WO2020184427A1 - 含フッ素共重合体組成物、架橋ゴムおよびその製造方法 - Google Patents

含フッ素共重合体組成物、架橋ゴムおよびその製造方法 Download PDF

Info

Publication number
WO2020184427A1
WO2020184427A1 PCT/JP2020/009647 JP2020009647W WO2020184427A1 WO 2020184427 A1 WO2020184427 A1 WO 2020184427A1 JP 2020009647 W JP2020009647 W JP 2020009647W WO 2020184427 A1 WO2020184427 A1 WO 2020184427A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing copolymer
cross
content
mass
Prior art date
Application number
PCT/JP2020/009647
Other languages
English (en)
French (fr)
Inventor
裕紀子 服部
剛 河合
武志 山田
丈裕 巨勢
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021505021A priority Critical patent/JP7400805B2/ja
Priority to CN202080018924.8A priority patent/CN113631590B/zh
Priority to EP20770523.7A priority patent/EP3936534A4/en
Priority to KR1020217026076A priority patent/KR20210139226A/ko
Publication of WO2020184427A1 publication Critical patent/WO2020184427A1/ja
Priority to US17/411,227 priority patent/US20210380794A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/26Removing halogen atoms or halogen-containing groups from the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a fluorine-containing copolymer composition, a crosslinked rubber, and a method for producing the same.
  • Crosslinked rubber obtained by cross-linking a fluoropolymer is excellent in heat resistance, chemical resistance, oil resistance, weather resistance, etc., and therefore, a sealing material (for example, O-ring, packing, oil seal, etc.) As a gasket) and a cushioning material, it is widely used in fields such as vehicles, ships, aircraft, general machinery, and construction.
  • a method for producing such a crosslinked rubber Patent Document 1 describes a method for producing a molded product including a step of crosslinking a crosslinkable fluoroelastomer composition containing a filler satisfying specific properties and a crosslinkable fluoroelastomer. It is disclosed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a crosslinked rubber having excellent hardness and transparency, a method for producing the crosslinked rubber, and a fluorine-containing copolymer composition.
  • a crosslinked rubber obtained by cross-linking a fluorine-containing copolymer in a composition containing a fluorine-containing copolymer, a cross-linking agent, and a cross-linking aid is used. If the composition of the constituent unit of the fluorine-containing copolymer is set within a specific range, and the content of the cross-linking agent and the cross-linking aid in the composition is set within a specific range with respect to the content of the fluorine-containing copolymer. , And have found that a crosslinked rubber having excellent hardness and transparency can be obtained, and have reached the present invention.
  • [1] Includes a fluorine-containing copolymer, a cross-linking agent, and a cross-linking aid.
  • the fluorine-containing copolymer is a copolymer having a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether).
  • the content of the unit based on tetrafluoroethylene in the fluorine-containing copolymer is 69 to 90 mol% with respect to all the units of the fluorine-containing copolymer.
  • the content of the cross-linking agent is 0.03 to 0.7 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer.
  • the fluorine-containing copolymer has an iodine atom and has an iodine atom.
  • the fluorine-containing copolymer has an iodine atom and has an iodine atom.
  • the fluorine-containing copolymer further has a unit based on the following formula (2), and the content of the unit based on the following formula (2) with respect to all the units of the fluorine-containing copolymer is 0.03 to The fluorine-containing copolymer composition according to any one of [1] to [6], which is 0.5 mol%.
  • R 1 , R 2 and R 3 independently represent a hydrogen atom, a fluorine atom or a methyl group, a represents an integer of 2 to 6, and R 4 is an a-valent carbon number of carbon 1 Indicates a perfluorohydrocarbon group to 10 or a group having an ethereal oxygen atom at the terminal of the perfluorohydrocarbon group or between carbon-carbon bonds.
  • a method for producing a crosslinked rubber which comprises cross-linking a fluoropolymer in a composition containing a fluoropolymer, a cross-linking agent, and a cross-linking aid to obtain a cross-linked rubber.
  • the fluorine-containing copolymer is a copolymer having a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether).
  • the content of the unit based on tetrafluoroethylene in the fluorine-containing copolymer is 69 to 90 mol% with respect to all the units of the fluorine-containing copolymer.
  • the content of the cross-linking agent in the composition is 0.03 to 0.7 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer.
  • the content of the cross-linking aid in the composition is 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer.
  • a method for producing a crosslinked rubber which comprises a hardness of 65 to 100. [10] The method for producing a crosslinked rubber according to [9], wherein the total light transmittance of the crosslinked rubber is 70 to 100%. [11]
  • the fluorine-containing copolymer has an iodine atom and has an iodine atom.
  • the fluorine-containing copolymer has an iodine atom and has an iodine atom.
  • the present invention it is possible to provide a crosslinked rubber having excellent hardness and transparency, a method for producing the crosslinked rubber, and a fluorine-containing copolymer composition.
  • the meanings of the terms in the present invention are as follows.
  • the "unit” in the copolymer is an atomic group derived from one molecule of the monomer, which is directly formed by polymerizing a monomer, and an atomic group obtained by chemically converting a part of the atomic group. It is a general term for.
  • the "unit based on a monomer” is also simply referred to as a “unit” below.
  • Rubberer means rubber exhibiting properties as defined by JIS K 6200 (2008) and is distinguished from “resin”.
  • the method for producing a crosslinked rubber of the present invention includes a fluorine-containing copolymer, a cross-linking agent, and a cross-linking aid (hereinafter, also referred to as "fluorine-containing copolymer composition").
  • fluorine-containing copolymer composition A production method for obtaining a crosslinked rubber by cross-linking a polymer, wherein the fluorine-containing copolymer is a copolymer having a tetrafluoroethylene unit and a perfluoro (alkyl vinyl ether) unit, and the fluorine-containing copolymer.
  • the content of the unit based on tetrafluoroethylene in the above is 69 to 90 mol% with respect to all the units of the above-mentioned fluorine-containing copolymer, and the content of the above-mentioned cross-linking agent in the above-mentioned fluorine-containing copolymer composition is the above-mentioned inclusion. It is 0.03 to 0.7 parts by mass with respect to 100 parts by mass of the fluorine copolymer, and the content of the cross-linking aid in the fluorine-containing copolymer composition is 100 parts by mass of the fluorine-containing copolymer. It is 0.1 to 2.5 parts by mass and has a hardness of 65 to 100.
  • the crosslinked rubber obtained by the above method for producing a crosslinked rubber is excellent in hardness and transparency.
  • Fluorine-containing copolymers tend to be partially crystallized by cross-linking as compared with silicone resins and the like. Therefore, it is considered that if the number of crosslinked structures increases in the crosslinked rubber in which the fluorine-containing copolymer is crosslinked, microcrystalline portions are likely to be formed, and as a result, the crosslinked rubber looks opaque.
  • the present inventors increase the content of units based on tetrafluoroethylene in the fluorine-containing copolymer, and reduce the content of the cross-linking agent and the cross-linking aid used for cross-linking the fluorine-containing copolymer as compared with the conventional case.
  • a crosslinked rubber having excellent transparency can be obtained while maintaining excellent hardness. That is, by reducing the content of the cross-linking agent and the cross-linking aid to the extent that the characteristics as a rubber are not lost, the microcrystalline portion in the cross-linked rubber remains while leaving a cross-linking point to the extent that excellent hardness is maintained. It is presumed that the amount decreased and a crosslinked rubber having excellent transparency was obtained.
  • the fluorine-containing copolymer composition contains a fluorine-containing copolymer, a cross-linking agent, and a cross-linking aid.
  • the fluorine-containing copolymer is a copolymer having a tetrafluoroethylene (hereinafter, also referred to as “TFE”) unit and a perfluoro (alkyl vinyl ether) (hereinafter, also referred to as “PAVE”) unit.
  • TFE tetrafluoroethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • R f1 represents a perfluoroalkyl group having 1 to 8 carbon atoms.
  • the carbon number of R f1 is preferably 1 to 6, and particularly preferably 1 to 5.
  • PAVE perfluoro (methyl vinyl ether) (hereinafter, also referred to as “PMVE”), perfluoro (ethyl vinyl ether) (hereinafter, also referred to as “PVE”), and perfluoro (propyl vinyl ether) (hereinafter, also referred to as “PVE”).
  • PMVE perfluoro (methyl vinyl ether)
  • PVE perfluoro (ethyl vinyl ether)
  • PVE perfluoro (propyl vinyl ether)
  • PPVE perfluoro (propyl vinyl ether)
  • the fluorine-containing copolymer may have a unit based on a monomer other than TFE and PAVE, and specific examples thereof include a unit based on a monomer represented by the following formula (2) (hereinafter, "Formula (2) unit”), monomer-based unit represented by the following formula (3) (hereinafter, also referred to as “formula (3) unit”), vinylidene fluoride (hereinafter, "VdF”). ”) Units, hexafluoropropylene (hereinafter, also referred to as“ HFP ”) units, chlorotrifluoroethylene (hereinafter, also referred to as“ CTFE ”) units, and ethylene units. 2) Units, formula (3) units, and vinylidene fluoride (hereinafter, also referred to as “VdF”) units are preferable.
  • Formula (3) unit monomer-based unit represented by the following formula (3)
  • VdF vinylidene fluoride
  • HFP hexafluoropropylene
  • R 1 , R 2 and R 3 independently represent a hydrogen atom, a fluorine atom or a methyl group
  • a represents an integer of 2 to 6
  • R 4 is an a-valent carbon number of carbon 1
  • the plurality of R 1 , the plurality of R 2 and the plurality of R 3 may be the same or different from each other, and it is particularly preferable that they are the same as each other. 2 or 3 is preferable for a, and 2 is particularly preferable.
  • R 1 , R 2 , and R 3 are fluorine atoms or hydrogen atoms
  • R 1 , R 2 , and R 3 It is more preferable that all of them are fluorine atoms or all of them are hydrogen atoms, and it is particularly preferable that all of R 1 , R 2 and R 3 are fluorine atoms.
  • R 4 represents a linear, branched, or cyclic, preferably linear or branched, more preferably linear.
  • the carbon number of R 4 is preferably 2 to 8, more preferably 3 to 7, further preferably 3 to 6, and particularly preferably 3 to 5.
  • the number of etheric oxygen atoms in R 4 is preferably 0-3, 1 or 2 are particularly preferred. It is preferred that one or two etheric oxygen atoms are present at the ends of the perfluoroalkylene group. When R 4 is in these suitable ranges, the hardness of the crosslinked rubber is superior and the compression set at high temperature is small.
  • a vinyl group or a trifluoro is attached to each of both ends of a perfluoroalkylene group having 1 to 10 carbon atoms with or without etheric oxygen.
  • examples thereof include compounds to which a vinyl group is bonded.
  • the fluorine-containing copolymer has at least one of the units based on these monomers, the polymerizability of the monomer and the crosslinkability of the polymer are excellent, and the crosslinked rubber produced from the fluorine-containing copolymer depends on the hardness. Excellent, with less compression set at high temperatures.
  • Equation (3) is as follows.
  • CF 2 CF- OR f2 (3)
  • R f2 represents a perfluoroalkyl group containing an ethereal oxygen atom having 1 to 8 carbon atoms.
  • the carbon number of R f2 is preferably 1 to 6, and particularly preferably 1 to 5.
  • monomer represented by the formula (3) examples include perfluoro (3,6-dioxa-1-heptene), perfluoro (3,6-dioxa-1-octene), and perfluoro (5-). Methyl-3,6-dioxa-1-nonene).
  • the content of the TFE unit is 69 to 90 mol%, preferably 69 to 89 mol%, further preferably 69 to 80 mol%, and 70 to 75 mol% with respect to all the units of the fluorine-containing copolymer.
  • the content of PAVE units is preferably 10 to 31 mol%, more preferably 20 to 31 mol%, and particularly preferably 25 to 30 mol% with respect to all the units of the fluorine-containing copolymer.
  • the fluorine-containing copolymer has the unit of the formula (2), the content thereof is preferably 0.03 to 0.5 mol% with respect to all the units of the fluorine-containing copolymer, and is 0.05 to 0. 3 mol% is particularly preferred.
  • the content thereof is preferably 1 to 21 mol%, particularly preferably 5 to 11 mol%, based on all the units of the fluorine-containing copolymer.
  • the total content of the TFE unit and the content of the PAVE unit is preferably 79 to 100 mol%, particularly preferably 89 to 100 mol%, based on all the units of the fluorine-containing copolymer.
  • Combination 1 Combination of TFE unit and PAVE unit (preferably formula (1) unit, more preferably PPVE unit or PMVE unit)
  • Combination 2 TFE unit and PAVE unit (preferably formula (1) unit) , More preferably, a combination of PPVE units or PMVE units) and the unit of equation (2).
  • the copolymer composition in combinations 1 and 2 preferably has the following molar ratio.
  • the molar ratio is as follows, the mechanical properties, heat resistance, chemical resistance, oil resistance, and weather resistance of the crosslinked rubber are further excellent.
  • Combination 1: TFE unit / PAVE unit 69-90 / 10-31 (molar ratio)
  • Combination 2: TFE unit / PAVE unit / formula (2) unit 69 to 89/10 to 31 / 0.03 to 0.5 (molar ratio)
  • the fluorine-containing copolymer may have a unit based on a monomer other than the above.
  • examples of other monomers include other fluorine-containing monomers and non-fluorine monomers.
  • non-fluorinated monomer examples include ⁇ -olefins such as isobutylene and penten, vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether and butyl vinyl ether, vinyl acetate, vinyl propionate, vinyl butyrate and vinyl caproate. , Vinyl esters such as vinyl caprylate.
  • the fluorine-containing copolymer has units based on other monomers, the content thereof is preferably 0.001 to 2.0 mol%, preferably 0.01, based on all the units of the fluorine-containing copolymer. ⁇ 1.0 mol% is more preferable, and 0.01 to 0.5 mol% is particularly preferable.
  • a monomer having an iodine atom may be used as another monomer.
  • an iodine atom can be introduced into the side chain of the fluorine-containing copolymer.
  • Specific examples of the monomer having an iodine atom include iodoethylene, 4-iodo-3,3,4,5-tetrafluoro-1-butene, 2-iodo-1,1,2,2-tetrafluoro-.
  • the fluorine-containing copolymer has a unit based on a monomer having an iodine atom, the content thereof is preferably 0.001 to 2.0 mol% with respect to all the units of the fluorine-containing copolymer, and is 0. 0.01 to 1.0 mol% is more preferable, and 0.01 to 0.5 mol% is particularly preferable.
  • the fluorine-containing copolymer preferably has an iodine atom, and particularly preferably has an iodine atom at the end of the fluorine-containing copolymer (polymer chain).
  • the terminal means both the end of the main chain and the end of the branched chain of the fluorine-containing copolymer.
  • the iodine atom include an iodine atom derived from an iodine compound that functions as a chain transfer agent described later, and an iodine atom in a unit based on the above-mentioned monomer having an iodine atom, which is an iodine atom derived from an iodine compound. Is preferable.
  • the content thereof is preferably 0.01 to 5.0% by mass, preferably 0.05 to 2.0% by mass, based on the total mass of the fluorine-containing copolymer. Is more preferable, and 0.05 to 1.0% by mass is particularly preferable.
  • the iodine atom content is in the above range, the cross-linking reactivity of the fluorine-containing copolymer is more excellent, and the mechanical properties of the cross-linked rubber are more excellent.
  • the mass ratio of the iodine atom content to the content of the cross-linking agent (described later) in the fluorine-containing copolymer composition Is preferably 0.3 to 1.2, more preferably 0.3 to 1.0, and particularly preferably 0.35 to 0.70.
  • the crosslinking reaction is likely to proceed, and when it is at least the upper limit of the above range, the hardness is more excellent.
  • the mass ratio of the iodine atom content to the content of the cross-linking aid (described later) in the fluorine-containing copolymer composition is preferably 0.3 to 1.2, more preferably 0.3 to 1.0, and particularly preferably 0.35 to 0.70.
  • the crosslinking reaction is likely to proceed, and when it is at least the upper limit of the above range, the hardness is more excellent.
  • the content of the fluorine-containing copolymer is preferably 95 to 99% by mass, more preferably 96 to 99% by mass, and particularly preferably 97 to 99% by mass with respect to the total mass of the fluorine-containing copolymer composition.
  • An example of a method for producing a fluorine-containing copolymer is a method of copolymerizing the above-mentioned monomers in the presence of a chain transfer agent and a radical polymerization initiator.
  • the chain transfer agent is preferably an iodine compound, and particularly preferably an iodine compound represented by the formula RI 2 .
  • R represents an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms (preferably 3 to 8 carbon atoms).
  • Specific examples of the iodine compound represented by the formula RI 2 include 1,3-diiodopropane, 1,4-diiodobutane, 1,6-diiodohexane, 1,8-diiodooctane, and 1,3-di.
  • Examples thereof include iodoperfluoropropane, 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 1,8-diiodoperfluorooctane.
  • the iodine compound an iodine compound having a perfluoroalkylene group is preferable, and 1,4-diiodoperfluorobutane is particularly preferable.
  • an iodine atom can be introduced into the main chain terminal of the fluorine-containing copolymer.
  • the end of the polymer chain having an iodine atom may be the end of the main chain or the end of the branched chain.
  • a water-soluble polymerization initiator and a redox polymerization initiator are preferable.
  • the water-soluble polymerization initiator include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate, and organic polymerization initiators such as disuccinic acid peroxide and azobisisobutylamidine dihydrochloride. Among these, persulfates are preferable, and ammonium persulfate is more preferable.
  • the redox polymerization initiator include a polymerization initiator that is a combination of persulfates and a reducing agent.
  • a polymerization initiator capable of polymerizing each monomer in a polymerization temperature range of 0 to 60 ° C. is preferable.
  • the persulfate constituting the redox polymerization initiator include alkali metal salts of persulfate such as ammonium persulfate, sodium persulfate, and potassium persulfate, and ammonium persulfate is preferable.
  • the reducing agent to be combined with persulfates include thiosulfate, sulfite, hydrogen sulfite, pyrosulfite, and hydroxymethanesulfinate, preferably hydroxymethanesulfinate, and sodium hydroxymethanesulfinate. Salt is particularly preferred.
  • Crosslinkers are used to crosslink fluorine-containing copolymers.
  • an organic peroxide is preferable because the cross-linking reactivity of the fluorine-containing copolymer is more excellent.
  • organic peroxides include dialkyl peroxides, ⁇ , ⁇ '-bis (tert-butylperoxy) -p-diisopropylbenzene, ⁇ , ⁇ '-bis (tert-butylperoxy) -m-.
  • Examples thereof include diisopropylbenzene, benzoylperoxide, tert-butylperoxybenzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, tert-butylcumylperoxide and dicumylperoxide.
  • dialkyl peroxides ⁇ , ⁇ '-bis (tert-butylperoxy) -p-diisopropylbenzene and ⁇ , ⁇ '-bis (tert-butylperoxy) -m-diisopropylbenzene are preferable.
  • dialkyl peroxides include 1,1-di (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide, and tert-butyl.
  • Peroxymaleic acid, tert-butyl peroxysopropyl carbonate, tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5 -Di (tert-butylperoxy) -3-hexane can be mentioned.
  • dicumylperoxide and 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane are preferred.
  • the cross-linking agent may contain only one type or two or more types.
  • the content of the cross-linking agent in the fluorine-containing copolymer composition is 0.03 to 0.7 parts by mass and 0.1 to 0.6 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer. Is preferable, and 0.3 to 0.6 parts by mass is particularly preferable. When it is at least the lower limit of the above range, the hardness of the crosslinked rubber is more excellent, and when it is at least the upper limit of the above range, the transparency of the crosslinked rubber is more excellent.
  • the cross-linking aid is used to improve the cross-linking reactivity of the fluorine-containing copolymer.
  • the cross-linking aid is preferably a compound having two or more reactive functional groups in the same molecule.
  • Specific examples of the reactive functional group include a carbon-carbon double bond-containing group, a halogen atom, an acid anhydride residue, a carboxy group, an amino group, a cyano group, and a hydroxyl group.
  • the plurality of reactive functional groups present in the same molecule of the cross-linking aid may be the same or different from each other.
  • the carbon-carbon double bond-containing group examples include an alkenyl group such as a vinyl group, an allyl group and a metalyl group, an unsaturated acyl group such as an acryloyl group and a methacryloyl group, and a maleimide group.
  • the carbon-carbon double bond-containing group is preferably an alkenyl group having 2 to 4 carbon atoms, and particularly preferably an allyl group.
  • cross-linking aid examples include the compound represented by the following formula (4), triallyl cyanurate, triallyl isocyanurate, trimetalyl isocyanurate, 1,3,5-triacrylloylhexahydro-1,3, 5-Triazine, Triallyl trimerite, m-phenylenediamine bismaleimide, p-quinonedioxime, p, p'-dibenzoylquinonedioxime, dipropargyl terephthalate, diallyl phthalate, N, N', N'', Examples thereof include N'''-tetraallyl terephthalamide and vinyl group-containing siloxane oligomers (polymethylvinylsiloxane, polymethylphenylvinylsiloxane, etc.).
  • the compound represented by the following formula (4), triallyl cyanurate, triallyl isocyanurate, and trimetalyl isocyanurate are preferable, and the compound represented by the following formula (4) and triallyl isocyanurate are more preferable.
  • the compound represented by the following formula (4) is particularly preferable because the crosslinked rubber is more excellent in transparency.
  • the cross-linking aid may contain only one type or two or more types.
  • R 41 , R 42 and R 43 independently represent a hydrogen atom, a fluorine atom, an alkyl group having 1 to 5 carbon atoms or a fluoroalkyl group having 1 to 5 carbon atoms
  • R 44 is A divalent fluorohydrocarbon group having 1 to 18 carbon atoms or a group having an ethereal oxygen atom at the terminal of the fluorohydrocarbon group or between carbon-carbon bonds is shown.
  • the plurality of R 41s , the plurality of R 42s, and the plurality of R 43s may be the same or different from each other.
  • R 41 , R 42 and R 43 are an alkyl group or a fluoroalkyl group, they may be linear or branched, but are preferably linear.
  • R 41 , R 42 and R 43 are an alkyl group or a fluoroalkyl group, the number of carbon atoms thereof is 1 to 5, more preferably 1 to 3, and particularly preferably 1 or 2. It is preferable that all of R 41 , R 42 and R 43 are hydrogen atoms because the polymerization reactivity of DVE is more excellent.
  • the fluorohydrocarbon group in R 44 is preferably a perfluorohydrocarbon group from the viewpoint of being superior in heat resistance of the crosslinked rubber article.
  • R 44 may be linear, branched or cyclic, preferably linear or branched, and particularly preferably linear.
  • the carbon number of R 44 is 1 to 18, preferably 2 to 8, and particularly preferably 3 to 7.
  • R 44 has an ether oxygen atom
  • the number of ether oxygen atoms in R 44 is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1 or 2.
  • R 44 has an ether oxygen atom, it is preferable that the ether oxygen atom is present at the end of R 44 .
  • the compound represented by the formula (4) the compound represented by the above formula (2) is preferable.
  • the content of the cross-linking aid in the fluorine-containing copolymer composition is 0.1 to 2.5 parts by mass and 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer. Parts are preferable, and 0.1 to 1.0 parts by mass are particularly preferable. When it is at least the lower limit of the above range, the hardness of the crosslinked rubber is more excellent, and when it is at least the upper limit of the above range, the transparency of the crosslinked rubber is more excellent.
  • the mass ratio of the content of the cross-linking agent to the content of the cross-linking aid (content of the cross-linking agent / content of the cross-linking aid) in the fluorine-containing copolymer composition is preferably 0.4 to 7. 4 to 7.0 is more preferable, 0.4 to 5.0 is further preferable, and 0.5 to 2.0 is particularly preferable. Within the above range, unreacted cross-linking aid is unlikely to remain, and the cross-linking reaction proceeds satisfactorily, so that transparency is more excellent.
  • the total content of the cross-linking agent and the cross-linking aid in the fluorine-containing copolymer composition is preferably 2.0 parts by mass or less, preferably 1.8 parts by mass or less, based on 100 parts by mass of the fluorine-containing copolymer. Is more preferable, and 1.5 parts by mass or less is particularly preferable. When it is less than the above value, the transparency of the crosslinked rubber is more excellent.
  • the total content of the cross-linking agent and the cross-linking aid in the fluorine-containing copolymer composition is preferably 0.1 part by mass or more, preferably 0.5 parts by mass or more, based on 100 parts by mass of the fluorine-containing copolymer. Is particularly preferable. When it is more than the above value, the hardness of the crosslinked rubber is more excellent.
  • the fluorine-containing copolymer composition may contain components other than the above as long as the effects of the present invention are not impaired.
  • Other components include processing aids (eg acid acceptors such as fatty acid esters, fatty acid metal salts), fillers and reinforcing agents (eg carbon black, barium sulfate, calcium metasilicate, calcium carbonate, titanium oxide, dioxide).
  • Silicon, clay, talc metal oxides (eg oxides of divalent metals such as magnesium oxide, calcium oxide, zinc oxide, lead oxide), sulfides, scorch retarders (eg phenolic bisphenol A) Examples thereof include hydroxyl group-containing compounds, quinones such as hydroquinone, and ⁇ -methylstyrene dimers such as 2,4-di (3-isopropylphenyl) -4-methyl-1-pentene).
  • metal oxides eg oxides of divalent metals such as magnesium oxide, calcium oxide, zinc oxide, lead oxide
  • scorch retarders eg phenolic bisphenol A
  • hydroxyl group-containing compounds quinones such as hydroquinone, and ⁇ -methylstyrene dimers such as 2,4-di (3-isopropylphenyl) -4-methyl-1-pentene.
  • the fluorine-containing copolymer composition may contain a filler and a reinforcing agent, but the fluorine-containing copolymer composition substantially contains the filler and the reinforcing agent because the crosslinked rubber is more transparent. It is preferable not to have it.
  • the fluoropolymer composition does not substantially contain the filler and the reinforcing agent means that the total content of the filler and the reinforcing agent in the fluoropolymer composition is the crosslinked rubber. It means that it is 0.1 parts by mass or less with respect to 100 parts by mass, preferably 0.01 parts by mass or less, and particularly preferably 0 parts by mass.
  • the total content of components other than the fluorine-containing copolymer, that is, a cross-linking agent, a cross-linking aid, and other components in the fluorine-containing copolymer composition is 0 with respect to 100 parts by mass of the fluorine-containing copolymer. It is preferably .5 to 2.0 parts by mass, more preferably 0.5 to 1.8 parts by mass, and particularly preferably 0.5 to 1.2 parts by mass. When it is at least the lower limit of the above range, the hardness of the crosslinked rubber is more excellent, and when it is at least the upper limit of the above range, the transparency of the crosslinked rubber is more excellent.
  • Examples of the method for preparing the fluorine-containing copolymer composition include a method of mixing the above components. Mixing of each component can be carried out using a rubber mixing device such as a roll, a kneader, a Banbury mixer or an extruder. Further, after obtaining a mixture obtained by mixing each of the above components, the mixture may be molded. That is, the fluorine-containing copolymer composition may be a molded product. Specific examples of the molding method of the mixture include compression molding, injection molding, extrusion molding, calendar molding, or a method of dissolving the mixture in a solvent and dipping or coating it.
  • the crosslinked rubber is obtained by cross-linking the fluorine-containing copolymer in the fluorine-containing copolymer composition.
  • a method for cross-linking the fluorine-containing copolymer in the fluorine-containing copolymer composition a method for cross-linking the fluorine-containing copolymer composition by heating is preferable.
  • Specific examples of the crosslinking method by heating include heating press crosslinking, steam crosslinking, and hot air crosslinking. From these methods, it may be appropriately selected in consideration of the shape and use of the fluorine-containing copolymer composition.
  • the heating conditions are preferably 100 to 400 ° C. for 1 second to 24 hours.
  • the crosslinked rubber formed by heating the fluorine-containing copolymer composition to perform primary cross-linking may be further heated to perform secondary cross-linking.
  • the heating conditions for the secondary cross-linking are preferably 100 to 300 ° C. for 30 minutes to 48 hours.
  • Examples of the cross-linking method other than cross-linking the fluorine-containing copolymer composition by heating include a method of irradiating the fluorine-containing copolymer composition with radiation to cross-link.
  • Specific examples of the radiation to be irradiated include electron beams and ultraviolet rays.
  • the crosslinked rubber of the present invention Since the crosslinked rubber of the present invention is obtained by using the above-mentioned fluorine-containing copolymer composition, it exhibits high transparency. As an index showing the transparency of the crosslinked rubber, the total light transmittance can be mentioned.
  • the total light transmittance (%) means the transmittance of light including all of the parallel component and the diffusing component among the light transmitted when the test piece is exposed to light.
  • the total light transmittance of the crosslinked rubber is preferably 70 to 100%, more preferably 73 to 100%, and particularly preferably 75 to 100%. Since the crosslinked rubber of the present invention is obtained by using the above-mentioned fluorine-containing copolymer composition, it satisfies the above-mentioned range of total light transmittance.
  • the total light transmittance of the crosslinked rubber in the present invention is a value measured in accordance with JIS K7361-1: 1997 using a plate-shaped molded product (thickness 2 mm) of the crosslinked rubber.
  • cross-linking degree As an index of the cross-linking property of the cross-linked rubber, MH - ML (hereinafter, also referred to as “cross-linking degree”) measured by the method of Examples described later can be mentioned. It can be said that the larger the value of the degree of cross-linking, the more the cross-linked structure of the cross-linked rubber, and the more microcrystalline portions are present in the cross-linked rubber. Therefore, when the value of the degree of cross-linking is small, the transparency of the cross-linked rubber is excellent, and when the value of the degree of cross-linking is large, the rubber properties of the cross-linked rubber are excellent (for example, the hardness and tensile strength are high). I can say.
  • the degree of cross-linking of the cross-linked rubber is preferably 3 to 50 dNm, more preferably 3 to 45 dNm, and particularly preferably 5 to 40 dNm.
  • the degree of cross-linking of the cross-linked rubber is within the above range, both rubber properties and transparency can be achieved at a high level.
  • the tensile strength of the crosslinked rubber is preferably 1 to 50 MPa, particularly preferably 10 to 35 MPa. When the tensile strength of the crosslinked rubber is within the above range, the rubber properties and transparency of the crosslinked rubber are more excellent.
  • the 100% modulus of the crosslinked rubber is preferably 0.2 to 5.0 MPa, particularly preferably 0.5 to 3.5 MPa, from the viewpoint of excellent rubber characteristics.
  • the elongation rate of the crosslinked rubber at the time of cutting is preferably 100 to 1000%, particularly preferably 150 to 600%, from the viewpoint of excellent rubber characteristics.
  • the tensile strength, 100% modulus, and elongation at cutting of the crosslinked rubber were measured in accordance with JIS K6251: 2017 using a sample obtained by punching a plate-shaped molded product (thickness 2 mm) of the crosslinked rubber with a No. 3 dumbbell. Value.
  • the hardness (Shore-A) of the crosslinked rubber is 65 to 100, and is preferably 65 to 80, particularly preferably 65 to 75, from the viewpoint of excellent rubber characteristics. Since the crosslinked rubber is obtained by using the above-mentioned fluorine-containing copolymer composition, it satisfies the above-mentioned hardness value.
  • the hardness (Shore-A) of the crosslinked rubber is a value measured using a plate-shaped molded product (thickness 2 mm) of the crosslinked rubber, in accordance with JIS K6253-3: 2012, using a type A durometer. ..
  • Crosslinked rubber is suitable for materials such as O-rings, sheets, gaskets, oil seals, diaphragms, and V-rings.
  • materials such as O-rings, sheets, gaskets, oil seals, diaphragms, and V-rings.
  • heat-resistant and chemical-resistant sealing materials heat-resistant and oil-resistant sealing materials, wire coating materials, sealing materials for semiconductor devices, corrosion-resistant rubber paints, sealing materials for urea-based greases, rubber paints, adhesive rubbers, hoses, tubes, etc.
  • Calendar sheet (roll), sponge, rubber roll, oil drilling member, heat dissipation sheet, solution cross-linking body, rubber sponge, bearing seal (urea grease resistant, etc.), lining (chemical resistant), automotive insulating sheet, insulation for electronic devices Sheets, rubber bands for watches, packing for endoscopes (amine resistant), bellows hose (processed from calendar sheets), water heater packing / valves, fenders (marine civil engineering, ships), fibers / non-woven fabrics (protective clothing, etc.) ), Base sealant, rubber gloves, uniaxial eccentric screw pump stator, urea SCR system parts, vibration isolator, vibration damping agent, sealant, additive to other materials, toy applications. Since the crosslinked rubber has excellent transparency, it is particularly suitable for applications where visibility from the outside is required. Specific examples of applications that require transparency include sealing materials for semiconductor manufacturing equipment.
  • Examples 1 to 3 are examples, and examples 4 to 9 are comparative examples. However, the present invention is not limited to these examples.
  • the blending amount of each component in the table described later is based on mass.
  • the content of each unit in the copolymer was calculated by nuclear magnetic resonance (NMR) analysis.
  • the content of iodine atoms in the copolymer was calculated by a device combining an automatic sample combustion device, a pretreatment device for ion chromatographs (manufactured by Mitsubishi Chemical Analytech Co., Ltd., AQF-100 type) and an ion chromatograph.
  • Total light transmittance The total light transmittance was measured using a cross-linked rubber plate-shaped molded product (thickness 2 mm) in accordance with JIS K7361-1: 1997 and using a haze meter (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). When the total light transmittance is 70% or more, it can be said that the crosslinked rubber is excellent in transparency. When the total light transmittance was 75% or more, it was evaluated as " ⁇ ", when it was 70% or more and less than 75%, it was evaluated as " ⁇ ", and when it was less than 70%, it was evaluated as "x”.
  • Tensile strength, 100% modulus and elongation at cutting were measured using a tensile tester with data processing (quick leader) TS-2530 (manufactured by Ueshima Seisakusho). When the tensile strength is 1 MPa or more, it can be said that the crosslinked rubber is excellent in tensile strength. Further, using the obtained measurement sample, the hardness (Shore-A) was measured using Digitest Shore A (manufactured by H. Burleys Testing Machine Co., Ltd.) in accordance with JIS K6253-3: 2012. When the hardness is 65 or more, it can be said that the hardness of the crosslinked rubber is excellent.
  • copolymers 1 to 4 which are fluorine-containing copolymers, were produced.
  • (Copolymer 1) After degassing a stainless steel pressure reactor with an internal volume of 20 L equipped with anchor blades, 8.2 L of ultrapure water, 733 g of a 30 mass% solution of C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 , and C3DVE. 10.0 g and 15.9 g of a 5 mass% aqueous solution of disodium hydrogen phosphate / 12 hydrate were charged, and the gas phase was replaced with nitrogen.
  • TFE When the reactor internal pressure decreased to 0.89 MPa [gauge] with the progress of the polymerization, TFE was press-fitted to increase the reactor internal pressure to 0.90 MPa [gauge]. This was repeated, and 62 g of PMVE was press-fitted each time 80 g of TFE was press-fitted. Further, 7.0 g of 1,4-diiodoperfluorobutane was press-fitted into the reactor from an ampoule tube together with 50 mL of ultrapure water when 60 g of TFE was press-fitted.
  • post-added monomer the monomer press-fitted after the start of polymerization
  • the polymerization reaction was stopped to obtain a latex containing a fluorine-containing copolymer.
  • the polymerization time was 360 minutes.
  • Nitric acid manufactured by Kanto Chemical Co., Inc., special grade
  • aqueous solution of nitric acid was dissolved in ultrapure water to prepare a 3% by mass aqueous solution of nitric acid.
  • Latex was added to the aqueous nitrate solution in a container made of TFE / perfluoro (alkyl vinyl ether) copolymer (PFA) to aggregate the fluorine-containing copolymer.
  • the amount of the aqueous nitric acid solution was 150 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer in the latex.
  • the aggregated fluorine-containing copolymer was recovered by filtration, put into ultrapure water in a PFA container, and washed by stirring at 200 rpm for 30 minutes.
  • the amount of ultrapure water was 100 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer. The above washing was repeated 10 times.
  • the washed fluorine-containing copolymer was recovered by filtration and dried under reduced pressure at 50 ° C. and 10 kPa to obtain the copolymer 1.
  • the copolymer 2 was produced according to the method for producing the copolymer 1, except that a 5% by mass aqueous solution of potassium aluminum sulfate was used instead of the aqueous nitrate solution when the latex was agglomerated.
  • the amount of the aqueous potassium aluminum sulfate solution was 150 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer in the latex.
  • the agglomerated fluorine-containing copolymer was recovered by filtration and washed in the same manner as in Example 1.
  • the washed fluorine-containing copolymer was recovered by filtration and dried in the same manner as in Example 1 to obtain a copolymer 2.
  • Copolymer 3 was produced according to the method for producing copolymer 1 except that 6 g of C6DV was used instead of 10 g of C3DVE.
  • Copolymer 4 Except for changing PBDVE to C3DVE, the copolymer 4 was produced with reference to the method of Example 1 of International Publication No. 2010/082633.
  • Examples 1 to 9 The ingredients and blending amounts shown in Table 1 were mixed, and the mixture was kneaded with two rolls at room temperature for 10 minutes to obtain a mixed composition. The obtained composition was hot-pressed (primary cross-linked) under the cross-linking conditions shown in the table below to obtain sheet-shaped cross-linked rubbers (cross-linked rubber sheets) of Examples 1 to 9. The various physical properties described above were measured using the obtained composition and the crosslinked rubber. The measurement results are shown in Table 1.
  • a fluoropolymer having a TFE unit content of 69 to 90 mol% with respect to all the units of the fluoropolymer, a cross-linking agent, and a cross-linking aid As shown in Examples 1 to 3 of Table 1, a fluoropolymer having a TFE unit content of 69 to 90 mol% with respect to all the units of the fluoropolymer, a cross-linking agent, and a cross-linking aid.
  • the content of the cross-linking agent is 0.03 to 0.7 parts by mass with respect to 100 parts by mass of the fluoro-containing copolymer
  • the content of the cross-linking aid is the fluoro-containing copolymer. If it is 0.1 to 2.5 parts by mass with respect to 100 parts by mass, the obtained crosslinked rubber has excellent transparency (total light transmittance of 70% or more) and excellent hardness (hardness of 65). The above) was confirmed.
  • Example 4 a fluoropolymer having a TFE unit content of less than 69 mol% with respect to all the units of the fluoropolymer was used, and the content of the cross-linking agent in the composition was high. It is more than 0.7 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer, and the content of the cross-linking aid in the composition is more than 2.5 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer.
  • the composition of (1) was used, the obtained crosslinked rubber was excellent in hardness but inferior in transparency.
  • Example 5 a fluoropolymer in which the content of TFE units with respect to all the units of the fluoropolymer is less than 69 mol% is used, and the content of the cross-linking agent in the composition is fluorinated.
  • the composition is 0.03 to 0.7 parts by mass with respect to 100 parts by mass of the polymer, but the content of the cross-linking aid is more than 2.5 parts by mass with respect to 100 parts by mass of the fluoropolymer.
  • the obtained crosslinked rubber was inferior in hardness and transparency.
  • the content of the cross-linking agent in the composition is more than 0.7 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer, and the content of the cross-linking aid is the fluorine-containing copolymer weight.
  • the obtained crosslinked rubber was excellent in hardness but inferior in transparency.
  • the content of the cross-linking aid in the composition using the fluorine-containing copolymer in which the content of TFE units with respect to all the units of the fluorine-containing copolymer is less than 69 mol% is used. Is 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the fluoropolymer, but the content of the cross-linking agent exceeds 0.7 parts by mass with respect to 100 parts by mass of the fluoropolymer. When the composition of (1) was used, the obtained crosslinked rubber was excellent in hardness but inferior in transparency.
  • Example 9 a fluoropolymer having a TFE unit content of less than 69 mol% with respect to all the units of the fluoropolymer is used, and the content of the cross-linking aid in the composition is fluorine-containing. 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the copolymer, and the content of the cross-linking agent is 0.03 to 0.7 parts by mass with respect to 100 parts by mass of the fluoropolymer.
  • the obtained crosslinked rubber was excellent in transparency but inferior in hardness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

硬度および透明性に優れた架橋ゴムの製造方法の提供。 本発明の架橋ゴムの製造方法は、含フッ素共重合体と、架橋剤と、架橋助剤とを含む組成物を架橋して得られる架橋ゴムの製造方法であって、含フッ素共重合体がテトラフルオロエチレンに基づく単位とパーフルオロ(アルキルビニルエーテル)に基づく単位とを有する共重合体であり、上記テトラフルオロエチレンに基づく単位の含有量は、上記含フッ素共重合体の全単位に対して65~90モル%であり、組成物中、架橋剤の含有量が含フッ素共重合体の100質量部に対して0.03~0.7質量部であり、架橋助剤の含有量が含フッ素共重合体の100質量部に対して0.1~2.5質量部であり、硬度が65~100である。

Description

含フッ素共重合体組成物、架橋ゴムおよびその製造方法
 本発明は、含フッ素共重合体組成物、架橋ゴムおよびその製造方法およびに関する。
 含フッ素共重合体を架橋させた架橋ゴム(いわゆる、フッ素ゴム)は、耐熱性、耐薬品性、耐油性および耐候性等に優れる点から、シール材(例えば、Oリング、パッキン、オイルシール、ガスケット)およびクッション材として、車両、船舶、航空機、一般機械、建築等の分野で広く使用されている。
 このような架橋ゴムの製造方法として、特許文献1には、特定の特性を満たすフィラーおよび架橋性フッ素系エラストマーを含む架橋性フッ素系エラストマー組成物を架橋成形する工程を含む成形品の製造方法が開示されている。
特許第4374819号
 近年、各分野において、透明な架橋ゴムが求められている。例えば、化学プラントにおいては、透明な架橋ゴムによって形成された部材を用いた場合、外部からの視認性が向上して、製造上の異常の検知や設備のメンテナンスが容易になるという利点がある。
 また、架橋ゴムに求められるゴム特性の一つとして、硬度に優れることが挙げられる。 このような要求に対して、本発明者が特許文献1に記載されているような架橋ゴムを評価したところ、架橋ゴムの製造時に使用する組成物の組成によっては、硬度には優れるものの、透明性に改善の余地があることを見出した。
 本発明は、上記問題に鑑みてなされ、硬度および透明性に優れた架橋ゴム、その製造方法および含フッ素共重合体組成物の提供を課題とする。
 本発明者らは、上記課題について鋭意検討した結果、含フッ素共重合体と、架橋剤と、架橋助剤とを含む組成物中の含フッ素共重合体を架橋して得られる架橋ゴムにおいて、含フッ素共重合体の構成単位の組成を特定範囲内に設定し、組成物中における架橋剤および架橋助剤の含有量を含フッ素共重合体の含有量に対して特定範囲内に設定すれば、硬度および透明性に優れた架橋ゴムが得られることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
[1]含フッ素共重合体と、架橋剤と、架橋助剤とを含み、
 上記含フッ素共重合体が、テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位とを有する共重合体であり、
 上記含フッ素共重合体におけるテトラフルオロエチレンに基づく単位の含有量は、上記含フッ素共重合体の全単位に対して69~90モル%であり、
 上記架橋剤の含有量が、上記含フッ素共重合体の100質量部に対して、0.03~0.7質量部であり、
 上記架橋助剤の含有量が、上記含フッ素共重合体の100質量部に対して、0.1~2.5質量部であることを特徴とする、含フッ素共重合体組成物。
[2]上記含フッ素共重合体が、ヨウ素原子を有し、
 上記架橋剤の含有量に対する上記ヨウ素原子の含有量の質量比が、0.3~1.2である、[1]に記載の含フッ素共重合体組成物。
[3]上記含フッ素共重合体が、ヨウ素原子を有し、
 上記架橋助剤の含有量に対する上記ヨウ素原子の含有量の質量比が、0.3~1.2である、[1]または[2]に記載の含フッ素共重合体組成物。
[4]上記架橋助剤の含有量に対する上記架橋剤の含有量の質量比が、0.4~7である、[1]~[3]のいずれかの含フッ素共重合体組成物。
[5]上記架橋剤と上記架橋助剤の含有量の合計が、上記含フッ素共重合体の100質量部に対して、2.0質量部以下である、[1]~[4]のいずれかの含フッ素共重合体組成物。
[6]上記含フッ素共重合体以外の成分の含有量の合計が、上記含フッ素共重合体の100質量部に対して、0.5~2.0質量部である[1]~[5]のいずれかの含フッ素共重合体組成物。
[7]上記含フッ素共重合体がさらに下記式(2)に基づく単位を有し、上記含フッ素共重合体の全単位に対する、下記式(2)に基づく単位の含有量が0.03~0.5モル%である、[1]~[6]のいずれかの含フッ素共重合体組成物。
 (CR=CR  (2)
 式(2)中、R、RおよびRはそれぞれ独立に、水素原子、フッ素原子またはメチル基を示し、aは2~6の整数を示し、Rは、a価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
[8][1]~[7]のいずれかの含フッ素共重合体組成物中の含フッ素共重合体が架橋した架橋ゴム。
[9]含フッ素共重合体と、架橋剤と、架橋助剤とを含む組成物中の含フッ素共重合体を架橋して架橋ゴムを得ることを特徴とする、架橋ゴムの製造方法であって、
 上記含フッ素共重合体が、テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位とを有する共重合体であり、
 上記含フッ素共重合体における上記テトラフルオロエチレンに基づく単位の含有量は、上記含フッ素共重合体の全単位に対して69~90モル%であり、
 上記組成物中、上記架橋剤の含有量が、上記含フッ素共重合体の100質量部に対して、0.03~0.7質量部であり、
 上記組成物中、上記架橋助剤の含有量が、上記含フッ素共重合体の100質量部に対して、0.1~2.5質量部であり、
 硬度が65~100であることを特徴とする、架橋ゴムの製造方法。
[10]上記架橋ゴムの全光線透過率が、70~100%である、[9]に記載の架橋ゴムの製造方法。
[11]上記含フッ素共重合体が、ヨウ素原子を有し、
 上記組成物中、上記架橋剤の含有量に対する上記ヨウ素原子の含有量の質量比が、0.3~1.2である、[9]または[10]に記載の架橋ゴムの製造方法。
[12]上記含フッ素共重合体が、ヨウ素原子を有し、
 上記組成物中、上記架橋助剤の含有量に対する上記ヨウ素原子の含有量の質量比が、0.3~1.2である、[9]~[11]のいずれかの架橋ゴムの製造方法。
[13]上記組成物中、上記架橋助剤の含有量に対する上記架橋剤の含有量の質量比が、0.4~7である、[9]~[12]のいずれかの架橋ゴムの製造方法。
[14]上記組成物中、上記架橋剤と上記架橋助剤の含有量の合計が、上記含フッ素共重合体の100質量部に対して、2.0質量部以下である、[9]~[13]のいずれかの架橋ゴムの製造方法。
[15]上記組成物中、上記含フッ素共重合体以外の成分の含有量の合計が、上記含フッ素共重合体の100質量部に対して、0.5~2.0質量部である、[9]~[14]のいずれかの架橋ゴムの製造方法。
 本発明によれば、硬度および透明性に優れた架橋ゴム、その製造方法および含フッ素共重合体組成物を提供できる。
 本発明における用語の意味は以下の通りである。
 共重合体における「単位」とは、単量体が重合して直接形成された、上記単量体1分子に由来する原子団と、上記原子団の一部を化学変換して得られる原子団との総称である。「単量体に基づく単位」は、以下、単に「単位」ともいう。
 「ゴム」とは、JIS K 6200(2008)により定義される性質を示すゴムを意味し、「樹脂」とは区別される。
 本発明の架橋ゴムの製造方法は、含フッ素共重合体と、架橋剤と、架橋助剤とを含む組成物(以下、「含フッ素共重合体組成物」ともいう。)中の含フッ素共重合体を架橋して架橋ゴムを得る製造方法であって、上記含フッ素共重合体がテトラフルオロエチレン単位とパーフルオロ(アルキルビニルエーテル)単位とを有する共重合体であり、上記含フッ素共重合体におけるテトラフルオロエチレンに基づく単位の含有量は、上記含フッ素共重合体の全単位に対して69~90モル%であり、上記含フッ素共重合体組成物中上記架橋剤の含有量が上記含フッ素共重合体の100質量部に対して、0.03~0.7質量部であり、上記含フッ素共重合体組成物中上記架橋助剤の含有量が上記含フッ素共重合体の100質量部に対して0.1~2.5質量部であり、硬度が65~100である。
 上記架橋ゴムの製造方法によって得られた架橋ゴムは、硬度および透明性に優れる。この理由の詳細は明らかになっていないが、以下の理由によると推測される。
 含フッ素共重合体は、シリコン樹脂等と比較して、架橋によって部分的に結晶化が起きやすい傾向にある。そのため、含フッ素共重合体が架橋した架橋ゴム中において、架橋構造が増えると、微結晶部分が生じやすくなる結果、架橋ゴムが不透明に見えると考えられる。
 そこで、本発明者らは、含フッ素共重合体におけるテトラフルオロエチレンに基づく単位の含有量を増やし、含フッ素共重合体の架橋に使用する架橋剤および架橋助剤の含有量を従来よりも減らすことによって、優れた硬度を維持しつつ、透明性に優れた架橋ゴムが得られることを見出した。すなわち、ゴムとしての特性が失われない程度に架橋剤および架橋助剤の含有量を減らしたことで、優れた硬度が維持される程度の架橋点を残しつつ、架橋ゴム中の微結晶部分が減少して、透明性に優れた架橋ゴムが得られたと推測される。
〔含フッ素共重合体組成物〕
 含フッ素共重合体組成物は、含フッ素共重合体と、架橋剤と、架橋助剤とを含む。
<含フッ素共重合体>
 含フッ素共重合体は、テトラフルオロエチレン(以下、「TFE」ともいう。)単位と、パーフルオロ(アルキルビニルエーテル)(以下、「PAVE」ともいう。)単位と、を有する共重合体である。
 PAVEとしては、下記式(1)で表される単量体が好ましい。
 CF=CF-O-Rf1   (1)
 式(1)中、Rf1は、炭素数1~8のパーフルオロアルキル基を示す。Rf1の炭素数は、1~6が好ましく、1~5が特に好ましい。
 PAVEの具体例としては、パーフルオロ(メチルビニルエーテル)(以下、「PMVE」ともいう。)、パーフルオロ(エチルビニルエーテル)(以下、「PEVE」ともいう。)、パーフルオロ(プロピルビニルエーテル)(以下、「PPVE」ともいう。)が挙げられ、これらの中でも、PMVE、PPVEが好ましい。
 含フッ素共重合体は、TFEおよびPAVE以外の単量体に基づく単位を有していてもよく、その具体例としては、下記式(2)で表される単量体に基づく単位(以下、「式(2)単位」ともいう。)、下記式(3)で表される単量体に基づく単位(以下、「式(3)単位」ともいう。)、フッ化ビニリデン(以下、「VdF」ともいう。)単位、ヘキサフルオロプロピレン(以下、「HFP」ともいう。)単位、クロロトリフルオロエチレン(以下、「CTFE」ともいう。)単位、エチレン単位が挙げられ、これらの中でも、式(2)単位、式(3)単位、フッ化ビニリデン(以下、「VdF」ともいう。)単位が好ましい。
 式(2)は下記の通りである。
 (CR=CR  (2)
 式(2)中、R、RおよびRはそれぞれ独立に、水素原子、フッ素原子またはメチル基を示し、aは2~6の整数を示し、Rは、a価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 複数のR、複数のRおよび複数のRはそれぞれ、互いに同一であっても異なっていてもよく、互いに同一であるのが特に好ましい。
 aは2または3が好ましく、2が特に好ましい。
 含フッ素共重合体のモノマーの重合性と架橋性および耐熱性を高める観点から、R、R、Rがフッ素原子または水素原子であるのが好ましく、R、R、Rの全てがフッ素原子であるかまたはそれら全てが水素原子であるのがより好ましく、R、R、Rの全てがフッ素原子であるのが特に好ましい。
 Rは、直鎖状、分岐鎖状、環状のいずれであってもよく、直鎖状または分岐鎖状が好ましく、直鎖状がさらに好ましい。Rの炭素数は、2~8が好ましく、3~7がより好ましく、3~6がさらに好ましく、3~5が特に好ましい。また、Rにおけるエーテル性酸素原子の数は0~3が好ましく、1または2が特に好ましい。1個または2個のエーテル性酸素原子はパーフルオロアルキレン基の末端に存在していることが好ましい。Rがこれらの好適な範囲にあると、架橋ゴムの硬度により優れ、高温下での圧縮永久歪が小さい。
 式(2)で表される単量体の具体例としては、炭素数1~10のパーフルオロアルキレン基の両末端の各々に、エーテル性酸素を介してまたは介することなく、ビニル基またはトリフルオロビニル基が結合した化合物が挙げられる。
 式(2)で表される単量体の具体例としては、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF2、CF=CFO(CFOCF=CF、CH=CH(CFCH=CH、CF=CFO(CFOCF(CF)CFOCF=CF、CF=CFO(CFO(CF(CF)CFO)CF=CF、CF=CFOCFO(CFCFO)CF=CF、CF=CFO(CFO)O(CF(CF)CFO)CF=CF、CF=CFOCFCF(CF)O(CFOCF(CF)CFOCF=CF、CF=CFOCFCFO(CFO)CFCFOCF=CFが挙げられる。
 式(2)で表される単量体の好適な具体例としては、CF=CFO(CFOCF=CF(以下、「C3DVE」ともいう。)、CF=CFO(CFOCF=CF(以下、「C4DVE」または「PBDVE」ともいう。)、CH=CH(CFCH=CH(以下、「C6DV」ともいう。)が挙げられる。
 含フッ素共重合体がこれらの単量体に基づく単位の少なくとも1種を有する場合、モノマーの重合性とポリマーの架橋性に優れ、該含フッ素共重合体から製造される架橋ゴムは、硬度により優れ、高温下での圧縮永久歪がより小さい。
 式(2)で表される単量体を共重合させると、重合中に式(2)で表される単量体の末端にある重合性二重結合の一部が反応して、分岐鎖を有する含フッ素共重合体が得られる。
 式(3)は下記の通りである。
 CF=CF-O-Rf2   (3)
 式(3)中、Rf2は、炭素数1~8のエーテル性酸素原子を含むパーフルオロアルキル基を示す。Rf2の炭素数は、1~6が好ましく、1~5が特に好ましい。
 式(3)で表される単量体の具体例としては、パーフルオロ(3,6-ジオキサ-1-ヘプテン)、パーフルオロ(3,6-ジオキサ-1-オクテン)、パーフルオロ(5-メチル-3,6-ジオキサ-1-ノネン)が挙げられる。
 TFE単位の含有量は、含フッ素共重合体の全単位に対して、69~90モル%であり、69~89モル%が好ましく、69~80モル%がさらに好ましく、70~75モル%が特に好ましい。
 PAVE単位の含有量は、含フッ素共重合体の全単位に対して、10~31モル%が好ましく、20~31モル%がより好ましく、25~30モル%が特に好ましい。
 含フッ素共重合体が式(2)単位を有する場合、その含有量は、含フッ素共重合体の全単位に対して、0.03~0.5モル%が好ましく、0.05~0.3モル%が特に好ましい。
 含フッ素共重合体が式(3)単位を有する場合、その含有量は、含フッ素共重合体の全単位に対して、1~21モル%が好ましく、5~11モル%が特に好ましい。
 TFE単位の含有量とPAVE単位の含有量の合計は、含フッ素共重合体の全単位に対して、79~100モル%が好ましく、89~100モル%が特に好ましい。
 含フッ素共重合体に含まれる各単位の好適な組み合わせを以下に示す。
 組み合わせ1:TFE単位と、PAVE単位(好ましくは、式(1)単位、さらに好ましくは、PPVE単位またはPMVE単位)との組み合わせ
 組み合わせ2:TFE単位と、PAVE単位(好ましくは、式(1)単位、さらに好ましくは、PPVE単位またはPMVE単位)と、式(2)単位との組み合わせ
 組み合わせ1および2における共重合組成は、下記のモル比であるのが好ましい。下記のモル比であると、さらに架橋ゴムの機械特性、耐熱性、耐薬品性、耐油性、および耐候性が優れる。
 組み合わせ1:TFE単位/PAVE単位=69~90/10~31(モル比)
 組み合わせ2:TFE単位/PAVE単位/式(2)単位=69~89/10~31/0.03~0.5(モル比)
 含フッ素共重合体は、上記以外の他の単量体に基づく単位を有していてもよい。他の単量体としては、他の含フッ素単量体や非フッ素単量体が挙げられる。
 他の含フッ素単量体の具体例としては、フッ化ビニル、ペンタフルオロプロピレン、パーフルオロシクロブテン、CH=CHCF、CH=CHCFCF、CH=CHCFCFCF、CH=CHCFCFCFCF、CH=CHCFCFCFCFCF等の(パーフルオロアルキル)エチレン類が挙げられる。
 非フッ素単量体の具体例としては、イソブチレン、ペンテン等のα-オレフィン類、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル等のビニルエステル類が挙げられる。
 含フッ素共重合体が他の単量体に基づく単位を有する場合、その含有量は、含フッ素共重合体の全単位に対して、0.001~2.0モル%が好ましく、0.01~1.0モル%がより好ましく、0.01~0.5モル%が特に好ましい。
 他の単量体として、ヨウ素原子を有する単量体を使用してもよい。ヨウ素原子を有する単量体を共重合させると、含フッ素共重合体の側鎖にもヨウ素原子を導入できる。
 ヨウ素原子を有する単量体の具体例としては、ヨードエチレン、4-ヨード-3,3,4,4-テトラフルオロ-1-ブテン、2-ヨード-1,1,2,2-テトラフルオロ-1-ビニロキシエタン、2-ヨードエチルビニルエーテル、アリルヨージド、1,1,2,3,3,3-ヘキサフルオロ-2-ヨード-1-(パーフルオロビニロキシ)プロパン、3,3,4,5,5,5-ヘキサフルオロ-4-ヨードペンテン、ヨードトリフルオロエチレン、2-ヨードパーフルオロ(エチルビニルエーテル)が挙げられる。
 含フッ素共重合体がヨウ素原子を有する単量体に基づく単位を有する場合、その含有量は、含フッ素共重合体の全単位に対して、0.001~2.0モル%が好ましく、0.01~1.0モル%がより好ましく、0.01~0.5モル%が特に好ましい。
 含フッ素共重合体は、ヨウ素原子を有するのが好ましく、含フッ素共重合体(高分子鎖)の末端にヨウ素原子を有するのが特に好ましい。ここで、末端とは、含フッ素共重合体の主鎖の末端および分岐鎖の末端の両方を意味する。
 ヨウ素原子としては、後述の連鎖移動剤として機能するヨード化合物に由来するヨウ素原子、上述のヨウ素原子を有する単量体に基づく単位中のヨウ素原子が挙げられ、ヨード化合物に由来するヨウ素原子であるのが好ましい。
 含フッ素共重合体がヨウ素原子を有する場合、その含有量は、含フッ素共重合体の全質量に対して、0.01~5.0質量%が好ましく、0.05~2.0質量%がより好ましく、0.05~1.0質量%が特に好ましい。ヨウ素原子の含有量が上記範囲にあると、含フッ素共重合体の架橋反応性がより優れ、架橋ゴムの機械特性がより優れる。
 含フッ素共重合体がヨウ素原子を有する場合、含フッ素共重合体組成物中における架橋剤(後述)の含有量に対するヨウ素原子の含有量の質量比(ヨウ素原子の含有量/架橋剤の含有量)は、0.3~1.2が好ましく、0.3~1.0がより好ましく、0.35~0.70が特に好ましい。上記範囲の下限値以上であると、架橋反応が進行しやすく、上記範囲の上限値以下であると、硬度がより優れる。
 含フッ素共重合体がヨウ素原子を有する場合、含フッ素共重合体組成物中における架橋助剤(後述)の含有量に対するヨウ素原子の含有量の質量比(ヨウ素原子の含有量/架橋助剤の含有量)が、0.3~1.2が好ましく、0.3~1.0がより好ましく、0.35~0.70が特に好ましい。上記範囲の下限値以上であると、架橋反応が進行しやすく、上記範囲の上限値以下であると、硬度がより優れる。
 含フッ素共重合体の含有量は、含フッ素共重合体組成物の全質量に対して、95~99質量%が好ましく、96~99質量%がより好ましく、97~99質量%が特に好ましい。
(含フッ素共重合体の製造方法)
 含フッ素共重合体の製造方法の一例としては、連鎖移動剤およびラジカル重合開始剤の存在下、上記単量体を共重合する方法が挙げられる。
 連鎖移動剤は、ヨード化合物であることが好ましく、式RIで表されるヨード化合物であることが特に好ましい。上記式中、Rは炭素数3以上(好ましくは、炭素数3~8)のアルキレン基またはパーフルオロアルキレン基を示す。
 式RIで表されるヨード化合物の具体例としては、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタンが挙げられる。
 ヨード化合物としては、パーフルオロアルキレン基を有するヨード化合物が好ましく、1,4-ジヨードパーフルオロブタンが特に好ましい。
 これらのヨード化合物の存在下に上記単量体を共重合させると、含フッ素共重合体の主鎖末端にヨウ素原子を導入できる。また、本発明において、分岐鎖を有する含フッ素共重合体が得られる場合には、この分岐鎖末端にも同様にヨウ素原子を導入できる。したがって、ヨウ素原子を有する高分子鎖末端は、主鎖末端であってもよいし、分岐鎖末端であってもよい。
 ラジカル重合開始剤としては、水溶性重合開始剤、レドックス重合開始剤が好ましい。
 水溶性重合開始剤の具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸類、ジコハク酸過酸化物、アゾビスイソブチルアミジン二塩酸塩等の有機系重合開始剤類が挙げられ、これらの中でも、過硫酸類が好ましく、過硫酸アンモニウムがより好ましい。
 レドックス重合開始剤としては、過硫酸類と還元剤を組み合せた重合開始剤が挙げられる。このうち、重合温度が0~60℃の範囲で各単量体を重合可能な重合開始剤が好ましい。レドックス重合開始剤を構成する過硫酸塩の具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸のアルカリ金属塩が挙げられ、過硫酸アンモニウムが好ましい。過硫酸類と組み合わせる還元剤の具体例としては、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、ヒドロキシメタンスルフィン酸塩が挙げられ、ヒドロキシメタンスルフィン酸塩が好ましく、ヒドロキシメタンスルフィン酸ナトリウム塩が特に好ましい。
 含フッ素共重合体の製造時に使用する上記以外の成分、製造方法の詳細については、国際公開第2010/082633号の段落0019~0034に記載の方法を参照できる。
<架橋剤>
 架橋剤は、含フッ素共重合体を架橋するために使用される。架橋剤は、含フッ素共重合体の架橋反応性がより優れる点から、有機過酸化物が好ましい。
 有機過酸化物の具体例としては、ジアルキルパーオキシド類、α,α’-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン、α,α’-ビス(tert-ブチルパーオキシ)-m-ジイソプロピルベンゼン、ベンゾイルパーオキシド、tert-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、tert-ブチルクミルパーオキシド、ジクミルパーオキシド、が挙げられる。これらのうち、ジアルキルパーオキシド類、α,α’-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン、α,α’-ビス(tert-ブチルパーオキシ)-m-ジイソプロピルベンゼンが好ましい。
 ジアルキルパーオキシド類の具体例としては、1,1-ジ(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、tert-ブチルパーオキシマレイン酸、tert-ブチルパーオキシソプロピルカーボネート、ジtert-ブチルパーオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)-3-ヘキシンが挙げられる。これらのうち、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサンが好ましい。
 架橋剤は、1種のみが含まれていても2種以上が含まれていてもよい。
 含フッ素共重合体組成物中、架橋剤の含有量は、含フッ素共重合体の100質量部に対して、0.03~0.7質量部であり、0.1~0.6質量部が好ましく、0.3~0.6質量部が特に好ましい。上記範囲の下限値以上であれば、架橋ゴムの硬度がより優れ、上記範囲の上限値以下であれば、架橋ゴムの透明性がより優れる。
<架橋助剤>
 架橋助剤は、含フッ素共重合体の架橋反応性を向上させるために使用される。
 架橋助剤は、同一分子内に反応性官能基を2個以上有する化合物が好ましい。反応性官能基の具体例としては、炭素-炭素二重結合含有基、ハロゲン原子、酸無水物残基、カルボキシ基、アミノ基、シアノ基、水酸基が挙げられる。架橋助剤の同一分子内に存在する複数の反応性官能基は、互いに同一であっても異なっていてもよい。
 炭素-炭素二重結合含有基の具体例としては、ビニル基、アリル基およびメタリル基等のアルケニル基、アクリロイル基およびメタクリロイル基等の不飽和アシル基、マレイミド基が挙げられる。炭素-炭素二重結合含有基は、炭素数2~4のアルケニル基が好ましく、アリル基が特に好ましい。
 架橋助剤の具体例としては、下式(4)で表される化合物、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、トリアリルトリメリテート、m-フェニレンジアミンビスマレイミド、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム、ジプロパルギルテレフタレート、ジアリルフタレート、N,N’,N’’,N’’’-テトラアリルテレフタールアミド、ビニル基含有シロキサンオリゴマー(ポリメチルビニルシロキサン、ポリメチルフェニルビニルシロキサン等)が挙げられる。これらの中でも、下式(4)で表される化合物、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレートが好ましく、下式(4)で表される化合物、トリアリルイソシアヌレートがより好ましく、架橋ゴムの透明性がより優れる点から下式(4)で表される化合物が特に好ましい。
 架橋助剤は、1種のみが含まれていても2種以上が含まれていてもよい。
 式(4)は下記の通りである。
 (CR4142=CR4344  式(4)
 式(4)中、R41、R42およびR43はそれぞれ独立に、水素原子、フッ素原子、炭素数1~5のアルキル基または炭素数1~5のフルオロアルキル基を示し、R44は、2価の炭素数1~18のフルオロ炭化水素基または該フルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。複数のR41、複数のR42および複数のR43はそれぞれ、互いに同一であっても異なっていてもよい。
 R41、R42およびR43がアルキル基またはフルオロアルキル基の場合、直鎖状であっても分岐鎖状であってもよいが、直鎖状であるのが好ましい。
 R41、R42およびR43がアルキル基またはフルオロアルキル基の場合、その炭素数は、1~5であり、1~3がより好ましく、1または2が特に好ましい。
 DVEの重合反応性がより優れる点から、R41、R42およびR43の全てが水素原子であるのが好ましい。
 R44におけるフルオロ炭化水素基は、架橋ゴム物品の耐熱性により優れる点から、パーフルオロ炭化水素基であるのが好ましい。
 R44は、直鎖状、分岐鎖状、環状のいずれであってもよく、直鎖状または分岐鎖状が好ましく、直鎖状が特に好ましい。R44の炭素数は、1~18であり、2~8が好ましく、3~7が特に好ましい。
 R44がエーテル性酸素原子を有する場合、R44におけるエーテル性酸素原子の数は1~6が好ましく、1~3がより好ましく、1または2が特に好ましい。R44がエーテル性酸素原子を有する場合、エーテル性酸素原子は、R44の末端に存在していることが好ましい。
 式(4)で表される化合物としては、前述の式(2)で表される化合物が好ましい。式(2)で表される化合物の中でも、C3DVE、C4DVE、CH=CH(CFCH=CH、CH=CH(CFCH=CH、C6DVが好ましく、C6DVが特に好ましい。
 含フッ素共重合体組成物中、架橋助剤の含有量は、含フッ素共重合体の100質量部に対して、0.1~2.5質量部であり、0.1~2.0質量部が好ましく、0.1~1.0質量部が特に好ましい。上記範囲の下限値以上であれば、架橋ゴムの硬度がより優れ、上記範囲の上限値以下であれば、架橋ゴムの透明性がより優れる。
 含フッ素共重合体組成物中、架橋助剤の含有量に対する架橋剤の含有量の質量比(架橋剤の含有量/架橋助剤の含有量)は、0.4~7が好ましく、0.4~7.0がより好ましく、0.4~5.0がさらに好ましく、0.5~2.0が特に好ましい。上記範囲内であれば、未反応の架橋助剤が残りにくく、架橋反応が良好に進行するため、透明性により優れる。
 含フッ素共重合体組成物中、架橋剤と架橋助剤の含有量の合計が、含フッ素共重合体の100質量部に対して、2.0質量部以下が好ましく、1.8質量部以下がより好ましく、1.5質量部以下が特に好ましい。上記値以下であれば、架橋ゴムの透明性がより優れる。
 含フッ素共重合体組成物中、架橋剤と架橋助剤の含有量の合計が、含フッ素共重合体の100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上が特に好ましい。上記値以上であれば、架橋ゴムの硬度がより優れる。
<他の成分>
 含フッ素共重合体組成物は、本発明の効果が損なわれない範囲で、上記以外の他の成分を含んでいてもよい。他の成分としては、加工助剤(例えば、脂肪酸エステル、脂肪酸金属塩等の受酸剤)、充填剤および補強剤(例えば、カーボンブラック、硫酸バリウム、メタケイ酸カルシウム、炭酸カルシウム、酸化チタン、二酸化珪素、クレー、タルク)、金属酸化物(例えば、酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化鉛等の2価金属の酸化物)、加硫剤、スコーチ遅延剤(例えば、ビスフェノールA等のフェノール性水酸基含有化合物類、ハイドロキノン等のキノン類、2,4-ジ(3-イソプロピルフェニル)-4-メチル-1-ペンテン等のα-メチルスチレンダイマー類)が挙げられる。
 含フッ素共重合体組成物は充填剤および補強剤を含んでいてもよいが、架橋ゴムの透明性がより優れる点から、含フッ素共重合体組成物は充填剤および補強剤を実質的に含まないのが好ましい。ここで、「含フッ素共重合体組成物が充填剤および補強剤を実質的に含まない」とは、含フッ素共重合体組成物中、充填剤および補強剤の含有量の合計が、架橋ゴムの100質量に対して、0.1質量部以下であるのを意味し、0.01質量部以下であるのが好ましく、0質量部であるのが特に好ましい。
 含フッ素共重合体組成物中、含フッ素共重合体以外の成分、すなわち架橋剤、架橋助剤および他の成分の含有量の合計は、含フッ素共重合体の100質量部に対して、0.5~2.0質量部が好ましく、0.5~1.8質量部がより好ましく、0.5~1.2質量部が特に好ましい。上記範囲の下限値以上であれば、架橋ゴムの硬度がより優れ、上記範囲の上限値以下であれば、架橋ゴムの透明性がより優れる。
 含フッ素共重合体組成物の調製方法としては、上記各成分を混合する方法が挙げられる。各成分の混合は、ロール、ニーダー、バンバリーミキサーまたは押し出し機等のゴム用混合装置を用いて実施できる。
 また、上記各成分を混合した混合物を得た後、混合物を成形してもよい。すなわち、含フッ素共重合体組成物は、成形物であってもよい。混合物の成形方法の具体例としては、圧縮成形、射出成形、押し出し成形、カレンダー成形、または、溶剤に溶かしてディッピングもしくはコーティングして成形する方法が挙げられる。
〔架橋ゴムの製造方法〕
 架橋ゴムは、含フッ素共重合体組成物中の含フッ素共重合体を架橋して得られる。
 含フッ素共重合体組成物中の含フッ素共重合体の架橋方法としては、含フッ素共重合体組成物を加熱によって架橋する方法が好ましい。
 加熱による架橋方法の具体例としては、加熱プレス架橋、スチーム架橋、熱風架橋が挙げられる。これらの方法から、含フッ素共重合体組成物の形状や用途を考慮して適宜選択すればよい。
 加熱条件は、100~400℃で1秒~24時間が好ましい。
 含フッ素共重合体組成物を加熱して1次架橋してなる架橋ゴムを、さらに加熱して2次架橋してもよい。2次架橋を行うことにより、架橋ゴムの機械特性、圧縮永久歪、その他の特性を安定化または向上できる。
 2次架橋を行う際の加熱条件は、100~300℃で30分間~48時間が好ましい。 
 含フッ素共重合体組成物を加熱によって架橋する以外の架橋方法としては、含フッ素共重合体組成物に放射線を照射して架橋する方法が挙げられる。照射する放射線の具体例としては、電子線、紫外線が挙げられる。
<物性>
 本発明の架橋ゴムは、上記含フッ素共重合体組成物を用いて得られるため高い透明性を示す。架橋ゴムの透明性を示す指標としては、全光線透過率が挙げられる。全光線透過率(%)とは、試験片に光を当てた際に透過する光線のうち、平行成分と拡散成分の全てを含めた光線の透過率を意味する。
 架橋ゴムの全光線透過率は、70~100%が好ましく、73~100%がより好ましく、75~100%が特に好ましい。本発明の架橋ゴムは、上記含フッ素共重合体組成物を用いて得られるため、上記全光線透過率の範囲を満たす。全光線透過率が70%以上であれば、架橋ゴムを観察した際の透明性が優れるといえる。
 本発明における架橋ゴムの全光線透過率は、架橋ゴムの板状の成形物(厚み2mm)を用いて、JIS K7361-1:1997に準拠して測定される値である。
 架橋ゴムの架橋特性の指標として、後述する実施例の方法で測定されるM-M(以下、「架橋度」ともいう。)が挙げられる。架橋度の数値が大きいほど、架橋ゴムの架橋構造が多く、架橋ゴム中に微結晶部分が多数存在する状態にあるといえる。したがって、架橋度の数値が小さい場合には、架橋ゴムの透明性が優れるといえ、架橋度の数値が大きい場合には、架橋ゴムのゴム特性に優れる(例えば、硬度や引張強度が高い)といえる。 架橋ゴムの架橋度は、3~50dNmが好ましく、3~45dNmがより好ましく、5~40dNmが特に好ましい。架橋ゴムの架橋度が上記範囲であると、ゴム特性および透明性を高いレベルで両立できる。
 架橋ゴムの引張強度は、1~50MPaが好ましく、10~35MPaが特に好ましい。架橋ゴムの引張強度が上記範囲内であれば、架橋ゴムのゴム特性および透明性がより優れる。
 架橋ゴムの100%モジュラスは、ゴム特性に優れる点から、0.2~5.0MPaが好ましく、0.5~3.5MPaが特に好ましい。
 架橋ゴムの切断時伸び率は、ゴム特性に優れる点から、100~1000%が好ましく、150~600%が特に好ましい。
 架橋ゴムの引張強度、100%モジュラスおよび切断時伸び率は、架橋ゴムの板状の成形物(厚み2mm)を3号ダンベルで打ち抜いた試料を用いて、JIS K6251:2017に準拠して測定される値である。
 架橋ゴムの硬度(Shore-A)は、65~100であり、ゴム特性に優れる点から、65~80が好ましく、65~75が特に好ましい。架橋ゴムは、上述の含フッ素共重合体組成物を用いて得られるため、上記硬度の値を満たす。
 架橋ゴムの硬度(Shore-A)は、架橋ゴムの板状の成形物(厚み2mm)を用いて、JIS K6253-3:2012に準拠して、タイプAデュロメータを用いて測定される値である。
<用途>
 架橋ゴムは、O-リング、シート、ガスケット、オイルシール、ダイヤフラム、V-リング等の材料に好適である。また、耐熱性耐薬品性シール材、耐熱性耐油性シール材、電線被覆材、半導体装置用シール材、耐蝕性ゴム塗料、耐ウレア系グリース用シール材等、ゴム塗料、接着ゴム、ホース、チューブ、カレンダーシート(ロール)、スポンジ、ゴムロール、石油掘削用部材、放熱シート、溶液架橋体、ゴムスポンジ、ベアリングシール(耐ウレアグリース等)、ライニング(耐薬品)、自動車用絶縁シート、電子機器向け絶縁シート、時計向けゴムバンド、内視鏡用パッキン(耐アミン)、蛇腹ホース(カレンダーシートからの加工)、給湯器パッキン/弁、防舷材(海洋土木、船舶)、繊維・不織布(防護服等)、基盤シール材、ゴム手袋、一軸偏心ねじポンプのステータ、尿素SCRシステム用部品、防振剤、制振剤、シーリング剤、他材料への添加剤、玩具の用途にも適用できる。
 架橋ゴムは、透明性に優れるため、外部からの視認性が求められる用途に特に好適である。透明性が要求される用途の具体例としては、半導体製造装置用のシール材が挙げられる。
 以下、例を挙げて本発明を詳細に説明する。例1~例3は実施例であり、例4~例9は比較例である。ただし本発明はこれらの例に限定されない。なお、後述する表中における各成分の配合量は、質量基準である。
[共重合組成の測定]
 核磁気共鳴(NMR)分析により、共重合体中の各単位の含有量を算出した。
 また、自動試料燃焼装置イオンクロマトフラフ用前処理装置(三菱ケミカルアナリテック社製、AQF-100型)とイオンクロマトグラフを組み合わせた装置により、共重合体中のヨウ素原子の含有量を算出した。
[全光線透過率]
 全光線透過率は、架橋ゴムの板状の成形物(厚み2mm)を用いて、JIS K7361-1:1997に準拠し、ヘーズメータ(日本電色社製、NDH5000)を用いて測定した。
 全光線透過率が70%以上であれば、架橋ゴムの透明性に優れているといえる。
 全光線透過率が75%以上である場合を「◎」、70%以上、75%未満である場合を「○」、70%未満である場合を「×」と評価した。
[架橋度]
 後述の表1に示す成分および配合量に調合し、2本ロールにより、室温下にて10分間混練し、混合された組成物を得た。
 得られた組成物について、架橋特性測定機(アルファーテクノロジーズ社製、商品名「RPA2000」)を用いて150℃で20分間、振幅3度の条件にて架橋特性を測定した。
 測定されるMはトルクの最大値を示し、Mはトルクの最小値を示し、M-M(MからMを差し引いた値)は架橋度(単位:dNm)を示す。
[引張強度、100%モジュラス、切断時伸び率、硬度]
 架橋度の測定と同様にして得られた組成物を、後述の表に示す架橋条件にて熱プレス(1次架橋)して、厚さ2mmの架橋ゴムシートを得た。得られた架橋ゴムシートを3号ダンベルで打ち抜き、測定試料を作製した。
 得られた測定試料を用いて、JIS K6251:2017に準拠する方法にて、引張強度、100%モジュラスおよび切断時伸び率を測定した。
 引張強度、100%モジュラスおよび切断時伸び率はデータ処理付引張試験機(クイックリーダー)TS-2530(上島製作所社製)を用いて測定を行った。
 引張強度が1MPa以上であれば、架橋ゴムの引張強度に優れているといえる。
 また、得られた測定試料を用いて、JIS K6253-3:2012に準拠して、デジテスト ショアーA(H.バーレイス試験機社製)を用いて硬度(Shore-A)を測定した。
 硬度が65以上であれば、架橋ゴムの硬度に優れているといえる。
[含フッ素共重合体の製造]
 以下に示す通り、含フッ素共重合体である共重合体1~4を製造した。
 (共重合体1)
 アンカー翼を備えた内容積20Lのステンレス製耐圧反応器を脱気した後、超純水の8.2L、COCFCFOCFCOONHの30質量%溶液の733g、C3DVEの10.0g、リン酸水素二ナトリウム・12水和物の5質量%水溶液の15.9gを仕込み、気相を窒素置換した。アンカー翼を用いて375rpmの速度で撹拌しながら、内温が80℃になってからTFEの198g、PMVEの454gを容器内に圧入した。反応器内圧は0.90MPa[gauge]であった。過硫酸アンモニウムの1質量%水溶液の40mLを添加し、重合を開始した。重合開始前に圧入する単量体(以下、初期単量体と記す。)の添加比をモル比で表すと、TFE:PMVE:C3DVE=41.74:57.64:0.61であった。
 重合の進行に伴い反応器内圧が0.89MPa[gauge]に低下した時点でTFEを圧入し、反応器内圧を0.90MPa[gauge]に昇圧させた。これを繰り返し、TFEの80gを圧入するたびにPMVEの62gも圧入した。また、1,4-ジヨードペルフルオロブタンの7.0gを、TFEを60g圧入した時点で、超純水50mLとともにアンプル管より反応器に圧入した。
 TFEの総添加質量が1200gとなった時点で、重合開始後に圧入する単量体(以下、「後添加単量体」と記す。)の添加を停止し、反応器内温を10℃に冷却させ、重合反応を停止させ、含フッ素共重合体を含むラテックスを得た。重合時間は360分間であった。また、後添加単量体の総添加質量は、TFEが1200g、PMVEが868gであり、これをモル比に換算すると、TFE:PMVE=68:32であった。
 硝酸(関東化学株式会社製、特級グレード)を超純水に溶解して硝酸の3質量%水溶液を調製した。ラテックスを、TFE/ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)製容器内の硝酸水溶液に添加して、含フッ素共重合体を凝集させた。ラテックス中の含フッ素共重合体100質量部に対して硝酸水溶液の量は150質量部であった。
 凝集した含フッ素共重合体をろ過によって回収し、PFA製容器内の超純水に投入し、200rpmで30分間撹拌して洗浄した。含フッ素共重合体100質量部に対して超純水の量は100質量部であった。上記洗浄を10回繰り返した。
 洗浄した含フッ素共重合体をろ過によって回収し、50℃、10kPaで減圧乾燥させ、共重合体1を得た。共重合体1における各単位のモル比は、TFE単位:PMVE単位:C3DVE単位=71.40:28.43:0.17であり、ヨウ素原子の含有量は、0.10質量%であった。
 (共重合体2)
 ラテックスを凝集させる際に、硝酸水溶液に代えて硫酸アルミニウムカリウムの5質量%水溶液を用いたこと以外は、共重合体1の製造方法に従って共重合体2を製造した。ラテックス中の含フッ素共重合体100質量部に対して硫酸アルミニウムカリウム水溶液の量は150質量部であった。
 凝集した含フッ素共重合体をろ過によって回収し、例1と同様にして洗浄した。
 洗浄した含フッ素共重合体をろ過によって回収し、例1と同様にして乾燥させ、共重合体2を得た。共重合体2における各単位のモル比は、TFE単位:PMVE単位:C3DVE単位=71.43:28.40:0.17であり、ヨウ素原子の含有量は、0.10質量%であった。
 (共重合体3)
 C3DVEの10gの代わりにC6DVの6gを用いたこと以外は、共重合体1の製造方法に従って共重合体3を製造した。初期単量体の添加比をモル比で表すと、TFE:PMVE:C6DV=41.7:57.6:0.61であった。共重合体3における各単位のモル比は、TFE単位:PMVE単位:C6DV単位=71.54:28.40:0.16であり、ヨウ素原子の含有量は、0.10質量%であった。
 (共重合体4)
 PBDVEをC3DVEに変更した以外は、国際公開第2010/082633号の実施例1の方法を参考にして、共重合体4を製造した。
 共重合体4の共重合組成は、TFE単位:PMVE単位:C3DVE単位=65.9:34.0:0.1(モル比)であり、ヨウ素原子の含有量は0.20質量%であった。
[例1~例9]
 表1に示す成分および配合量に調合し、2本ロールにより、室温下にて10分間混練し、混合された組成物を得た。得られた組成物を、後述の表に示す架橋条件にて熱プレス(1次架橋)して、シート状の例1~例9の架橋ゴム(架橋ゴムシート)を得た。
 得られた組成物および架橋ゴムを用いて、上述の各種物性を測定した。測定結果を表1に示す。
 共重合体を除く表1に記載の各成分の概要を以下に示す。
 パーカドックス14:商品名、化薬アクゾ社製、架橋剤(有機過酸化物)、α,α’-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン
 パーヘキサ25B:商品名、日本油脂社製、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、架橋剤(有機過酸化物)
 TAIC:商品名、三菱ケミカル社製、トリアリルイソシアネート、架橋助剤
 ステアリン酸Ca:ステアリン酸カルシウム、受酸剤
 AEROSIL R8200:商品名、日本アエロジル社製、シリカ、充填剤および補強剤
 AEROSIL R972V:商品名、日本アエロジル社製、シリカ、充填剤および補強剤
Figure JPOXMLDOC01-appb-T000001
 表1の例1~例3に示す通り、含フッ素共重合体の全単位に対してTFE単位の含有量が69~90モル%である含フッ素共重合体と、架橋剤と、架橋助剤とを含む組成物を用い、架橋剤の含有量が含フッ素共重合体の100質量部に対して0.03~0.7質量部であり、架橋助剤の含有量が含フッ素共重合体の100質量部に対して0.1~2.5質量部であれば、得られる架橋ゴムの透明性が優れ(全光線透過率が70%以上)、かつ、硬度にも優れる(硬度が65以上)ことが確認できた。
 これに対して、例4に示す通り、含フッ素共重合体の全単位に対するTFE単位の含有量が69モル%未満である含フッ素共重合体を用い、組成物中の架橋剤の含有量が含フッ素共重合体の100質量部に対して0.7質量部超であり、組成物中の架橋助剤の含有量が含フッ素共重合体の100質量部に対して2.5質量部超である組成物を用いた場合、得られる架橋ゴムは硬度に優れていたが、透明性に劣っていた。
 また、例5に示す通り、含フッ素共重合体の全単位に対するTFE単位の含有量が69モル%未満である含フッ素共重合体を用い、組成物中の架橋剤の含有量が含フッ素共重合体の100質量部に対して0.03~0.7質量部であるが、架橋助剤の含有量が含フッ素共重合体の100質量部に対して2.5質量部超である組成物を用いた場合、得られる架橋ゴムは、硬度および透明性に劣っていた。
 また、例6に示す通り、組成物中の架橋剤の含有量が含フッ素共重合体の100質量部に対して0.7質量部超であり、架橋助剤の含有量が含フッ素共重合体の100質量部に対して2.5質量部超である組成物を用いた場合、得られる架橋ゴムは硬度に優れていたが、透明性に劣っていた。
 また、例7、例8に示す通り、含フッ素共重合体の全単位に対するTFE単位の含有量が69モル%未満である含フッ素共重合体を用い、組成物中の架橋助剤の含有量が含フッ素共重合体の100質量部に対して0.1~2.5質量部であるが、架橋剤の含有量が含フッ素共重合体の100質量部に対して0.7質量部超である組成物を用いた場合、得られる架橋ゴムは硬度に優れていたが、透明性に劣っていた。
 また、例9に示す通り、含フッ素共重合体の全単位に対するTFE単位の含有量が69モル%未満である含フッ素共重合体を用い、組成物中の架橋助剤の含有量が含フッ素共重合体の100質量部に対して0.1~2.5質量部であり、架橋剤の含有量が含フッ素共重合体の100質量部に対して0.03~0.7質量部である組成物を用いた場合、得られる架橋ゴムは透明性に優れていたが、硬度に劣っていた。
 なお、2019年03月08日に出願された日本特許出願2019-042729号の明細書、特許請求の範囲および要約書の全内容、2019年09月20日に出願された日本特許出願2019-171600号の明細書、特許請求の範囲および要約書の全内容、2019年10月23日に出願された日本特許出願2019-192748号の明細書、特許請求の範囲および要約書の全内容、をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  含フッ素共重合体と、架橋剤と、架橋助剤とを含み、
     前記含フッ素共重合体が、テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位とを有する共重合体であり、
     前記含フッ素共重合体におけるテトラフルオロエチレンに基づく単位の含有量は、前記含フッ素共重合体の全単位に対して69~90モル%であり、
     前記架橋剤の含有量が、前記含フッ素共重合体の100質量部に対して、0.03~0.7質量部であり、
     前記架橋助剤の含有量が、前記含フッ素共重合体の100質量部に対して、0.1~2.5質量部であることを特徴とする、含フッ素共重合体組成物。
  2.  前記含フッ素共重合体が、ヨウ素原子を有し、
     前記架橋剤の含有量に対する前記ヨウ素原子の含有量の質量比が、0.3~1.2である、請求項1に記載の含フッ素共重合体組成物。
  3.  前記含フッ素共重合体が、ヨウ素原子を有し、
     前記架橋助剤の含有量に対する前記ヨウ素原子の含有量の質量比が、0.3~1.2である、請求項1または2に記載の含フッ素共重合体組成物。
  4.  前記架橋助剤の含有量に対する前記架橋剤の含有量の質量比が、0.4~7である、請求項1~3のいずれか1項に記載の含フッ素共重合体組成物。
  5.  前記架橋剤と前記架橋助剤の含有量の合計が、前記含フッ素共重合体の100質量部に対して、2.0質量部以下である、請求項1~4のいずれか1項に記載の含フッ素共重合体組成物。
  6.  前記含フッ素共重合体以外の成分の含有量の合計が、前記含フッ素共重合体の100質量部に対して、0.5~2.0質量部である、請求項1~5のいずれか1項に記載の含フッ素共重合体組成物。
  7.  前記含フッ素共重合体がさらに下記式(2)に基づく単位を有し、前記含フッ素共重合体の全単位に対する、下記式(2)に基づく単位の含有量が0.03~0.5モル%である、請求項1~6のいずれか1項に記載の含フッ素共重合体組成物。
     (CR=CR  (2)
     式(2)中、R、RおよびRはそれぞれ独立に、水素原子、フッ素原子またはメチル基を示し、aは2~6の整数を示し、Rは、a価の炭素数1~10のパーフルオロ炭化水素基または該パーフルオロ炭化水素基の末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
  8.  請求項1~7のいずれか1項に記載の含フッ素共重合体組成物中の含フッ素共重合体が架橋した架橋ゴム。
  9.  含フッ素共重合体と、架橋剤と、架橋助剤とを含む組成物中の含フッ素共重合体を架橋して架橋ゴムを得ることを特徴とする、架橋ゴムの製造方法であって、
     前記含フッ素共重合体が、テトラフルオロエチレンに基づく単位と、パーフルオロ(アルキルビニルエーテル)に基づく単位とを有する共重合体であり、
     前記含フッ素共重合体における前記テトラフルオロエチレンに基づく単位の含有量は、前記含フッ素共重合体の全単位に対して69~90モル%であり、
     前記組成物中、前記架橋剤の含有量が、前記含フッ素共重合体の100質量部に対して、0.03~0.7質量部であり、
     前記組成物中、前記架橋助剤の含有量が、前記含フッ素共重合体の100質量部に対して、0.1~2.5質量部であり、
     硬度が65~100であることを特徴とする、架橋ゴムの製造方法。
  10.  前記架橋ゴムの全光線透過率が、70~100%である、請求項9に記載の架橋ゴムの製造方法。
  11.  前記含フッ素共重合体が、ヨウ素原子を有し、
     前記組成物中、前記架橋剤の含有量に対する前記ヨウ素原子の含有量の質量比が、0.3~1.2である、請求項9または10に記載の架橋ゴムの製造方法。
  12.  前記含フッ素共重合体が、ヨウ素原子を有し、
     前記組成物中、前記架橋助剤の含有量に対する前記ヨウ素原子の含有量の質量比が、0.3~1.2である、請求項9~11のいずれか1項に記載の架橋ゴムの製造方法。
  13.  前記組成物中、前記架橋助剤の含有量に対する前記架橋剤の含有量の質量比が、0.4~7である、請求項9~12のいずれか1項に記載の架橋ゴムの製造方法。
  14.  前記組成物中、前記架橋剤と前記架橋助剤の含有量の合計が、前記含フッ素共重合体の100質量部に対して、2.0質量部以下である、請求項9~13のいずれか1項に記載の架橋ゴムの製造方法。
  15.  前記組成物中、前記含フッ素共重合体以外の成分の含有量の合計が、前記含フッ素共重合体の100質量部に対して、0.5~2.0質量部である、請求項9~14のいずれか1項に記載の架橋ゴムの製造方法。
PCT/JP2020/009647 2019-03-08 2020-03-06 含フッ素共重合体組成物、架橋ゴムおよびその製造方法 WO2020184427A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021505021A JP7400805B2 (ja) 2019-03-08 2020-03-06 含フッ素共重合体組成物、架橋ゴムおよびその製造方法
CN202080018924.8A CN113631590B (zh) 2019-03-08 2020-03-06 含氟共聚物组合物、交联橡胶及其制造方法
EP20770523.7A EP3936534A4 (en) 2019-03-08 2020-03-06 FLUORINE CONTAINING COPOLYMER COMPOSITION, CROSSLINKED RUBBER AND METHOD OF MANUFACTURE THEREOF
KR1020217026076A KR20210139226A (ko) 2019-03-08 2020-03-06 함불소 공중합체 조성물, 가교 고무 및 그 제조 방법
US17/411,227 US20210380794A1 (en) 2019-03-08 2021-08-25 Fluorinated copolymer composition, crosslinked rubber and method for its production

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019042729 2019-03-08
JP2019-042729 2019-03-08
JP2019-171600 2019-09-20
JP2019171600 2019-09-20
JP2019-192748 2019-10-23
JP2019192748 2019-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/411,227 Continuation US20210380794A1 (en) 2019-03-08 2021-08-25 Fluorinated copolymer composition, crosslinked rubber and method for its production

Publications (1)

Publication Number Publication Date
WO2020184427A1 true WO2020184427A1 (ja) 2020-09-17

Family

ID=72426385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009647 WO2020184427A1 (ja) 2019-03-08 2020-03-06 含フッ素共重合体組成物、架橋ゴムおよびその製造方法

Country Status (7)

Country Link
US (1) US20210380794A1 (ja)
EP (1) EP3936534A4 (ja)
JP (1) JP7400805B2 (ja)
KR (1) KR20210139226A (ja)
CN (1) CN113631590B (ja)
TW (1) TWI832985B (ja)
WO (1) WO2020184427A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374819B2 (ja) 2000-05-09 2009-12-02 ダイキン工業株式会社 クリーンフィラーの製法およびえられたフィラーを含む成形品の製法
WO2010082633A1 (ja) 2009-01-16 2010-07-22 旭硝子株式会社 含フッ素弾性共重合体およびその製造方法、架橋ゴム物品
JP2012509975A (ja) * 2008-12-29 2012-04-26 ダイキン工業株式会社 架橋性含フッ素エラストマー組成物および該組成物から作製された成形品
JP2015067659A (ja) * 2013-09-27 2015-04-13 旭硝子株式会社 架橋性含フッ素エラストマー組成物及び架橋ゴム物品
JP2017503896A (ja) * 2014-01-22 2017-02-02 グリーン, ツイード テクノロジーズ, インコーポレイテッド 高温用途に適切なフッ素含有エラストマー組成物
JP2018516293A (ja) * 2015-05-29 2018-06-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. フルオロエラストマー組成物
JP2019042729A (ja) 2017-08-31 2019-03-22 酒井工業株式会社 塗膜除去工法および被覆部材
JP2019171600A (ja) 2018-03-27 2019-10-10 セイコーエプソン株式会社 インク吸収器
JP2019192748A (ja) 2018-04-24 2019-10-31 Tdk株式会社 コイル部品及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076876A1 (en) * 2008-12-29 2010-07-08 Daikin Industries, Ltd. Perfluoroelastomer composition and crosslinked molded article made by crosslinking and molding said perfluoroelastomer composition
US9365712B2 (en) * 2010-09-24 2016-06-14 Greene, Tweed Technologies, Inc. Fluorine-containing elastomer compositions suitable for high temperature applications
WO2015080002A1 (ja) * 2013-11-26 2015-06-04 旭硝子株式会社 ペルフルオロエラストマー、ペルフルオロエラストマー組成物、架橋ゴム物品、及びペルフルオロエラストマーの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374819B2 (ja) 2000-05-09 2009-12-02 ダイキン工業株式会社 クリーンフィラーの製法およびえられたフィラーを含む成形品の製法
JP2012509975A (ja) * 2008-12-29 2012-04-26 ダイキン工業株式会社 架橋性含フッ素エラストマー組成物および該組成物から作製された成形品
WO2010082633A1 (ja) 2009-01-16 2010-07-22 旭硝子株式会社 含フッ素弾性共重合体およびその製造方法、架橋ゴム物品
JP2015067659A (ja) * 2013-09-27 2015-04-13 旭硝子株式会社 架橋性含フッ素エラストマー組成物及び架橋ゴム物品
JP2017503896A (ja) * 2014-01-22 2017-02-02 グリーン, ツイード テクノロジーズ, インコーポレイテッド 高温用途に適切なフッ素含有エラストマー組成物
JP2018516293A (ja) * 2015-05-29 2018-06-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. フルオロエラストマー組成物
JP2019042729A (ja) 2017-08-31 2019-03-22 酒井工業株式会社 塗膜除去工法および被覆部材
JP2019171600A (ja) 2018-03-27 2019-10-10 セイコーエプソン株式会社 インク吸収器
JP2019192748A (ja) 2018-04-24 2019-10-31 Tdk株式会社 コイル部品及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936534A4

Also Published As

Publication number Publication date
TW202045564A (zh) 2020-12-16
CN113631590A (zh) 2021-11-09
JPWO2020184427A1 (ja) 2020-09-17
CN113631590B (zh) 2023-11-03
US20210380794A1 (en) 2021-12-09
KR20210139226A (ko) 2021-11-22
TWI832985B (zh) 2024-02-21
EP3936534A1 (en) 2022-01-12
JP7400805B2 (ja) 2023-12-19
EP3936534A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
RU2731565C1 (ru) Фторированный эластичный сополимер, способ его получения, сшитый каучук и способ его получения
JP5644502B2 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
CN115413289B (zh) 含氟共聚物组合物及交联橡胶物品
US20220356339A1 (en) Fluorinated copolymer composition and crosslinked rubber article
WO2020184429A1 (ja) 組成物、架橋ゴムおよびその製造方法
WO2020184432A1 (ja) 架橋ゴム
CN114630845B (zh) 含氟共聚物、含氟共聚物组合物及交联橡胶物品
CN114585659B (zh) 含氟共聚物组合物和交联橡胶物品
JP2022165790A (ja) 含フッ素共重合体組成物、架橋ゴム物品、及び架橋ゴム物品の製造方法
JP7400805B2 (ja) 含フッ素共重合体組成物、架橋ゴムおよびその製造方法
TWI854052B (zh) 含氟共聚物組成物及交聯橡膠物品
US20200109226A1 (en) Fluorinated elastic copolymer composition and crosslinked rubber article
WO2024143284A1 (ja) 含フッ素共重合体組成物及びその架橋物
JP2018044078A (ja) 含フッ素弾性共重合体組成物および架橋ゴム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020770523

Country of ref document: EP

Effective date: 20211008