WO2020184511A1 - 温度センサユニット及び体内温度計 - Google Patents

温度センサユニット及び体内温度計 Download PDF

Info

Publication number
WO2020184511A1
WO2020184511A1 PCT/JP2020/010006 JP2020010006W WO2020184511A1 WO 2020184511 A1 WO2020184511 A1 WO 2020184511A1 JP 2020010006 W JP2020010006 W JP 2020010006W WO 2020184511 A1 WO2020184511 A1 WO 2020184511A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature sensor
measured
surface side
measurement surface
Prior art date
Application number
PCT/JP2020/010006
Other languages
English (en)
French (fr)
Inventor
憲男 井川
裕也 小寺
光一郎 佐藤
悠 一ノ倉
武志 安才
Original Assignee
Biodata Bank株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biodata Bank株式会社 filed Critical Biodata Bank株式会社
Priority to US17/428,768 priority Critical patent/US11573132B2/en
Priority to JP2020538150A priority patent/JP6755034B1/ja
Priority to CN202310143541.9A priority patent/CN116337278A/zh
Priority to CN202080007497.3A priority patent/CN113286991B/zh
Priority to EP20769584.2A priority patent/EP3936845A4/en
Priority to KR1020217016383A priority patent/KR20210072108A/ko
Priority to AU2020238060A priority patent/AU2020238060B2/en
Priority to KR1020227016974A priority patent/KR20220070347A/ko
Publication of WO2020184511A1 publication Critical patent/WO2020184511A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • G01K7/427Temperature calculation based on spatial modeling, e.g. spatial inter- or extrapolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/165Special arrangements for conducting heat from the object to the sensitive element for application in zero heat flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit

Definitions

  • the present invention relates to a temperature sensor unit and an internal thermometer, particularly a temperature sensor unit and an internal thermometer that can be manufactured at low cost.
  • a core thermometer that measures core body temperature using two heat flux sensors with temperature sensors (temperature measuring elements) attached to the upper and lower surfaces of thermal resistance (insulation material), which has a relatively large area.
  • temperature sensors temperature measuring elements
  • thermal resistance insulation material
  • FIG. 4 (a) is a diagram illustrating a schematic configuration of a conventional deep thermometer
  • FIG. 4 (b) is a diagram illustrating a heat equivalent circuit of a conventional deep thermometer.
  • the first heat flux sensor 201 and the second heat flux sensor 202 are brought into close contact with the body surface of the subject.
  • the thermal resistance value of the first thermal resistor 221 of the first thermal flux sensor 201 is R1
  • the temperature measured by the first temperature sensor 211 on the upper surface of the first thermal resistor 221 is T1
  • the second temperature on the lower surface Let T2 be the temperature measured by the sensor 212.
  • the thermal resistance value of the second thermal resistor 222 of the second thermal flux sensor 202 is R2 ( ⁇ R1)
  • the temperature measured by the third temperature sensor 213 on the upper surface of the second thermal resistor 222 is T3
  • T4 be the temperature measured by the fourth temperature sensor 214.
  • the core thermometer 200 shown in FIG. 4A can be represented by the heat equivalent circuit shown in FIG. 4B.
  • the unknown numbers in the above equations (9) and (10) are the thermal resistance of the subcutaneous tissue 230. Only the values Rz and core body temperature Ti. Therefore, we solved the simultaneous equations for the unknown thermal resistance value Rz and core body temperature Ti of the subcutaneous tissue 230, and from equations (9) and (10), the thermal resistance value of the subcutaneous tissue 230, which varies from place to place and from individual to individual. If Rz is eliminated, the core body temperature Ti can be measured (calculated) relatively accurately.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature sensor unit and an internal thermometer that can be manufactured at low cost.
  • the temperature sensor unit (1) is used to measure the internal temperature of the object to be measured, and the measurement facing the body surface of the object to be measured.
  • a temperature sensor unit (1) including a plurality of temperature sensors (111 to 114) for measuring the temperature of the body surface to be measured on the surface side, and is included in the plurality of temperature sensors (111 to 114).
  • the first thermal resistor (121) is provided only on the measurement surface side of the first temperature sensor (111), and the first temperature sensor (111) And the second temperature sensor (112) are so close to each other that the temperature on the measurement surface side of the first thermal resistor (121) is substantially equal to the temperature measured by the second temperature sensor (112). It is characterized by being arranged.
  • the first thermal resistor (121) is formed by attaching a heat insulating member (13) to the measurement surface side of the first temperature sensor (111). , Is preferable.
  • a second thermal resistor (122) is provided only on the side, and the third temperature sensor (113) and the fourth temperature sensor (114) are the temperatures on the measurement surface side of the second thermal resistor (122).
  • the second thermal resistor (122) is arranged so close that the temperature is substantially equal to the temperature measured by the fourth temperature sensor (114), and the second thermal resistor (122) is on the measurement surface side of the third temperature sensor (113).
  • the heat insulating member (12, 13) is attached to the heat insulating member (12, 13) in a manner different from that of the first thermal resistor (121) so as to have a thermal resistance value different from that of the first thermal resistor (121). It may be something that has been done.
  • the first temperature sensor (111) and the third temperature sensor (113) are more than the first temperature sensor (111) and the second temperature sensor (112). It is preferable that the third temperature sensor (113) and the fourth temperature sensor (114) are separated from each other and arranged more apart from each other.
  • the measurement surface side of the plurality of temperature sensors (111 to 114) is covered with the heat conductive material (14).
  • the temperature sensor unit (1001) is used to measure the internal temperature of the object to be measured, and the object to be measured is on the measurement surface side facing the body surface of the object to be measured.
  • a temperature sensor unit (1001) including a plurality of temperature sensors (111 to 114) for measuring the temperature of the body surface of the body, and the first one included in the plurality of temperature sensors (111 to 114) on the measurement surface side. And of the second temperature sensors (111, 112), one end is connected to the first temperature sensor (111), and the other end is the temperature of the other end and the temperature measured by the second temperature sensor (112). It is characterized in that the conductor patterns (151) arranged so close to each other are formed so that they are substantially equal to each other.
  • the measurement surface side of the second temperature sensor (112) and the other end of the conductor pattern (151) is covered with a heat conductive material (1014). ..
  • the internal thermometer (100) is provided on the measurement surface side facing the body surface of the object to be measured, and is provided with a plurality of temperature sensors (a plurality of temperature sensors) for measuring the temperature of the body surface of the object to be measured. 111 to 114) and an internal temperature measuring unit (4) for measuring the internal temperature of the object to be measured based on the temperatures measured by the plurality of temperature sensors (111 to 114).
  • the first thermal resistor (121) is provided only on the measurement surface side of the first temperature sensor (111).
  • the temperature of the first temperature sensor (111) and the second temperature sensor (112) on the measurement surface side of the first thermal resistor (121) is measured by the second temperature sensor (112). It is characterized in that they are arranged so close that they are substantially equal to the temperature.
  • the internal thermometer (100) may further include a warning unit (4) that issues a predetermined warning when the internal temperature of the object to be measured satisfies a predetermined condition.
  • thermometer unit and an internal thermometer that can be manufactured at low cost.
  • FIG. 1 It is a block diagram which illustrates the whole structure of a core thermometer.
  • A is a cross-sectional view showing a configuration example of a temperature sensor unit, and (b) is a diagram illustrating a measurement surface of core body temperature.
  • A is a diagram illustrating the schematic configuration of the temperature sensor unit, and (b) is a diagram illustrating the heat equivalent circuit of the temperature sensor unit.
  • A) is a diagram illustrating the schematic configuration of a conventional deep thermometer, and (b) is a diagram illustrating a heat equivalent circuit of a conventional deep thermometer.
  • A) is a cross-sectional view showing a configuration example of a temperature sensor unit in a modified example, and (b) is a diagram illustrating a measurement surface of core body temperature.
  • the deep thermometer according to the present embodiment is attached to the body surface of a central part such as the head or trunk of the subject to be measured, obtains the heat flow from the deep part such as the brain or organs, and obtains the heat flow from the deep part of the body. It measures core body temperature, which is the temperature.
  • the measurement of the body temperature in the present invention includes not only the measurement of the body temperature itself but also the estimation of the body temperature and the detection of the change in the body temperature.
  • FIG. 1 is a block diagram showing a configuration example of a core thermometer.
  • the core thermometer 100 includes a temperature sensor unit 1, an amplification unit 2, an analog-digital conversion unit 3, and a core body temperature measurement unit (body temperature measurement unit) 4.
  • FIG. 2A is a cross-sectional view showing a configuration example of the temperature sensor unit
  • FIG. 2B is a diagram illustrating a measurement surface of core body temperature.
  • the temperature sensor unit 1 is located on the measurement surface side in a resin case (not shown), which is in contact with the body surface of the subject and measures the core body temperature.
  • a substrate 11 on which four first to fourth temperature sensors 111 to 114 are mounted, a first heat insulating member 12, a second heat insulating member 13, and a heat conductive material 14 are provided.
  • the substrate 11 is made of a material having insulating properties and heat insulating properties such as polyimide, and in the present embodiment, it is a flexible substrate (film substrate) having flexibility formed in a flat plate shape of 8 mm ⁇ 10 mm.
  • the substrate 11 is not limited to the deformable flexible substrate, and may be a non-deformable printed circuit board.
  • the first and second heat insulating members 12 and 13 function as thermal resistors having a predetermined thermal resistance value, and are made of a heat insulating material such as polyimide.
  • the first and second heat insulating members 12 and 13 are formed into a thin seal having a thickness of about 0.01 mm so as to have flexibility so as to follow the shape and movement of the body surface of the subject. It is formed.
  • the shapes of the first and second heat insulating members 12 and 13 are not limited to a rectangle, and may be, for example, a circle.
  • the materials of the first and second heat insulating members 12 and 13 are not limited to polyimide, and any material having heat insulating properties may be used, for example, polyethylene foam or urethane foam. Good.
  • the first heat insulating member 12 is attached so as to cover the entire third temperature sensor 113. Further, the second heat insulating member 13 is attached so as to cover both the first temperature sensor 111 and the third temperature sensor 113 to which the first heat insulating member 12 is attached.
  • the heat conductive material 14 is composed of a substance having a higher thermal conductivity than that of the subject, such as a metal material such as aluminum, and is formed in a flat plate shape or a film shape.
  • the heat conductive material 14 enables the first to fourth temperature sensors 111 to 114 to measure the temperature of the body surface of the subject through the resin case. Further, the heat conductive material 14 is provided so as to cover the entire first to fourth temperature sensors 111 to 114 in order to uniformly conduct heat to the four first to fourth temperature sensors 111 to 114.
  • the first to fourth temperature sensors 111 to 114 measure the temperature of the body surface of the subject, and are composed of, for example, a thermistor whose resistance value changes depending on the temperature. In the present embodiment, since it is preferable that the heat capacity is as small as possible from the viewpoint of enhancing the responsiveness, chip thermistors are used as the first to fourth temperature sensors 111 to 114.
  • the first to fourth temperature sensors 111 to 114 may be composed of a Peltier element, a thermocouple, a thermopile, or the like.
  • the first to fourth temperature sensors 111 to 114 are electrically connected to the core body temperature measuring unit 4 via the first to fourth printed wirings 141 to 144, respectively.
  • the first to fourth temperature sensors 111 to 114 output electric signals (voltage values) indicating the measured temperatures via the first to fourth printed wirings 141 to 144, respectively.
  • a which is the distance between the first temperature sensor 111 and the second temperature sensor 112 and the distance between the third temperature sensor 113 and the fourth temperature sensor 114, is the first temperature sensor 111. It is shorter than b (b> a), which is the distance between the third temperature sensor 113 and the third temperature sensor 113 and the distance between the second temperature sensor 112 and the fourth temperature sensor 114. That is, in the present embodiment, the first temperature sensor 111 is arranged close to the second temperature sensor 112, while being arranged apart from the third temperature sensor 113. The third temperature sensor 113 is arranged close to the fourth temperature sensor 114, while being arranged away from the first temperature sensor 111.
  • the amplification unit 2 shown in FIG. 1 is composed of, for example, four general-purpose amplifiers and the like, and amplifies and outputs electric signals input from the first to fourth temperature sensors 111 to 114, respectively.
  • the analog-to-digital converter 3 is composed of, for example, four general-purpose A / D (Analog-to-digital) converters (ADCs), and the analog electric signal input from the amplification unit 2 is converted into a digital electric signal. Convert to and output.
  • ADCs Analog-to-digital converters
  • the core body temperature measuring unit 4 is composed of, for example, an MCU (MicroControlUnit) or the like, and is connected to a speaker, an LED (LightEmittingDiode) or the like.
  • the core body temperature measuring unit 4 measures the core body temperature by obtaining the heat flow rate from the deep part of the subject based on the temperature indicated by the electric signal input from the analog-digital conversion unit 3. In the present embodiment, the core body temperature measuring unit 4 determines whether or not the subject is at risk of heat stroke from the transition of the core body temperature.
  • the core body temperature measuring unit 4 satisfies a predetermined condition such as when the core body temperature exceeds a predetermined threshold value (danger value) or when the change in the core body temperature exceeds a predetermined range, there is a risk of heat stroke. If it is determined to be present, a warning sound is emitted from the speaker, or the LED is turned on or blinks to warn the subject that there is a risk of heat stroke.
  • a predetermined threshold value e.g., a predetermined threshold value (danger value) or when the change in the core body temperature exceeds a predetermined range
  • FIG. 3A is a diagram illustrating a schematic configuration of a temperature sensor unit
  • FIG. 3B is a diagram illustrating a heat equivalent circuit of the temperature sensor unit.
  • the first to fourth temperature sensors 111 to 114 are brought into close contact with the body surface of the subject via the measurement surface.
  • the second heat insulating member 13 attached on the first temperature sensor 111 functions as a first thermal resistor 121 having a predetermined thermal resistance value R1.
  • the first and second heat insulating members 12 and 13 attached on the third temperature sensor 113 have a thermal resistance larger than the thermal resistance value R1 of the first thermal resistor 121. It functions as a second thermal resistor 122 having a resistance value of R2 (> R1).
  • the thermal resistance value R1 and the thermal resistance value R2 are known numbers obtained from the materials and thicknesses of the first and second heat insulating members 12 and 13, and are held by the core body temperature measuring unit 4 shown in FIG. ..
  • the first temperature sensor 111 measures the temperature T1 on the upper surface of the first thermal resistor 121 and outputs an electric signal indicating the measured temperature T1.
  • the second temperature sensor 112 outputs an electric signal indicating the measured temperature T2.
  • the third temperature sensor 113 measures the temperature T3 on the upper surface of the second thermal resistor 122 and outputs an electric signal indicating the measured temperature T3.
  • the fourth temperature sensor 114 outputs an electric signal indicating the measured temperature T4.
  • the temperature sensor unit 1 shown in FIG. 3A can be represented by the heat equivalent circuit shown in FIG. 3B.
  • the amount of heat (heat flux) passing through the first thermal resistor 121 per unit time and the subcutaneous surface of the subject The heat flux from the structure 130 to the lower surface of the first thermal resistor 121 is equal. Further, when the temperature T3 on the upper surface of the second thermal resistor 122 and the temperature T4'on the lower surface (measurement surface side) become stable, the heat flux of the second thermal resistor 122 and the second heat from the subcutaneous tissue 130 of the subject are obtained. Is equal to the heat flux to the underside of the resistor 122.
  • the second temperature sensor 112 since the second temperature sensor 112 is not connected in series with the first thermal resistor 121, the lower surface (measurement) of the second temperature sensor 112 from the subcutaneous tissue 130 of the subject. The heat flux to the surface side) is different from the heat flux of the first thermal resistor 121. Further, since the fourth temperature sensor 114 is not connected in series with the second thermal resistor 122, the heat flux from the subcutaneous tissue 130 of the subject to the lower surface (measurement surface side) of the fourth temperature sensor 114 is It is different from the heat flux of the second thermal resistor 122.
  • the temperature T2'on the lower surface of the first thermal resistor 121 is set by the second temperature sensor 112. It is substantially equal to the temperature T2 to be measured. Further, since the third temperature sensor 113 and the fourth temperature sensor 114 are installed close to each other, the temperature T4'on the lower surface of the second thermal resistor 122 is the temperature T4 measured by the fourth temperature sensor 114. Approximately equal. Therefore, the following equation (3) is established for the first thermal resistor 121, and the following equation (4) is established for the second thermal resistor 122. T2' ⁇ T2 ... (3) T4' ⁇ T4 ... (4)
  • the equation (5) is the equation (9) established for the first heat flux sensor 201 of the conventional deep thermometer 200, and the equation (6) is established for the second heat flux sensor 202. , Each equal.
  • the first temperature sensor 111, the second temperature sensor 112, and the first thermal resistor 121 can perform substantially the same functions as the first heat flux sensor 201 having a sandwich structure in the conventional deep thermometer 200. Further, the third temperature sensor 113, the fourth temperature sensor 114, and the second thermal resistor 122 can perform substantially the same functions as the second heat flux sensor 202 having a sandwich structure.
  • the first temperature sensor 111 is arranged close to the second temperature sensor 112, and the third temperature sensor 113 and the third temperature sensor 113. Are preferably arranged apart from each other.
  • the third temperature sensor 113 is arranged close to the fourth temperature sensor 114, and the first temperature sensor 113. It is preferable that they are arranged apart from 111. That is, as illustrated in FIG. 2B, the first temperature sensor 111 and the third temperature sensor 113 are separated from the first temperature sensor 111 and the second temperature sensor 112, and the third temperature sensor 113 is separated from each other.
  • the fourth temperature sensor 114 are more preferably arranged apart from each other.
  • the unknown numbers in the above equations (5) and (6) are the thermal resistance of the subcutaneous tissue 130. Only the values Rz and core body temperature Ti. Therefore, we solved the simultaneous equations for the unknown thermal resistance value Rz and core body temperature Ti of the subcutaneous tissue 130, and from equations (5) and (6), the thermal resistance value of the subcutaneous tissue 130, which varies depending on the location and individual. By eliminating Rz, the following equation (7) can be obtained.
  • K R1 / R2 is defined, it can be simplified as in the following equation (8). As described above, since the thermal resistance value R1 and the thermal resistance value R2 are known numbers, K is also a known number and is held by the core body temperature measuring unit 4 shown in FIG.
  • the core body temperature measuring unit 4 shown in FIG. 1 substitutes the temperatures T1 to T4 indicated by the temperature signals input from the first to fourth temperature sensors 111 to 114 into the equations (7) and (8), respectively.
  • the core body temperature Ti can be measured (calculated) relatively accurately.
  • the deep body thermometer (internal thermometer) 100 includes a temperature sensor unit 1 and a deep body temperature measuring unit (internal temperature measuring unit) 4.
  • the temperature sensor unit 1 is used to measure the core body temperature Ti as the body temperature of the subject.
  • the temperature sensor unit 1 includes first to fourth temperature sensors 111 to 114 for measuring the temperature of the body surface of the subject on the measurement surface side facing the body surface of the subject.
  • the first thermal resistor 121 is provided only on the measurement surface side of the first temperature sensor 111.
  • the first temperature sensor 111 and the second temperature sensor 112 are so close to each other that the temperature T2'on the measurement surface side of the first thermal resistor 111 is substantially equal to the temperature T2 measured by the second temperature sensor 112. Is arranged.
  • the first temperature sensor 111, the second temperature sensor 112, and the first thermal resistor 121 can perform substantially the same functions as the first heat flux sensor 201 of the conventional deep thermometer 200.
  • the temperature sensor unit 1 is provided with the first temperature sensor 111, the second temperature sensor 112, and the first heat resistor 121 without providing the first heat flux sensor 201 having a sandwich structure, which has a high manufacturing cost. Since it is possible to realize substantially the same function as the 1 heat flux sensor 201, it can be manufactured at a lower cost than before.
  • the first thermal resistor 121 can be formed by a simple method such as attaching the second heat insulating member 13 to the measurement surface side of the first temperature sensor 111, the manufacturing cost can be further reduced.
  • the second thermal resistor 122 is provided only on the measurement surface side of the third temperature sensor 113.
  • the third temperature sensor 113 and the fourth temperature sensor 114 are so close to each other that the temperature T4'on the measurement surface side of the second thermal resistor 112 is substantially equal to the temperature T4 measured by the fourth temperature sensor 114. Is arranged.
  • the heat insulating member is laminated on the measurement surface side of the third temperature sensor 113 in a mode different from that of the first thermal resistance body 121, specifically, the first and second heat insulating members 12 and 13. It is formed so as to have a thermal resistance value different from that of the first thermal resistor 121.
  • the first and the thermal resistors 121 and 122 having different thermal resistance values can be formed by a simple method, so that the manufacturing cost can be further reduced.
  • first temperature sensor 111 and the third temperature sensor 113 are separated from the first temperature sensor 111 and the second temperature sensor 112, and further separated from the third temperature sensor 113 and the fourth temperature sensor 114. Is arranged.
  • the first temperature sensor 111, the second temperature sensor 112, and the first thermal resistor 121 can more preferably perform substantially the same functions as the first heat flux sensor 201.
  • the third temperature sensor 113, the fourth temperature sensor 114, and the second thermal resistor 122 can more preferably perform substantially the same functions as the second heat flux sensor 202.
  • the measurement surface side of the first to fourth temperature sensors 111 to 114 is covered with the heat conductive material 14.
  • the first to fourth temperature sensors 111 to 114 can measure the temperature of the body surface of the subject through the resin case. Further, heat can be uniformly conducted to the four first to fourth temperature sensors 111 to 114.
  • the core body temperature measuring unit 4 measures the core body temperature of the subject based on the temperatures measured by the first to fourth temperature sensors 111 to 114. Then, the core thermometer 100 includes a speaker and an LED that issue a predetermined warning as there is a risk of heat stroke when the core body temperature of the subject satisfies a predetermined condition. As a result, it is possible to prevent the subject from suffering from heat stroke.
  • the object to be measured has been described as a subject, that is, a human being, but the present invention is not limited to this, and the object to be measured may be an animal.
  • the temperature sensor unit 1 has been described as being in contact with the body surface of the subject to measure the core body temperature.
  • the present invention is not limited to this, and the core body temperature may be measured without contacting (non-contacting) the body surface of the subject.
  • the core thermometer 100 has been described as issuing a predetermined warning as there is a risk of heat stroke when the core body temperature of the subject satisfies a predetermined condition.
  • the present invention is not limited to this, and even if it warns that there is a risk of physical and mental changes other than heat stroke when the core body temperature of the subject satisfies a predetermined condition. It is often arbitrary as long as it is a mental and physical abnormality related to core body temperature, and may be, for example, hypothermia, sleep quality, basal body temperature, immunity, stress, and the like.
  • the thermometer is attached to the body surface of a central part such as the head or trunk of the subject to be measured, and at a deep internal temperature such as a brain or an organ.
  • a core thermometer 100 for measuring a certain core body temperature Ti has been illustrated and described.
  • the internal thermometer according to the present invention is not limited to this, and may be attached to a body other than the trunk to measure (including estimation) the internal temperature other than the core body temperature Ti.
  • the internal thermometer according to the present invention may be attached to the terminal portion away from the trunk such as the arm or ankle of the subject to measure (including estimation) the internal temperature of the terminal portion. Good.
  • the core body temperature measuring unit 4 may estimate the core body temperature Ti from the body temperature of the terminal portion of the subject. Specifically, a plurality of body temperatures at the terminal portion of the subject and a core body temperature at the central portion may be measured in advance to obtain a correlation between the two, and this may be held in the core body temperature measuring unit 4. Then, the core body temperature measuring unit 4 may estimate the core body temperature Ti from the measured body temperature of the terminal portion of the subject by using the correlation obtained in advance. For example, when a correlation is found that the core body temperature Ti is approximately 5 ° C higher than the body temperature at the end, if the measured body temperature at the end of the subject is 32 ° C, a constant of 5 ° C is added. Then, 37 ° C. may be estimated as the core body temperature Ti. Then, the core body temperature measuring unit 4 may warn the subject that there is a risk of heat stroke when a predetermined condition is satisfied, such as when the estimated core body temperature exceeds a predetermined threshold value.
  • the first thermal resistance body 121 has the second heat insulating member 13 attached to the measurement surface side of the first temperature sensor 111, and the second thermal resistance body 122 is on the measurement surface side of the third temperature sensor 113.
  • the first and second heat insulating members 12 and 13 have been described as being formed by being laminated on top of each other.
  • the present invention is not limited to this, and the first and second thermal resistors 121 and 122 may be realized by patterned wiring formed on a printed circuit board (PCB).
  • PCB printed circuit board
  • FIG. 5A is a cross-sectional view showing a configuration example of a temperature sensor unit in a modified example
  • FIG. 5B is a diagram illustrating a measurement surface of core body temperature.
  • the same components as those of the temperature sensor unit 1 according to the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the temperature sensor unit 1001 in this modification measures the core body temperature in contact with the body surface of the subject in a resin case (not shown).
  • the first and second pattern wirings 151 and 152 are formed on the printed circuit board 1011 only for the purpose of heat conduction.
  • the first and second pattern wirings 151 and 152 are made of a thermal conductor such as copper foil having excellent thermal conductivity.
  • connection end One end (hereinafter, referred to as “connection end”) of the first pattern wiring 151 is connected to the first temperature sensor 111, while the other end (hereinafter, “non-connection end”) is the second temperature sensor. It is located close to 112.
  • connection end One end (hereinafter, referred to as “connection end”) of the second pattern wiring 152 is connected to the third temperature sensor 113, while the other end (hereinafter, referred to as “non-connection end”) is the fourth temperature sensor. It is located close to 114.
  • c which is the distance between the second temperature sensor 112 and the first pattern wiring 151 and the distance between the fourth temperature sensor 114 and the second pattern wiring 152, is the first pattern wiring 151. It is shorter than d (d> c), which is the distance between and the second pattern wiring 152. That is, in this modification, the first pattern wiring 151 is arranged close to the second temperature sensor 112, while being arranged apart from the second pattern wiring 152 and further to the fourth temperature sensor 114. There is. The second pattern wiring 152 is arranged close to the fourth temperature sensor 114, while being arranged away from the first pattern wiring 151 and further to the second temperature sensor 112.
  • the heat conductive material 1014 is the second and fourth temperature sensors 112 and 114, and the second and fourth so as to evenly conduct heat to the non-connected ends of the first and second pattern wirings 151 and 152. It is provided so as to cover the entire temperature sensors 112 and 114 and the non-connecting ends of the first and second pattern wirings 151 and 152.
  • the first pattern wiring 151 has the same function as the first thermal resistor 121 in the above embodiment having the thermal resistance value R1.
  • the second pattern wiring 152 has the same function as the second thermal resistor 122 in the above embodiment having the thermal resistance value R2 (> R1).
  • the thermal resistance values of the first and second pattern wirings 151 and 152 are the distances (lengths) from the heat conductive material 1014 to the second and fourth temperature sensors 112 and 114, respectively, and the first and second pattern wirings 151 and It is determined by the thickness (width) of 152.
  • the distance (length) from the heat conductive material 1014 to the second temperature sensor 112 and the distance (length) from the heat conductive material 1014 to the fourth temperature sensor 114 are the same, while being the same.
  • the thermal resistance value R2 of the second pattern wiring 152 can be changed to the heat of the first pattern wiring 151. It is made larger than the resistance value R1.
  • the temperature T2'of the non-connected end of the first wiring pattern 151 is the second temperature. It is substantially equal to the temperature T2 measured by the sensor 112. Further, since the non-connected end of the second wiring pattern 152 and the fourth temperature sensor 114 are installed close to each other, the temperature T4'of the non-connected end of the first wiring pattern 151 is set by the fourth temperature sensor 114. It is substantially equal to the temperature T4 to be measured. Therefore, also in this modified example, the equations (3) and (4) are satisfied, respectively, as in the above embodiment.
  • the first temperature sensor 111, the second temperature sensor 112, and the first wiring pattern 151 can perform substantially the same functions as the first heat flux sensor 201 having a sandwich structure in the conventional deep thermometer 200. Further, the third temperature sensor 113, the fourth temperature sensor 114, and the second wiring pattern 152 can perform substantially the same functions as the second heat flux sensor 202 having a sandwich structure.
  • the temperature sensor unit 1001 As described above, in the temperature sensor unit 1001 according to the present modification, one end is connected to the first temperature sensor 111 on the measurement surface side, and the other end measures the temperature of the other end and the second temperature sensor 112.
  • the first wiring pattern 151 which is a conductor pattern arranged close to each other, is formed so that the temperature is substantially equal to that of the temperature. Further, the measurement surface side of the second temperature sensor 112 and the other end of the first wiring pattern 151 is covered with the heat conductive material 1014.
  • the first temperature sensor 111, the second temperature sensor 112, and the first wiring pattern 151 perform substantially the same functions as the first heat flux sensor 201 of the conventional deep thermometer 200, as in the above embodiment. Can be done. Further, in the method of attaching a heat insulating member to the measurement surface side of the temperature sensor to form a thermal resistance body as in the above embodiment, the heat insulating member cannot be attached by an automatic process and requires manual work by a person. As a result, there is a problem that an error occurs in the thermal resistance value and that cost reduction by mass production cannot be expected due to manual work.
  • the quality stability during mass production is improved because it can be done in an automatic process without the need for manual work by humans. At the same time, it is possible to reduce the cost.
  • Temperature sensor unit 2 Amplification unit 3 Analog-to-digital conversion unit 4 Deep body temperature measurement unit (body temperature measurement unit) 11 Substrate 12 1st heat insulating member 13 2nd heat insulating member 14 Heat conductive material 100 Deep thermometer (internal thermometer) 111 1st temperature sensor 112 2nd temperature sensor 113 3rd temperature sensor 114 4th temperature sensor 121 1st thermal resistor 122 2nd thermal resistor 130 Subcutaneous tissue 141 1st printed wiring 142 2nd printed wiring 143 3rd printed wiring 144 4th printed wiring 151 1st pattern wiring 152 2nd pattern wiring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

低コストで製造可能な温度センサユニット及び体内温度計を提供する。 温度センサユニット(1)は、被検者の体内温度として深部体温Tiを測定するために用いられる。温度センサユニット(1)は、被検者の体表面に面する測定面側に、被検者の体表面の温度を測定する第1~第4温度センサ(111~114)を備える。第1及び第2温度センサ(111,112)のうち、第1温度センサ(111)の測定面側にのみ第1熱抵抗体(121)が設けられている。そして、第1温度センサ(111)と第2温度センサ(112)とは、第1熱抵抗体(111)の測定面側の温度T2'が、第2温度センサ(112)が測定する温度T2と略等しくなる程、近接して配置されている。

Description

温度センサユニット及び体内温度計
 本発明は、温度センサユニット及び体内温度計、特に低コストで製造可能な温度センサユニット及び体内温度計に関する。
 深部体温を測定する装置として、比較的に面積の広い熱抵抗(断熱材)の上下面にそれぞれ温度センサ(測温素子)を取り付けた熱流束センサを二つ用いて深部体温を測定する深部体温計が知られている(例えば特許文献1参照)。なお、本明細書中に特許文献1の明細書、特許請求の範囲、図面全体を参考として取り込むものとする。
 図4(a)は、従来の深部体温計の概略構成を例示する図であり、図4(b)は、従来の深部体温計の熱等価回路を例示する図である。
 図4(a)に示すように、従来の深部体温計200による深部体温の測定時には、第1熱流束センサ201及び第2熱流束センサ202が被検者の体表面に密着される。
 ここで、第1熱流束センサ201の第1熱抵抗体221の熱抵抗値をR1、第1熱抵抗体221の上面の第1温度センサ211により測定される温度をT1、下面の第2温度センサ212により測定される温度をT2とする。また、第2熱流束センサ202の第2熱抵抗体222の熱抵抗値をR2(≠R1)、第2熱抵抗体222の上面の第3温度センサ213で測定される温度をT3、下面の第4温度センサ214で測定される温度をT4とする。そして、被検者の皮下組織230の熱抵抗値をRzとし、深部体温をTiとすると、図4(a)に示す深部体温計200は、図4(b)に示す熱等価回路で表せる。
 第1熱抵抗体221の上面の温度T1及び下面の温度T2が安定すると、第1熱抵抗体221を単位時間に通過する熱量(熱流束)と、被検者の皮下組織230から第1熱抵抗体221の下面への熱流束と、は等しくなる。また、第2熱抵抗体222の上面の温度T3及び下面の温度T4が安定すると、第2熱抵抗体222の熱流束と、被検者の皮下組織230から第2熱抵抗体222の下面への熱流束と、は等しくなる。したがって、第1熱流束センサ201については以下の(9)式が、第2熱流束センサ202については以下の(10)式が、それぞれ成立する。
 (Ti-T2)/Rz=(T2-T1)/R1  …(9)
 (Ti-T4)/Rz=(T4-T3)/R2  …(10)
 第1熱抵抗体221の熱抵抗値R1及び第2熱抵抗体222の熱抵抗値R2が既知数である場合、上記(9)及び(10)式中の未知数は、皮下組織230の熱抵抗値Rz及び深部体温Tiだけである。そこで、未知数である皮下組織230の熱抵抗値Rz及び深部体温Tiについての連立方程式を解いて、(9)及び(10)式から、場所による違いや個人差がある皮下組織230の熱抵抗値Rzを消去すれば、深部体温Tiを比較的に正確に測定(算出)することができる。
特開2007-212407号公報
 しかしながら、従来の深部体温計では、熱流束センサを、二つの温度センサで熱抵抗体を挟み込んだサンドイッチ構造で製造する必要があったため、製造コストが高くなってしまうといった課題があった。
 本発明は、上記の課題を解決するためになされたものであって、低コストで製造可能な温度センサユニット及び体内温度計を提供することを目的とする。
 上記の目的を達成するため、本発明の第1の観点に係る温度センサユニット(1)は、被測定対象の体内温度を測定するために用いられ、該被測定対象の体表面に面する測定面側に、該被測定対象の体表面の温度を測定する複数の温度センサ(111~114)を備える温度センサユニット(1)であって、前記複数の温度センサ(111~114)に含まれる第1及び第2温度センサ(111,112)のうち、該第1温度センサ(111)の前記測定面側にのみ第1熱抵抗体(121)が設けられ、前記第1温度センサ(111)と前記第2温度センサ(112)とは、前記第1熱抵抗体(121)の測定面側の温度が、前記第2温度センサ(112)が測定する温度と略等しくなる程、近接して配置されている、ことを特徴とする。
 上記の温度センサユニット(1)において、前記第1熱抵抗体(121)は、該第1温度センサ(111)の前記測定面側に断熱部材(13)を貼り付けることにより、形成されている、ことが好ましい。
 上記の温度センサユニット(1)において、前記複数の温度センサ(111~114)に含まれる第3及び第4温度センサ(113,114)のうち、該第3温度センサ(113)の前記測定面側にのみ第2熱抵抗体(122)が設けられ、前記第3温度センサ(113)と前記第4温度センサ(114)とは、前記第2熱抵抗体(122)の測定面側の温度が、前記第4温度センサ(114)が測定する温度と略等しくなる程、近接して配置され、前記第2熱抵抗体(122)は、該第3温度センサ(113)の前記測定面側に前記断熱部材(12,13)を、前記第1熱抵抗体(121)とは異なる態様で貼り付けることにより、該第1熱抵抗体(121)とは異なる熱抵抗値を有するように形成されている、ものであってもよい。
 上記の温度センサユニット(1)において、前記第1温度センサ(111)と前記第3温度センサ(113)とは、前記第1温度センサ(111)と前記第2温度センサ(112)とよりも離間し、且つ前記第3温度センサ(113)と前記第4温度センサ(114)とよりも離間して配置されている、ことが好ましい。
 上記の温度センサユニット(1)において、前記複数の温度センサ(111~114)は、前記測定面側が熱伝導材(14)で覆われている、ことが好ましい。
 本発明の第2の観点に係る温度センサユニット(1001)は、被測定対象の体内温度を測定するために用いられ、該被測定対象の体表面に面する測定面側に、該被測定対象の体表面の温度を測定する複数の温度センサ(111~114)を備える温度センサユニット(1001)であって、前記測定面側に、前記複数の温度センサ(111~114)に含まれる第1及び第2温度センサ(111,112)のうち、該第1温度センサ(111)に一端が接続され、他端が、該他端の温度と前記第2温度センサ(112)が測定する温度とが略等しくなる程、近接して配置された導体パターン(151)が形成されている、ことを特徴とする。
 上記の温度センサユニット(1001)において、前記第2温度センサ(112)と前記導体パターン(151)の他端とは、前記測定面側が熱伝導材(1014)で覆われている、ことが好ましい。
 本発明の第3の観点に係る体内温度計(100)は、被測定対象の体表面に面する測定面側に設けられ、該被測定対象の体表面の温度を測定する複数の温度センサ(111~114)と、前記複数の温度センサ(111~114)で測定した温度に基づいて、前記被測定対象の体内温度を測定する体内温度測定部(4)と、を具備し、前記複数の温度センサ(111~114)に含まれる第1及び第2温度センサ(111,112)のうち、該第1温度センサ(111)の前記測定面側にのみ第1熱抵抗体(121)が設けられ、前記第1温度センサ(111)と前記第2温度センサ(112)とは、前記第1熱抵抗体(121)の測定面側の温度が、前記第2温度センサ(112)が測定する温度と略等しくなる程、近接して配置されている、ことを特徴とする。
 上記の体内温度計(100)において、前記被測定対象の体内温度が所定の条件を満たしたときに、所定の警告を発する警告部(4)をさらに備える、ようにしてもよい。
 本発明によれば、低コストで製造可能な温度センサユニット及び体内温度計を提供することができる。
深部体温計の全体構成を例示するブロック図である。 (a)は、温度センサユニットの構成例を示す断面図であり、(b)は、深部体温の測定面を例示する図である。 (a)は、温度センサユニットの概略構成を例示する図であり、(b)は、温度センサユニットの熱等価回路を例示する図である。 (a)は、従来の深部体温計の概略構成を例示する図であり、(b)は、従来の深部体温計の熱等価回路を例示する図である。 (a)は、変形例における温度センサユニットの構成例を示す断面図であり、(b)は、深部体温の測定面を例示する図である。
 以下、本発明を実施するための形態について説明する。
 まず、本発明の実施形態に係る深部体温計(体内温度計)の構成について図面を参照しつつ説明する。
 本実施形態に係る深部体温計は、被測定対象である被検者の頭部や体幹部等の中枢部の体表面に装着され、脳や臓器等の深部からの熱流量を求め、深部の体内温度である深部体温を測定するものである。なお、本発明における体内温度の測定には、体内温度の測定それ自体のみならず、体内温度の推定や体内温度の変化の検出等も含まれる。
 図1は、深部体温計の構成例を示すブロック図である。
 図1に示すように、深部体温計100は、温度センサユニット1と、増幅部2と、アナログ-デジタル変換部3と、深部体温測定部(体内温度測定部)4と、を具備する。
 図2(a)は、温度センサユニットの構成例を示す断面図であり、図2(b)は、深部体温の測定面を例示する図である。
 図2(a)及び(b)に示すように、温度センサユニット1は、図示せぬ樹脂製のケース内の、被検者の体表面に接触して深部体温を測定する測定面側に、四つの第1~第4温度センサ111~114を実装する基板11と、第1断熱部材12と、第2断熱部材13と、熱伝導材14と、を備える。
 基板11は、例えばポリイミド等の絶縁性及び断熱性を有する素材から構成され、本実施形態では、8mm×10mmの平板状に形成された可撓性を有するフレキシブル基板(フィルム基板)である。なお、基板11は、変形可能なフレキシブル基板に限定されるものではなく、変形不能なプリント基板であってもよい。
 第1及び第2断熱部材12及び13は、所定の熱抵抗値を有する熱抵抗体として機能するもので、例えばポリイミド等の断熱性を有する素材から構成される。本実施形態において、第1及び第2断熱部材12及び13は、被検者の体表面の形状や動きに沿うような柔軟性を持たせるべく、0.01mm程度の厚みを有する薄いシール状に形成されている。なお、第1及び第2断熱部材12及び13の形状は、矩形に限定されるものではなく、例えば円形等であってもよい。また、第1及び第2断熱部材12及び13の素材は、ポリイミドに限定されるものではなく、断熱性を有する素材であれば任意であり、例えばポリエチレン発泡体やウレタン発泡体等であってもよい。本実施形態において、第1断熱部材12は、第3温度センサ113全体を覆うように貼り付けられている。また、第2断熱部材13は、第1温度センサ111、及び第1断熱部材12が貼り付けられた第3温度センサ113の双方全体を覆うように貼り付けられている。
 熱伝導材14は、例えばアルミニウム等の金属材料のように、被検者に比べて熱伝導率が大きい物質等から構成され、平板状又は膜状に形成される。熱伝導材14は、第1~第4温度センサ111~114が樹脂製のケース越しに被検者の体表面の温度を測定することを可能にする。また、熱伝導材14は、四つの第1~第4温度センサ111~114に均等に熱伝導させるべく、第1~第4温度センサ111~114全体を覆うように設けられている。
 第1~第4温度センサ111~114には、被検者の体表面の温度を測定するもので、例えば温度によって抵抗値が変化するサーミスタ等から構成される。本実施形態では、応答性を高める観点から、できるだけ熱容量が小さい方が好ましいため、第1~第4温度センサ111~114として、チップサーミスタが用いられる。なお、第1~第4温度センサ111~114には、ペルティエ素子や、サーモカップル、サーモパイル等から構成されるものであってもよい。第1~第4温度センサ111~114は、それぞれ第1~第4プリント配線141~144を介して深部体温測定部4と電気的に接続されている。第1~第4温度センサ111~114は、測定した温度を示す電気信号(電圧値)を、それぞれ第1~第4プリント配線141~144を介して出力する。
 図2(b)に示すように、第1温度センサ111と第2温度センサ112との距離、及び第3温度センサ113と第4温度センサ114との距離であるaは、第1温度センサ111と第3温度センサ113との距離、及び第2温度センサ112と第4温度センサ114との距離であるb(b>a)よりも短くなっている。すなわち、本実施形態において、第1温度センサ111は、第2温度センサ112と近接して配置される一方で、第3温度センサ113とは離間して配置されている。第3温度センサ113は、第4温度センサ114と近接して配置される一方で、第1温度センサ111とは離間して配置されている。
 図1に示す増幅部2は、例えば四つの汎用の増幅器等から構成され、第1~第4温度センサ111~114から入力される電気信号を、それぞれ増幅して出力する。
 アナログ-デジタル変換部3は、例えば四つの汎用のA/D(Analog-to-digital)コンバータ(ADC)等から構成され、増幅部2から入力されるアナログの電気信号を、それぞれデジタルの電気信号に変換して出力する。
 深部体温測定部4は、例えばMCU(Micro Control Unit)等から構成され、スピーカやLED(Light Emitting Diode)等に接続される。深部体温測定部4は、アナログ-デジタル変換部3から入力される電気信号が示す温度に基づいて、被検者の深部からの熱流量を求めて深部体温を測定する。本実施形態において、深部体温測定部4は、深部体温の遷移から、被検者が熱中症のおそれがあるか否かを判定する。そして、深部体温測定部4は、深部体温が所定の閾値(危険値)を超えた場合や、深部体温の変化が所定の範囲を超えた場合など所定の条件を満たす場合、熱中症のおそれがあると判定して、スピーカから警告音を発したり、LEDを点灯或いは点滅したりして、被検者に熱中症のおそれがあることを警告する。
 次に、本実施形態に係る深部体温計による深部体温の測定について図面を参照しつつ説明する。
 図3(a)は、温度センサユニットの概略構成を例示する図であり、図3(b)は、温度センサユニットの熱等価回路を例示する図である。
 図3(a)に示すように、深部体温計による熱流量の測定時には、第1~第4温度センサ111~114が測定面を介して被検者の体表面に密着される。
 第1温度センサ111上に貼り付けられた第2断熱部材13は、図3(a)に示すように、所定の熱抵抗値R1を有する第1熱抵抗体121として機能する。また、第3温度センサ113上に貼り付けられた第1及び第2断熱部材12及び13は、図3(a)に示すように、第1熱抵抗体121の熱抵抗値R1よりも大きい熱抵抗値R2(>R1)を有する第2熱抵抗体122として機能する。なお、熱抵抗値R1及び熱抵抗値R2は、第1及び第2断熱部材12及び13の素材及び厚さから求められる既知数であって、図1に示す深部体温測定部4に保持される。
 第1温度センサ111は、第1熱抵抗体121の上面の温度T1を測定して、測定した温度T1を示す電気信号を出力する。第2温度センサ112は、測定した温度T2を示す電気信号を出力する。第3温度センサ113は、第2熱抵抗体122の上面の温度T3を測定して、測定した温度T3を示す電気信号を出力する。第4温度センサ114は、測定した温度T4を示す電気信号を出力する。
 そして、被検者の皮下組織130の熱抵抗値をRzとし、深部体温をTiとすると、図3(a)に示す温度センサユニット1は、図3(b)に示す熱等価回路で表せる。
 第1熱抵抗体121の上面の温度T1及び下面(測定面側)の温度T2’が安定すると、第1熱抵抗体121を単位時間に通過する熱量(熱流束)と、被検者の皮下組織130から第1熱抵抗体121の下面への熱流束と、は等しくなる。また、第2熱抵抗体122の上面の温度T3及び下面(測定面側)の温度T4’が安定すると、第2熱抵抗体122の熱流束と、被検者の皮下組織130から第2熱抵抗体122の下面への熱流束と、は等しくなる。したがって、第1熱抵抗体121については以下の(1)式が、第2熱抵抗体122については以下の(2)式が、それぞれ成立する。
 (Ti-T2’)/Rz=(T2’-T1)/R1  …(1)
 (Ti-T4’)/Rz=(T4’-T3)/R2  …(2)
 図3(b)に示すように、第2温度センサ112は、第1熱抵抗体121とは直列に接続されていないため、被検者の皮下組織130から第2温度センサ112の下面(測定面側)への熱流束は、第1熱抵抗体121の熱流束とは異なるものとなる。また、第4温度センサ114は、第2熱抵抗体122と直列に接続されていないため、被検者の皮下組織130から第4温度センサ114の下面(測定面側)への熱流束は、第2熱抵抗体122の熱流束とは異なるものとなる。
 もっとも、本実施形態において、第1温度センサ111と第2温度センサ112とは、近接して配置されているため、第1熱抵抗体121の下面の温度T2’は、第2温度センサ112が測定する温度T2と略等しくなる。また、第3温度センサ113と第4温度センサ114とは、近接して設置されているため、第2熱抵抗体122の下面の温度T4’は、第4温度センサ114が測定する温度T4と略等しくなる。したがって、第1熱抵抗体121については以下の(3)式が、第2熱抵抗体122については以下の(4)式が、それぞれ成立する。
 T2’≒T2 …(3)
 T4’≒T4 …(4)
 そして、(3)式を(1)式に代入すると以下の(5)式が、(4)式を(2)式に代入すると以下の(6)式が、それぞれ得られる。
 (Ti-T2)/Rz=(T2-T1)/R1  …(5)
 (Ti-T4)/Rz=(T4-T3)/R2  …(6)
 ここで、(5)式は、従来の深部体温計200の第1熱流束センサ201について成立した(9)式と、(6)式は、第2熱流束センサ202について成立した(10)式と、それぞれ等しくなる。
 すなわち、第1温度センサ111、第2温度センサ112、及び第1熱抵抗体121は、従来の深部体温計200におけるサンドイッチ構造の第1熱流束センサ201と略同一の機能を奏することができる。また、第3温度センサ113、第4温度センサ114、及び第2熱抵抗体122は、サンドイッチ構造の第2熱流束センサ202と略同一の機能を奏することができる。
 なお、第1熱流束センサ201と略同一の機能を奏するためには、第1温度センサ111は、第2温度センサ112とは近接して配置される方が好ましく、又第3温度センサ113とは離間して配置されている方が好ましい。同様に、第2熱流束センサ202と略同一の機能を奏するためには、第3温度センサ113は、第4温度センサ114とは近接して配置されている方が好ましく、又第1温度センサ111とは離間して配置されている方が好ましい。すなわち、図2(b)に例示したように、第1温度センサ111と第3温度センサ113とは、第1温度センサ111と第2温度センサ112とよりも離間し、且つ第3温度センサ113と第4温度センサ114とよりも離間して配置される方が好ましい。
 第1熱抵抗体121の熱抵抗値R1及び第2熱抵抗体122の熱抵抗値R2は既知数であるので、上記(5)及び(6)式中の未知数は、皮下組織130の熱抵抗値Rz及び深部体温Tiだけである。そこで、未知数である皮下組織130の熱抵抗値Rz及び深部体温Tiについての連立方程式を解いて、(5)及び(6)式から、場所による違いや個人差がある皮下組織130の熱抵抗値Rzを消去すれば、以下の(7)式を得ることができる。
Figure JPOXMLDOC01-appb-M000001
 また、K=R1/R2と定義すると、以下の式(8)のように簡略化できる。なお、上述したように、熱抵抗値R1及び熱抵抗値R2が既知数であることから、Kも既知数であって、図1に示す深部体温測定部4に保持される。
Figure JPOXMLDOC01-appb-M000002
 図1に示す深部体温測定部4は、第1~第4温度センサ111~114より入力される温度信号が示す温度T1~T4を、それぞれ式(7)又は(8)に代入することにより、深部体温Tiを比較的に正確に測定(算出)することができる。
 以上説明したように、本実施形態に係る深部体温計(体内温度計)100は、温度センサユニット1と、深部体温測定部(体内温度測定部)4と、を具備する。温度センサユニット1は、被検者の体内温度として深部体温Tiを測定するために用いられる。温度センサユニット1は、被検者の体表面に面する測定面側に、被検者の体表面の温度を測定する第1~第4温度センサ111~114を備える。第1及び第2温度センサ111及び112のうち、第1温度センサ111の測定面側にのみ第1熱抵抗体121が設けられている。そして、第1温度センサ111と第2温度センサ112とは、第1熱抵抗体111の測定面側の温度T2’が、第2温度センサ112が測定する温度T2と略等しくなる程、近接して配置されている。
 これにより、第1温度センサ111、第2温度センサ112、及び第1熱抵抗体121は、従来の深部体温計200の第1熱流束センサ201と略同一の機能を奏することができる。このように、温度センサユニット1は、製造コストの高いサンドイッチ構造の第1熱流束センサ201を備えることなく、第1温度センサ111、第2温度センサ112、及び第1熱抵抗体121により、第1熱流束センサ201と略同一の機能を実現することができるため、従来より低コストで製造することができる。
 また、第1熱抵抗体121は、第1温度センサ111の測定面側に第2断熱部材13を貼り付けるといった簡易な手法で形成できるため、製造コストをより低減することができる。
 さらに、第3及び第4温度センサ113及び114のうち、第3温度センサ113の測定面側にのみ第2熱抵抗体122が設けられている。そして、第3温度センサ113と第4温度センサ114とは、第2熱抵抗体112の測定面側の温度T4’が、第4温度センサ114が測定する温度T4と略等しくなる程、近接して配置されている。そして、第2熱抵抗体122は、第3温度センサ113の測定面側に断熱部材を第1熱抵抗体121とは異なる態様、具体的には第1及び第2断熱部材12及び13を重ねて貼り付けることにより、第1熱抵抗体121とは異なる熱抵抗値を有するように形成されている。これにより、簡易な方法で熱抵抗値の異なる第1及び熱抵抗体121及び122を形成することができるため、製造コストをより低減することができる。
 また、第1温度センサ111と第3温度センサ113とは、第1温度センサ111と第2温度センサ112とよりも離間し、且つ第3温度センサ113と第4温度センサ114とよりも離間して配置されている。これにより、第1温度センサ111、第2温度センサ112、及び第1熱抵抗体121は、第1熱流束センサ201と略同一の機能をより好適に奏することができる。また、第3温度センサ113、第4温度センサ114、及び第2熱抵抗体122は、第2熱流束センサ202と略同一の機能をより好適に奏することができる。
 第1~第4温度センサ111~114は、測定面側が熱伝導材14で覆われている。これにより、第1~第4温度センサ111~114は、樹脂製のケース越しに被検者の体表面の温度を測定することができる。また、四つの第1~第4温度センサ111~114に均等に熱伝導させることができる。
 深部体温測定部4は、第1~第4温度センサ111~114で測定した温度に基づいて、被検者の深部体温を測定する。そして、深部体温計100は、被検者の深部体温が所定の条件を満たしたときに、熱中症のおそれがあるとして、所定の警告を発するスピーカやLEDを備える。これにより、被検者が熱中症になるのを未然に防止することができる。
 なお、本発明は、上記の実施形態に限定されず、種々の変形、応用が可能である。以下、本発明に適用可能な上記の実施形態の変形態様について、説明する。
 上記の実施形態において、被測定対象は、被検者、すなわち人間であるものとして説明したが、本発明はこれに限定されるものではなく、被測定対象は、動物であってもよい。
 上記の実施形態において、温度センサユニット1は、被検者の体表面に接触して深部体温を測定するものとして説明した。しかしながら、本発明はこれに限定されるものではなく、被検者の体表面に接触することなく(非接触で)深部体温を測定するものであってもよい。
 上記の実施形態において、深部体温計100は、被検者の深部体温が所定の条件を満たしたときに、熱中症のおそれがあるとして、所定の警告を発するものとして説明した。しかしながら、本発明はこれに限定されるものではなく、被検者の深部体温が所定の条件を満たしたときに、熱中症以外の心身の異変のおそれがあることを警告するものであってもよく、深部体温が関係する心身の異変であれば任意であり、例えば低体温症や、睡眠の質、基礎体温、免疫、ストレス等であってもよい。
 上記の実施形態では、本発明に係る体内温度計として、被測定対象である被検者の頭部や体幹部等の中枢部の体表面に装着され、脳や臓器等の深部の体内温度である深部体温Tiを測定する深部体温計100を例示して説明した。しかしながら、本発明に係る体内温度計はこれに限定されるものではなく、体幹部以外に装着されて深部体温Ti以外の体内温度を測定(推測等も含む)するものであってもよい。例えば、本発明に係る体内温度計は、被検者の腕や足首等といった体幹から離れた末端部に装着されて末端部の体内温度を測定(推測等も含む)するものであってもよい。
 この場合、深部体温測定部4は、被検者の末端部の体内温度から深部体温Tiを推定するようにしてもよい。具体的には、被検者の末端部の体内温度と中枢部の深部体温とを予め複数測定して両者の相関関係を求め、これを深部体温測定部4に保持すればよい。そして、深部体温測定部4は、測定した被検者の末端部の体内温度から、予め求めた相関関係を用いて、深部体温Tiを推定すればよい。例えば、深部体温Tiが、末端部の体内温度よりも略5℃高いという相関関係が求められた場合、測定した被検者の末端部の体内温度が32℃であれば、定数5℃を加算して37℃を、深部体温Tiと推定すればよい。そして、深部体温測定部4は、推定した深部体温が所定の閾値を超えた場合など所定の条件を満たす場合、被検者に熱中症のおそれがあることを警告すればよい。
 上記の実施形態において、第1熱抵抗体121は、第1温度センサ111の測定面側に第2断熱部材13を貼り付け、第2熱抵抗体122は、第3温度センサ113の測定面側に第1及び第2断熱部材12及び13を重ねて貼り付けて形成されるものとして説明した。しかしながら、本発明はこれに限定されるものではなく、第1及び第2熱抵抗体121及び122は、プリント基板(Printed Circuit Board;PCB)上に形成されたパターン配線によって実現されてもよい。
 図5(a)は、変形例における温度センサユニットの構成例を示す断面図であり、(b)は、深部体温の測定面を例示する図である。なお、上記の実施形態に係る温度センサユニット1と同様の構成については、同一の符号を付し、その説明を省略する。
 図5(a)及び(b)に示すように、本変形例における温度センサユニット1001は、図示せぬ樹脂製のケース内の、被検者の体表面に接触して深部体温を測定する測定面側に、四つの第1~第4温度センサ111~114を実装するプリント基板1011と、熱伝導材1014と、を備える。
 本変形例において、プリント基板1011上には、熱伝導のみを目的とした第1及び第2パターン配線151及び152が形成されている。第1及び第2パターン配線151及び152は、熱伝導率の優れた銅箔等の熱伝導体から構成されている。
 第1パターン配線151は、その一端(以下、「接続端」という。)が第1温度センサ111に接続される一方で、他端(以下、「非接続端」という。)が第2温度センサ112に近接して配置されている。
 第2パターン配線152は、その一端(以下、「接続端」という。)が第3温度センサ113に接続される一方で、他端(以下、「非接続端」という。)が第4温度センサ114に近接して配置されている。
 図5(b)に示すように、第2温度センサ112と第1パターン配線151との距離、及び第4温度センサ114と第2パターン配線152との距離であるcは、第1パターン配線151と第2パターン配線152との距離であるd(d>c)よりも短くなっている。すなわち、本変形例において、第1パターン配線151は、第2温度センサ112と近接して配置される一方で、第2パターン配線152、さらには第4温度センサ114とは離間して配置されている。第2パターン配線152は、第4温度センサ114と近接して配置される一方で、第1パターン配線151、さらには第2温度センサ112とは離間して配置されている。
 本変形例において、熱伝導材1014は、第2及び第4温度センサ112及び114、並びに第1及び第2パターン配線151及び152の非接続端に均等に熱伝導させるべく、第2及び第4温度センサ112及び114全体、並びに第1及び第2パターン配線151及び152の非接続端を覆うように設けられている。
 本変形例において、第1パターン配線151は、熱抵抗値R1を有する上記の実施形態における第1熱抵抗体121と同様の機能を奏する。また、第2パターン配線152は、熱抵抗値R2(>R1)を有する上記の実施形態における第2熱抵抗体122と同様の機能を奏する。第1及び第2パターン配線151及び152の熱抵抗値は、それぞれ熱伝導材1014から第2及び第4温度センサ112及び114までの距離(長さ)、及び第1及び第2パターン配線151及び152の太さ(幅)によって定まる。本変形例では、熱伝導材1014から第2温度センサ112までの距離(長さ)と、熱伝導材1014から第4温度センサ114までの距離(長さ)と、を同一とする一方で、第2パターン配線152の太さ(幅)を、第1パターン配線151の太さ(幅)よりも細くすることで、第2パターン配線152の熱抵抗値R2を、第1パターン配線151の熱抵抗値R1よりも大きくしている。
 本変形例において、第1配線パターン151の非接続端と第2温度センサ112とは、近接して配置されているため、第1配線パターン151の非接続端の温度T2’は、第2温度センサ112が測定する温度T2と略等しくなる。また、第2配線パターン152の非接続端と第4温度センサ114とは、近接して設置されているため、第1配線パターン151の非接続端の温度T4’は、第4温度センサ114が測定する温度T4と略等しくなる。したがって、本変形例においても、上記の実施形態と同様、(3)及び(4)式がそれぞれ成立する。このため、第1温度センサ111、第2温度センサ112、及び第1配線パターン151は、従来の深部体温計200におけるサンドイッチ構造の第1熱流束センサ201と略同一の機能を奏することができる。また、第3温度センサ113、第4温度センサ114、及び第2配線パターン152は、サンドイッチ構造の第2熱流束センサ202と略同一の機能を奏することができる。
 以上説明したように、本変形例に係る温度センサユニット1001には、測定面側に、第1温度センサ111に一端が接続され、他端が、他端の温度と第2温度センサ112が測定する温度とが略等しくなる程、近接して配置された導体パターンである第1配線パターン151が形成されている。また、第2温度センサ112と第1配線パターン151の他端とは、測定面側が熱伝導材1014で覆われている。
 これにより、第1温度センサ111、第2温度センサ112、及び第1配線パターン151は、上記の実施形態と同様、従来の深部体温計200の第1熱流束センサ201と略同一の機能を奏することができる。また、上記の実施形態のように、温度センサの測定面側に断熱部材を貼り付けて熱抵抗体とする方法では、断熱部材の貼付を、自動工程ではできず、人による手作業が必要となるため、熱抵抗値に誤差が生じる他、手作業のため量産によるコスト軽減が期待できないという課題があった。本変形例のように、プリント基板上に形成されるパターン配線を熱抵抗体とする方法では、人による手作業が必要とすることなく、自動工程でできるため、量産時の品質安定性を向上させることができるとともに、コストダウンを図ることもできる。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。
 本出願は、2019年3月14日に出願された日本国特許出願2019-047122、及び2019年7月2日に出願された日本国特許出願2019-123485に基づく。本明細書中に日本国特許出願2019-047122、及び日本国特許出願2019-123485の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
  1 温度センサユニット
  2 増幅部
  3 アナログ-デジタル変換部
  4 深部体温測定部(体内温度測定部)
 11 基板
 12 第1断熱部材
 13 第2断熱部材
 14 熱伝導材
100 深部体温計(体内温度計)
111 第1温度センサ
112 第2温度センサ
113 第3温度センサ
114 第4温度センサ
121 第1熱抵抗体
122 第2熱抵抗体
130 皮下組織
141 第1プリント配線
142 第2プリント配線
143 第3プリント配線
144 第4プリント配線
151 第1パターン配線
152 第2パターン配線

Claims (9)

  1.  被測定対象の体内温度を測定するために用いられ、該被測定対象の体表面に面する測定面側に、該被測定対象の体表面の温度を測定する複数の温度センサ(111~114)を備える温度センサユニット(1)であって、
     前記複数の温度センサ(111~114)に含まれる第1及び第2温度センサ(111,112)のうち、該第1温度センサ(111)の前記測定面側にのみ第1熱抵抗体(121)が設けられ、
     前記第1温度センサ(111)と前記第2温度センサ(112)とは、前記第1熱抵抗体(121)の測定面側の温度が、前記第2温度センサ(112)が測定する温度と略等しくなる程、近接して配置されている、
     ことを特徴とする温度センサユニット(1)。
  2.  前記第1熱抵抗体(121)は、該第1温度センサ(111)の前記測定面側に断熱部材(13)を貼り付けることにより、形成されている、
     ことを特徴とする請求項1に記載の温度センサユニット(1)。
  3.  前記複数の温度センサ(111~114)に含まれる第3及び第4温度センサ(113,114)のうち、該第3温度センサ(113)の前記測定面側にのみ第2熱抵抗体(122)が設けられ、
     前記第3温度センサ(113)と前記第4温度センサ(114)とは、前記第2熱抵抗体(122)の測定面側の温度が、前記第4温度センサ(114)が測定する温度と略等しくなる程、近接して配置され、
     前記第2熱抵抗体(122)は、該第3温度センサ(113)の前記測定面側に前記断熱部材(12,13)を、前記第1熱抵抗体(121)とは異なる態様で貼り付けることにより、該第1熱抵抗体(121)とは異なる熱抵抗値を有するように形成されている、
     ことを特徴とする請求項2に記載の温度センサユニット(1)。
  4.  前記第1温度センサ(111)と前記第3温度センサ(113)とは、前記第1温度センサ(111)と前記第2温度センサ(112)とよりも離間し、且つ前記第3温度センサ(113)と前記第4温度センサ(114)とよりも離間して配置されている、
     ことを特徴とする請求項3に記載の温度センサユニット(1)。
  5.  前記複数の温度センサ(111~114)は、前記測定面側が熱伝導材(14)で覆われている、
     ことを特徴とする請求項1に記載の温度センサユニット(1)。
  6.  被測定対象の体内温度を測定するために用いられ、該被測定対象の体表面に面する測定面側に、該被測定対象の体表面の温度を測定する複数の温度センサ(111~114)を備える温度センサユニット(1001)であって、
     前記測定面側に、前記複数の温度センサ(111~114)に含まれる第1及び第2温度センサ(111,112)のうち、該第1温度センサ(111)に一端が接続され、他端が、該他端の温度と前記第2温度センサ(112)が測定する温度とが略等しくなる程、近接して配置された導体パターン(151)が形成されている、
     ことを特徴とする温度センサユニット(1001)。
  7.  前記第2温度センサ(112)と前記導体パターン(151)の他端とは、前記測定面側が熱伝導材(1014)で覆われている、
     ことを特徴とする請求項6に記載の温度センサユニット(1001)。
  8.  被測定対象の体表面に面する測定面側に設けられ、該被測定対象の体表面の温度を測定する複数の温度センサ(111~114)と、
     前記複数の温度センサ(111~114)で測定した温度に基づいて、前記被測定対象の体内温度を測定する体内温度測定部(4)と、
     を具備し、
     前記複数の温度センサ(111~114)に含まれる第1及び第2温度センサ(111,112)のうち、該第1温度センサ(111)の前記測定面側にのみ第1熱抵抗体(121)が設けられ、
     前記第1温度センサ(111)と前記第2温度センサ(112)とは、前記第1熱抵抗体(121)の測定面側の温度が、前記第2温度センサ(112)が測定する温度と略等しくなる程、近接して配置されている、
     ことを特徴とする体内温度計(100)。
  9.  前記被測定対象の体内温度が所定の条件を満たしたときに、所定の警告を発する警告部(4)をさらに備える、
     ことを特徴とする請求項8に記載の体内温度計(100)。
PCT/JP2020/010006 2019-03-14 2020-03-09 温度センサユニット及び体内温度計 WO2020184511A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/428,768 US11573132B2 (en) 2019-03-14 2020-03-09 Temperature sensor unit and body core thermometer
JP2020538150A JP6755034B1 (ja) 2019-03-14 2020-03-09 温度センサユニット及び体内温度計
CN202310143541.9A CN116337278A (zh) 2019-03-14 2020-03-09 温度传感器单元及体内温度计
CN202080007497.3A CN113286991B (zh) 2019-03-14 2020-03-09 温度传感器单元及体内温度计
EP20769584.2A EP3936845A4 (en) 2019-03-14 2020-03-09 Temperature sensor unit, and body core thermometer
KR1020217016383A KR20210072108A (ko) 2019-03-14 2020-03-09 온도 센서 유닛 및 체내 온도계
AU2020238060A AU2020238060B2 (en) 2019-03-14 2020-03-09 Temperature Sensor Unit and Body Core Thermometer
KR1020227016974A KR20220070347A (ko) 2019-03-14 2020-03-09 온도 센서 유닛 및 체내 온도계

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019047122 2019-03-14
JP2019-047122 2019-03-14
JP2019-123485 2019-07-02
JP2019123485 2019-07-02

Publications (1)

Publication Number Publication Date
WO2020184511A1 true WO2020184511A1 (ja) 2020-09-17

Family

ID=72427952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010006 WO2020184511A1 (ja) 2019-03-14 2020-03-09 温度センサユニット及び体内温度計

Country Status (7)

Country Link
US (1) US11573132B2 (ja)
EP (1) EP3936845A4 (ja)
JP (1) JP6755034B1 (ja)
KR (2) KR20220070347A (ja)
CN (2) CN116337278A (ja)
AU (1) AU2020238060B2 (ja)
WO (1) WO2020184511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122056B1 (ja) * 2022-02-22 2022-08-19 Biodata Bank株式会社 内部温度測定装置、内部温度測定方法、及びプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416029B2 (ja) * 2021-09-13 2024-01-17 カシオ計算機株式会社 温度検出装置、温度検出方法及びプログラム
EP4300062A1 (en) * 2022-06-28 2024-01-03 Samsung Electronics Co., Ltd. Electronic device and method of estimating body temperature using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212407A (ja) 2006-02-13 2007-08-23 Kanazawa Univ 非加熱型深部体温計およびそれを用いた深部体温測定装置
US20070282218A1 (en) * 2006-05-31 2007-12-06 Medisim Ltd. Non-invasive temperature measurement
JP2010109518A (ja) * 2008-10-29 2010-05-13 Sony Corp 画像処理装置、画像処理方法、及び、プログラム
JP2013044024A (ja) * 2011-08-24 2013-03-04 Nippon Steel & Sumitomo Metal Corp 表面処理溶融めっき鋼材
JP2017217224A (ja) * 2016-06-08 2017-12-14 国立大学法人大阪大学 深部体温推定装置、その方法及びプログラム
JP2019047122A (ja) 2017-09-01 2019-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 電界効果トランジスタ及び電界効果トランジスタを製造する方法
JP2019123485A (ja) 2018-01-11 2019-07-25 博幸 小山 自走式水上滑走滑空遊具

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1354874A (en) * 1970-05-01 1974-06-05 Nat Res Dev Temperature measurement
US5178468A (en) * 1988-08-25 1993-01-12 Terumo Kabushiki Kaisha Temperature measuring probe and electronic clinical thermometer equipped with same
US6220750B1 (en) * 1999-03-29 2001-04-24 Yoram Palti Non-invasive temperature measurement method and apparatus
GB0103886D0 (en) * 2001-02-16 2001-04-04 Baumbach Per L Temperature measuring device
US6847913B2 (en) * 2001-10-04 2005-01-25 The Johns Hopkins University Ambulatory surface skin temperature monitor
JP3743394B2 (ja) 2002-05-31 2006-02-08 株式会社村田製作所 赤外線センサおよびそれを用いた電子装置
DE102004028359B4 (de) * 2004-06-11 2007-09-13 Drägerwerk AG Vorrichtung zur Messung der Körperkerntemperatur
JP4798280B2 (ja) * 2004-09-15 2011-10-19 セイコーエプソン株式会社 体温計、体温計を有する電子機器および体温測定方法
JP2006258520A (ja) * 2005-03-16 2006-09-28 Ishizuka Electronics Corp 電子体温計用プローブ
US20070239038A1 (en) * 2006-03-28 2007-10-11 Nicolaescu Ion V Method and apparatus for monitoring heat stress
CN101548164A (zh) * 2006-12-06 2009-09-30 皇家飞利浦电子股份有限公司 用于测量核心温度的设备
DE102009013917A1 (de) * 2008-10-30 2010-05-12 Erbe Elektromedizin Gmbh Elektrochirurgisches Gerät mit einer Temperaturmesseinrichtung, Verfahren zur Bestimmung einer Temperatur und/oder einer Temperaturänderung an einer Neutralelektrode
EP2419006B1 (en) * 2009-04-15 2015-09-30 3M Innovative Properties Company Deep tissue temperature probe constructions
WO2011012386A1 (en) * 2009-07-27 2011-02-03 Csem Sa Sensor and method for determining a core body temperature
JP5648283B2 (ja) * 2009-12-24 2015-01-07 セイコーエプソン株式会社 電子体温計及び体温測定方法
JP5578028B2 (ja) * 2010-10-29 2014-08-27 セイコーエプソン株式会社 温度測定装置および温度測定方法
JP2013044624A (ja) * 2011-08-24 2013-03-04 Terumo Corp 体温計
JP2013117408A (ja) * 2011-12-02 2013-06-13 Citizen Holdings Co Ltd 接触式内部温度計
JP6081983B2 (ja) * 2012-02-14 2017-02-15 テルモ株式会社 体温計及び体温測定システム
JP2015111048A (ja) 2012-03-23 2015-06-18 テルモ株式会社 体温計
JP5896160B2 (ja) * 2012-09-28 2016-03-30 三菱マテリアル株式会社 温度センサ
WO2014157138A1 (ja) * 2013-03-28 2014-10-02 シチズンホールディングス株式会社 内部温度測定方法及び接触式内部温度計
DE102013007631A1 (de) * 2013-05-02 2014-11-06 Dräger Medical GmbH Verfahren und Vorrichtung zur Bestimmung einer Kerntemperatur eines Körpers
US10292654B2 (en) * 2013-12-16 2019-05-21 Johnson & Johnson Consumer Inc. Biomedical device, systems and methods having conductive elements
US9267848B2 (en) * 2014-01-02 2016-02-23 King Abdullah International Medical Research Center Thermometer using differential temperature measurements
JP2015190938A (ja) * 2014-03-28 2015-11-02 シチズンホールディングス株式会社 接触式内部温度計
JP2016109518A (ja) * 2014-12-04 2016-06-20 セイコーエプソン株式会社 温度測定装置及び温度測定方法
EP3296708B1 (en) * 2015-05-15 2021-12-22 Murata Manufacturing Co., Ltd. Deep body thermometer
WO2017021948A1 (en) * 2015-08-02 2017-02-09 G Medical Innovations Holdings Ltd Device, system and method for noninvasively monitoring physiological parameters
JP6612658B2 (ja) * 2016-03-09 2019-11-27 株式会社デンソー 生体情報計測装置
JP6468398B2 (ja) * 2016-04-22 2019-02-13 株式会社村田製作所 深部体温計
WO2018033799A1 (en) * 2016-08-19 2018-02-22 Thalman Health Ltd. Method and system for determination of core body temperature
US10575732B2 (en) * 2016-12-30 2020-03-03 Welch Allyn, Inc. Body-worn thermometry solutions
WO2019063519A1 (de) * 2017-09-27 2019-04-04 Abb Schweiz Ag Temperaturmesseinrichtung und verfahren zur temperaturbestimmung
DE112018006093T5 (de) * 2017-12-27 2020-09-17 Robert Bosch Gesellschaft mit beschränkter Haftung System und verfahren zum bestimmen der körperkerntemperatur
DE112019005180T5 (de) * 2018-11-13 2021-07-15 Murata Manufacturing Co., Ltd. Tiefkörperthermometer vom klebetyp
JP7151607B2 (ja) * 2019-04-19 2022-10-12 日本電信電話株式会社 温度測定装置および温度測定方法
JP7147977B2 (ja) * 2019-06-04 2022-10-05 日本電信電話株式会社 温度測定方法およびプログラム
CN111141420A (zh) * 2020-02-04 2020-05-12 上海申矽凌微电子科技有限公司 基于热流法的物体深部温度测量方法及装置
WO2021178772A1 (en) * 2020-03-06 2021-09-10 Verily Life Sciences Llc Core temperature estimation from skin and ambient temperature sensors using a dynamic model
CN113188683B (zh) * 2021-04-25 2022-01-25 湖南万脉医疗科技有限公司 一种具备无线传输功能的穿戴用人体温度无感检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212407A (ja) 2006-02-13 2007-08-23 Kanazawa Univ 非加熱型深部体温計およびそれを用いた深部体温測定装置
US20070282218A1 (en) * 2006-05-31 2007-12-06 Medisim Ltd. Non-invasive temperature measurement
JP2010109518A (ja) * 2008-10-29 2010-05-13 Sony Corp 画像処理装置、画像処理方法、及び、プログラム
JP2013044024A (ja) * 2011-08-24 2013-03-04 Nippon Steel & Sumitomo Metal Corp 表面処理溶融めっき鋼材
JP2017217224A (ja) * 2016-06-08 2017-12-14 国立大学法人大阪大学 深部体温推定装置、その方法及びプログラム
JP2019047122A (ja) 2017-09-01 2019-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 電界効果トランジスタ及び電界効果トランジスタを製造する方法
JP2019123485A (ja) 2018-01-11 2019-07-25 博幸 小山 自走式水上滑走滑空遊具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122056B1 (ja) * 2022-02-22 2022-08-19 Biodata Bank株式会社 内部温度測定装置、内部温度測定方法、及びプログラム
WO2023162054A1 (ja) 2022-02-22 2023-08-31 Biodata Bank株式会社 内部温度測定装置、内部温度測定方法、及びプログラム

Also Published As

Publication number Publication date
KR20220070347A (ko) 2022-05-30
AU2020238060B2 (en) 2022-01-06
JPWO2020184511A1 (ja) 2021-03-18
JP6755034B1 (ja) 2020-09-16
US11573132B2 (en) 2023-02-07
CN113286991B (zh) 2024-05-10
CN116337278A (zh) 2023-06-27
KR20210072108A (ko) 2021-06-16
EP3936845A4 (en) 2022-06-29
US20220042856A1 (en) 2022-02-10
AU2020238060A1 (en) 2021-09-09
EP3936845A1 (en) 2022-01-12
CN113286991A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2020184511A1 (ja) 温度センサユニット及び体内温度計
JP5779806B2 (ja) 温度センサーの校正を用いたゼロ熱流束深部組織温度測定装置
JP4805773B2 (ja) 電子温度計
US7441950B2 (en) Probe for electronic clinical thermometer
US20180024010A1 (en) Internal temperature measuring apparatus and sensor package
JP6398807B2 (ja) 温度差測定装置
US10564046B2 (en) Internal temperature measuring apparatus and temperature difference measuring module
EP3699570A1 (en) Core body temperature sensor and method for the manufacturing thereof
WO2017183709A1 (ja) 深部体温計
US10451490B2 (en) Sensor package
JPH0510826A (ja) アレイセンサ
JP7122056B1 (ja) 内部温度測定装置、内部温度測定方法、及びプログラム
US11828661B2 (en) Core body thermometer
JP7567074B2 (ja) 深部温度測定装置及び深部温度測定方法
CN115808252A (zh) 温度传感模组
JP6428397B2 (ja) 内部温度測定装置及び温度差測定モジュール
KR101621231B1 (ko) 니켈 측온저항센서를 포함하는 측온장치
JPS61120929A (ja) 温度計

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538150

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217016383

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020238060

Country of ref document: AU

Date of ref document: 20200309

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020769584

Country of ref document: EP

Effective date: 20210729