such as glyoxal.
  • the amino acid may be at least one of lysine, threonine, leucine, methionine, tryptophan, phenylalanine, arginine, histidine, etc.; further preferred It is at least one of basic amino acids such as lysine, arginine and histidine.
  • the lignin may be at least one of industrial lignins such as solvent lignin, enzymatic lignin, alkali lignin, and lignosulfonate.
  • the alkali lignin includes wood pulp alkali lignin, bamboo pulp alkali lignin, wheat straw pulp alkali lignin, reed pulp alkali lignin, bark pulp alkali lignin, alpine pulp alkali lignin, cotton pulp alkali Lignin and so on.
  • the lignosulfonate includes bamboo pulp lignin sulfonate, wheat straw pulp lignin sulfonate, reed lignin sulfonate, bark pulp lignin sulfonate, alpine pulp lignin sulfonate , Cotton pulp cypress lignosulfonate, etc.
  • the industrial lignin used in the present invention is mainly derived from the cooking wastewater of the paper-making and pulping industry. According to different fiber raw materials, pulping processes and extraction methods, their physical and chemical properties are very different, so their applications are also very diverse.
  • Hydrolyzed lignin is the residue obtained after saccharification with acid. It has poor solubility in water and solvents, and poor reaction performance. Most of them have already undergone condensation. , So it is mostly used as fuel.
  • 2Alkali lignin Alkali lignin is mainly derived from alkaline pulping waste liquid such as sulfate method and alkane-alkali method.
  • 3 Lignosulfonate Lignosulfonate is derived from sulfite pulping waste liquid, which has good water solubility and wide application prospects.
  • Other lignins solvent lignin, enzymatic hydrolysis lignin, etc.
  • the concentration of lignin in the alkaline solution may be 2.5-50 wt%.
  • the weight ratio of the lignin, aldehyde and amino acid is preferably 20:1:2-5:1:6.
  • the temperature of the heating reaction is preferably controlled at 60-100°C; the time is preferably controlled at 2-4h.
  • the alkali solution is preferably an aqueous solution with a pH of 12-14.
  • the system after the heating reaction can be neutralized, desalted, and dried to obtain a purified product.
  • the neutralization refers to adjusting the pH of the system to 6-8.
  • the desalination may include dialysis using a dialysis bag with a molecular weight cut-off of 2500 Da, or ultrafiltration using a filter membrane with a molecular weight cut-off of 2500 Da, or an anion-cation resin.
  • the invention also provides the amino acid modified lignin broad-spectrum antibacterial agent prepared by the above method.
  • the amino acid-modified lignin broad-spectrum antibacterial agent of the present invention has high antibacterial activity, has better antibacterial performance than lignin, has an inhibitory effect on Gram-positive and negative bacteria, has low toxicity and good biocompatibility.
  • the invention also provides the application of the above-mentioned amino acid-modified lignin broad-spectrum antibacterial agent in the fields of biomedicine, food and cosmetics.
  • Lignin is a natural polyphenol polymer with high oxidation resistance and light stability. A large number of active oxygen clusters accumulate on the surface. When lignin comes into contact with bacteria, it will release active oxygen clusters and induce oxidative stress. Thereby changing the normal redox physiological process of bacteria and die. Lignin is negatively charged and generally only inhibits gram-positive bacteria, and has no activity against gram-negative bacteria.
  • Modification of active amino acid components in natural antimicrobial peptides can not only enhance the antimicrobial activity of lignin, but also make lignin inhibit gram-negative bacteria, so that lignin has broad-spectrum antibacterial properties, and effectively expands natural polymer lignin
  • the application field of the biomedicine, food and cosmetics has huge application prospects.
  • the present invention has the following advantages and beneficial effects:
  • the present invention grafts the active amino acid components in natural antibacterial peptides to natural lignin, which not only enhances the antibacterial activity of lignin, but also realizes the broad-spectrum antibacterial properties of lignin, which is resistant to Gram-positive and negative bacteria. Both have inhibitory effects.
  • the lignin used in the present invention is derived from plants, grows symbiotically with humans, and has good biocompatibility.
  • the synthetic lignin broad-spectrum antimicrobial agent not only maintains the active amino acid components of natural antimicrobial peptides, but also greatly reduces antimicrobial peptides. Because of its toxicity, it can be widely used in the fields of biomedicine, food and cosmetics.
  • the present invention does not destroy the properties of lignin itself, such as anti-ultraviolet and anti-oxidation properties, so that it can be used as a multifunctional antibacterial agent in the fields of biomedicine, food and cosmetics.
  • the lignin and amino acids used in the present invention have abundant sources, low price, safety, non-toxicity, and environmental protection.
  • Fig. 1 is a graph showing the antibacterial activity of the amino acid-modified lignin broad-spectrum antibacterial agent of Example 1 against Gram-positive Staphylococcus aureus.
  • FIG. 2 is a graph showing the antibacterial activity of the amino acid-modified lignin broad-spectrum antibacterial agent of Example 1 against Gram-negative E. coli.
  • Fig. 3 is a cytotoxicity diagram of the amino acid-modified lignin broad-spectrum antibacterial agent of Example 1.
  • the materials involved in the following examples can be obtained from commercial channels.
  • the Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (E. coli), and human keratinocyte HaCat cells used in the examples were all purchased from Guangdong Huankai Microbial Technology Co., Ltd.
  • Test the antibacterial activity of the prepared amino acid modified lignin broad-spectrum antibacterial agent First, dissolve the antibacterial agent in sterile water. Then, it was serially diluted in a 96-well plate with Muller-Hinton broth. Second, the bacterial suspension is cultured in Mueller-Hinton broth. Further serially dilute to the final experimental concentration in 96-well plates. In addition, two control groups were set up: (1) pure bacteria + culture solution (no lignin broad-spectrum antibacterial agent) and (2) lignin broad-spectrum antibacterial agent + culture solution (no bacteria). After all the microtiter plates were incubated in a 37° C.
  • FIGS. 1 and 2 are graphs showing the antibacterial activity of the amino acid-modified lignin broad-spectrum antibacterial agent prepared in this example against Gram-positive bacteria and Gram-negative bacteria. Lignin has certain activity against gram-positive Staphylococcus aureus itself.
  • the concentration of lignin antibacterial agent is 19g/L
  • Staphylococcus aureus is basically inactivated; on the other hand, lignin has no inhibitory effect on Gram-negative E. coli, and lignin is grafted with arginine in the present invention. It is positively charged and has good killing activity against Gram-negative Escherichia coli.
  • the concentration is 19g/L
  • the survival rate of Escherichia coli is less than 10%.
  • Figure 3 is a cytotoxicity diagram of lignin broad-spectrum antibacterial agents prepared in the examples. When the concentration of amino acid modified lignin broad-spectrum antibacterial agent is as high as 20g/L, the cell survival rate still exceeds 80%, showing good biocompatibility.
  • Example 1 Using the same antibacterial test and cytotoxicity test as in Example 1, the experimental results are basically the same as in Example 1.
  • Example 1 Using the same antibacterial test and cytotoxicity test as in Example 1, the experimental results are basically the same as in Example 1.
  • Example 1 Using the same antibacterial test and cytotoxicity test as in Example 1, the experimental results are basically the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cosmetics (AREA)

Abstract

属于天然高分子抗菌剂技术领域,公开了一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用。制备方法包括以下步骤:含5-50重量份木质素的碱溶液中,加入1-5重量份的醛和1-5重量份的氨基酸,40-120℃加热反应1-6h后,得到氨基酸改性木质素广谱抗菌剂。还提供上述方法制备得到的氨基酸改性木质素广谱抗菌剂。制备方法通过天然抗菌肽中活性氨基酸组分改性木质素,得到氨基酸改性木质素广谱抗菌剂,有效增强木质素的抗菌活性,使其具有高抗菌活性,抗菌性能优于木质素;同时对革兰氏阳性菌和阴性菌均具有抑制作用,具有广谱抗菌性;且毒性低,生物相容性好,在生物医药、食品和化妆品领域有着巨大的应用前景。

Description

一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用 技术领域
本发明属于天然高分子抗菌剂技术领域,特别涉及一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用。
背景技术
在全世界范围内,细菌感染依旧是导致死亡的主要原因。为了预防和控制因细菌感染而引起的高发病率和高死亡率,研究人员一直致力于开发高效的抗菌材料/表面,期望可以在细菌变得危险之前将其消灭。
自1923年亚历山大·弗莱明发现了青霉素以后,进入了抗生素时代。然而,近一个世纪不受限制地使用抗生素已经使抗生素的药效严重减弱。在过去的20年里,细菌耐药性(AMR)的现象在世界各地都在不断上升。2014年,世界卫生组织与会员国编制的一份描述世界细菌耐药性情况的文件表明,抗生素对普通细菌的抗性低到了惊人的水平,已经严重威胁了公共卫生安全,开发新型抗菌材料已成为防治细菌性病原体的迫切需要。
木质素是一种含有多酚结构的天然高分子聚合物,其储量丰富,化学性质稳定,生物相容好,可应用于化妆品、医药和食品保健领域。近年来,木质素抗菌材料也被广泛研究。Guo等人研究对比了商业水溶性木质素与自提取非水溶性木质素的抗菌活性,发现水溶性木质素抗菌效果明显优于非水溶性木质素(Applied Biochemistry and Biotechnology.184(1):350-365)。Dong等人(Industrial Crops and Products.2011,34(3):1629-1634)通过在培养液中添加5%DMSO增加木质素在培养液中的水溶性,其最小抗菌浓度(MIC)达1.25mg/mL,优于商业水溶性木质素(MIC=2.5mg/mL),但是因为木质素整体呈负电性,对革兰氏阴性菌没有灭杀效果。随着纳米技术的不断发展,研究人员利用木质素与无机纳米金属及其金属氧化物共混制备抗菌材料,发现此类材 料对革兰氏阳性菌和革兰氏阴性菌均具备一定的抑制效果(Food Hydrocolloids.2017,7:76-84)。此外,研究发现化学改性也能有效提高木质素抗菌性能。Kaur等人通过乙酰化、环氧化、羟甲基化改性碱木质素制备抗菌材料,发现环氧化改性木质素的抗菌效果最好,对革兰氏阳性菌(芽孢杆菌)和革兰氏阴性菌(克雷伯氏菌)的MIC分别为90和200mu g/disc(Suger Tech.2017,19(6):675-680)。Ma等人通过季铵化改性木质素并与聚苯乙烯共混制备的抗菌膜,因为阳离子季铵盐的存在对革兰氏阴性菌(大肠杆菌)有明显抑制作用(Polymer.2017,114:113-121)。
近几十年来,人们发现天然抗菌肽在自然界中广泛存在,它们属于细菌感染先天免疫应答的一部分,主要由赖氨酸、精氨酸和一定比例的疏水性残基构成。不同于传统抗生素的代谢作用,抗菌肽通过破坏细胞质膜发挥其抗菌活性,这种抗菌活性模式能够减缓细菌耐药性的出现。然而,抗菌肽的高毒性、短循环半衰期(易受蛋白酶水解)以及高生产成本,限制其应用。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种氨基酸改性木质素广谱抗菌剂的制备方法。
木质素天然的多酚结构使其具有一定的抗菌活性;同时,本发明方法利用木质素的苯丙烷骨架中酚羟基的邻位可以发生曼尼希反应,通过曼尼希反应将天然抗菌肽中的活性氨基酸接枝到木质素骨架上,提高木质素的抗菌活性和扩大其抗菌种类;另一方面,本发明的主要原料木质素来源于植物,储量丰富,生物相容性好,接枝木质素既可以降低毒性,也可以降成本。
本发明另一目的在于提供上述方法制备得到的氨基酸改性木质素广谱抗菌剂。本发明的氨基酸改性木质素广谱抗菌剂具有高抗菌活性,对革兰氏阳性菌和阴性菌均有抑制作用,同时毒性低,生物相容性好。
本发明再一目的在于提供上述氨基酸改性木质素广谱抗菌剂在生物医药、食品和化妆品领域中的应用;其毒性低,生物相容性好,有着巨大的应用前景。
本发明的目的通过下述方案实现:
一种氨基酸改性木质素广谱抗菌剂的制备方法,包括以下步骤:
含5-50重量份木质素的碱溶液中,加入1-5重量份的醛和1-5重量份的氨基酸,40-120℃加热反应1-6h后,得到氨基酸改性木质素广谱抗菌剂。
本发明方法中,所述的醛可为甲醛、二醛,如包括甲醛、乙二醛、丙二醛、丁二醛、戊二醛等;进一步优选为低毒性二醛如乙二醛等。
本发明方法中,所述的氨基酸可为赖氨酸、苏氨酸、亮氨酸、蛋氨酸、色氨酸、苯丙氨酸、精氨酸、组氨酸等中的至少一种;进一步优选为碱性氨基酸如赖氨酸、精氨酸和组氨酸等中的至少一种。
本发明方法中,所述的木质素可为溶剂型木质素、酶解木质素、碱木质素以及木质素磺酸盐等工业木质素中的至少一种。
所述的碱木质素包括木浆碱木质素、竹浆碱木质素、麦草浆碱木质素、芦苇浆碱木质素、皮渣浆碱木质素、龙须草浆碱木质素、棉浆柏碱木质素等。
所述的木质素磺酸盐包括竹浆木质素磺酸盐、麦草浆木质素磺酸盐、芦苇木质素磺酸盐、皮渣浆木质素磺酸盐、龙须草浆木质素磺酸盐、棉浆柏木质素磺酸盐等。
本发明采用的工业木质素主要来源于造纸制浆工业的蒸煮废水,根据纤维原料、制浆工艺以及提取方法等的不同,它们的物理化学性质相差很大,因此其应用也是非常多样化的。
工业木质素通常分为四类:①水解木质素:水解木质素是用酸进行糖化后得到的残渣,它对水和溶剂的溶解性都很差,反应性能也很差,大部分已经发生缩合,因此多用作燃料。②碱木质素:碱木质素主要来自于硫酸盐法、烷碱法等碱法制浆废液。③木质素磺酸盐:木质素磺酸盐来自于亚硫酸盐制浆废液,其具有很好的水溶性和广泛的应用前景。④其他木质素:溶剂型木质素、酶解木质素等。
本发明方法中,所述碱溶液中木质素的浓度可为2.5-50wt%。
为进一步更好地实现本发明目的,所述木质素、醛和氨基酸的重量比优选为20:1:2-5:1:6。
为进一步更好地实现本发明目的,所述加热反应的温度优选控制在 60-100℃;时间优选控制在2-4h。
本发明方法中,所述的碱溶液优选为pH12-14的水溶液。
本发明方法中,所述加热反应后体系可通过中和、除盐、干燥,得到纯化的产物。
所述的中和指调节体系pH为6-8。
所述除盐可包括利用截留分子量2500Da的透析袋透析,或利用截留分子量2500Da的滤膜超滤,或过阴阳离子树脂。
本发明还提供上述方法制备得到的氨基酸改性木质素广谱抗菌剂。本发明的氨基酸改性木质素广谱抗菌剂具有高抗菌活性,抗菌性能优于木质素,同时对革兰氏阳性菌和阴性菌具有抑制作用,且毒性低,生物相容性好。
本发明还提供上述氨基酸改性木质素广谱抗菌剂在生物医药、食品和化妆品领域中的应用。木质素是天然多酚聚合物,具有较高的抗氧化性和光稳定性,表面聚集着大量的活性氧簇,当木质素与细菌接触时会释放活性氧簇,诱导细菌发生氧化应激反应,从而改变细菌正常的氧化还原生理过程而死亡。木质素带负电,一般只抑制革兰氏阳性菌,对于革兰氏阴性菌没有活性。通过天然抗菌肽中活性氨基酸组分改性,不但可以增强木质素的抗菌活性,还可以使木质素抑制革兰氏阴性菌,使木质素具有广谱抗菌性,有效拓展了天然高分子木质素的应用领域,在生物医药、食品和化妆品领域有着巨大的应用前景。
本发明相对于现有技术,具有如下的优点及有益效果:
1、本发明将天然抗菌肽中的活性氨基酸组分接枝到天然木质素上,既增强了木质素的抗菌活性,也实现了木质素抗菌的广谱性,对革兰氏阳性和阴性细菌均有抑制作用。
2、本发明使用的木质素来源于植物,与人类共生共长,生物相容性好,合成的木质素广谱抗菌剂既保持了天然抗菌肽中活性氨基酸组分,也大大降低了抗菌肽的毒性,使其可以广泛应用于生物医药、食品和化妆品领域。
3、本发明并未破坏木质素本身特性,如防紫外和抗氧化性能,使其可作为一种多功能抗菌剂应用在生物医药、食品和化妆品领域。
4、本发明使用的木质素和氨基酸来源丰富,价格低廉,安全无毒,绿色 环保。
附图说明
图1是实施例1的氨基酸改性木质素广谱抗菌剂对革兰氏阳性金黄色葡萄球菌的抗菌活性图。
图2是实施例1的氨基酸改性木质素广谱抗菌剂对革兰氏阴性大肠杆菌的抗菌活性图。
图3是实施例1的氨基酸改性木质素广谱抗菌剂的细胞毒性图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下列实施例中涉及的物料均可从商业渠道获得。实施例中使用的革兰氏阳性细菌(金黄色葡萄球菌)和革兰氏阴性细菌(大肠杆菌)、人体角质形成细胞HaCat细胞均购买自广东环凯微生物科技有限公司。
实施例1
将5重量份酶解木质素溶于20重量份pH=14氢氧化钠水溶液中。随后,加入0.5重量份的乙二醛和1.0重量份精氨酸,在搅拌下加热至60℃。反应4h后,用盐酸将反应液pH调节至7.5,透析除盐,干燥得到氨基酸改性木质素广谱抗菌剂。
测试制备得到的氨基酸改性木质素广谱抗菌剂的抗菌活性。首先,将抗菌剂溶解在无菌水中。然后,用Muller-Hinton肉汤在96孔板中连续稀释。其次,在Mueller-Hinton肉汤中培养细菌悬液。在96孔板中进一步连续稀释到最终实验浓度。此外,设置两组对照组:(1)纯细菌+培养液(无木质素广谱抗菌剂)和(2)木质素广谱抗菌剂+培养液(无细菌)。所有微量滴定板在37℃恒温箱中培养18h后,用Synergy Neo 2酶标仪(Bio Tek,德国)测量样本的OD 600值。所述的木质素水溶液浓度梯度为10-1000μg/mL。所示的细菌种类为革兰氏阳性细菌(金黄色葡萄球菌)和革兰氏阴性细菌(大肠 杆菌)。所示的细菌悬浮液实验浓度为5×10 5CFU/mL。图1和图2为本实施例制备的氨基酸改性木质素广谱抗菌剂对革兰氏阳性菌和革兰氏阴性菌的抑菌活性图。木质素对革兰氏阳性金黄色葡萄球菌本身具有一定的活性,木质素浓度为19g/L时,仍有24%的金黄色葡萄球菌存活;而经本发明接枝精氨酸后抗菌活性进一步提升,木质素抗菌剂浓度为19g/L时,金黄色葡萄球菌基本失活;另一方面,木质素对革兰氏阴性大肠杆菌本没有抑制作用,经本发明接枝精氨酸后木质素带正电荷,对革兰氏阴性大肠杆菌也产生了良好的灭杀活性,当浓度为19g/L时,大肠杆菌存活率<10%。
测试制备得到的氨基酸改性木质素广谱抗菌剂的生物相容性。首先,将活性人体角质形成细胞HaCat细胞接种在96孔板上,加入LHC-9培养液培养24h。然后将不同浓度的上述木质素加入上述培养基中,在37℃下孵育。培养24h后,将100μL 5mg/mL的3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物(MTT)加入每个孔中,继续恒温培养4h。离心除去培养液,加入二甲基亚砜,利用酶标仪测试溶液在OD 570的吸光度。图3是实施例制备的木质素广谱抗菌剂的细胞毒性图。氨基酸改性木质素广谱抗菌剂在浓度高达20g/L时,细胞存活率仍超过80%,显示出良好的生物相容性。
实施例2
将0.5重量份碱木质素溶于10重量份pH=14氢氧化钠水溶液中。随后,加入0.2重量份的丁二醛和1.2重量份组氨酸,在搅拌下加热至80℃。反应2h后,用盐酸将反应液pH调节至6,离心超滤除盐,干燥得到氨基酸改性木质素广谱抗菌剂。
采用与实施例1相同的抗菌实验和细胞毒性实验测定,实验结果与实施例1基本相同。
实施例3
将2重量份溶剂型木质素溶于15重量份pH=13氢氧化钠水溶液中。随后,加入0.5重量份的甲醛和1.5重量份赖氨酸,在搅拌下加热至50℃。反 应4h后,用盐酸将反应液pH调节至7,离心超滤除盐,干燥得到氨基酸改性木质素广谱抗菌剂。
采用与实施例1相同的抗菌实验和细胞毒性实验测定,实验结果与实施例1基本相同。
实施例4
将1重量份木质素磺酸盐溶于15重量份pH=13氢氧化钠水溶液中。随后,加入0.1重量份的甲醛和0.5重量份精氨酸,在搅拌下加热至40℃。反应8h后,用盐酸将反应液pH调节至7,离心超滤除盐,干燥得到氨基酸改性木质素广谱抗菌剂。
采用与实施例1相同的抗菌实验和细胞毒性实验测定,实验结果与实施例1基本相同。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于包括以下步骤:含5-50重量份木质素的碱溶液中,加入1-5重量份的醛和1-5重量份的氨基酸,40-120℃加热反应1-6h后,得到氨基酸改性木质素广谱抗菌剂。
  2. 根据权利要求1所述的氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于:所述的氨基酸为赖氨酸、苏氨酸、亮氨酸、蛋氨酸、色氨酸、苯丙氨酸、精氨酸、组氨酸中的至少一种。
  3. 根据权利要求1所述的氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于:所述的氨基酸为碱性氨基酸赖氨酸、精氨酸和组氨酸中的至少一种。
  4. 根据权利要求1所述的氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于:所述的醛为甲醛和二醛中的至少一种。
  5. 根据权利要求1所述的氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于:所述的木质素包括溶剂型木质素、酶解木质素、碱木质素以及木质素磺酸盐的工业木质素中的至少一种。
  6. 根据权利要求5所述的氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于:所述的碱木质素包括木浆碱木质素、竹浆碱木质素、麦草浆碱木质素、芦苇浆碱木质素、皮渣浆碱木质素、龙须草浆碱木质素和棉浆柏碱木质素中的至少一种;所述的木质素磺酸盐包括竹浆木质素磺酸盐、麦草浆木质素磺酸盐、芦苇木质素磺酸盐、皮渣浆木质素磺酸盐、龙须草浆木质素磺酸盐和棉浆柏木质素磺酸盐中的至少一种。
  7. 根据权利要求1所述的氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于:所述碱溶液中木质素的浓度为2.5-50wt%。
  8. 根据权利要求1所述的氨基酸改性木质素广谱抗菌剂的制备方法,其特征在于:所述木质素、醛和氨基酸的重量比为20:1:2-5:1:6;所述加热反应的温度控制在60-100℃;时间控制在2-4h。
  9. 一种氨基酸改性木质素广谱抗菌剂,其特征在于根据权利要求1-8任一项所述的制备方法得到。
  10. 权利要求9所述的氨基酸改性木质素广谱抗菌剂在生物医药、食品和化妆品领域中的应用。
PCT/CN2019/117839 2019-03-20 2019-11-13 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用 WO2020186784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910210984.9 2019-03-20
CN201910210984.9A CN109988317B (zh) 2019-03-20 2019-03-20 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020186784A1 true WO2020186784A1 (zh) 2020-09-24

Family

ID=67129116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117839 WO2020186784A1 (zh) 2019-03-20 2019-11-13 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN109988317B (zh)
WO (1) WO2020186784A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988317B (zh) * 2019-03-20 2020-12-22 华南理工大学 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用
CN112375231A (zh) * 2020-11-12 2021-02-19 齐鲁工业大学 一种高抑菌改性纳米木质素及其制备方法和应用
CN112359638A (zh) * 2020-11-12 2021-02-12 齐鲁工业大学 一种高疏水抑菌淀粉施胶纸及其制备方法
CN112772643B (zh) * 2020-12-23 2022-07-08 浙江理工大学 一种稳定高内相乳液的制备方法及其应用
CN112646197B (zh) * 2020-12-23 2023-02-21 浙江理工大学 一种氨基化木质素及其制备方法和应用
CN112806433A (zh) * 2021-01-08 2021-05-18 安徽丰絮农业科技股份有限公司 一种甘薯保鲜方法
CN113698623A (zh) * 2021-08-06 2021-11-26 江南大学 一种高生物活性木质素及其制备方法
CN113912864B (zh) * 2021-10-26 2022-08-16 华南理工大学 一种仿贻贝足蛋白改性木质素粘附增强材料及其制备方法与应用
CN114177138B (zh) * 2021-12-03 2023-03-17 华南理工大学 一种pH响应乙酰化组氨酸改性木质素载药粒子及其制备方法
CN114591514B (zh) * 2022-03-28 2023-04-28 浙江理工大学绍兴柯桥研究院有限公司 一种用于偶氮颜料的环保型木质素基分散剂及其制备方法
CN114982784B (zh) * 2022-05-24 2023-05-16 雅思汀娜(北京)科技有限公司 一种改性木质素抗菌剂及包含其的抗菌剂组合物
CN116120587B (zh) * 2023-02-02 2024-04-26 广东工业大学 一种pH响应木质素及其制备方法和应用
CN116239792B (zh) * 2023-02-15 2024-04-23 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种中链氨基木质素抗菌剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312315A (zh) * 2017-05-11 2017-11-03 华南理工大学 一种木质素/银复合抗菌剂及其制备方法和应用
CN109988317A (zh) * 2019-03-20 2019-07-09 华南理工大学 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9643165B2 (en) * 2008-06-18 2017-05-09 Board Of Trustees Of The University Of Arkansas Doped-carbon composites, synthesizing methods and applications of the same
CN104628482A (zh) * 2015-02-07 2015-05-20 东北农业大学 木质素粘结生物炭包膜尿素及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312315A (zh) * 2017-05-11 2017-11-03 华南理工大学 一种木质素/银复合抗菌剂及其制备方法和应用
CN109988317A (zh) * 2019-03-20 2019-07-09 华南理工大学 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HU PISAN , YANG CHENG: "Preparation of Waxy Corn Amylopectin/Acryamide Copolymer Modified with Amino Acid and Their Antimicrobial Activities", NEW CHEMICAL MATERIALS, vol. 36, no. 8, 15 August 2008 (2008-08-15), pages 100 - 102, XP055734159, ISSN: 1006-3536 *
WANG CHUNYU: "Synthesis of Graft Copolymers from Enzymatic Hydrolysis Lignin and Amino Acid and Their Adsorbability", CHINESE MASTER'S THESES FULL-TEXT DATABASE, no. 06, 1 January 2011 (2011-01-01), pages 1 - 84, XP055734154, ISSN: 1674-0246 *
YANLI MA, DAI JUNXIU, WU LILI, FANG GUIZHEN, GUO ZHANHU: "Enhanced Anti-Ultraviolet, Anti-Fouling and Anti-Bacterial Polyelectrolyte Membrane of Polystyrene Grafted with Trimethyl Quaternary Ammonium Salt Modified Lignin", POLYMER, vol. 114, 7 April 2017 (2017-04-07), pages 113 - 121, XP055734157, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2017.02.083 *
ZHANG YI , LIU YE , ZHANG HAO , ZHANG ZHUANLING: "Preparation and Properties of Amino Acid Modified Chitosan Antibacterial Material", JOURNAL OF FUNCTIONAL MATERIALS, vol. 48, no. 11, 31 December 2017 (2017-12-31), CN, pages 1 - 7, XP055734165, ISSN: 1001-9731, DOI: 10.3969/j.issn.1001-9731.2017.11.005 *
ZHENG JIFENG;LUO JIAJIA;ZHANG JIANWEI;ZHANG XIAOJUN;WU JUNXING;LÜ QIUFENG: "Preparation and Property of Graft Copolymer from Lignin and Cystine", NEW CHEMICAL MATERIALS, vol. 42, no. 4, 15 April 2014 (2014-04-15), CN, pages 69 - 71, XP055734152, ISSN: 1006-3536 *

Also Published As

Publication number Publication date
CN109988317A (zh) 2019-07-09
CN109988317B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2020186784A1 (zh) 一种氨基酸改性木质素广谱抗菌剂及其制备方法与应用
Zargar et al. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications
CN101717530B (zh) 添加壳聚糖/丝胶的天然橡胶液体浆料及其制备方法
Muhammad Tahir et al. Synthesis of sericin‐conjugated silver nanoparticles and their potential antimicrobial activity
Islama et al. Antibacterial activity of crab-chitosan against Staphylococcus aureus and Escherichia coli
KR101385501B1 (ko) 화장용 바이오셀룰로오스 시트의 제조방법 및 이를 이용하여 제조된 화장용 바이오셀룰로오스 시트
AU2020103920A4 (en) Method for preparing antibacterial polyvinyl alcohol/nano-tio2/3,3',4,4'-benzophenone tetracarboxylic dianhydride composite membrane, and product thereof
CN102108352A (zh) 一种菠萝蛋白酶的固定化方法
CN104624054B (zh) 一种控制膜生物污染杀菌剂的制备方法
CN113367157A (zh) 一种花状银/木质素复合抗菌颗粒的制备方法
Tareq et al. Comparative study of antibacterial activity of chitin and chemically treated chitosan prepared from shrimp (Macrobrachium Rosenbergii) shell waste
Alicea-Serrano et al. Not all spider silks are antimicrobial
CN113813396A (zh) 一种卡那霉素接枝的纤维素基抗菌材料及其制备方法
CN102090699B (zh) 一种具有抗菌活性的黄麻根提取物的制备方法
Hong et al. Preparation and characterization of sericin powder extracted with deep sea water
Razak et al. Biotechnological production of fungal biopolymers chitin and chitosan: their potential biomedical and industrial applications
CN115181770A (zh) 一种酶解壳聚糖制备壳寡糖的方法
CN102146428A (zh) 一种ⅱ型胶原蛋白的提取方法
CN108524945A (zh) 一种庆大霉素改性壳聚糖的制备方法
JPH0269502A (ja) 水溶性低分子化キトサンおよびその製造法
KR20140123131A (ko) 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물
CN114052027A (zh) 壳聚糖多维改性抗菌剂及其制备方法
KR101113729B1 (ko) 항생제 내성균에 대한 항균 효과를 갖는 중분자량의 키토산의 제조 방법 및 이러한 키토산의 용도
CN115466570B (zh) 一种蚕丝基涂覆材料的制备方法和应用
CN113845691B (zh) 一种二维或三维纤维素基多孔抗菌材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920402

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19920402

Country of ref document: EP

Kind code of ref document: A1