WO2020182138A1 - 一种提高反应收率的方法 - Google Patents

一种提高反应收率的方法 Download PDF

Info

Publication number
WO2020182138A1
WO2020182138A1 PCT/CN2020/078729 CN2020078729W WO2020182138A1 WO 2020182138 A1 WO2020182138 A1 WO 2020182138A1 CN 2020078729 W CN2020078729 W CN 2020078729W WO 2020182138 A1 WO2020182138 A1 WO 2020182138A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
fixed bed
bed reactor
reaction
discharge end
Prior art date
Application number
PCT/CN2020/078729
Other languages
English (en)
French (fr)
Inventor
杨建春
韩凯
杨冬梅
Original Assignee
北京诺维新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京诺维新材科技有限公司 filed Critical 北京诺维新材科技有限公司
Priority to US17/258,720 priority Critical patent/US11338262B2/en
Priority to SG11202012143PA priority patent/SG11202012143PA/en
Publication of WO2020182138A1 publication Critical patent/WO2020182138A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0488Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00362Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00371Non-cryogenic fluids gaseous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00902Nozzle-type feeding elements

Definitions

  • the invention belongs to the technical field of chemical production and preparation, and specifically relates to a method for improving the reaction yield, in particular to a method for improving the reaction yield of a heat-sensitive reaction product.
  • the fixed-bed catalytic reactor has a faster reaction rate, a smaller amount of catalyst and a smaller reactor volume can obtain a larger output, the catalyst is not easy to wear, and can be used for a long time, because the residence time can be strictly controlled, and the temperature distribution can be Properly adjusted, so the selectivity is high, and high conversion rate can be achieved. Therefore, the fixed-bed catalytic reactor is widely used.
  • the reaction temperature of the fixed bed reactor is generally relatively high. In the space between the inert cushion layer under the fixed bed catalyst or the lower end tube plate of the catalyst tube of the multi-tube fixed bed reactor and the reactor head, the reaction product concentration is high. High, the reaction product stays in this space for a long time. If the reaction product cannot be quickly and quickly cooled down in time and the reaction product is removed from this space for quenching treatment, the heat-sensitive reaction product is prone to decomposition or self-polymerization and other side reactions. How to quickly remove the reaction product from the reactor and lower the temperature to reduce the decomposition of the product and the occurrence of side reactions is of great significance for improving the yield and selectivity of the product.
  • Cigar Patent Document CN101990457A discloses a tubular reactor.
  • the reactor includes an outlet head shell and at least one insert positioned in the outlet head space defined by the outlet head at the outlet head.
  • the insert defines the outlet head space.
  • the volume of the outlet head space is reduced relative to the volume of the outlet head space defined by the outlet head, and the reduced volume of the outlet head space communicates with the outlet end of the reaction tube, the volume of the outlet head space arranged in this way is reduced About 40%
  • the tubular reactor can be used for ethylene oxidation to produce EO.
  • the volume of the outlet head space is reduced by about 40%, which in turn reduces the residence time of the material in the outlet head space by 40%.
  • the temperature of the material has not been significantly reduced. Even if the residence time is reduced, side reactions such as decomposition or self-polymerization will still occur for the heat-sensitive reaction product because the temperature is not reduced.
  • Citri Patent Document CN100462349C discloses a reactor, which uses a rectifier on the tube plate on the outlet side to prevent the reaction product from staying in the gap on the outlet side of the reaction tube. .
  • This reactor also reduces the retention problem of the reaction product on the outlet side of the reaction tube, but it does not improve the residence time of the reaction product in the space on the outlet side and its temperature.
  • Japanese Patent Document JP-A-5-125010 proposes that by making the volume of the lead-out part of the reaction gas at the outlet side of the oxidation reaction tube smaller than the lead-in part of the raw material gas, the reaction gas in the lead-out part on the outlet side of the reaction tube stays in a period of time. Shorten, thereby inhibiting the production of by-product diketone.
  • Japanese Patent Document JP-B-62-17579 it is proposed to arrange a cooling portion including a solid inert material packed layer close to the downstream side of the catalyst in the reaction zone region. However, when the reaction gas is cooled, the high boiling point heavy impurities in the gas condense and block the reactor.
  • Ethylene unsaturated acids and their esters are important chemical raw materials, such as acrylic acid (AA) and their esters.
  • AA acrylic acid
  • the reaction process is as follows:
  • the side reaction process is as follows:
  • U.S. Patent Document US6544924 discloses a method for producing ethylenically unsaturated acid or ester by the catalytic reaction of alkanoic acid or ester, especially methyl propionate and formaldehyde, and a catalyst used.
  • the catalyst includes 1-10% by weight of alkali metal , Especially cesium porous high surface area silicon oxide. It can be seen from the patent example data that the shorter the residence time of the reactants, the higher the selectivity.
  • the purpose of the present invention is to provide a method for increasing the yield of the reaction, in particular to a method for improving the yield of the reaction product with heat sensitivity; the method can well solve the problem of the reaction product
  • the residence time in the space on the outlet side of the reactor is too long, the temperature of the reaction product is too high, etc., which have adverse effects on the reaction product, and can effectively improve the yield of the reaction.
  • a method for increasing the reaction yield particularly a method for increasing the reaction yield of a heat-sensitive reaction product, the method comprising:
  • the "inert" in the inert material means that the material remains inert under the operating conditions of the fixed bed reactor and does not chemically react with the reaction raw materials and reaction products.
  • the reaction raw material is preferably a gas.
  • the inert substance is at least one of a gas or a liquid that can be vaporized after heating.
  • the inert substance is nitrogen, helium, argon, carbon dioxide; water; oxygen-containing organic matter with carbon number less than or equal to 10; nitrogen-containing organic matter with carbon number less than or equal to 10; Cycloalkanes; alkanes with carbon number less than or equal to 12; aromatic hydrocarbons with carbon number less than or equal to 10; or a mixture of at least two of them.
  • the inert substance is selected from nitrogen, helium, argon, carbon dioxide, water, C 6 -C 8 alkanes, C 6 -C 8 aromatic hydrocarbons, C 1 -C 4 alcohols, C 1 -C 4 acids, C At least one of 2- C 4 nitrile and C 2 -C 4 ester.
  • the inert substance is selected from at least nitrogen, helium, argon, carbon dioxide, hexane, heptane, benzene, toluene, xylene, methanol, ethanol, propionic acid, methyl propionate, acetonitrile and water.
  • the inert substance is selected from nitrogen, helium, argon, carbon dioxide, water, C 6 -C 8 alkanes, C 6 -C 8 aromatic hydrocarbons, C 1 -C 4 alcohols, C 1 -C 4 acids, C At least one of 2- C 4 nitrile and C 2 -C 4 ester.
  • the fixed bed reactor is a conventional fixed bed reactor known in the art.
  • the fixed bed reactor may be a tubular reactor or a single tube reactor, and the The reactor is equipped with a head, and the specific structure is shown in Figure 1; the tubular reactor includes a tube plate and a head; the single-tube reactor includes a catalyst cushion and a head.
  • the inert substance is sprayed into the reactor through a nozzle; optionally, nozzle holes are provided on the nozzle; the nozzle refers to the inert substance transported from the outside of the reactor to the inside of the reactor Tubular component; the nozzle is arranged in the catalyst cushion at the discharge end of the fixed bed reactor, and/or the catalyst cushion at the discharge end of the fixed bed reactor and the space formed by the reactor head, or arranged in In the space formed by the tube plate at the discharge end of the fixed bed reactor and the reactor head.
  • the specific structure is shown in Fig. 1. A in Fig.
  • FIG. 1 shows a tubular reactor, and the nozzle is arranged in the space formed by the tube plate at the discharge end of the fixed bed reactor and the reactor head; b in Fig. 1 Shown is a single-tube reactor, the nozzle is set in the catalyst cushion at the discharge end of the fixed bed reactor; Figure 1 c shows a single-tube reactor, the nozzle is set in the fixed bed reactor In the space formed by the catalyst cushion at the feed end and the reactor head; for a single-tube reactor, the nozzle can also be set in the catalyst cushion at the discharge end of the fixed bed reactor and the catalyst at the discharge end of the fixed bed reactor at the same time In the space formed by the cushion and the reactor head (not shown).
  • the amount of inert material injected is 0.1-5 times the weight of the fixed bed reactor feed amount, preferably 0.5-2 times the weight, for example, 0.1 times, 0.2 times, 0.5 times, and 0.8 times the weight. , 1 times the weight, 1.5 times the weight, 2 times the weight, 3 times the weight, 4 times the weight or 5 times the weight, wherein the fixed bed reactor feed amount refers to the total mass of the reaction raw materials.
  • the heating or vaporization of the inert material will absorb a large amount of heat, so that the outflowing reaction product (especially the heat-sensitive reaction product) is rapidly cooled, and at the same time, a large amount of space (such as in the catalyst cushion) Space, and/or the space formed by the catalyst cushion at the discharge end of the fixed bed reactor and the reactor head, or the space formed by the tube sheet at the discharge end of the fixed bed reactor and the reactor head) is occupied, so that the reaction The product accelerates to move out of the fixed-bed reactor, effectively reducing the occurrence of heat-sensitive side reactions of the reaction product, thereby achieving a significant increase in the reaction yield.
  • space such as in the catalyst cushion
  • the reaction product may be an ethylenically unsaturated acid and its ester, such as vinyl acetate, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester (such as methyl Methyl acrylate), etc.; it can also be ethylenically unsaturated aldehydes, such as acrolein, methacrolein, etc.; it can also be olefins, such as propylene, isobutylene, butadiene, and styrene compounds, etc.; it can also be Epoxides, such as ethylene oxide, propylene oxide, etc.; can also be unsaturated acid anhydrides, such as maleic anhydride.
  • an ethylenically unsaturated acid and its ester such as vinyl acetate, acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester (such as methyl Methyl acrylate), etc.
  • it can also be
  • the reaction raw material may be a raw material for preparing the above-mentioned reaction product, such as at least one of olefins, alkanes, aromatics, carboxylic acids, carboxylic acid esters, aldehydes, alcohols, etc., specifically including ethylene, propylene, isobutylene, Propane, butane, isobutane, acetic acid, propionic acid, methyl acetate, methyl propionate, formaldehyde, vinyl aldehyde, acrolein, methacrolein, methanol, butene-1, phenylethanol, ethylbenzene, etc.
  • the reaction raw material gas can be obtained after the reaction raw material is heated and vaporized by a vaporizer.
  • the catalyst packed in the fixed-bed reactor may be any catalyst known in the art that uses the above-mentioned reaction raw materials to prepare the above-mentioned reaction product, especially the heat-sensitive reaction product.
  • the reaction raw material when the reaction product is ethylene oxide, the reaction raw material includes ethylene and oxygen, and optionally may also include methane or nitrogen.
  • the catalyst is selected from silver catalysts.
  • the reaction raw materials include propylene and oxygen.
  • the catalyst is selected from silver catalysts.
  • the reaction raw materials include acrolein and oxygen, and also water vapor.
  • the catalyst is selected from molybdenum-vanadium-containing catalysts.
  • the reaction raw materials include methacrolein and oxygen, as well as water vapor.
  • the catalyst is selected from molybdenum-vanadium-containing catalysts.
  • the reaction raw materials include propionic acid or methyl propionate and formaldehyde, and optionally may also include methanol and/or nitrogen.
  • the catalyst is selected from cesium-containing silicon oxide catalysts.
  • the reaction raw materials include acetic acid or methyl acetate and formaldehyde, and optionally may also include methanol and/or nitrogen.
  • the catalyst is selected from cesium-containing silicon oxide catalysts.
  • the reaction raw material when the reaction product is acrolein, includes propylene or propane and oxygen, and also includes water vapor.
  • the catalyst is selected from molybdenum-bismuth-containing catalysts.
  • the reaction raw material when the reaction product is methacrolein, includes isobutene or isobutane and oxygen, and also includes water vapor.
  • the catalyst is selected from molybdenum-bismuth-containing catalysts.
  • the reaction raw materials include ethylene, acetic acid, and oxygen.
  • the catalyst is selected from palladium-containing supported catalysts.
  • the reaction raw material is propane or isobutane.
  • the catalyst is selected from precious metal dehydrogenation catalysts.
  • the reaction product is styrene
  • the reaction raw material is ethylbenzene.
  • the catalyst is selected from catalysts containing iron and potassium.
  • the reaction raw material contains at least phenylethanol.
  • the catalyst is selected from alumina dehydration catalysts.
  • the reaction raw material when the reaction product is butadiene, includes butene-1 or butane and oxygen, and also includes water vapor.
  • the catalyst is selected from iron-containing catalysts.
  • the reaction raw materials include butane and oxygen, as well as water vapor.
  • the catalyst is selected from vanadium-molybdenum catalysts.
  • the temperature of the reaction is slightly different according to the specific reaction raw materials and the prepared reaction product.
  • the temperature of the reaction is adjustable in the range of 240-700°C; after the inert material is cooled, The temperature of the reaction product flowing out of the fixed bed reactor can be reduced to 50-250°C.
  • the heat emitted by the reaction or the heat absorbed is introduced or discharged according to a conventional method.
  • a large amount of heat is released from the reaction, and the released heat is discharged through the molten salt outside of the filled catalyst tube, thereby maintaining the reaction under isothermal conditions.
  • the present invention provides a method for increasing the reaction yield, and particularly relates to a method for increasing the reaction yield of heat-sensitive reaction products; using the method of the present invention, when the reaction product leaves the catalyst bed, the reaction product is sprayed at a low temperature In the process of endothermic and/or vaporization of the inert material, the reaction product is at the catalyst cushion at the discharge end of the fixed bed reactor, and/or the catalyst cushion at the discharge end of the fixed bed reactor and the reactor head In the space formed, or in the space formed by the tube sheet at the discharge end of the fixed bed reactor and the reactor head, the temperature drops rapidly when staying, and at the same time the reaction product is on the catalyst cushion at the discharge end of the reactor due to the entry of inert substances , Or the space formed by the catalyst cushion at the discharge end of the fixed bed reactor and the reactor head, or the space formed by the tube sheet at the discharge end of the fixed bed reactor and the reactor head, the residence time is greatly shortened, so that the reaction product Avoid the phenomenon that by-products increase due to long
  • Figure 1 is a schematic diagram of the structure of the fixed bed reactor of the present invention.
  • Figure 2 is a flow chart of the reaction process according to the present invention.
  • the analysis of propionic acid, methyl propionate, methanol, methacrylic acid and methyl methacrylate used Agilent GC7820, FID detector, DB-FFAP (30m ⁇ 0.53mm ⁇ 1 ⁇ m) capillary column, n-heptane as internal standard ;
  • the exhaust gas is analyzed by online mass spectrometry, the model is ExtraMAX300; the formaldehyde in the raw materials and products is analyzed by chemical titration; the moisture in the raw materials and products is analyzed by Karl Fischer method.
  • Propionic acid selectivity the amount of propionic acid produced (mol) / the amount of reacted methyl propionate (mol) ⁇ 100%
  • Methacrylic acid (ester) selectivity the amount of methacrylic acid (ester) produced (mol)/the amount of reacted methyl propionate (mol) ⁇ 100%
  • Methacrylic acid (ester) yield (mol%) conversion rate of methyl propionate (mol%) ⁇ methacrylic acid (ester) selectivity (mol%)
  • Raw materials methyl propionate, formaldehyde and methanol. Among them: the molar ratio of methyl propionate to formaldehyde is: 20:1 to 1:20. The molar ratio of methanol and formaldehyde is 0.1-1.5:1.
  • the catalyst is a silica gel catalyst supported by alkali metal cesium, the loading amount of alkali metal cesium is 1-15wt%; the specific surface area of the catalyst is 100-500m 2 /g, the average pore diameter is 10-17nm, and the pore volume is about 1ml/g; the catalyst can pass It is prepared by the following method, mixing silica gel with alkali metal solution and modifier (such as 2g/100mol zirconium (metal weight)), mixing, shaking, immersing for 24 hours, drying at 120°C to constant weight, and calcining at 300-500°C2 -6 hours.
  • alkali metal solution and modifier such as 2g/100mol zirconium (metal weight)
  • the reactor is a single-tube fixed-bed reactor.
  • the catalyst is packed in the middle of the fixed bed.
  • the upper and lower ends of the catalyst are block or granular inert packing made of ceramic, glass or quartz to form a catalyst cushion.
  • the formaldehyde can be formalin; or paraformaldehyde, trioxane, methylal and other compounds that can generate formaldehyde by heating.
  • the reaction material can also be mixed with inert gases, such as nitrogen, argon, helium, etc., diluent solvents such as alkanes and aromatics. Nitrogen is preferred.
  • the mixed reaction materials and nitrogen are mixed into the vaporizer, heated and vaporized, and then enter the fixed bed reactor.
  • the temperature of the vaporizer is 240-700°C
  • the catalyst bed is heated or withdrawn by the medium outside the tube
  • the fixed bed temperature is 240-400°C
  • the pressure is 0.1-1.0MPag, preferably, the vaporizer temperature is 300°C
  • the fixed bed temperature is 350°C
  • the pressure is 0.1-0.5MPag.
  • the residence time is 1-100s.
  • FIG. 1 is a schematic diagram of the structure of the fixed bed reactor of the present invention.
  • Figure 2 is a flow chart of the reaction process according to the present invention.
  • the nitrogen 1 and the mixed reactant 2 are mixed into the vaporizer 3 to be heated and vaporized to obtain a mixture heating gas 4, which enters the reaction from the upper end of the fixed bed reactor 5, and the inert material 6 comes from the lower part of the fixed bed Enter the catalyst cushion at the discharge end of the fixed bed (or the space formed between the tube sheet at the discharge end of the fixed bed and the lower head of the fixed bed, or the space formed between the catalyst cushion at the discharge end of the fixed bed and the lower head of the fixed bed) ), sprayed into the fixed bed reactor from the inert material spray hole 7; the reaction mixture 8 containing the inert material enters the cooler 9 for cooling, and the cooled gas-liquid mixture 10 contains products and unreacted raw materials.
  • the conversion rate of methyl propionate is 23%; the selectivity of the prepared MMA is 91%; the selectivity of hydrolysis of methyl propionate to propionic acid is 8%.
  • the operation is the same as in Example 2, except that the feed volume of the inert material toluene is modified to one time the volume of the feed flow of the liquid reactant.
  • the conversion rate of methyl propionate is 23%; the selectivity of the prepared MMA is 89%; the selectivity of hydrolysis of methyl propionate to propionic acid is 7.9%.
  • Example 2 The operation is the same as in Example 2, except that the inert substance is modified to n-heptane, and the feed volume is twice the volume of the feed flow rate of the liquid reactant.
  • the conversion rate of methyl propionate is 23%; the selectivity of the prepared MMA is 92.5%; the selectivity of hydrolysis of methyl propionate to propionic acid is 7.4%.
  • Example 2 The operation is the same as in Example 2, except that the inert substance is modified to n-hexane, and the feed volume is twice the volume of the feed flow rate of the liquid reactant.
  • the conversion rate of methyl propionate was 23%; the selectivity of the prepared MMA was 92.3%; the selectivity of hydrolysis of methyl propionate to propionic acid was 7.6%.
  • Example 2 The operation is the same as in Example 2, except that the inert substance is modified to xylene, and the feed volume is twice the volume of the feed flow rate of the liquid reactant.
  • the conversion rate of methyl propionate is 23%; the selectivity of the prepared MMA is 91.5%; the selectivity of hydrolysis of methyl propionate to propionic acid is 8.2%.
  • Example 2 The operation is the same as in Example 2, except that the inert substance is modified to methanol, and the feed volume is twice the volume of the feed flow rate of the liquid reactant.
  • the conversion rate of methyl propionate is 23%; the selectivity of the prepared MMA is 90.2%; the selectivity of hydrolysis of methyl propionate to propionic acid is 8.9%.
  • the conversion rate of methyl propionate is 23%; the selectivity of the prepared MMA is 78%; the selectivity of hydrolysis of methyl propionate to propionic acid is 8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明提供了一种提高反应收率的方法,采用本发明的方法,当所述反应产物离开催化剂床层后,通过喷入温度低的惰性物质,通过惰性物质的吸热及汽化过程,使反应产物在固定床反应器出料端的催化剂垫层,或固定床反应器出料端的催化剂垫层和反应器封头所形成的空间内,或固定床反应器出料端的管板和反应器封头所形成的空间内停留时温度快速下降,同时由于惰性物质气态进入使反应产物在反应器出料端的催化剂垫层,或者固定床反应器出料端的催化剂垫层和反应器封头所形成的空间,或者固定床反应器出料端的管板和反应器封头所形成的空间里停留时间大大缩短,使反应产物避免由于在高温下长时间停留而产生的副产物增多的现象,从而大大提高了反应收率。

Description

一种提高反应收率的方法
本申请要求2019年3月11日向中国国家知识产权局提交的专利申请号为201910181451.2,发明名称为“一种提高反应收率的方法”的在先申请的优先权,该在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于化工生产制备技术领域,具体涉及一种提高反应收率的方法,特别涉及一种提高热敏性反应产物的反应收率的方法。
背景技术
固定床催化反应器具有反应速率较快、用较少量的催化剂和较小的反应器容积就可获得较大的产量,催化剂不易磨损,可长期使用,由于停留时间可以严格控制,温度分布可以适当调节,因此选择性高,可以达到较高的转化率等优点,因此,固定床催化反应器应用广泛。
固定床反应器的反应温度一般都比较高,在固定床催化剂下层惰性垫层、或多管固定床反应器催化剂管下端管板和反应器封头之间的空间内,反应产物浓度高,温度高,反应产物在这个空间内停留时间长,如果不能及时快速地降温,并将反应产物从这个空间内移出,进行急冷处理,对于热敏性的反应产物很容易发生分解或者自聚等副反应。如何将反应产物快速从反应器中移出并降温,减少产物的分解和副反应的发生, 对于提高产物的收率及选择性具有重要的意义。
中国专利文献CN101990457A公开了一种管式反应器,该反应器在出口头包括出口头壳体和被定位在出口头所限定的出口头空间内的至少一个插入件,插入件限定了出口头空间,出口头空间相对于出口头所限定的出口头空间体积被减小,并且其中体积被减小的出口头空间与反应管的出口端连通,采用这样方式设置的出口头空间的体积被减小约40%,该管式反应器可用于乙烯氧化制EO。在操作该管式反应器时,由于在出口头的空间内设置了插件,使出口头空间的体积被减小约40%,进而导致物料在出口头空间内的停留时间减小了40%,但是物料的温度并没有明显降低,即便停留时间降低了,但对于热敏性反应产物由于温度并没有降低,仍会发生分解或者自聚等副反应。
为了防止反应产物在反应管出口侧的空隙中滞留,中国专利文献CN100462349C公开了一种反应器,它是通过在出口侧的管板上设置整流器,避免反应产物在反应管出口侧的空隙中滞留。该反应器同样也是减少了反应产物在反应管出口侧的滞留问题,但对于降低反应产物在出口侧的空间里的停留时间以及其温度并没有多大改善。
日本专利文献JP-A-5-125010提出了通过使氧化反应管出口侧中的反应气体的导出部分的体积小于原料气体的导入部分,使得反应管出口侧导出部分中的反应气体停留周期的时间缩短,从而抑制副产物二酮的产生。在日本专利文献JP-B-62-17579中提出了靠近反应带区域中的催化剂的下游侧,配置包括固体惰性材料填充层的冷却部分。然而当反应气体冷却时,存在该气体中的高沸点重质杂质冷凝下来从而堵塞反应器等 缺点。
乙烯属不饱和酸及其酯是一类重要的化工原料,例如丙烯酸(acrylic acid,简称AA)及其酯。乙烯属不饱和酸及其酯的工业生产方法很多。例如采用饱和烷基酸及其酯和甲醛在以硅胶等为载体的碱金属浸渍的催化剂催化缩合反应制备乙烯属不饱和酸及其酯的工艺。
该反应过程如下:
R’CH 2COOR+HCHO→R’CH(CH 2OH)COOR
R’CH(CH 2OH)COOR→R’C=(CH 2)COOR+H 2O。
副反应过程如下:
RCH 2COOR’+H 2O→RCH 2COOH+R’OH
RC(CH 2)COOR’+H 2O→RC(CH 2)COOH+R’OH。
美国专利文献US6544924公开了链烷酸或酯,尤其是丙酸甲酯与甲醛的催化反应生产乙烯属不饱和酸或者酯的方法和所用的催化剂,催化剂包括含1-10%(重量)碱金属,尤其是铯的多孔型高表面积氧化硅。从专利实施例子数据可以看出,反应物停留时间越短,选择性越高。
由于产物乙烯属不饱和酸及其酯的热不稳定性,容易聚合、受热分解。所以需要尽快将产物乙烯属不饱和酸及其酯降温及快速移出高温区,保障目标产物的高选择性,减少物料损失。
然而目前并没有一种可以较好地解决由于反应产物在反应器出口侧的空间内停留时间过长,反应产物温度过高而造成副反应的发生,进而导致反应产物收率降低的方法。
发明内容
为了改善现有技术的不足,本发明的目的是提供一种提高反应收率的方法,特别涉及一种提高热敏性的反应产物的反应收率的方法;所述方法可以很好地解决反应产物在反应器出口侧的空间内的停留时间过长,反应产物的温度过高等给反应产物带来的不良影响,并能有效提高反应的收率。
本发明目的是通过如下技术方案实现的:
一种提高反应收率的方法,特别是提高热敏性的反应产物反应收率的方法,所述方法包括:
往固定床反应器中通入反应原料;反应原料流过催化剂床层,得到反应产物;反应产物经固定床反应器出料端的催化剂垫层后再经催化剂垫层与反应器封头所形成的空间后离开反应器,或者反应产物经固定床反应器出料端的管板和固定床反应器封头所形成的空间后离开反应器;此时进行下述操作(i)、(ii)和(iii)的至少一种:
(i)往固定床反应器出料端的催化剂垫层内喷入惰性物质;
(ii)往固定床反应器出料端的催化剂垫层与反应器封头所形成的空间内喷入惰性物质;
(iii)往固定床反应器出料端的管板与反应器封头所形成的空间内喷入惰性物质。
根据本发明,所述惰性物质中的“惰性”是指该物质在该固定床反应器的操作条件下保持惰性、且不与反应原料和反应产物发生化学反应。
根据本发明,所述反应原料优选为气体。
根据本发明,所述惰性物质为气体或加热后能够汽化的液体中的至少一种。
示例性地,所述惰性物质为氮气、氦气、氩气、二氧化碳;水;碳数小于或等于10的含氧有机物;碳数小于或等于10的含氮有机物;碳数 小于或等于12的环烷烃;碳数小于或等于12的烷烃;碳数小于或等于10的芳烃;或它们的至少两种的混合物。
优选地,所述惰性物质选自氮气、氦气、氩气、二氧化碳、水、C 6-C 8烷烃、C 6-C 8芳烃、C 1-C 4醇、C 1-C 4酸、C 2-C 4腈和C 2-C 4酯中的至少一种。进一步优选地,所述惰性物质选自氮气、氦气、氩气、二氧化碳、己烷、庚烷、苯、甲苯、二甲苯、甲醇、乙醇、丙酸、丙酸甲酯、乙腈和水中的至少一种。
根据本发明,所述固定床反应器为本领域已知的常规固定床反应器,示例性地,所述固定床反应器可以为列管式反应器或为单管式反应器,且所述反应器带有封头,具体结构参见图1;所述列管式反应器包括管板和封头;所述单管式反应器包括催化剂垫层和封头。
根据本发明,所述惰性物质是通过喷管喷入到反应器内的;任选地喷管上设置有喷孔;所述喷管是指把惰性物质从反应器外输送到反应器内部的管状部件;所述喷管设置在固定床反应器出料端的催化剂垫层内,和/或设置在固定床反应器出料端的催化剂垫层和反应器封头所形成的空间内,或者设置在固定床反应器出料端的管板和反应器封头所形成的空间内。具体结构参见图1,图1中的a示出的是列管式反应器,喷管设置在固定床反应器出料端的管板和反应器封头所形成的空间内;图1中的b示出的是单管式反应器,喷管设置在固定床反应器出料端的催化剂垫层内;图1中的c示出的是单管式反应器,喷管设置在固定床反应器出料端的催化剂垫层和反应器封头所形成的空间内;对于单管式反应器,喷管还可以同时设置在固定床反应器出料端的催化剂垫层内以及固定床反应器出料端的催化剂垫层和反应器封头所形成的空间内(未给出图示)。
根据本发明,喷入的惰性物质的量为固定床反应器进料量的0.1-5倍重量,优选0.5-2倍重量,例如为0.1倍重量、0.2倍重量、0.5倍重量、0.8 倍重量、1倍重量、1.5倍重量、2倍重量、3倍重量、4倍重量或5倍重量,其中,所述的固定床反应器进料量是指的反应原料的总质量。
本发明中,由于所述惰性物质的喷入,惰性物质的升温或者汽化会吸收大量热量,从而使流出的反应产物(特别是热敏性反应产物)快速降温,同时大量空间(如催化剂垫层内的空间,和/或固定床反应器出料端的催化剂垫层和反应器封头所形成的空间,或固定床反应器出料端的管板和反应器封头所形成的空间)被占据,使得反应产物加速移出固定床反应器,有效减少了反应产物的热敏副反应的发生,从而实现反应收率的显著提高。
根据本发明,所述反应产物,特别是所述热敏性反应产物,可以为乙烯属不饱和酸及其酯,如醋酸乙烯酯、丙烯酸、甲基丙烯酸、丙烯酸酯、甲基丙烯酸酯(如甲基丙烯酸甲酯)等;还可以为乙烯属不饱和醛,如丙烯醛、甲基丙烯醛等;还可以为烯烃类物质,如丙烯、异丁烯、丁二烯和苯乙烯类化合物等;还可以为环氧化物,如环氧乙烷、环氧丙烷等;还可以为不饱和酸酐,如顺丁烯酸酐等。
根据本发明,所述反应原料可以是制备上述反应产物的原料,如包括烯烃、烷烃、芳烃、羧酸、羧酸酯、醛、醇等中的至少一种,具体包括乙烯、丙烯、异丁烯、丙烷、丁烷、异丁烷、乙酸、丙酸、乙酸甲酯、丙酸甲酯、甲醛、乙烯醛、丙烯醛、异丁烯醛、甲醇、丁烯-1、苯基乙醇、乙苯等中的至少一种;所述反应原料气体可以是反应原料经汽化器加热汽化后获得的。
根据本发明,所述固定床反应器内装填的催化剂可以是本领域已知的利用上述反应原料制备上述反应产物,特别是热敏性反应产物的任一催化剂。
示例性地,当所述反应产物为环氧乙烷时,所述反应原料包括乙烯 和氧气,任选地还可以包含甲烷或氮气。所述催化剂选自银催化剂。
示例性地,当所述反应产物为环氧丙烷时,所述反应原料包括丙烯和氧气。所述催化剂选自银催化剂。
示例性地,当所述反应产物为丙烯酸时,所述反应原料包括丙烯醛和氧气,还包括水蒸汽。所述催化剂选自含钼-钒催化剂。
示例性地,当所述反应产物为甲基丙烯酸时,所述反应原料包括异丁烯醛和氧气,还包括水蒸汽。所述催化剂选自含钼-钒催化剂。
示例性地,当所述反应产物为甲基丙烯酸或甲基丙烯酸甲酯时,所述反应原料包括丙酸或丙酸甲酯和甲醛,任选地还可以包含甲醇和/或氮气。所述催化剂选自含铯氧化硅催化剂。
示例性地,当所述反应产物为丙烯酸或丙烯酸酯时,所述反应原料包括醋酸或醋酸甲酯和甲醛,任选地还可以包含甲醇和/或氮气。所述催化剂选自含铯氧化硅催化剂。
示例性地,当所述反应产物为丙烯醛时,所述反应原料包括丙烯或丙烷和氧气,还包括水蒸汽。所述催化剂选自含钼-铋催化剂。
示例性地,当所述反应产物为甲基丙烯醛时,所述反应原料包括异丁烯或异丁烷和氧气,还包括水蒸汽。所述催化剂选自含钼-铋催化剂。
示例性地,当所述反应产物为醋酸乙烯酯时,所述反应原料包括乙烯、醋酸和氧气。所述催化剂选自含钯负载催化剂。
示例性地,当所述反应产物为丙烯或异丁烯时,所述反应原料为丙烷或异丁烷。所述催化剂选自贵金属脱氢催化剂。
示例性地,当所述反应产物为苯乙烯时,所述反应原料为乙苯。所述催化剂选自含铁和钾的催化剂。
示例性地,当所述反应产物为苯乙烯时,所述反应原料至少含有苯基乙醇。所述催化剂选自氧化铝脱水催化剂。
示例性地,当所述反应产物为丁二烯时,所述反应原料包括丁烯-1或丁烷和氧气,还包括水蒸汽。所述催化剂选自含铁催化剂。
示例性地,当所述反应产物为顺丁酸酐时,所述反应原料包括丁烷和氧气,还包括水蒸汽。所述催化剂选自钒-钼催化剂。
根据本发明,所述反应的温度根据具体的反应原料和制备得到的反应产物略有不同,示例性地,所述反应的温度在240-700℃范围内可调;经惰性物质降温处理后,流出固定床反应器的反应产物的温度可以降低到50-250℃。
根据本发明,所述反应所放出的热量或者所吸收的热量根据常规的方法进行热量的传入或导出。示例性地,如用丙烯氧化制丙烯醛时,反应会放出大量的热量,所放出的热量通过装填催化剂列管外面的熔盐导出,从而维持反应在等温条件下进行。
本发明的有益效果:
本发明提供了一种提高反应收率的方法,特别涉及一种提高热敏性反应产物的反应收率的方法;采用本发明的方法,当所述反应产物离开催化剂床层后,通过喷入温度低的惰性物质,在惰性物质的吸热和/或汽化的过程中,反应产物在固定床反应器出料端的催化剂垫层,和/或固定床反应器出料端的催化剂垫层和反应器封头所形成的空间内,或固定床反应器出料端的管板和反应器封头所形成的空间内停留时温度快速下降,同时由于惰性物质的进入使反应产物在反应器出料端的催化剂垫层,或者固定床反应器出料端的催化剂垫层和反应器封头所形成的空间,或者固定床反应器出料端的管板和反应器封头所形成的空间里停留时间大大缩短,使反应产物避免由于在高温下长时间停留而产生的副产物增多的现象,从而大大提高了反应收率。
附图说明
图1为本发明所述的固定床反应器的结构式示意图。
图2为本发明所述的反应工艺流程图。
具体实施方式
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
丙酸、丙酸甲酯、甲醇、甲基丙烯酸和甲基丙烯酸甲酯的分析采用安捷伦GC7820,FID检测器,DB-FFAP(30m×0.53mm×1μm)毛细管柱,正庚烷为内标物;尾气经在线质谱,型号为Extral MAX300,进行分析;原料及产物中的甲醛分析采用化学滴定法;原料及产物中的水分采用卡尔费休法分析。
丙酸甲酯转化率(mol%)=已反应的丙酸甲酯的量(mol)/供给的丙酸甲酯的量(mol)×100%
丙酸的选择性(mol%)=生成的丙酸的量(mol)/已反应的丙酸甲酯的量(mol)×100%
甲基丙烯酸(酯)选择性(mol%)=生成的甲基丙烯酸(酯)的量(mol)/已反应的丙酸甲酯的量(mol)×100%
甲基丙烯酸(酯)产率(mol%)=丙酸甲酯的转化率(mol%)×甲基丙烯酸(酯)的选择性(mol%)
原料:丙酸甲酯、甲醛和甲醇。其中:丙酸甲酯和甲醛的摩尔比为:20:1-1:20。甲醇和甲醛的摩尔比为0.1-1.5:1。
催化剂为碱金属铯负载的硅胶催化剂,碱金属铯的负载量为1-15wt%;催化剂的比表面积100-500m 2/g,平均孔径10-17nm,孔容约为1ml/g;催化剂可以通过如下方法制备得到,将硅胶与碱金属溶液及改性剂(比如2g/100mol锆(金属重)),混合,震荡,浸渍24小时后,120℃干燥至恒重,然后300-500℃煅烧2-6小时。催化剂的制备例如参见美国专利文献US6544924。
反应器为单管式固定床反应器,催化剂装填在固定床中间,催化剂上下端为陶瓷、玻璃或者石英等材质的块状或粒状惰性装填料,形成催化剂垫层。
其中,甲醛可以是福尔马林;或者是多聚甲醛、三聚甲醛、甲缩醛等可以通过加热产生甲醛的化合物。
其中,反应物料中还可混入惰性气体,如氮气、氩气、氦气等、烷烃、芳烃等稀释溶剂。优选氮气。
混合反应物料和氮气混合进汽化器加热汽化后进入固定床反应器。汽化器的温度为240-700℃,催化剂床层通过管外的介质进行加热或撤热,固定床温度240-400℃,压力0.1-1.0MPag,优选地,汽化器温度300℃,固定床温度350℃,压力0.1-0.5MPag。停留时间1-100s。
实施例1
图1为本发明所述的固定床反应器的结构式示意图。图2为本发明所述的反应工艺流程图。如图1、图2所示,氮气1和混合反应物2混合进入汽化器3加热汽化,得到混合物加热气体4,混合物加热气体4从固定床反应器5上端进入反应,惰性物质6自固定床下部进入固定床出料端的催化剂垫层(或固定床出料端的管板和固定床下封头之间形成的空间内,或固定床出料端的催化剂垫层和固定床下封头之间形成的空间内),自惰性物质喷孔7喷入固定床反应器;含惰性物质的反应混合物8进入冷却器9冷 却,冷却后的气液混合物10中含产物及未反应的原料。
实施例2
采用上述实施例1所示的工艺流程制备甲基丙烯酸甲酯(MMA)
甲醛的甲醇溶液:96%(重量百分比,下同)的多聚甲醛和等重量的甲醇混合加热到100℃,保温搅拌4小时,多聚甲醛全部溶解,测其中水分1%。
在固定床反应器内装入15g粉碎至1mm大小颗粒的催化剂。经汽化器通入100ml/min(标况)氮气,汽化器设置300℃,固定床加热到350℃后,继续稳定通入氮气30min。将上述制备的甲醛的甲醇溶液和丙酸甲酯混合(原料摩尔比例:丙酸甲酯/甲醛/甲醇/水=58/21/20/1),反应物接触催化剂的时间5s,二倍于液体反应进料流量的甲苯从固定床底部通入。产物经过冷却,分离出液相产品,气相经在线质谱分析后排空。
经检测和计算,丙酸甲酯的转化率23%;制备得到的MMA选择性91%;丙酸甲酯水解为丙酸的选择性8%。
实施例3
操作同实施例2,只是将惰性物质甲苯的进料量修改为液体反应物进料流量的一倍体积。
经检测和计算,丙酸甲酯的转化率23%;制备得到的MMA选择性为89%;丙酸甲酯水解为丙酸的选择性为7.9%。
实施例4
操作同实施例2,只是将惰性物质修改为正庚烷,进料量为液体反应物进料流量的二倍体积。
经检测和计算,丙酸甲酯的转化率23%;制备得到的MMA选择性为 92.5%;丙酸甲酯水解为丙酸的选择性为7.4%。
实施例5
操作同实施例2,只是将惰性物质修改为正己烷,进料量为液体反应物进料流量的二倍体积。
经检测和计算,丙酸甲酯的转化率23%;制备得到的MMA选择性为92.3%;丙酸甲酯水解为丙酸的选择性为7.6%。
实施例6
操作同实施例2,只是将惰性物质修改为二甲苯,进料量为液体反应物进料流量的二倍体积。
经检测和计算,丙酸甲酯的转化率23%;制备得到的MMA选择性为91.5%;丙酸甲酯水解为丙酸的选择性为8.2%。
实施例7
操作同实施例2,只是将惰性物质修改为甲醇,进料量为液体反应物进料流量的二倍体积。
经检测和计算,丙酸甲酯的转化率23%;制备得到的MMA选择性为90.2%;丙酸甲酯水解为丙酸的选择性为8.9%。
对比例1
其他制备工艺同实施例2,区别仅在于不采用底部物料冲洗。
经检测和计算,丙酸甲酯的转化率23%;制备得到的MMA选择性78%;丙酸甲酯水解为丙酸的选择性8%。
从上述实施例和对比例可以看出,在相同的反应操作条件,丙酸甲酯转化率相同,但采用本申请的惰性物质降温后,目标产物MMA的选择性提高10%以上。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种提高反应收率的方法,其中,所述方法包括:
    往固定床反应器中通入反应原料;反应原料流过催化剂床层,得到反应产物;反应产物经固定床反应器出料端的催化剂垫层后再经催化剂垫层与反应器封头所形成的空间后离开反应器,或者反应产物经固定床反应器出料端的管板和固定床反应器封头所形成的空间后离开反应器;此时进行下述操作(i)、(ii)和(iii)的至少一种:
    (i)往固定床反应器出料端的催化剂垫层内喷入惰性物质,
    (ii)往固定床反应器出料端的催化剂垫层与反应器封头所形成的空间内喷入惰性物质;
    (iii)往固定床反应器出料端的管板与反应器封头所形成的空间内喷入惰性物质。
  2. 根据权利要求1所述的方法,所述惰性物质为气体或加热后能够汽化的液体中的至少一种。
  3. 根据权利要求1或2所述的方法,其中,所述惰性物质为氮气、氦气、氩气、二氧化碳;水;碳数小于或等于10的含氧有机物;碳数小于或等于10的含氮有机物;碳数小于或等于12的环烷烃;碳数小于或等于12的烷烃;碳数小于或等于10的芳烃;或它们的至少两种的混合物。
  4. 根据权利要求3所述的方法,其中,所述惰性物质选自氮气、氦气、氩气、二氧化碳、水、C 6-C 8烷烃、C 6-C 8芳烃、C 1-C 4醇、C 1-C 4酸、C 2-C 4腈和C 2-C 4酯中的至少一种;
    优选地,所述惰性物质选自氮气、氦气、氩气、二氧化碳、己烷、庚烷、苯、甲苯、二甲苯、甲醇、乙醇、丙酸、丙酸甲酯、乙腈和水中的至少一种。
  5. 根据权利要求1-4任一项所述的方法,其中,所述惰性物质通过喷管喷入;任选地喷管上设置有喷孔;
    所述喷管设置在固定床反应器出料端的催化剂垫层内,和/或设置在固定床反应器出料端的催化剂垫层和反应器封头所形成的空间内,或者设置在固定床反应器出料端的管板和反应器封头所形成的空间内。
  6. 根据权利要求1-5任一项所述的方法,其中,喷入的惰性物质的量为固定床反应器进料量的0.1-5倍重量,优选0.5-2倍重量。
  7. 根据权利要求1-6任一项所述的方法,其中,所述固定床反应器为列管式反应器或单管式反应器,且所述反应器带有封头。
  8. 根据权利要求1-7任一项所述的方法,其中,所述反应产物,特别是所述热敏性反应产物,可以为乙烯属不饱和酸及其酯,如醋酸乙烯酯、丙烯酸、甲基丙烯酸、丙烯酸酯、甲基丙烯酸酯(如甲基丙烯酸甲酯)等;还可以为乙烯属不饱和醛,如丙烯醛、甲基丙烯醛等;还可以为烯烃类物质,如丙烯、异丁烯、丁二烯和苯乙烯类化合物等;还可以为环氧化物,如环氧乙烷、环氧丙烷等;还可以为不饱和酸酐,如顺丁烯酸酐等。
  9. 根据权利要求1-8任一项所述的方法,其中,所述反应原料可以是制备所述反应产物的原料,如包括烯烃、烷烃、芳烃、羧酸、羧酸酯、醛、醇等中的至少一种,具体包括乙烯、丙烯、异丁烯、丙烷、丁烷、异丁烷、乙酸、丙酸、乙酸甲酯、丙酸甲酯、甲醛、乙烯醛、丙烯醛、异丁烯醛、甲醇、丁烯-1、苯基乙醇、乙苯等中的至少一种;所述反应原料气体可以是反应原料经汽化器加热汽化后获得的。
  10. 根据权利要求1-9任一项所述的方法,其中,所述反应的温度为240-700℃;经惰性物质降温处理后,流出固定固定床反应器的反应产物的温度可以降低到50-250℃。
PCT/CN2020/078729 2019-03-11 2020-03-11 一种提高反应收率的方法 WO2020182138A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/258,720 US11338262B2 (en) 2019-03-11 2020-03-11 Method for improving reaction yield
SG11202012143PA SG11202012143PA (en) 2019-03-11 2020-03-11 Method for improving reaction yield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910181451.2A CN111689861B (zh) 2019-03-11 2019-03-11 一种提高反应收率的方法
CN201910181451.2 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020182138A1 true WO2020182138A1 (zh) 2020-09-17

Family

ID=72426912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078729 WO2020182138A1 (zh) 2019-03-11 2020-03-11 一种提高反应收率的方法

Country Status (5)

Country Link
US (1) US11338262B2 (zh)
CN (1) CN111689861B (zh)
SA (1) SA520420949B1 (zh)
SG (1) SG11202012143PA (zh)
WO (1) WO2020182138A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774658A (zh) * 2021-02-02 2021-05-11 中国科学院过程工程研究所 一种由乙酸甲酯和甲醛合成丙烯酸甲酯的酸碱双功能催化剂及制备方法
CN115353447B (zh) * 2022-08-15 2023-08-22 西南化工研究设计院有限公司 一种低水含量甲醛溶液制备不饱和羧酸或羧酸酯的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954317A (zh) * 1972-09-21 1974-05-27
CN1031697A (zh) * 1987-07-24 1989-03-15 三井东圧化学株式会社 防止异丁烯醛后段氧化的方法
JPH05125010A (ja) * 1991-10-30 1993-05-21 Nippon Shokubai Co Ltd 不飽和アルデヒドまたは不飽和酸の製造用反応器
CN1697802A (zh) * 2004-05-13 2005-11-16 三菱化学株式会社 用于(甲基)丙烯醛或(甲基)丙烯酸的生产方法
CN101990457A (zh) * 2007-12-18 2011-03-23 陶氏技术投资有限公司 管式反应器
CN102671580A (zh) * 2012-05-07 2012-09-19 中国寰球工程公司 一种轴向逐层递增型冷激式甲醇制丙烯固定床反应器
CN202666813U (zh) * 2012-05-07 2013-01-16 中国寰球工程公司 一种轴向逐层递增型冷激式甲醇制丙烯固定床反应器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227527A (en) * 1963-03-04 1966-01-04 Universal Oil Prod Co High temperature reactor
US4044027A (en) * 1976-08-27 1977-08-23 Chevron Research Company Maleic anhydride process
GB9807498D0 (en) 1998-04-08 1998-06-10 Ici Plc Production of unsaturated acids therfore and catalysts therfor
TW200422289A (en) * 2003-02-18 2004-11-01 Bp Chem Int Ltd Auto thermal cracking reactor
JP2005144432A (ja) * 2003-11-18 2005-06-09 Rohm & Haas Co アルカンをアルケン、およびそれらの対応する酸素化生成物に転化するための触媒系
JP6217579B2 (ja) 2014-09-30 2017-10-25 京セラドキュメントソリューションズ株式会社 画像形成装置
CN106732201B (zh) * 2017-01-05 2019-11-29 中石化上海工程有限公司 甲烷氧化偶联制乙烯反应器
CN109433116B (zh) * 2018-12-29 2024-02-13 常州瑞凯化工装备有限公司 用于强放热化学反应过程的管壳式轴向列管反应器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954317A (zh) * 1972-09-21 1974-05-27
CN1031697A (zh) * 1987-07-24 1989-03-15 三井东圧化学株式会社 防止异丁烯醛后段氧化的方法
JPH05125010A (ja) * 1991-10-30 1993-05-21 Nippon Shokubai Co Ltd 不飽和アルデヒドまたは不飽和酸の製造用反応器
CN1697802A (zh) * 2004-05-13 2005-11-16 三菱化学株式会社 用于(甲基)丙烯醛或(甲基)丙烯酸的生产方法
CN101990457A (zh) * 2007-12-18 2011-03-23 陶氏技术投资有限公司 管式反应器
CN102671580A (zh) * 2012-05-07 2012-09-19 中国寰球工程公司 一种轴向逐层递增型冷激式甲醇制丙烯固定床反应器
CN202666813U (zh) * 2012-05-07 2013-01-16 中国寰球工程公司 一种轴向逐层递增型冷激式甲醇制丙烯固定床反应器

Also Published As

Publication number Publication date
US20210283564A1 (en) 2021-09-16
US11338262B2 (en) 2022-05-24
CN111689861A (zh) 2020-09-22
SA520420949B1 (ar) 2022-10-13
SG11202012143PA (en) 2021-01-28
CN111689861B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
RU2471774C2 (ru) Способ синтеза акрилонитрила из глицерина
KR100696330B1 (ko) 프로판으로부터 아크롤레인 또는 아크릴산 또는 이들의혼합물의 제조 방법
TWI289474B (en) Continuous heterogeneously catalyzed partial dehydrogenation
WO2020182138A1 (zh) 一种提高反应收率的方法
Tai et al. Synthesis of methacrylic acid by aldol condensation of propionic acid with formaldehyde over acid–base bifunctional catalysts
RU2223941C2 (ru) Способ получения винилацетата
JP2001506625A (ja) 酢酸ビニルの製造
RU2223942C2 (ru) Способ получения винилацетата
KR101422582B1 (ko) 탈수소화시키고자 하는 탄화수소의 연속 불균일 촉매화 부분 탈수소화의 장기간 작동 방법
CN109293511B (zh) 一种丙酸甲酯与甲醛羟醛缩合制甲基丙烯酸甲酯的方法
CN109232247A (zh) 一种醋酸甲酯与甲醛羟醛缩合制甲基丙烯酸甲酯的方法
CN110105186B (zh) 一种制备烯酮类化合物的方法
KR100543825B1 (ko) 올레핀의 아세톡시화 방법
KR20080069226A (ko) 프로판으로부터 아크롤레인 또는 아크릴산 또는 그의혼합물을 수득하기 위한 안정한 연속 제조 방법
US3102147A (en) His agent
US4873391A (en) Process for producing isobutylene
KR101726113B1 (ko) 부타디엔의 제조 방법
EP3408251A1 (en) Efficient synthesis of methacroelin and other alpha, beta-unsaturated aldehydes from methanol and an aldehyde
US20030176744A1 (en) Dual catalyst bed reactor for methanol oxidation
Suprun et al. Transient isotopic studies on 1-butene oxidation over a VOx-TiO2 catalyst in presence of water vapor
JP2000290218A (ja) C原子1〜4個を有する飽和カルボン酸を製造するための方法および装置
Shen et al. Liquid-phase oxidation of cyclohexane to dibasic acids with immobilized cobalt catalyst
KR20220164004A (ko) 메타크릴산으로의 탠덤 c-4 산화를 위한 개선된 안전한 방법
US4328365A (en) Hydrocarbon oxidation via carbon monoxide reduced catalyst
US6329549B1 (en) Dimethyl ether for methyl group attachment on a carbon adjacent to an electron withdrawing group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20771085

Country of ref document: EP

Kind code of ref document: A1