WO2020181795A1 - 直拉单晶用热屏装置及单晶硅生产设备 - Google Patents

直拉单晶用热屏装置及单晶硅生产设备 Download PDF

Info

Publication number
WO2020181795A1
WO2020181795A1 PCT/CN2019/115418 CN2019115418W WO2020181795A1 WO 2020181795 A1 WO2020181795 A1 WO 2020181795A1 CN 2019115418 W CN2019115418 W CN 2019115418W WO 2020181795 A1 WO2020181795 A1 WO 2020181795A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
heat shield
shield device
czochralski
air
Prior art date
Application number
PCT/CN2019/115418
Other languages
English (en)
French (fr)
Inventor
杨敏
白喜军
李强
张亮桢
Original Assignee
宁夏隆基硅材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏隆基硅材料有限公司 filed Critical 宁夏隆基硅材料有限公司
Publication of WO2020181795A1 publication Critical patent/WO2020181795A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • This application relates to the field of photovoltaic technology, in particular to a thermal shield device for Czochralski single crystal and single crystal silicon production equipment.
  • monocrystalline silicon With the development of photovoltaic technology, the use of monocrystalline silicon has become more and more widespread. For example, silicon wafers made of monocrystalline silicon are used as the main component structure of solar cells. With the increase in photovoltaic installed capacity, monocrystalline silicon wafers are used more and more widely.
  • a single crystal furnace is often used to produce single crystal silicon.
  • the specific production method is as follows: heating the silicon raw material in the crucible in the single crystal furnace into molten silicon; then contacting the liquid surface of the molten silicon with the seed crystal, That is, the crystal growth liquid level; then the single crystal silicon rod is grown and pulled under the seed crystal.
  • working gas such as argon is introduced from the top of the single crystal furnace, and the working gas flows downward to protect the Czochralski silicon rod and purge the molten silicon surface.
  • a heat shield is arranged around the single crystal silicon rod in the thermal field.
  • the working gas flows from top to bottom, it is easy to bring impurities on the inner wall of the single crystal furnace or the thermal field components such as the heat shield into the single crystal growth. Near the liquid level. The entry of impurities may disrupt the order of the crystal lattice growth of single crystal silicon, and severely cause the edge of the single crystal silicon rod to break, thereby affecting the yield and production efficiency of single crystal silicon.
  • the present application is proposed to provide a thermal shield device for Czochralski single crystal and single crystal silicon production equipment that overcomes the above problems or at least partially solves the above problems.
  • this application discloses a thermal shield device for a Czochralski single crystal, which includes:
  • the inner screen is configured to be set around the single crystal
  • the outer screen is coaxially arranged on the side of the inner screen away from the single crystal;
  • the diversion channel is embedded between the inner screen and the outer screen, and the diversion channel is configured to introduce working gas.
  • the diversion channel includes a plurality of air ducts, and the plurality of air ducts are equiangularly distributed around the central axis of the inner screen on the side far away from the single crystal.
  • all of the multiple air ducts are in close contact with the inner screen.
  • the air guide tube includes a tube wall and an air guide channel located in the tube wall, and the introduced working gas flows through the air guide channel.
  • the tube wall includes a first sub-tube wall, a second sub-tube wall, and a cooling interlayer disposed between the first sub-tube wall and the second sub-tube wall.
  • the diversion channel further includes a plurality of air outlets communicating with the plurality of air ducts, and the plurality of air outlets are all opposite to the single crystal growth liquid surface and surround the central axis of the inner screen Equiangular distribution.
  • the diversion channel further includes an air outlet tube connected to the plurality of air guide tubes, and the plurality of air outlet ports are all opened in the air outlet tube.
  • the air outlet tube is arranged coaxially with the inner screen, and on the central axis of the inner screen, the air outlet tube is closer to the crystal than the inner screen and/or the outer screen Growth liquid level.
  • this application also discloses a single crystal silicon production equipment, including:
  • a crucible configured to contain crystal growth melt
  • the heat shield device for Czochralski single crystal is arranged coaxially with the crucible.
  • the single crystal silicon production equipment further includes an air supply mechanism connected to the diversion channel of the Czochralski single crystal heat shield device.
  • the diversion channel since the diversion channel is embedded between the inner screen and the outer screen, the diversion channel can be configured to introduce working gas.
  • the diversion channel when using the Czochralski single crystal method to draw a single crystal In the process of crystalline silicon, the diversion channel can introduce the working gas into the single crystal growth liquid surface to quickly take away the crystallization latent heat generated during the crystallization of the single crystal, increase the longitudinal temperature gradient, and increase the growth rate of the single crystal.
  • the guide channel since the guide channel is embedded between the inner panel and the outer panel, it can prevent the working gas from rushing the impurities on the inner panel into the single crystal production atmosphere to affect the single crystal The order of crystal lattice growth, in turn, can further increase the yield and production efficiency of single crystal silicon.
  • Fig. 1 schematically shows a structural diagram of a thermal shield device for a Czochralski single crystal of the present application
  • Fig. 2 schematically shows a schematic structural diagram of an airway tube of the present application
  • FIG. 3 schematically shows a structural diagram of an outlet pipe of the present application
  • FIG. 4 schematically shows a structural diagram of a single crystal production equipment of the present application
  • thermal shield device for a Czochralski single crystal of the present application which may specifically include:
  • the inner screen 10 is configured to be set around a single crystal
  • the outer screen 11 is coaxially arranged on the side of the inner screen 10 away from the single crystal;
  • the diversion channel 12 is embedded between the inner screen 10 and the outer screen 11, and the diversion channel 12 can be configured to introduce working gas.
  • the working gas may be an inert gas such as argon
  • the single crystal may be a single crystal silicon product such as a single crystal silicon rod drawn by a Czochralski single crystal method.
  • the diversion channel 12 since the diversion channel 12 is embedded between the inner panel 10 and the outer panel 11, the diversion channel 12 can be configured to introduce working gas. In this way, in the process of pulling monocrystalline silicon by the Czochralski single crystal method Here, the diversion channel 12 can introduce the working gas into the single crystal growth liquid surface to quickly take away the latent heat of crystallization generated during the crystallization of the single crystal, increase the longitudinal temperature gradient, and increase the growth rate of the single crystal. Moreover, since the diversion channel 12 is embedded between the inner panel 10 and the outer panel 11, it can prevent the working gas from rushing the impurities on the inner panel 11 into the single crystal production atmosphere and affecting the crystal lattice growth of the single crystal. Order, in turn, can further improve the yield and production efficiency of monocrystalline silicon.
  • the diversion channel 12 may include a plurality of air ducts 121, and the plurality of air ducts 121 are equiangularly distributed around the central axis of the inner panel 10 on the side away from the single crystal.
  • the working gas can be evenly introduced into the single crystal production equipment to improve The distribution uniformity of the working gas in the single crystal silicon production equipment can improve the uniformity of heating of the single crystal.
  • FIG. 1 only shows the case where the diversion channel 12 includes two air ducts 121, but in practical applications, the number of air ducts 121 in the diversion channel 12 can also be other values, for example : 3, 5 or 6, etc. The embodiment of the present application may not specifically limit the number of air ducts 121.
  • the air guide tube 121 may be arranged close to the inner panel 10, so that the air guide tube 121 can introduce the working gas into a position closer to the single crystal, and improve the heat dissipation effect of the working gas on the single crystal.
  • the multiple air guide tubes 121 may all be in close contact with the inner panel 10 to fix the air guide tubes 121 on the inner panel 10.
  • the air guide tube 121 since the air guide tube 121 is in contact with the inner panel 10, and the temperature of the inner panel 10 is relatively high, in order to improve the heat resistance of the air guide tube 121 and increase the service life of the air guide tube 121, the air guide tube 121
  • the material can be stainless steel. Specifically, because stainless steel has better heat resistance, corrosion resistance, and better processing performance, when the material of the air guide tube 121 is stainless steel, the air guide tube 121 correspondingly has better heat resistance, Corrosion resistance, and better processing performance.
  • the air guide tube 121 can also be made of other materials such as high temperature resistant engineering plastics, high temperature resistant inorganic materials, and the embodiment of the present application may not limit the specific material of the air guide tube 121.
  • the airway tube may include: a tube wall 122 and an air channel 123 located in the tube wall 122.
  • the working gas flows through the gas guiding channel 123.
  • the tube wall 122 may include a first sub-tube wall 1221, a second sub-tube wall 1222, and a cooling interlayer 1223 provided between the first sub-tube wall 1221 and the second sub-tube wall 1222.
  • the cooling interlayer 1223 can be configured to pass in circulating cooling water to reduce the temperature of the air guide tube 121 and increase the service life of the air guide tube 121.
  • the diversion channel 12 may further include a plurality of air outlets communicating with the plurality of air ducts 121, and the plurality of air outlets are all opposite to the single crystal growth liquid surface, and Equiangularly distributed around the central axis of the inner screen.
  • the working gas in the diversion channel 12 can be evenly introduced into the single crystal growth The liquid surface improves the uniformity of the distribution of the working gas in the single crystal growth liquid surface, and improves the heating uniformity of the single crystal growth liquid surface.
  • one of the air outlets may be provided in the plurality of air ducts 121, and each air outlet 121 may be arranged so that each of the air outlets is opposite to the single crystal growth liquid surface.
  • the diversion channel 12 may further include an air outlet tube 124 connected to a plurality of air guide tubes 121, and the air outlets 124 are all opened in the air outlet tube 124.
  • FIG. 3 there is shown a schematic structural diagram of an air outlet tube of the present application. As shown in FIG. 3, a plurality of air outlet holes 1241 are provided on the air outlet tube 124.
  • a plurality of gas outlet holes 1241 can be evenly distributed on the gas outlet pipe 124, so that the working gas in the gas outlet pipe 124 is evenly introduced into the single crystal growth liquid surface, and the working gas is improved in the single crystal.
  • the uniformity of distribution in the growth liquid surface and the heating uniformity of the single crystal growth liquid surface are improved.
  • FIG. 3 only shows the case where the air outlet pipe 124 is provided with 8 air outlet holes 1241, but in practical applications, the number of air outlet holes 1241 on the air outlet pipe 124 may also be other values.
  • the number of vent holes 1241 may also be 6, 10 or 12.
  • the specific number of the air outlet holes 1241 on the air outlet pipe 124 may not be limited.
  • the air outlet tube 124 and the inner screen 10 can be coaxially arranged, and the air outlet tube 124 is closer to the crystal growth than the inner screen 10 and/or the outer screen 11 on the central axis of the inner screen 10 Liquid level.
  • the gas outlet pipe 124 since the gas outlet pipe 124 is closer to the crystal growth liquid surface than the inner panel 10 and/or the outer screen 11, the gas outlet pipe 124 can directly direct the work in the diversion channel 124 to the gas directly.
  • the crystal growth liquid level in this way, on the one hand, can quickly take away the latent heat of crystallization generated during the crystallization of the single crystal, increase the longitudinal temperature gradient, and increase the growth rate of the single crystal.
  • the working gas can further prevent the impurity on the inner screen 11 from rushing into the single crystal production atmosphere to affect the crystal lattice growth order of the single crystal, and furthermore, the yield and production efficiency of single crystal silicon can be further improved.
  • the thermal shield device for Czochralski single crystal described in the embodiments of the present application includes at least the following advantages:
  • the diversion channel since the diversion channel is embedded between the inner screen and the outer screen, the diversion channel can be configured to introduce working gas.
  • the diversion channel when using the Czochralski single crystal method to draw a single crystal In the process of crystalline silicon, the diversion channel can introduce the working gas into the single crystal growth liquid surface to quickly take away the latent heat of crystallization generated during the crystallization of the single crystal, increase the longitudinal temperature gradient, and increase the growth rate of the single crystal.
  • the guide channel since the guide channel is embedded between the inner panel and the outer panel, it can prevent the working gas from rushing the impurities on the inner panel into the single crystal production atmosphere to affect the single crystal The order of crystal lattice growth, in turn, can further increase the yield and production efficiency of single crystal silicon.
  • the single crystal production equipment may specifically include: a crucible 40, which may be configured to contain a crystal growth melt 401; and the above-mentioned Czochralski single crystal heat shield device 41, which is coaxially arranged with the crucible 40.
  • the diversion channel on the single crystal heat shield device 41 can work when the single crystal silicon production equipment is pulling the single crystal.
  • the gas is introduced into the single crystal growth liquid surface in the crucible 40 to quickly take away the latent heat of crystallization generated during the crystallization of the single crystal 402, increase the longitudinal temperature gradient, and increase the growth rate of the single crystal 402.
  • the diversion channel is embedded between the inner screen and the outer screen, it is possible to prevent the working gas from rushing the impurities on the inner screen into the single crystal production atmosphere and affecting the single crystal production.
  • the order of growth of the crystal lattice of the crystal 41 can further increase the yield and production efficiency of single crystal silicon.
  • the single crystal silicon production equipment may further include an air supply mechanism (not shown in the figure), and the air supply mechanism is connected to the diversion channel of the Czochralski single crystal heat shield device 41.
  • the gas supply mechanism can be configured to provide working gas to the guide channel, and the gas supply structure is connected to the guide channel of the Czochralski single crystal heat shield device 41, which can facilitate the guide channel to The working gas in the gas supply mechanism is introduced into the single crystal production equipment.
  • the single crystal silicon production equipment since the heat shield device 40 for Czochralski single crystal is coaxially arranged with the crucible 40, the single crystal silicon production equipment uses the single crystal heat shield device 41 when the single crystal is drawn.
  • the upper diversion channel can introduce the working gas into the single crystal growth liquid surface in the crucible 40, quickly take away the crystallization latent heat generated during the crystallization of the single crystal 402, increase the longitudinal temperature gradient, and increase the growth rate of the single crystal 402.
  • the diversion channel is embedded between the inner screen and the outer screen, it is possible to prevent the working gas from rushing the impurities on the inner screen into the single crystal production atmosphere and affecting the single crystal production.
  • the order of growth of the crystal lattice of the crystal 41 can further increase the yield and production efficiency of single crystal silicon.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve one of the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the application can be implemented by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种直拉单晶用热屏装置及单晶硅生产设备,所述直拉单晶用热屏装置包括:内屏,配置为围绕单晶设置;外屏,同轴设置于所述内屏远离所述单晶的一侧;以及导流通道,嵌设于所述内屏与所述外屏之间,所述导流通道配置为引入工作气体。本申请实施例可以提高单晶的生长速度,以及,提高单晶硅的产量和生产效率。

Description

直拉单晶用热屏装置及单晶硅生产设备
本申请要求在2019年3月8日提交中国专利局、申请号为201910176730.X、发明名称为“直拉单晶用热屏装置及单晶硅生产设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏技术领域,特别是涉及直拉单晶用热屏装置及单晶硅生产设备。
背景技术
随着光伏技术的发展,单晶硅的使用也越来越广泛。例如,利用单晶硅制成的硅片作为电池片的主要组成结构,随着光伏装机容量的增加,单晶硅硅片的使用也越来越广泛。
现有的技术中,往往采用单晶炉生产单晶硅,其具体的生产方法如下:将单晶炉内坩埚中的硅原料加热成熔融硅;再以籽晶接触该熔融硅的液面,即,晶体生长液面;然后在籽晶的下方生长并提拉单晶硅棒。在拉制单晶硅的过程中,从单晶炉顶部通入氩气等工作气体,工作气体向下流动,保护直拉单晶硅棒,并吹扫融硅液面。
通常,在热场中环绕单晶硅棒设置有热屏,工作气体从上至下流动的过程中,容易将单晶炉的内壁,或者热屏等热场部件上的杂质带入单晶生长液面附近。杂质的进入可能破坏单晶硅的晶格生长秩序,严重地会导致单晶硅棒断棱,从而影响单晶硅的产量和生产效率。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的直拉单晶用热屏装置及单晶硅生产设备。
为了解决上述问题,一方面,本申请公开了一种直拉单晶用热屏装置,包括:
内屏,配置为围绕单晶设置;
外屏,同轴设置于所述内屏远离所述单晶的一侧;以及
导流通道,嵌设于所述内屏与所述外屏之间,所述导流通道配置为引入工作气体。
可选地,所述导流通道包括多个导气管,所述多个导气管在远离所述单晶的一侧围绕所述内屏的中心轴线等角度分布。
可选地,所述多个导气管均与所述内屏相贴合接触。
可选地,所述导气管包括:管壁以及位于所述管壁内的导气通道,引入的所述工作气体流经所述导气通道。
可选地,所述管壁包括第一子管壁、第二子管壁、以及设置于所述第一子管壁和所述第二子管壁之间的冷却夹层。
可选地,所述导流通道还包括与所述多个导气管相连通的多个出气口,所述多个出气口均与单晶生长液面相对,且围绕所述内屏的中心轴线等角度分布。
可选地,所述导流通道还包括与所述多个导气管相连接的出气管,所述多个出气口均开设于所述出气管。
可选地,所述出气管与所述内屏同轴设置,且在所述内屏的中心轴向上、所述出气管相较于所述内屏和/或外屏更靠近所述晶体生长液面。
另一方面,本申请还公开了一种单晶硅生产设备,包括:
坩埚,配置为容置晶体生长熔液;以及
上述直拉单晶用热屏装置,所述直拉单晶用热屏装置与所述坩埚同轴设置。
可选地,所述单晶硅生产设备还包括供气机构,所述供气机构与所述直拉单晶用热屏装置的导流通道相连接。
本申请包括以下优点:
本申请实施例中,由于所述导流通道内嵌于所述内屏和所述外屏之间,所述导流通道可以配置为引入工作气体,这样,在采用直拉单晶法拉制单晶硅的过程中,所述导流通道可以将所述工作气体导入单晶生长液面,迅速带走单晶结晶时产生的结晶潜热,增大纵向温度梯度,提高单晶的生长速度。而且,由于所述导流通道内嵌于所述内屏和所述外屏之间,这样,可以避免所述工作气体将所述内屏上的杂质冲入单晶生产气氛中影响到单晶的晶格 生长秩序,进而,可以进一步提高单晶硅的产量和生产效率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的之一、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本申请的一种直拉单晶用热屏装置的结构示意图;
图2示意性本申请的一种导气管的结构示意图的示出了;
图3示意性的示出了本申请的一种出气管的结构示意图;
图4示意性地示出了本申请的一种单晶生产设备的结构示意图;
10-内屏,11-外屏,12-导流通道,121-导气管,122-管壁,1221-第一子管壁,1222-第二子管壁,1223-冷却夹层,123-导气通道,124-出气管,1241-出气孔,40-坩埚,401-晶体生长溶液,402-单晶,41-直拉单晶用热屏装置。
具体实施例
为使本申请实施例的目的之一、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
参照图1,示出了本申请的一种直拉单晶用热屏装置的结构示意图,具体可以包括:
内屏10,配置为围绕单晶设置;
外屏11,同轴设置于内屏10远离所述单晶的一侧;以及
导流通道12,嵌设于内屏10与外屏11之间,导流通道12可以配置为引入工作气体。
在实际应用中,所述工作气体可以为氩气等惰性气体,所述单晶可以为采用直拉单晶法拉制的单晶硅棒等单晶硅产品。
本申请实施例中,由于导流通道12内嵌于内屏10和外屏11之间,导流通道12可以配置为引入工作气体,这样,在采用直拉单晶法拉制单晶硅的过程中,导流通道12可以将所述工作气体导入单晶生长液面,迅速带走单晶结晶时产生的结晶潜热,增大纵向温度梯度,提高单晶的生长速度。而且,由于导流通道12内嵌于内屏10和外屏11之间,这样,可以避免所述工作气体将内屏11上的杂质冲入单晶生产气氛中影响到单晶的晶格生长秩序,进而,可以进一步提高单晶硅的产量和生产效率。
在本申请的一种可选实施例中,导流通道12可以包括多个导气管121,多个导气管121在远离所述单晶的一侧围绕内屏10的中心轴线等角度分布。在实际应用中,在多个导气管121在远离所述单晶的一侧围绕内屏10的中心轴线等角度分布的情况下,可以将所述工作气体均匀的导入单晶生产设备内,提高所述工作气体在所述单晶硅生产设备内的分布均匀性,并提高所述单晶的受热均匀性。
可以理解的是,图1中仅示出了导流通道12包括两个导气管121的情况,而在实际应用中,导流通道12内的导气管121的数量还可以为其他的值,例如:3个、5个或者6个等,本申请实施例对于导气管121的数量可以不做具体限定。
优选的,导气管121可以靠近内屏10设置,以使得导气管121可以将所述工作气体导入距离所述单晶较近的位置,提高所述工作气体对于所述单晶的散热效果。具体地,多个导气管121可以均与内屏10相贴合接触,以将导气管121固定于内屏10上。
在实际应用中,由于导气管121与内屏10接触连接,而内屏10的温度又较高,因此,为了提高导气管121的耐热性,以提高导气管121的使用寿命,导气管121的材质可以为不锈钢。具体地,由于不锈钢具有较好的耐热性、耐腐蚀性,以及较好的加工性能,因此,在导气管121的材质为不锈钢 的情况下,导气管121相应具有较好的耐热性、耐腐蚀性,以及较好的加工性能。
可以理解的是,在实际应用中,导气管121还可以采用耐高温工程塑料、耐高温无机材料等其他材料制成,本申请实施例对于导气管121的具体材质可以不做限定。
参照图2,示出了本申请的一种导气管的结构示意图,如图2所示,所述导气管可以包括:管壁122以及位于管壁122内的导气通道123,引入的所述工作气体流经导气通道123。
本申请实施例中,管壁122可以包括第一子管壁1221、第二子管壁1222、以及设置于第一子管壁1221和第二子管壁1222之间的冷却夹层1223,在实际应用中,冷却夹层1223可以配置为通入循环的冷却水,以降低导气管121的温度,提高导气管121的使用寿命。
在本申请的另一种可选实施例中,导流通道12还可以包括与多个导气管121相连通的多个出气口,所述多个出气口均与单晶生长液面相对,且围绕所述内屏的中心轴线等角度分布。在实际应用中,由于多个出气口均与单晶生长液面相对,且围绕所述内屏的中心轴线等角度分布,可以将导流通道12内的工作气体均匀的导入所述单晶生长液面,提高所述工作气体在所述单晶生长液面内的分布均匀性,并提高所述单晶生长液面的受热均匀性。
在实际应用中,可以在多个导气管121中,每一个导气管121上设置一个所述出气孔,并使得每个所述出气孔均与单晶生长液面相对。
在本申请的再一种可选实施例中,导流通道12还可以包括与多个导气管121相连接的出气管124,所述多个出气口均开设于出气管124。
参照图3,示出了本申请的一种出气管的结构示意图,如图3所示,出所述出气管124上设置有多个出气孔1241。
如图3所示,多个出气孔1241可以在出气管124上均匀分布,以将出气管124内的工作气体均匀的导入所述单晶生长液面,提高所述工作气体在所述单晶生长液面内的分布均匀性,并提高所述单晶生长液面的受热均匀性。
可以理解的是,图3中仅示出了出气管124上设有8个出气孔1241的情况,而在实际应用中,出气管124上的出气孔1241的数量还可以为其他的值。例如,出气孔1241的数量还可以为6个、10个或者12个等。本申请实施例对于出气管124上的出气孔1241的具体数量可以不做限定。
本申请实施例中,出气管124与内屏10可以同轴设置,且在内屏10的中心轴向上、出气管124相较于内屏10和/或外屏11更靠近所述晶体生长液面。在实际应用中,由于出气管124相较于内屏10和/或外屏11更靠近所述晶体生长液面,出气管124可以直接将导流通道124内的所述工作将气体直接导向所述晶体生长液面,这样,一方面,可以迅速带走单晶结晶时产生的结晶潜热,增大纵向温度梯度,提高单晶的生长速度。而且,可以进一步避免所述工作气体将内屏11上的杂质冲入单晶生产气氛中影响到单晶的晶格生长秩序,进而,可以进一步提高单晶硅的产量和生产效率。
综上,本申请实施例所述的直拉单晶用热屏装置至少包括以下优点:
本申请实施例中,由于所述导流通道内嵌于所述内屏和所述外屏之间,所述导流通道可以配置为引入工作气体,这样,在采用直拉单晶法拉制单晶硅的过程中,所述导流通道可以将所述工作气体导入单晶生长液面,迅速带走单晶结晶时产生的结晶潜热,增大纵向温度梯度,提高单晶的生长速度。而且,由于所述导流通道内嵌于所述内屏和所述外屏之间,这样,可以避免所述工作气体将所述内屏上的杂质冲入单晶生产气氛中影响到单晶的晶格生长秩序,进而,可以进一步提高单晶硅的产量和生产效率。
实施例二
参照图4,示出了本申请的一种单晶生产设备的结构示意图,如图4所示,所述单晶生产设备具体可以包括:坩埚40,坩埚40可以配置为容置晶体生长熔液401;以及上述直拉单晶用热屏装置41,直拉单晶用热屏装置41与坩埚40同轴设置。
在实际应用中,由于直拉单晶用热屏装置41与坩埚40同轴设置,所述单晶硅生产设备在拉制单晶时单晶用热屏装置41上的导流通道可以将工作 气体导入坩埚40内的单晶生长液面,迅速带走单晶402结晶时产生的结晶潜热,增大纵向温度梯度,提高单晶402的生长速度。而且,由于所述导流通道内嵌于所述内屏和所述外屏之间,这样,就可以避免所述工作气体将所述内屏上的杂质冲入单晶生产气氛中影响到单晶41的晶格生长秩序,进而,可以进一步提高单晶硅的产量和生产效率。
在实际应用中,所述单晶硅生产设备还可以包括供气机构(图中未示出),所述供气机构与直拉单晶用热屏装置41的导流通道相连接。在实际应用中,所述供气机构可以配置为向导流通道提供工作气体,所述供气结构与直拉单晶热屏装置41的导流通道连接,可以便于所述导流通道将所述供气机构内的工作气体引入所述单晶生产设备内。
本申请实施例提供的单晶硅生产设备中,由于直拉单晶用热屏装置40与坩埚40同轴设置,所述单晶硅生产设备在拉制单晶时单晶用热屏装置41上的导流通道可以将工作气体导入坩埚40内的单晶生长液面,迅速带走单晶402结晶时产生的结晶潜热,增大纵向温度梯度,提高单晶402的生长速度。而且,由于所述导流通道内嵌于所述内屏和所述外屏之间,这样,就可以避免所述工作气体将所述内屏上的杂质冲入单晶生产气氛中影响到单晶41的晶格生长秩序,进而,可以进一步提高单晶硅的产量和生产效率。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的之一。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中, 并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 直拉单晶用热屏装置,其特征在于,包括:
    内屏,配置为围绕待提拉的单晶设置;
    外屏,同轴设置于所述内屏远离所述单晶的一侧;以及
    导流通道,嵌设于所述内屏与所述外屏之间,所述导流通道配置为引入工作气体。
  2. 根据权利要求1所述的直拉单晶用热屏装置,其特征在于,所述导流通道包括多个导气管,所述多个导气管在远离所述单晶的一侧围绕所述内屏的中心轴线等角度分布。
  3. 根据权利要求2所述的直拉单晶用热屏装置,其特征在于,所述多个导气管均与所述内屏相贴合接触。
  4. 根据权利要求2所述的直拉单晶用热屏装置,其特征在于,所述导气管包括:管壁以及位于所述管壁内的导气通道,引入的所述工作气体流经所述导气通道。
  5. 根据权利要求4所述的直拉单晶用热屏装置,其特征在于,所述管壁包括第一子管壁、第二子管壁、以及设置于所述第一子管壁和所述第二子管壁之间的冷却夹层。
  6. 根据权利要求2至5中任一项所述的直拉单晶用热屏装置,其特征在于,所述导流通道还包括与所述多个导气管相连通的多个出气口,所述多个出气口均与单晶生长液面相对,且围绕所述内屏的中心轴线等角度分布。
  7. 根据权利要求6所述的直拉单晶用热屏装置,其特征在于,所述导流通道还包括与所述多个导气管相连接的出气管,所述多个出气口均开设于所述出气管。
  8. 根据权利要求7所述的直拉单晶用热屏装置,其特征在于,所述出气管与所述内屏同轴设置,且在所述内屏的中心轴向上、所述出气管相较于所述内屏和/或外屏更靠近所述晶体生长液面。
  9. 单晶硅生产设备,其特征在于,包括:
    坩埚,配置为容置晶体生长熔液;以及
    如权利要求1至8中任一项所述的直拉单晶用热屏装置,所述直拉单晶用热屏装置与所述坩埚同轴设置。
  10. 根据权利要求9所述的单晶硅生产设备,其特征在于,所述 单晶硅生产设备还包括供气机构,所述供气机构与所述直拉单晶用热屏装置的导流通道相连接。
PCT/CN2019/115418 2019-03-08 2019-11-04 直拉单晶用热屏装置及单晶硅生产设备 WO2020181795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910176730.X 2019-03-08
CN201910176730.XA CN111663178A (zh) 2019-03-08 2019-03-08 直拉单晶用热屏装置及单晶硅生产设备

Publications (1)

Publication Number Publication Date
WO2020181795A1 true WO2020181795A1 (zh) 2020-09-17

Family

ID=72382141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115418 WO2020181795A1 (zh) 2019-03-08 2019-11-04 直拉单晶用热屏装置及单晶硅生产设备

Country Status (2)

Country Link
CN (1) CN111663178A (zh)
WO (1) WO2020181795A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113529164B (zh) * 2021-06-02 2023-03-14 徐州鑫晶半导体科技有限公司 温区控制系统和晶体生长设备
CN113249780B (zh) * 2021-06-07 2021-11-23 浙江晶科能源有限公司 导流装置、单晶炉及导流控制方法
CN218596574U (zh) * 2022-09-08 2023-03-10 隆基绿能科技股份有限公司 一种单晶炉用换热器及单晶炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229512A1 (en) * 2005-09-27 2009-09-17 Sumco Techxiv Corporation Single Crystal Silicon Pulling Apparatus, Method for Preventing Contamination of Silicon Melt, and Device for Preventing Contamination of Silicon Melt
CN202849590U (zh) * 2012-10-08 2013-04-03 英利能源(中国)有限公司 导流筒和单晶炉
CN106319621A (zh) * 2016-09-22 2017-01-11 东莞市联洲知识产权运营管理有限公司 一种大尺寸直拉硅单晶生长方法
CN207811930U (zh) * 2017-12-05 2018-09-04 包头市山晟新能源有限责任公司 单晶炉导流筒
CN207944171U (zh) * 2017-10-18 2018-10-09 青海日晶光电有限公司 一种单晶硅炉内导流筒

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558171Y2 (ja) * 1992-05-27 1997-12-17 コマツ電子金属株式会社 単結晶引き上げ用熱遮蔽体
CN202246987U (zh) * 2011-07-01 2012-05-30 江苏大学 一种带有内部水冷的直拉单晶炉热屏
CN210596314U (zh) * 2019-03-08 2020-05-22 宁夏隆基硅材料有限公司 直拉单晶用热屏装置及单晶硅生产设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229512A1 (en) * 2005-09-27 2009-09-17 Sumco Techxiv Corporation Single Crystal Silicon Pulling Apparatus, Method for Preventing Contamination of Silicon Melt, and Device for Preventing Contamination of Silicon Melt
CN202849590U (zh) * 2012-10-08 2013-04-03 英利能源(中国)有限公司 导流筒和单晶炉
CN106319621A (zh) * 2016-09-22 2017-01-11 东莞市联洲知识产权运营管理有限公司 一种大尺寸直拉硅单晶生长方法
CN207944171U (zh) * 2017-10-18 2018-10-09 青海日晶光电有限公司 一种单晶硅炉内导流筒
CN207811930U (zh) * 2017-12-05 2018-09-04 包头市山晟新能源有限责任公司 单晶炉导流筒

Also Published As

Publication number Publication date
CN111663178A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2020181795A1 (zh) 直拉单晶用热屏装置及单晶硅生产设备
WO2020156213A1 (zh) 一种半导体晶体生长装置
CN107217296A (zh) 一种硅片水平生长设备和方法
WO2021244234A1 (zh) 一种单晶炉热场结构、单晶炉及晶棒
CN215517739U (zh) 一种用于单晶炉拉制不同直径硅单晶的水冷装置
CN103966668A (zh) 一种基于保护气氛控制棒状蓝宝石晶体直径的生长方法
US20210010155A1 (en) Semiconductor crystal growth apparatus
CN210596314U (zh) 直拉单晶用热屏装置及单晶硅生产设备
CN205893453U (zh) 一种用于单晶炉的导流筒
TWI726813B (zh) 一種半導體晶體生長裝置
CN102154683A (zh) 金属发热体结构单多晶定向凝固系统
TW202041724A (zh) 一種半導體晶體生長裝置和方法
CN205223412U (zh) 一种完全感应加热方式的蓝宝石生产设备
CN106894082A (zh) 单晶硅生长炉
CN106319619B (zh) 一种6英寸直拉重掺硅单晶无位错生长工艺及其热场系统
TWI761956B (zh) 一種半導體晶體生長裝置
TWI745973B (zh) 一種半導體晶體生長裝置
CN112779601B (zh) 一种重掺砷极低电阻硅单晶的生长方法
TWI745974B (zh) 一種半導體晶體生長裝置
TW202202667A (zh) 一種用於隔絕熱量的熱屏障裝置及熔煉爐
TWI761454B (zh) 單晶矽的製造方法
CN108796602A (zh) 一种单晶炉用内导流筒
CN102345166A (zh) 降低多晶硅片翘曲度的方法
TW201917237A (zh) 矽單結晶的製造方法
TWI749560B (zh) 一種半導體晶體生長裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919042

Country of ref document: EP

Kind code of ref document: A1