WO2020183616A1 - 金属板の不良センサ及びそれを備えた不良検査装置 - Google Patents

金属板の不良センサ及びそれを備えた不良検査装置 Download PDF

Info

Publication number
WO2020183616A1
WO2020183616A1 PCT/JP2019/010045 JP2019010045W WO2020183616A1 WO 2020183616 A1 WO2020183616 A1 WO 2020183616A1 JP 2019010045 W JP2019010045 W JP 2019010045W WO 2020183616 A1 WO2020183616 A1 WO 2020183616A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
defective
light
sensor
image
Prior art date
Application number
PCT/JP2019/010045
Other languages
English (en)
French (fr)
Inventor
利次 土井
Original Assignee
株式会社エヌ・ティ・ティ・データCcs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・データCcs filed Critical 株式会社エヌ・ティ・ティ・データCcs
Priority to PCT/JP2019/010045 priority Critical patent/WO2020183616A1/ja
Priority to JP2021504682A priority patent/JPWO2020183616A1/ja
Publication of WO2020183616A1 publication Critical patent/WO2020183616A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined

Definitions

  • the present invention relates to a defect sensor for detecting defects in a press-molded metal plate and a defect inspection device including the same.
  • the metal plate used for the car body of an automobile is press-molded according to the shape of the car body, for example. If minute dust or the like adheres to the metal plate or the mold during press molding, indentations are generated on the front surface or the back surface of the press-molded metal plate.
  • the indentation on such a metal plate is generally in the shape of a circle or an ellipse having a diameter of about 5 mm to 10 mm. The height or depth of the indentation is about 10 ⁇ m.
  • the indentations generated on the metal plate are not so noticeable. However, when the metal plate is painted, the indentations generated on the metal plate become conspicuous. Therefore, the indentation generated on the surface of the metal plate is regarded as defective and is repaired as necessary.
  • Japanese Patent Application Laid-Open No. 2012-240184 states that an operator rubs the surface of a metal plate with an oil stone to clarify the indentations and make the indentations clear. For example, a method of visually inspecting is disclosed.
  • the conventional inspection method involves physical work by the worker, so the burden on the worker tends to increase.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a defect sensor capable of detecting defects in a press-molded metal plate without bothering an operator, and a defect inspection device including the same. And.
  • the defective sensor of one aspect of the present invention is arranged with an inclination with respect to the normal line at a position on the surface of the press-molded metal plate, and has a light source that irradiates light toward the position and the position.
  • the metal plate includes a camera for taking an image, the metal plate has a scratch extending in a first direction formed by the press molding, and the light source emits light emitted to the position to the first. It has a slit that limits light along a second direction orthogonal to the direction of.
  • FIG. 1 is a diagram showing a configuration of an example of a defect inspection device according to one embodiment.
  • FIG. 2 is a view of the light source seen from the side of the metal plate.
  • FIG. 3 is a diagram showing a hardware configuration of an example of a control device.
  • FIG. 4 is a flowchart showing an operation of an example of defect inspection of a metal plate in a defect inspection apparatus.
  • FIG. 5 is a diagram showing the arrangement of defective sensors on a metal plate having a curved surface.
  • FIG. 6 is a diagram showing an example of an image acquired in the embodiment.
  • FIG. 7 is a flowchart showing the operation of another example of defect inspection of a metal plate in a defect inspection apparatus.
  • FIG. 1 is a diagram showing a configuration of an example of a defect inspection device according to one embodiment.
  • FIG. 2 is a view of the light source seen from the side of the metal plate.
  • FIG. 3 is a diagram showing a hardware configuration of an example of a control device.
  • FIG. 8A is a diagram showing an example of an image of the position of a defective portion obtained when light is irradiated from a direction parallel to the hairline.
  • FIG. 8B is a diagram showing an example of an image of the position of a defective portion obtained when light is irradiated from a direction perpendicular to the hairline.
  • FIG. 1 is a diagram showing a configuration of an example of a defect inspection device according to one embodiment.
  • the defect inspection device 1 includes a defect sensor 2, a drive mechanism 3, and a control device 4.
  • the defective sensor 2 is arranged so as to face, for example, the metal plate 5 which is the detection target of the defective portion.
  • the X-axis and the Y-axis are set along a plane parallel to the flat metal plate 5.
  • the Z axis is set so as to be orthogonal to the XY plane.
  • the defective sensor 2 has a light source 21, a camera 22, and an ink launcher 23.
  • the light source 21, the camera 22, and the ink launcher 23 are attached to the jig 24.
  • FIG. 1 shows an example in which one light source 21 and one camera 22 are attached to the jig 24.
  • one light source 21 and a plurality of cameras 22 may be attached to the jig 24, or a plurality of light sources 21 and one camera 22 may be attached to the jig 24.
  • the light source 21 and a plurality of cameras 22 may be attached.
  • the light source 21 when the defective sensor 2 is arranged so as to face an arbitrary position P1 of the metal plate 5, a light ray l emitted from the light source is predetermined with respect to the normal L1 at the position P1 of the metal plate 5. It is fixed to the jig 24 so as to have an angle ⁇ of.
  • minute processing scratches called hairlines are formed on the surface of the metal plate 5 in one direction of the metal plate 5 by rolling the metal plate 5 during pressing.
  • the light source 21 is arranged so as to irradiate light l from a direction parallel to the direction of the hairline.
  • the light source 21 when the hairline is attached along the X-axis, the light source 21 is arranged so as to irradiate the light l in the X-axis direction. In this way, the light source 21 irradiates the light l in the direction parallel to the hairline and diagonally with respect to the position P1 of the metal plate 5.
  • the angle ⁇ is 0 ° ⁇ ⁇ 90 °, preferably 5 ° ⁇ ⁇ ⁇ 10 °.
  • a light emitting element such as an LED (Light Emitting Diode) is provided in the light emitting portion of the light source 21.
  • FIG. 2 is a view of the light source 21 as seen from the side of the metal plate 5.
  • the hairline of the metal plate 5 is formed in the H direction.
  • the H direction is, for example, a direction along the X axis.
  • the light source 21 has a light emitting unit 211.
  • the width of the light emitting portion 211 in the direction orthogonal to the hairline direction is substantially equal to the width in the direction orthogonal to the hairline direction of the metal plate 5.
  • the width of the light emitting portion 211 in the direction parallel to the hairline direction may be equal to or shorter than the width in the direction parallel to the hairline direction of the metal plate 5.
  • the width of the light emitting portion 211 in the direction parallel to the hairline direction is shorter than the width in the direction parallel to the hairline direction of the metal plate 5.
  • the light emitting unit 211 is configured to irradiate light with a uniform surface.
  • a light emitting element such as an LED may be formed on the entire surface of the light emitting unit 211.
  • a light emitting element such as an LED is formed only on one end side of the light emitting unit 211, and the light from the light emitting element is diffused by using a diffuser plate or the like to generate surface-uniform light. It may be configured to do so.
  • the light source 21 has a slit 212.
  • the slit 212 converts the light emitted from the light emitting unit 211 of the light source 21 into slit light.
  • the slit 212 is arranged so as to be orthogonal to the hairline H. Therefore, the slit light emitted from the slit 212 also becomes the slit light orthogonal to the hairline.
  • the slits 212 are formed, for example, by attaching light-shielding films to the light emitting portions 211 at equal intervals.
  • the slit 212 is not limited to a specific structure as long as it has a structure capable of generating slit light orthogonal to the hairline. Further, the number of slits 212 may be appropriately determined according to the area of the light emitting portion 211.
  • the width W in the same direction as the hairline in the light-shielding region of the slit 212 is about 5 mm or more and 10 mm or less.
  • the width of 5 mm or more and 10 mm or less is about the same as the size of defective parts such as indentations on the metal plate 5.
  • the width W of the slit 212 may be determined according to the size of the assumed defective portion.
  • the light source 21 may be configured so that the width of the slit 212 can be changed according to the size of the assumed defective portion. Further, the light source 21 may be configured to be replaceable.
  • a plurality of light sources 21 having slits 212 having different widths may be prepared, and the light source 21 having an optimum slit width may be selected according to the size of the assumed defective portion.
  • the shape of the slit 212 does not necessarily have to be linear.
  • the shape of the slit 212 may be wavy or the like.
  • the camera 22 is fixed to the jig 24 so that the position P1 of the metal plate 5 is within the angle of view when the defective sensor 2 is arranged so as to face the arbitrary position P1 of the metal plate 5.
  • the camera 22 is spaced so that the defective sensor 2 is arranged on the optical axis of the reflected light from the position P1 when the defective sensor 2 is arranged so as to face the arbitrary position P1 of the metal plate 5.
  • It has and is fixed to the jig 24.
  • the camera 22 takes an image within the angle of view and generates an image within the angle of view.
  • the camera 22 has a lens and an image sensor. The lens forms an image of the luminous flux from the metal plate 5 on the image sensor.
  • the lens may be composed of a single focus lens or may have a focus lens. Further, the lens may have a zoom lens.
  • the image sensor is an image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary MOS) image sensor, and converts the light received through the lens into an image signal and outputs it.
  • CCD Charge Coupled Device
  • CMOS Complementary MOS
  • the ink launcher 23 has, for example, a nozzle and an ink tank.
  • the nozzle is fixed between, for example, the light source 21 and the camera 22, and when arranged so as to face an arbitrary position P of the metal plate 5, its ejection port faces the metal plate 5. It has become.
  • the nozzle ejects the ink supplied from the ink tank to the metal plate 5.
  • the ink tank is a tank for storing ink.
  • the ink launcher 23 ejects ink toward the defect.
  • the presence or absence of defects in the metal plate 5 can be confirmed by the human eye.
  • the mark is not limited to the one made by ejecting ink.
  • a mark may be attached by attaching a sticker or the like to the defective part.
  • the jig 24 holds the light source 21 and the camera 22 so that the relative positions and postures of the light source 21 and the camera 22 do not change. Further, the jig 24 is fixed so that the ink launcher 23 does not move.
  • the configuration of the jig 24 is not particularly limited.
  • the drive mechanism 3 is a mechanism configured to change the relative position and relative posture of the defective sensor 2 and the metal plate 5.
  • the drive mechanism 3 is, for example, a vertical articulated robot arm.
  • the number of joints of the robot arm may be appropriately determined according to the degree of freedom required for the defective sensor 2. For example, if the metal plate 5 to be measured is a flat surface and the degree of freedom required for the defective sensor 2 is two degrees of freedom for movement in the XY axis direction, the number of joints of the drive mechanism 3 may be two.
  • each joint of the vertical articulated robot arm is provided with a sensor for detecting the driving amount of the joint. This sensor is, for example, an encoder that detects the amount of rotation of a joint.
  • the control device 4 controls the drive mechanism 3 so as to change the position and posture of the defective sensor 2. For example, the control device 4 controls the drive mechanism 3 so that the defective sensor 2 moves along the direction H of the hairline.
  • FIG. 3 is a diagram showing a hardware configuration of an example of the control device 4.
  • the control device 4 has a processing unit 401, a bus 402, a RAM 403, a ROM 404, a storage 405, an interface 406, and a communication circuit 407.
  • the processing unit 401 controls the operation of the control device 4.
  • the processing unit 401 has hardware such as a CPU and a memory.
  • the processing unit 401 may have an ASIC, an FPGA, or the like instead of the CPU.
  • the processing unit 401 does not necessarily have to be composed of a single CPU or the like.
  • the processing unit 401 may perform the operations described by a plurality of CPUs and the like.
  • the bus 402 is a transfer path connected to the processing unit 401, the RAM 403, the ROM 404, the storage 405, the interface 406, and the communication circuit 407, and for transferring various data generated inside the control device 4.
  • the RAM 403 is a volatile memory such as a DRAM and an SRAM, and temporarily stores data and the like processed by the processing unit 401.
  • the ROM 404 is a non-volatile memory such as a flash memory, and stores a program necessary for the operation of the defect inspection device 1.
  • the storage 405 is a recording medium such as a hard disk drive or a solid state drive, and stores image data and the like of the metal plate 5.
  • the storage may store the image data of the metal plate 5 in association with the position of the defective portion.
  • the storage 405 may store various data necessary for the operation of the defect inspection device 1. This data is, for example, data on the surface shape of the metal plate 5.
  • the data of the surface shape of the metal plate 5 may be CAD (Computer Aided Design) data or the like.
  • Interface 406 is an interface for input / output.
  • interface 406 includes input interfaces such as a keyboard, mouse, and touch panel.
  • the interface 406 may also include an output interface such as a display or a printer.
  • the communication circuit 407 includes a communication interface for communication with the defective sensor 2 and the drive mechanism 3.
  • This communication interface may include, for example, a communication interface for wired communication.
  • the communication circuit 407 may include, for example, a communication interface for communicating with an external server.
  • the communication interface in this case may include a communication interface for wireless communication.
  • FIG. 4 is a flowchart showing the operation of an example of defect inspection of the metal plate 5 in the defect inspection device 1.
  • the processing of FIG. 4 is controlled by the processing unit 401 of the control device 4.
  • step S1 the processing unit 401 acquires the trajectory of the drive mechanism 3 for inspection.
  • the trajectory of the drive mechanism 3 is acquired by offline teaching or automatic trajectory calculation.
  • offline teaching the operator actually moves the drive mechanism 3 on the track for inspection.
  • the processing unit 401 stores, for example, ROM 404 as data indicating the trajectory of the movement of the drive mechanism 3 moved by the operator as trajectory data.
  • the processing unit 401 reads the orbit data from the ROM 404.
  • the processing unit 401 calculates the trajectory in the direction along the hairline, for example.
  • the posture of the defective sensor 2 may be a constant posture.
  • the processing unit 401 determines the posture of the defective sensor 2 from the normal at the target position. For example, when the metal plate 5 has a shape as shown in FIG. 5 and the target position is the position P2, the processing unit 401 calculates the normal L2 on the curved surface including the position P2, for example. Then, the processing unit 401 determines the posture of the defective sensor 2 so that the light beam emitted from the light source 21 with respect to the normal L2 has a predetermined angle ⁇ . Similarly, when the target position is the position P3, the processing unit 401 calculates, for example, the normal L3 on the curved surface including the position P3.
  • the processing unit 401 determines the posture of the defective sensor 2 so that the light beam emitted from the light source 21 with respect to the normal L3 has a predetermined angle ⁇ . By determining the posture of the defective sensor 2 in this way, the light emitted from the light source 21 is tilted by ⁇ with respect to the normal line from the target position.
  • step S2 the processing unit 401 issues an inspection start command to the drive mechanism 3 and the defective sensor 2.
  • the drive mechanism 3 moves the defective sensor 2 along the trajectory instructed by the processing unit 401, for example, the direction H of the hairline.
  • the defective sensor 2 irradiates the metal plate 5 with light and takes an image at regular intervals.
  • the images of the metal plate 5 obtained by the camera 22 of the defective sensor 2 are sequentially stored in the storage 405 of the control device 4.
  • the imaging interval is determined, for example, according to the moving speed of the defective sensor 2. It is desirable that the angle of view of the camera 22 is provided with overlapping portions. This is to avoid complication of image processing due to the location of defective parts on the boundary of the image.
  • an image of a defective portion such as an indentation can be obtained by capturing the reflected light from the metal plate 5 with the camera 22.
  • the metal plate 5 has a hairline
  • the light incident on the hairline is diffusely reflected.
  • the height of a defective portion such as an indentation is a minute height of about 10 ⁇ m, so that the reflected light due to the hairline and the reflected light due to the indentation cannot be distinguished.
  • FIG. 1 when light is irradiated from an oblique position with respect to the metal plate 5 as in the embodiment, when a defective portion such as an indentation is at the position of a shadow generated by the light-shielding region of the slit 212, FIG. As shown, a shadow S shown by a solid line frame is formed at a defective portion such as an indentation. This shadow S is caused by the unevenness of the defective portion. On the other hand, a shadow S cannot be formed in a portion where there is no defective portion. As a result, by detecting the shadow S of the defective portion from the contrast change in the image, the position of the defect such as an indentation on the metal plate can be detected.
  • the shadow generated by the light-shielding region of the slit 212 in the image is referred to as a stripe.
  • the slit 212 is configured to limit the light incident on the hairline in a direction orthogonal to the hairline. This makes it easier to image the shadow S of the defective portion. Similarly, by making the moving direction of the camera 22 parallel to the hairline, the slit light can always be orthogonal to the hairline.
  • the width W of the slit 212 in the same direction as the hairline is the same width as the assumed indentation, that is, 5 mm or more and 10 mm or less.
  • the optical axis of the light source 21 of the defective sensor 2 and the direction of the hairline are parallel. That is, it is desirable that the rotation of the optical axis of the light source 21 with respect to the normal of the metal plate 5 is suppressed within 10 degrees. This is because shadows are less likely to occur when the rotation of the optical axis of the light source 21 with respect to the normal of the metal plate 5 becomes large. Therefore, it is desirable that the drive mechanism 3 moves the defective sensor 2 in a trajectory in which rotation of the optical axis of the light source 21 with respect to the normal of the metal plate 5 is easily suppressed, for example, in a direction along the direction H of the hairline.
  • step S3 the drive mechanism 3 determines whether or not the movement of the defective sensor 2 along the designated trajectory is completed. When it is determined in step S3 that the movement of the defective sensor 2 along the designated trajectory has not been completed, the determination in step S3 is continued. When it is determined in step S3 that the movement of the defective sensor 2 along the designated trajectory is completed, the process proceeds to step S4.
  • step S4 the processing unit 401 determines for each stripe in the image whether or not the shadow S of the defective portion is detected in the image obtained by the camera 22.
  • the shadow S of the defective portion can be detected by a well-known method such as edge detection.
  • the process proceeds to step S5.
  • the processing unit 401 ends the processing of FIG.
  • step S5 the processing unit 401 collates the position of the defective portion in the image with the trajectory of the drive mechanism 3 and calculates the actual position of the defective portion.
  • step S6 the processing unit 401 issues a command to the drive mechanism 3 to move the defective sensor 2 to the position of the defective portion. In response to this, the drive mechanism 3 moves the defective sensor 2. When the drive mechanism 3 reaches a position directly above the defective portion, the drive mechanism 3 notifies the processing unit 401 that the movement is completed.
  • step S7 the processing unit 401 issues a command to the defective sensor 2 to eject ink from the ink launcher 23.
  • step S8 the processing unit 401 determines whether or not the ink injection to all the defective parts is completed. When it is determined in step S8 that the ink has not been ejected to all the defective parts, the process returns to step S6. In this case, the movement of the defective sensor 2 and the injection of ink are continued. When it is determined in step S8 that the ink has been ejected to all the defective parts, the processing unit 401 ends the processing of FIG.
  • the normal at the defect detection position on the surface of the metal plate is calculated, and the normal is orthogonal to the hairline from the direction having an inclination of about 10 ° with respect to the calculated normal.
  • the defective part is detected by being irradiated with the light. If a defective part is located in the stripe, a clear shadow appears on the defective part by light irradiation. Defective parts can be detected by this shadow. Therefore, it is possible to detect a defective portion regardless of the presence or absence of a hairline.
  • the width of the slit light to irradiate the metal plate to the same width as the assumed defective portion, the shadow of the defective portion is generated necessaryly and sufficiently, and the accuracy and efficiency can be increased. It is possible to detect defective parts.
  • the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications and applications are possible within the scope of the gist of the present invention.
  • the drive mechanism 3 may be a mechanism other than the vertical articulated robot arm as long as it is configured to change the relative position and the relative posture of the defective sensor 2 and the metal plate 5.
  • the drive mechanism 3 is a mechanism such as a conveyor that moves the metal plate 5 in a direction parallel to the hairline. There may be.
  • the defect inspection device 1 has one defect sensor 2, one drive mechanism 3, and one control device 4.
  • two or more defective sensors 2 may be attached to one drive mechanism 3.
  • the number of pairs of the drive mechanism 3 and the defective sensor 2 may be two or more.
  • Each set of such drive mechanisms 3 may be controlled by one control device 4 or may be controlled by separate control devices 4.
  • ink as a mark is ejected to the position of the defective part.
  • This mark does not necessarily have to be a physical mark.
  • the processing unit 401 of the control device 4 calculates the position of the actual defective portion in step S5, and then matches the position of the actual defective portion with the data of the surface shape of the metal plate 5 to the storage 405. You may memorize it.
  • an image of a marker indicating the position of the defective portion is projected onto the actual metal plate 5 by, for example, a projection mapping technique. can do.
  • the image obtained by imaging the metal plate 5 is displayed in real time on a tablet terminal, smart glasses, etc., and a marker indicating the position of the defective part is displayed on the displayed image. It can also be displayed overlaid on the image. This eliminates the need for ink injection.
  • the image of the entire region of the metal plate 5 is acquired first, and the defective portion is detected in the image of the entire region.
  • the defective portion may be detected in real time while moving the defective sensor 2.
  • FIG. 7 is a flowchart showing the operation of another example of defect inspection of the metal plate 5 in the defect inspection device 1.
  • the processing of FIG. 7 is controlled by the processing unit 401 of the control device 4.
  • step S11 the processing unit 401 acquires the target position of the defective sensor 2 for inspection. For example, if the defective sensor 2 is moved from the upper left end to the lower right end of the metal plate 5 in raster order, the processing unit 401 refers to the data of the surface shape of the metal plate 5 and coordinates the upper left end of the metal plate 5. Get the position in order from.
  • step S12 the processing unit 401 acquires the target posture of the defective sensor 2 so as to face the surface including the acquired position. If the surface of the metal plate 5 is flat, the posture of the defective sensor 2 may be a constant posture. On the other hand, when the surface of the metal plate 5 includes a curved surface, the processing unit 401 determines the posture of the defective sensor 2 from the normal at the target position.
  • step S13 the processing unit 401 calculates the target drive amount of the drive mechanism 3 according to the acquired target position and posture. For example, if the drive mechanism 3 is an articulated robot arm, the processing unit 401 calculates the drive amount of each joint.
  • step S14 the processing unit 401 issues a command to the drive mechanism 3 to change the position and orientation of the defective sensor 2.
  • step S15 the processing unit 401 determines whether or not the position and posture of the defective sensor 2 is the target position and posture. For example, if the drive mechanism 3 is an articulated robot arm, the processing unit 401 determines whether or not the drive amount of each joint has reached the target drive amount from the output of the sensor provided for each joint. Then, when it is determined that the driving amount of each joint has reached the target driving amount, it is determined that the position and posture of the defective sensor 2 is the target position and posture. In step S15, when the position and posture of the defective sensor 2 is not determined to be the target position and posture, the process is on standby. In this case, the control of the drive mechanism 3 is continued.
  • step S15 If the position and orientation of the defective sensor 2 does not reach the target position and orientation within a predetermined period, the process may be configured to time out.
  • step S16 the process proceeds to step S16.
  • step S16 the processing unit 401 issues a command to start light irradiation and imaging by the defective sensor 2.
  • the defective sensor 2 starts light irradiation from the light source 21 and imaging by the camera 22.
  • step S17 the processing unit 401 determines whether or not the shadow S of the defective portion is detected in the image obtained by the camera 22.
  • the shadow S of the defective portion can be detected in the same manner as in the example of FIG.
  • step S18 the process proceeds to step S18.
  • step S21 the process proceeds to step S21.
  • step S18 the processing unit 401 records the position of the defective portion in the storage 405 together with the image. After that, the process proceeds to step S19.
  • step S19 the processing unit 401 issues a command to the drive mechanism 3 to move the defective sensor 2 to the position of the defective portion. In response to this, the drive mechanism 3 moves the defective sensor 2. When the drive mechanism 3 reaches a position directly above the defective portion, the drive mechanism 3 notifies the processing unit 401 that the movement is completed.
  • step S20 the processing unit 401 issues a command to the defective sensor 2 to eject ink from the ink launcher 23. After that, the process proceeds to step S21.
  • step S21 the processing unit 401 determines whether or not the detection of the defective portion is completed. For example, when the defect sensor 2 moves to all the positions where the defect detection is required on the metal plate 5, it is determined that the detection of the defect portion is completed. When it is determined in step S21 that the detection of the defective portion is not completed, the processing unit 401 returns the processing to step S13 and acquires the position of the next target of the defective sensor 2. When it is determined in step S21 that the detection of the defective portion is completed, the processing unit 401 ends the processing of FIG. 7.
  • the processing unit 401 receives an image I1 when light is irradiated from a direction parallel to the hairline shown in FIG.
  • a defective portion may be detected by acquiring I2 and calculating the difference between the image I1 and the image I2. As a result, even if the metal plate 5 has dirt D or the like, only the defective portion can be detected by the difference calculation between the image I1 and the image I2.
  • the processing unit 401 does not have to calculate the difference between the image I1 and the image I2. For example, when the processing unit 401 is presumed to be a defective part by edge detection, the processing unit 401 obtains the size and the center position as a candidate for the defective part, and the defective part of the same size at the same position of both the image I1 and the image I2. When a candidate for is detected, the candidate for the defective part may be excluded. In this case, the defective portion can be detected without performing the difference calculation between the image I1 and the image I2.

Abstract

不良センサ(2)は、プレス成形された金属板(5)の面上の位置における法線に対して傾きを有して配置され、この位置に向けて光を照射する光源(21)と、この位置を撮像するカメラ(22)とを備える。金属板(5)は、プレス成形によって形成される第1の方向に延びた傷を有しており、光源(21)は、金属板(5)の面上の位置に照射される光を、第1の方向と直交する第2の方向に沿った光に制限するスリット(212)を有する。

Description

金属板の不良センサ及びそれを備えた不良検査装置
 本発明は、プレス成形された金属板の不良を検知する不良センサ及びそれを備えた不良検査装置に関する。
 自動車の車体等に使用される金属板は、例えば車体等の形状に応じてプレス成形される。プレス成形の際に、金属板又は金型に微小なゴミ等が付着していると、プレス成形された金属板の表面又は裏面に圧痕が生じる。このような金属板上の圧痕は一般的には直径5mmから10mm程度の円又は楕円形をしている。また、圧痕の高さ又は深さは10μm程度である。プレス成形された段階では、金属板に生じた圧痕はさほど目立たない。しかしながら、金属板に塗装が施されると、金属板に生じた圧痕が目立ってきてしまう。したがって、金属板の表面に生じた圧痕は不良とされ、必要に応じて補修される。
 プレス成形された金属板に生じた圧痕を検査する方法として、日本国特開2012-240184号公報では、作業者が金属板の面をオイルストーンによって擦って圧痕を明瞭にし、明瞭にした傷を例えば目視によって検査する方法が開示されている。
 従来の検査の方法では、作業者による物理的な作業を伴うので、作業者の負担が増加しやすい。
 本発明は、前記の事情に鑑みてなされたもので、プレス成形された金属板の不良を作業者の手を煩わすことなく検知できる不良センサ及びそれを備えた不良検査装置を提供することを目的とする。
 本発明の一態様の不良センサは、プレス成形された金属板の面上の位置における法線に対して傾きを有して配置され、前記位置に向けて光を照射する光源と、前記位置を撮像するカメラとを具備し、前記金属板は、前記プレス成形によって形成される第1の方向に延びた傷を有しており、前記光源は、前記位置に照射される光を、前記第1の方向と直交する第2の方向に沿った光に制限するスリットを有する。
図1は、1つの実施形態に係る不良検査装置の一例の構成を示す図である。 図2は、金属板の側から見た光源の図である。 図3は、制御装置の一例のハードウェア構成を示す図である。 図4は、不良検査装置における金属板の不良検査の一例の動作を示すフローチャートである。 図5は、曲面を有する金属板における不良センサの配置について示す図である。 図6は、実施形態において取得される画像の例を示す図である。 図7は、不良検査装置における金属板の不良検査の別の例の動作を示すフローチャートである。 図8Aは、ヘアラインに対して平行な方向から光を照射したときに得られる不良個所の位置の画像の例を示す図である。 図8Bは、ヘアラインに対して垂直な方向から光を照射したときに得られる不良個所の位置の画像の例を示す図である。
 以下、図面を参照して実施形態を説明する。図1は、1つの実施形態に係る不良検査装置の一例の構成を示す図である。不良検査装置1は、不良センサ2と、駆動機構3と、制御装置4とを有する。不良個所の検知のときには、図1に示すように、不良センサ2は、不良個所の検知対象である金属板5に例えば正対するように配置される。図1では、平板である金属板5と平行な面に沿ってX軸とY軸とが設定されている。また、図1では、XY平面と直交するようにZ軸が設定されている。
 不良センサ2は、光源21と、カメラ22と、インク発射機23とを有している。光源21と、カメラ22と、インク発射機23とは、冶具24に取り付けられている。ここで、図1では、冶具24に対して、1つの光源21と、1つのカメラ22とが取り付けられる例が示されている。これに対し、冶具24には、1つの光源21と、複数のカメラ22とが取り付けられていてもよいし、複数の光源21と、1つのカメラ22とが取り付けられていてもよいし、複数の光源21と、複数のカメラ22とが取り付けられていてもよい。
 光源21は、不良センサ2が金属板5の任意の位置P1に対して正対するように配置されたときに金属板5の位置P1における法線L1に対して光源から射出される光線lが所定の角度θを有するように冶具24に固定されている。ここで、金属板5がプレス成形された場合、金属板5の表面には、プレス時の金属板5の圧延によってヘアラインと呼ばれる微小の加工傷が金属板5の一方向につく。金属板5にヘアラインがついている場合、光源21は、ヘアラインの方向と平行な方向から光lを照射するように配置される。例えば、X軸に沿ってヘアラインがついているときには、光源21は、X軸方向に光lを照射するように配置される。このように、光源21は、ヘアラインと平行な方向で、かつ、金属板5の位置P1に対して斜め方向から光lを照射する。角度θは、0°<θ<90°、好ましくは5°≦θ≦10°である。光源21の光射出部には、LED(Light Emitting Diode)等の光射出素子が設けられている。
 図2は、金属板5の側から見た光源21の図である。ここで、図2においては、金属板5のヘアラインはH方向に形成されているとする。H方向は、例えばX軸に沿った方向である。
 図2に示すように、光源21は、光射出部211を有する。光射出部211のヘアラインの方向と直交する方向の幅は、金属板5のヘアラインの方向と直交する方向の幅とほぼ等しい。一方、光射出部211のヘアラインの方向と平行な方向の幅は、金属板5のヘアラインの方向と平行な方向の幅と等しくてもよいし、短くてもよい。図2では、光射出部211のヘアラインの方向と平行な方向の幅は、金属板5のヘアラインの方向と平行な方向の幅よりも短い。光射出部211は、面均一な光を照射するように構成されている。例えば、光射出部211の全面に、LED等の光射出素子が形成されていてもよい。または、例えば、光射出部211の一端側にだけLED等の光射出素子が形成されており、光射出素子からの光を、拡散板等を利用して拡散することで面均一な光を生成するように構成されていてもよい。
 また、光源21は、スリット212を有している。スリット212は、光源21の光射出部211から射出された光をスリット光にする。スリット212は、ヘアラインHに対して直交するように配置される。したがって、スリット212から射出されるスリット光もヘアラインに対して直交するスリット光になる。スリット212は、例えば光射出部211に等間隔に遮光フィルムを貼り付けることで形成される。スリット212は、ヘアラインに対して直交するスリット光を生成できる構造であれば、特定の構造に限定されない。また、スリット212の数は、光射出部211の面積に応じて適宜に決められてよい。
 ここで、スリット212の遮光領域におけるヘアラインと同方向の幅Wは、5mm以上、10mm以下程度とすることが望ましい。5mm以上、10mm以下の幅は、金属板5の圧痕等の不良個所のサイズと同程度である。スリット212の幅Wは、想定される不良個所のサイズに応じて決められてよい。この場合において、例えば、光源21は、想定される不良個所のサイズに応じてスリット212の幅を変えることができるように構成されていてもよい。また、光源21は交換できるように構成されていてもよい。この場合において、異なる幅のスリット212を有する複数の光源21を用意しておき、想定される不良個所のサイズに応じて最適なスリット幅を有する光源21が選択されてもよい。また、スリット212の形状も必ずしも直線状でなくてもよい。例えば、スリット212の形状は、波線状等であってもよい。
 カメラ22は、不良センサ2が金属板5の任意の位置P1に対して正対するように配置されたときに金属板5の位置P1を画角内に収めるように冶具24に固定されている。図1では、カメラ22は、不良センサ2が金属板5の任意の位置P1に対して正対するように配置されたときに位置P1からの反射光の光軸上に配置されるような間隔を有して冶具24に固定されている。カメラ22は、画角内を撮像し、画角内の画像を生成する。カメラ22は、レンズと、画像センサとを有している。レンズは、金属板5からの光束を画像センサに結像させる。レンズは、単焦点のレンズで構成されていてもよいし、フォーカスレンズを有していてもよい。また、レンズは、ズームレンズを有していてもよい。画像センサは、CCD(Charge Coupled Device)画像センサ、CMOS(Complementary MOS)画像センサ等の画像センサであって、レンズを介して受光した光を画像信号に変換して出力する。
 インク発射機23は、例えばノズルと、インクタンクとを有する。ノズルは、例えば光源21とカメラ22との間に固定され、金属板5の任意の位置Pに対して正対するように配置されたときに、その射出口が金属板5に対して正対するようになっている。ノズルは、インクタンクから供給されたインクを金属板5に対して射出する。インクタンクは、インクを貯蔵しておくためのタンクである。このようなインク発射機23は、金属板5における不良が検知されたときに、不良に向けてインクを射出する。このインクを目印として、人間の目でも金属板5における不良の有無を確認することができる。目印は、インクを射出することによってつけられるものに限るものではない。不良個所にシール等を貼り付けることで目印がつけられてもよい。
 冶具24は、光源21とカメラ22との相対位置及び相対姿勢が変化しないように光源21とカメラ22とを保持する。また、冶具24は、インク発射機23が動かないように固定する。冶具24の構成は、特に限定されるものではない。
 駆動機構3は、不良センサ2と金属板5との相対位置及び相対姿勢を変更するように構成された機構である。駆動機構3は、例えば垂直多関節ロボットアームである。ここで、駆動機構3が垂直多関節ロボットアームであるとき、ロボットアームの関節数は、不良センサ2に求められる自由度に応じて適宜に決められてよい。例えば、測定対象の金属板5が平面であって、不良センサ2に求められる自由度がXY軸方向の移動の2自由度であれば、駆動機構3の関節数は2つでよい。また、例えば、測定対象の金属板5が曲面であって、不良センサ2に求められる自由度がXYZ軸方向の移動とXYZ軸周りの回転の6自由度であれば、駆動機構3の関節数は6つになる。駆動機構3の関節数は7つ以上であってもよい。すなわち駆動機構3は冗長自由度を持っていてもよい。また、垂直多関節ロボットアームの各関節には、関節の駆動量を検知するセンサが設けられている。このセンサは、例えば関節の回転量を検知するエンコーダである。
 制御装置4は、不良センサ2の位置及び姿勢を変化させるように駆動機構3を制御する。例えば、制御装置4は、ヘアラインの方向Hに沿って不良センサ2が移動するように駆動機構3を制御する。
 図3は、制御装置4の一例のハードウェア構成を示す図である。制御装置4は、一例として処理部401と、バス402と、RAM403と、ROM404と、ストレージ405と、インターフェイス406と、通信回路407とを有する。
 処理部401は、制御装置4の動作を制御する。処理部401は、例えばCPU及びメモリといったハードウェアを有する。処理部401は、CPUの代わりにASIC、FPGA等を有していてもよい。処理部401は、必ずしも単独のCPU等によって構成されている必要はない。処理部401は、複数のCPU等によって説明する動作をするものであってもよい。
 バス402は、処理部401、RAM403、ROM404、ストレージ405、インターフェイス406、通信回路407に接続され、制御装置4の内部で発生した各種のデータを転送するための転送路である。
 RAM403は、DRAM及びSRAMといった揮発性メモリであり、処理部401において処理されたデータ等を一時的に記憶する。
 ROM404は、フラッシュメモリ等の不揮発性メモリであり、不良検査装置1の動作に必要なプログラムを記憶している。
 ストレージ405は、ハードディスクドライブ、ソリッドステートドライブ等の記録媒体であり、金属板5の画像データ等を記憶する。ストレージは、金属板5の画像データと不良個所の位置とを関連付けて記憶してもよい。ストレージ405は、不良検査装置1の動作に必要な各種のデータを記憶していてもよい。このデータは、例えば金属板5の表面形状のデータである。金属板5の表面形状のデータは、CAD(Computer Aided Design)データ等であってよい。
 インターフェイス406は、入出力のためのインターフェイスである。例えば、インターフェイス406は、キーボード、マウス、タッチパネルといった入力インターフェイスを含む。また、インターフェイス406は、ディスプレイ、プリンタといった出力インターフェイスを含んでいてもよい。
 通信回路407は、不良センサ2及び駆動機構3との通信のための通信インターフェイスを含む。この通信インターフェイスは、例えば、有線通信のための通信インターフェイスを含み得る。通信回路407は、例えば外部のサーバと通信するための通信インターフェイスを含んでいてもよい。この場合の通信インターフェイスは、無線通信のための通信インターフェイスを含み得る。
 図4は、不良検査装置1における金属板5の不良検査の一例の動作を示すフローチャートである。図4の処理は、制御装置4の処理部401において制御される。
 ステップS1において、処理部401は、検査のための駆動機構3の軌道を取得する。駆動機構3の軌道の取得は、オフラインによるティーチング又は自動の軌道計算によって行われる。オフラインによるティーチングでは、作業者が検査のための軌道で実際に駆動機構3を動かす。この作業者によって動かされた駆動機構3の動きの軌跡を示すデータを軌道データとして処理部401は例えばROM404に記憶させる。実際の検査のときには、処理部401は、ROM404から軌道データを読み出す。一方、自動の軌道計算では、処理部401は、例えばヘアラインに沿った方向の軌道を算出する。ここで、金属板5の表面が平面であれば、不良センサ2の姿勢は一定の姿勢でよい。一方、金属板5の表面が曲面を含むときには、処理部401は、目標の位置における法線から不良センサ2の姿勢を決める。例えば、金属板5が図5に示すような形状を有しており、目標の位置が位置P2であるとき、処理部401は、例えば位置P2を含む曲面における法線L2を算出する。そして、処理部401は、法線L2に対して光源21から射出される光線が所定の角度θを有するように不良センサ2の姿勢を決める。同様に、目標の位置が位置P3であるとき、処理部401は、例えば位置P3を含む曲面における法線L3を算出する。そして、処理部401は、法線L3に対して光源21から射出される光線が所定の角度θを有するように不良センサ2の姿勢を決める。このように不良センサ2の姿勢を決めることにより、光源21から射出される光は、目標の位置からの法線に対してθだけ傾く。
 ステップS2において、処理部401は、駆動機構3及び不良センサ2に対して検査開始コマンドを発行する。これを受けて、駆動機構3は、処理部401によって指示された軌道、例えばヘアラインの方向Hに沿って不良センサ2を移動させる。また、不良センサ2は、一定期間毎に金属板5への光照射と撮像とを行う。不良センサ2のカメラ22で得られた金属板5の画像は、逐次に制御装置4のストレージ405に記憶される。撮像間隔は、例えば不良センサ2の移動速度に応じて決められる。なお、カメラ22の画角には重複箇所が設けられることが望ましい。これは、画像の境界上に不良個所が位置することによる画像処理の複雑化を避けるためである。
 金属板5の正面から光を照射した場合、金属板5からの反射光をカメラ22で撮像することによって圧痕等の不良個所の画像を得ることができる。しかしながら、金属板5にヘアラインがある場合、ヘアラインに入射した光は乱反射してしまう。通常、圧痕等の不良個所の高さは10μm程度の微小な高さであるので、ヘアラインによる反射光と圧痕による反射光とが区別できなくなる。これに対し、実施形態のように金属板5に対して斜めの位置から光が照射されたきに、圧痕等の不良個所がスリット212の遮光領域によって生じた影の位置にあると、図6に示すように、圧痕等の不良個所に実線枠で示した影Sができる。この影Sは、不良個所の凹凸によって生じるものである。一方、不良個所のない部分には影Sができない。結果として、画像内のコントラスト変化から不良個所の影Sを検知することにより、金属板における圧痕等の不良の位置を検知することができる。以下、画像におけるスリット212の遮光領域によって生じた影のことをストライプという。
 ここで、ヘアラインに対して光を照射した場合、ヘアラインに対して直交する方向の光は集中し易く、ヘアラインに対して平行な方向の光は分散し易い。したがって、スリット212は、ヘアラインに入射する光をヘアラインに対して直交する方向に制限するように構成されている。これにより、より不良個所の影Sを撮像しやすくすることができる。同様に、カメラ22の移動方向をヘアラインと平行な方向にすることにより、スリット光を常にヘアラインに対して直交するようにすることができる。
 また、スリット光の幅を広げると光線が拡散してしまって影Sが生じにくくなる。一方、スリット幅を狭めると1回の光照射では圧痕の一部しか観察できなくなる。このため、前述したように、スリット212のヘアラインと同方向の幅Wは、想定される圧痕と同じ程度の幅、すなわち5mm以上、10mm以下であることが望ましい。
 さらに、不良センサ2の光源21の光軸とヘアラインの方向とは平行であることが望ましい。つまり、光源21の光軸の金属板5の法線に対する回転は10度以内に抑制されることが望ましい。光源21の光軸の金属板5の法線に対する回転が大きくなると影が生じにくくなるためである。したがって、駆動機構3は、光源21の光軸の金属板5の法線に対する回転が抑制され易い軌道、例えばヘアラインの方向Hに沿った方向で不良センサ2を移動させることが望ましい。
 ここで、図4の説明に戻る。ステップS3において、駆動機構3は、指定された軌道に沿った不良センサ2の移動が完了したか否かを判定する。ステップS3において、指定された軌道に沿った不良センサ2の移動が完了していないと判定されたとき、ステップS3の判定は継続される。ステップS3において、指定された軌道に沿った不良センサ2の移動が完了したと判定されたとき、処理はステップS4に移行する。
 ステップS4において、処理部401は、カメラ22で得られた画像において不良個所の影Sが検知されたか否かを画像内のストライプ毎に判定する。不良個所の影Sは、エッジ検出等の周知の手法によって検知され得る。ステップS4において、不良個所の影Sが検知されたと判定されたときには、処理はステップS5に移行する。ステップS4において、不良個所の影Sが検知されていないと判定されたときには、処理部401は、図4の処理を終了させる。
 ステップS5において、処理部401は、画像内における不良個所の位置と駆動機構3の軌道を照合し、実際の不良個所の位置を算出する。
 ステップS6において、処理部401は、駆動機構3に対して不良個所の位置に不良センサ2を移動させるようにコマンドを発行する。これを受けて駆動機構3は、不良センサ2を移動させる。不良個所の直上の位置に到達したときに、駆動機構3は、移動が完了したことを処理部401に対して通知する。
 ステップS7において、処理部401は、不良センサ2に対してインク発射機23からインクを射出させるようにコマンドを発行する。
 ステップS8において、処理部401は、すべての不良個所へのインクの射出が完了したか否かを判定する。ステップS8において、すべての不良個所へのインクの射出が完了していないと判定されたときには、処理はステップS6に戻る。この場合、不良センサ2の移動及びインクの射出が継続される。ステップS8において、すべての不良個所へのインクの射出が完了したと判定されたときには、処理部401は、図4の処理を終了させる。
 以上説明したように実施形態によれば、金属板の面上の不良の検知位置における法線が算出され、算出された法線に対して10°程度の傾きを有する方向からヘアラインに対して直交する光が照射されて、不良個所の検知が行われる。ストライプ内に不良個所が位置していれば、光照射によって不良個所に明瞭な影が現れる。この影によって不良個所の検知を行うことができる。したがって、ヘアラインの有無にかかわらずに不良個所を検知することができる。
 また、金属板に対して照射するスリット光の幅を想定される不良個所と同程度の幅とすることにより、不良個所の影を必要かつ十分に発生させて、精度よく、かつ、効率よく、不良個所を検知することができる。
 本発明は前述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。例えば、前述した実施形態では、不良センサ2の光源21とカメラ22とは冶具24によって一体的に固定されている例が示されている。しかしながら、光源21とカメラ22とは必ずしも一体的に固定されている必要はない。また、駆動機構3は、不良センサ2と金属板5との相対位置及び相対姿勢を変更するように構成されていれば垂直多関節ロボットアーム以外の機構であってもよい。例えば、金属板5が平板であるとき等の不良センサ2の相対姿勢の制御が不要であるときには、駆動機構3は、金属板5をヘアラインに対して平行な方向に移動させるコンベア等の機構であってもよい。
 また、実施形態では、不良検査装置1は、1つの不良センサ2と、1つの駆動機構3と、1つの制御装置4を有しているとして説明している。しかしながら、これに限らない。つまり、不良センサ2、駆動機構3、制御装置4は複数であってもよい。例えば、1つの駆動機構3に2つ以上の不良センサ2が取り付けられてもよい。また、駆動機構3と不良センサ2の組が2つ以上であってもよい。このような各組の駆動機構3は、1つの制御装置4によって制御されてもよいし、別々の制御装置4によって制御されてもよい。駆動機構3と不良センサ2の組が2つ以上あることによって、各組の駆動機構3を協調制御することによって、金属板5の面積が広い場合等において短時間で画像の撮像を終了させることができる。また、制御装置4も別にすることによって、画像処理も個別に行われ得る。
 また、実施形態では、不良個所が検出されたときに、不良個所の位置に目印としてのインクが射出される。この目印は、必ずしも物理的な目印でなくてもよい。例えば、制御装置4の処理部401は、ステップS5において、実際の不良個所の位置を算出した後で、この実際の不良個所の位置を金属板5の表面形状のデータとマッチさせてストレージ405に記憶させておいてもよい。このようにして実際の不良個所の位置を金属板5の表面形状のデータとマッチさせておくことにより、不良個所の位置を示すマーカの画像を、例えばプロジェクションマッピング技術によって実際の金属板5に投影することができる。また、AR(Augmented Reality)技術を利用して、金属板5を撮像して得た画像をリアルタイムでタブレット端末及びスマートグラス等に表示させ、この表示させた画像に不良個所の位置を示すマーカを画像に重ねて表示させることもできる。これにより、インク射出は不要になる。
 また、実施形態では先に金属板5の全領域の画像が取得され、全領域の画像に対して不良個所の検知が行われる。これに対し、不良センサ2を動かしながらリアルタイムで不良個所の検知が行われてもよい。
 図7は、不良検査装置1における金属板5の不良検査の別の例の動作を示すフローチャートである。図7の処理は、制御装置4の処理部401において制御される。
 ステップS11において、処理部401は、検査のための不良センサ2の目標の位置を取得する。例えば、金属板5の左上端から右下端までラスタ順で不良センサ2を移動させるのであれば、処理部401は、金属板5の表面形状のデータを参照して金属板5の左上端の座標から順に位置を取得する。
 ステップS12において、処理部401は、取得した位置を含む面に対して正対するような不良センサ2の目標の姿勢を取得する。金属板5の表面が平面であれば、不良センサ2の姿勢は一定の姿勢でよい。一方、金属板5の表面が曲面を含むときには、処理部401は、目標の位置における法線から不良センサ2の姿勢を決める。
 ステップS13において、処理部401は、取得した目標の位置及び姿勢に応じて駆動機構3の目標の駆動量を算出する。例えば、駆動機構3が多関節ロボットアームであれば、処理部401は、各関節の駆動量を算出する。
 ステップS14において、処理部401は、駆動機構3に対して不良センサ2の位置及び姿勢を変化させるようにコマンドを発行する。
 ステップS15において、処理部401は、不良センサ2の位置及び姿勢が目標の位置及び姿勢であるか否かを判定する。例えば、駆動機構3が多関節ロボットアームであれば、処理部401は、各関節に設けられたセンサの出力から、各関節の駆動量が目標の駆動量に達したか否かを判定する。そして、各関節の駆動量が目標の駆動量に達したと判定されたときに、不良センサ2の位置及び姿勢が目標の位置及び姿勢であると判定される。ステップS15において、不良センサ2の位置及び姿勢が目標の位置及び姿勢であると判定されないときには、処理は待機される。この場合、駆動機構3の制御が継続される。なお、所定期間で不良センサ2の位置及び姿勢が目標の位置及び姿勢にならないといきには、処理がタイムアウトするように構成されていてもよい。ステップS15において、不良センサ2の位置及び姿勢が目標の位置及び姿勢であると判定されたときには、処理はステップS16に移行する。
 ステップS16において、処理部401は、不良センサ2による光照射と撮像とを開始させるようにコマンドを発行する。これを受けて、不良センサ2は、光源21からの光照射とカメラ22による撮像とを開始する。
 ステップS17において、処理部401は、カメラ22で得られた画像において不良個所の影Sが検知されたか否かを判定する。不良個所の影Sは、図4の例と同様に検出され得る。ステップS17において、不良個所の影Sが検知されたと判定されたときには、処理はステップS18に移行する。ステップS17において、不良個所の影Sが検知されていないと判定されたときには、処理はステップS21に移行する。
 ステップS18において、処理部401は、不良個所の位置をその画像とともにストレージ405に記録する。その後、処理はステップS19に移行する。
 ステップS19において、処理部401は、駆動機構3に対して不良個所の位置に不良センサ2を移動させるようにコマンドを発行する。これを受けて駆動機構3は、不良センサ2を移動させる。不良個所の直上の位置に到達したときに、駆動機構3は、移動が完了したことを処理部401に対して通知する。
 ステップS20において、処理部401は、不良センサ2に対してインク発射機23からインクを射出させるようにコマンドを発する。その後、処理はステップS21に移行する。
 ステップS21において、処理部401は、不良個所の検知が完了したか否かを判定する。例えば、金属板5において不良の検知が必要なすべての位置に不良センサ2が移動したときには、不良個所の検知が完了したと判定される。ステップS21において、不良個所の検知が完了していないと判定されたときには、処理部401は、処理をステップS13に戻して不良センサ2の次の目標の位置を取得する。ステップS21において、不良個所の検知が完了したと判定されたときには、処理部401は、図7の処理を終了させる。
 このようにリアルタイム処理であっても、個々の撮像のタイミングにおいて金属板5の法線に対して10°程度の傾きを有する方向からヘアラインに対して直交する光が照射されて、不良個所の検知が行われる。不良個所が各画像のストライプ毎に判定されることにより、不良個所の影から不良個所を逐次に検知することができる。
 また、不良個所をエッジ検出及びコントラスト変化から検出する場合、金属板5に汚れ等があるときに、この汚れも不良個所として検出され得る。ここで、前述したように、金属板5における不良個所の影はヘアラインと平行な方向からの光照射の時には生じやすく、ヘアラインと垂直な方向からの光照射の時には生じにくい。一方で、金属板5の汚れ等は、光照射の方向にかかわらずに画像上に表われる。したがって、処理部401は、1回の撮像で、図8Aに示すヘアラインと平行な方向からの光照射の時の画像I1と、図8Bに示すヘアラインと垂直な方向からの光照射の時の画像I2とを取得し、画像I1と画像I2との差分を算出することにより、不良個所を検出してもよい。これにより、仮に金属板5に汚れD等があっても、画像I1と画像I2との差演算によって不良個所だけを検出することができる。
 また、処理部401は、画像I1と画像I2との差演算をしなくてもよい。例えば、処理部401は、エッジ検出によって不良個所であると推定されるときには不良個所の候補としてその大きさ及び中心位置を求め、画像I1と画像I2の両方の同じ位置で同じ大きさの不良個所の候補が検出されたときには、その不良個所の候補を除外してもよい。この場合、画像I1と画像I2との差演算をすることなく、不良個所を検出することができる。

Claims (7)

  1.  プレス成形された金属板の面上の位置における法線に対して傾きを有して配置され、前記位置に向けて光を照射する光源と、
     前記位置を撮像するカメラと、
     を具備し、
     前記金属板は、前記プレス成形によって形成される第1の方向に延びた傷を有しており、
     前記光源は、前記位置に照射される光を、前記第1の方向と直交する第2の方向に沿った光に制限するスリットを有する不良センサ。
  2.  前記光源は、前記第1の方向と平行な方向から前記光を照射する請求項1に記載の不良センサ。
  3.  前記スリットにおける遮光領域は、前記第1の方向において5mm以上、10mm以下の幅を有する請求項1又は2に記載の不良センサ。
  4.  前記傾きは、前記法線に対して5度以上、10度以下の角度を有する請求項1乃至3の何れか1項に記載の不良センサ。
  5.  請求項1乃至4の何れか1項に記載の不良センサと、
     前記法線に対して前記光源が傾きを有するように前記不良センサと前記金属板との相対位置と相対姿勢とを変更する駆動機構と、
     前記駆動機構を制御する制御装置と、
     を有する不良検査装置。
  6.  前記制御装置は、前記不良センサの前記カメラによって得られた画像における、前記スリットの遮光領域によって生じる前記画像のコントラスト変化から前記金属板における不良個所を検出する請求項5に記載の不良検査装置。
  7.  前記画像から検出された不良個所と対応する前記金属板の位置に対して目印をつけるインク発射機をさらに具備する請求項6に記載の不良検査装置。
PCT/JP2019/010045 2019-03-12 2019-03-12 金属板の不良センサ及びそれを備えた不良検査装置 WO2020183616A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/010045 WO2020183616A1 (ja) 2019-03-12 2019-03-12 金属板の不良センサ及びそれを備えた不良検査装置
JP2021504682A JPWO2020183616A1 (ja) 2019-03-12 2019-03-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010045 WO2020183616A1 (ja) 2019-03-12 2019-03-12 金属板の不良センサ及びそれを備えた不良検査装置

Publications (1)

Publication Number Publication Date
WO2020183616A1 true WO2020183616A1 (ja) 2020-09-17

Family

ID=72427399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010045 WO2020183616A1 (ja) 2019-03-12 2019-03-12 金属板の不良センサ及びそれを備えた不良検査装置

Country Status (2)

Country Link
JP (1) JPWO2020183616A1 (ja)
WO (1) WO2020183616A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121599A (ja) * 2003-10-20 2005-05-12 Komatsu Ltd プレス成形品の欠陥検査装置
JP2005156420A (ja) * 2003-11-27 2005-06-16 Nippon Steel Corp 表面凹凸の検査方法及び検査装置
JP2011075412A (ja) * 2009-09-30 2011-04-14 Jfe Steel Corp 表面処理鋼板の振り分け方法
US20130057678A1 (en) * 2010-05-17 2013-03-07 Ford Espana S.L. Inspection system and method of defect detection on specular surfaces

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038434B2 (ja) * 2011-08-11 2016-12-07 株式会社ヒューテック 欠陥検査装置
JP6039119B1 (ja) * 2016-02-23 2016-12-07 株式会社ヒューテック 欠陥検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121599A (ja) * 2003-10-20 2005-05-12 Komatsu Ltd プレス成形品の欠陥検査装置
JP2005156420A (ja) * 2003-11-27 2005-06-16 Nippon Steel Corp 表面凹凸の検査方法及び検査装置
JP2011075412A (ja) * 2009-09-30 2011-04-14 Jfe Steel Corp 表面処理鋼板の振り分け方法
US20130057678A1 (en) * 2010-05-17 2013-03-07 Ford Espana S.L. Inspection system and method of defect detection on specular surfaces

Also Published As

Publication number Publication date
JPWO2020183616A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
TWI650626B (zh) 基於三維影像之機械手臂加工方法及系統
US20180338090A1 (en) Image processing system, image processing device, and image processing program
CN113305849B (zh) 一种基于复合视觉的平板坡口智能切割系统及方法
US20050051523A1 (en) Laser machine tool with image sensor for registration of workhead guidance system
JP2009298012A (ja) 液滴吐出検査装置、液滴吐出検査方法及び画像形成装置
CN106271044A (zh) 激光打标机以及ccd同轴光路定位方法
JP2009014357A (ja) 表面検査装置及び表面検査方法
JP6869159B2 (ja) ロボットシステム
CN104061878A (zh) 形状测量设备
CN114720475A (zh) 一种汽车车身漆面缺陷智能检测与打磨系统及方法
TWI770301B (zh) 立體物印刷系統以及立體物印刷方法
JP2004243215A (ja) シーラー塗布装置のロボットティーチング方法及びシーラー塗布装置
US9200978B2 (en) Establishing a wear state of a cutting nozzle
JP2017203744A (ja) 航空機パネル外観検査方法
JP2019089172A (ja) ロボットシステム及びロボット制御方法
WO2020183616A1 (ja) 金属板の不良センサ及びそれを備えた不良検査装置
JP6695237B2 (ja) 液滴吐出装置及び液滴吐出条件補正方法
US20230381877A1 (en) Soldering apparatus and soldering system, and processing apparatus
JP2016038204A (ja) 内面形状検査用のセンサユニット及び内面形状検査装置
JPH0820207B2 (ja) 光学式3次元位置計測方法
JP7318190B2 (ja) 形状測定装置、形状測定方法及び形状測定プログラム
JPH07324915A (ja) 断面形状測定方法及び測定装置
KR20220081625A (ko) 구조광을 이용한 연마 로봇 시스템 및 그 제어방법
JP2016161528A (ja) 塗布剤検査方法、塗布剤検査装置、塗布剤検査用プログラム、およびそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JPH0656363B2 (ja) 表面欠陥検査装置のデ−タ出力方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021504682

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19918824

Country of ref document: EP

Kind code of ref document: A1