WO2020179907A1 - 電子機能部材及びその製造方法、並びに、生体測定センサ - Google Patents

電子機能部材及びその製造方法、並びに、生体測定センサ Download PDF

Info

Publication number
WO2020179907A1
WO2020179907A1 PCT/JP2020/009645 JP2020009645W WO2020179907A1 WO 2020179907 A1 WO2020179907 A1 WO 2020179907A1 JP 2020009645 W JP2020009645 W JP 2020009645W WO 2020179907 A1 WO2020179907 A1 WO 2020179907A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
water
electronic functional
functional member
Prior art date
Application number
PCT/JP2020/009645
Other languages
English (en)
French (fr)
Inventor
隆夫 染谷
宮本 明人
燕 王
成薫 李
志歩 永井
川島 伊久衞
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to SG11202110365WA priority Critical patent/SG11202110365WA/en
Priority to US17/436,251 priority patent/US20220240826A1/en
Priority to CN202080018710.0A priority patent/CN113614906A/zh
Priority to JP2021503666A priority patent/JP7194469B2/ja
Publication of WO2020179907A1 publication Critical patent/WO2020179907A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • A61B5/259Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes using conductive adhesive means, e.g. gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4309Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0285Nanoscale sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives

Definitions

  • the present invention relates to an electronic functional member, a method for manufacturing the same, and a biometric sensor configured by using the electronic functional member.
  • Non-Patent Document 1 a fiber network of nanofibers made of water-soluble polyvinyl alcohol (PVA) is formed by an electrospinning method, and gold is deposited thereon to form an electrode layer,
  • PVA polyvinyl alcohol
  • An electronic functional member having sufficiently high surface followability, lateral extensibility, gas and moisture permeability, and transparency has been proposed (for example, Non-Patent Document 1).
  • the inventors of the present application have made diligent studies and found that durability can be improved by configuring the fiber network to include two types of resins having different solubility in water.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an electronic functional member having improved durability.
  • the electronic functional member of the present invention is configured to contain a resin, and when water is submerged, a part thereof is dissolved in water It is configured to include a conductive member.
  • the resin is, for example, a polyvinyl alcohol derivative.
  • the fiber net contains a first resin and a second resin having different solubility in water as resins.
  • the fiber net is formed by laminating a first fiber net made of fibers containing a first resin and a second fiber net made of fibers containing a second resin.
  • the fiber network is composed of fibers containing the first resin and fibers containing the second resin.
  • the fiber net is composed of fibers containing a first resin and a second resin.
  • the fiber occupancy in the fiber network is preferably 20% to 90%, and more preferably 30% to 70%.
  • a step of forming a first fiber network composed of fibers containing a water-soluble first resin, and a step of forming a first fiber network that is water-soluble and hardly water-soluble after heating and pressure bonding a step of forming a second fiber network composed of fibers containing a varying second resin, and a step of making the second resin sparingly water-soluble by heating and pressing the second fiber network.
  • a step of laminating the first fiber net, the second fiber net, and the conductive member are examples of laminating the first fiber net, the second fiber net, and the conductive member.
  • a fiber containing a first resin that is water-soluble and is also water-soluble after heating and pressure bonding and a fiber that is water-soluble and is difficult to heat and pressure-bond after heating.
  • a step of forming a fiber network composed of fibers containing a second resin that changes into water solubility, a step of heating and crimping the fiber network, and a step of providing a conductive member on the fiber network. Is configured with.
  • the first resin is water-soluble and water-soluble after heating and pressure bonding, and water-soluble and hardly water-soluble after heating and pressure bonding.
  • the method includes the steps of forming a fiber network composed of fibers containing the second resin that changes to, and heating and pressure bonding the fiber network, and further providing a conductive member on the fiber network.
  • a conventional nanofiber fiber network made of polyvinyl alcohol (PVA) is configured by including a resin that dissolves in water when the fiber network is submerged and a remaining resin.
  • PVA polyvinyl alcohol
  • FIG. 1 is a schematic view for explaining the first electronic functional member.
  • 1 (A) is a schematic plan view
  • FIG. 1 (B) is a schematic cross-sectional view cut along the line I-I of FIG. 1 (A)
  • FIG. 1 (C) is a schematic cross-sectional view. Is a schematic diagram showing an outline of the fiber net 10 included in the first electronic functional member.
  • FIG. 2 is a schematic diagram for explaining a method of manufacturing the first electronic functional member.
  • the first electronic function member is configured to include a fiber net 10 including a resin and a conductive member 20 formed on the fiber net 10.
  • the fiber net 10 is configured by laminating a first fiber net 12 containing a first resin and a second fiber net 14 containing a second resin.
  • the first resin and the second resin have mutually different solubilities in water.
  • the conductive member 20 is provided on the second fiber net 14 of the fiber net 10.
  • the first fiber net 12 and the second fiber net 14 are formed by any suitable conventionally known method, for example, by spraying a resin composition by an electrospinning deposition method (FIG. 2).
  • the solution 56 in the syringe 52 is pushed out while applying a high voltage between the needle 54 of the syringe 52 and the conductive sheet 60.
  • the potential difference between the needle 54 and the conductive sheet 60 causes the solution 56 to be rapidly drawn out of the syringe 52 and sprayed toward the conductive sheet 60.
  • the sprayed solution 56 becomes the resin composition 30 on the support 58 and creates a fiber net.
  • the solution 56 is the resin composition 30 dissolved in a solvent, and the solvent is almost evaporated between the needle 54 and the support 58. In this way, the first fiber net 12 and the second fiber net 14 are formed, respectively.
  • the support 58 is not particularly limited in material and the like as long as it functions to support the fiber net 10.
  • the fibers in the fiber net 10 are made of a soft material such as silicone or polyurethane, they easily stretch and are easily cut. In addition, if it is a hard material such as polycarbonate, its followability to the skin deteriorates. Therefore, the fibers in the fiber network preferably have Young's modulus in the range of 500 MPa to 8000 MPa, and more preferably in the range of 1000 MPa to 5000 MPa.
  • a polyvinyl alcohol (PVA) derivative having a Young's modulus of about 2000 to 4000 MPa can be used.
  • the first fiber net 12 is composed of a first resin 32 that dissolves in water when flooded.
  • the first resin 32 is, for example, a water-soluble resin having a basic structure represented by the following formula (1).
  • the first fiber net 12 is composed of fibers containing the first resin 32.
  • the first resin 32 may have a saponification degree of 75 or more [mol%] and a viscosity of 5.0 to 65.0 [mm 2 /s], and preferably has a saponification degree of 86.5.
  • a PVA derivative having a viscosity of 15.3 to 55.7 [mm 2 /s] with a viscosity of ⁇ 89.0 [mol %] is used.
  • the degree of saponification is obtained by ⁇ m/(m+n) ⁇ 100 [mol%].
  • the viscosity is measured according to the Pharmaceutical Additives Standard (JPE) under the conditions of 4% aqueous solution and 20°C.
  • EG-18P, 22P, 30P, 40P and 48P of the Gosenol EG series of Mitsubishi Chemical Industries, Ltd. are available.
  • the second fiber net 14 is composed of a poorly water-soluble second resin 34 that remains insoluble in water when flooded.
  • the poorly water-soluble second resin 34 is obtained by heating and pressure-bonding the water-soluble first resin 32.
  • a PVA derivative having a basic structure represented by the above formula (1) having a saponification degree of 86.5 to 89.0 [mol%] and a viscosity of 15.3 to 34.5 [mm 2 / s]. It is obtained by thermocompression bonding.
  • the above-mentioned EG-18P, 22P and 30P are used as this PVA derivative.
  • the conditions for heat crimping can be arbitrarily set, and for example, the conditions for pressing at a temperature in the range of 90 to 180 ° C. for 1 to 5 minutes can be set.
  • a heat-bonding device is used to obtain a poorly water-soluble resin, but the heating method is not limited to this, and various devices and methods can be used. Moreover, you may perform heating and crimping respectively without performing heat crimping at the same time.
  • the fiber net 10 is obtained by laminating the first fiber net 12 and the second fiber net 14 and attaching them by any suitable means.
  • the fiber net 10 includes, as resins, a first resin and a second resin having different solubilities in water.
  • the first resin 32 is soluble in water when submerged.
  • the second resin 34 cannot be melted immediately when it is flooded.
  • FIG. 3 shows the results of examining the water solubility when the resin is immersed in water.
  • EG-48P as the first resin and EG-22P as the second resin are both thermocompression bonded at 180° C. for 1 minute.
  • the first resin is completely water-soluble, and the second resin partially remains.
  • the solubility of the first resin and the second resin differs depending on the heat pressure bonding.
  • the first fiber net 12 and the second fiber net 14 which is not heat-pressed are in an amorphous state, but when the second fiber net 14 is heat-pressed, the second fiber net 14 is crystallized. Therefore, when the structural analysis by X-ray diffraction is performed, for example, the X-ray diffraction angle, the half-value width, the intensity, etc. change depending on the crystallinity. As described above, the water-soluble resin and the poorly water-soluble resin can be distinguished from each other by the diffraction profile obtained by X-ray diffraction.
  • FIG. 4 shows the results of examining the difference in crystallinity between EG-22P and EG-48P depending on the heating temperature.
  • the horizontal axis represents the temperature (° C.) and the vertical axis represents the crystallinity (%).
  • the crystallinity is obtained by structural analysis by X-ray diffraction.
  • EG-22P and EG-48P are heated at a temperature of 90° C. or higher, the crystallinity increases.
  • EG-22P and EG-48P have different crystallinities, and EG-22P has a higher crystallinity at any temperature.
  • the first resin 32 composed of EG-48P having low crystallinity is heated by heating at 180° C.
  • the second resin 34 which is composed of EG-22P having a high degree of crystallinity, is water-soluble.
  • the molecular weight of the resin can be determined by a general method for analyzing polymer materials, for example, gel permeation chromatography (GPC). Can be easily measured, so that it is possible to distinguish each fiber.
  • GPC gel permeation chromatography
  • the conductive member 20 can be formed by using, for example, a vapor deposition method, a sputtering method, a chemical vapor deposition method, an inkjet method, a screen printing method, a gravure printing method, a flexo printing method, or the like.
  • a vapor deposition method for example, a vapor deposition method, a sputtering method, a chemical vapor deposition method, an inkjet method, a screen printing method, a gravure printing method, a flexo printing method, or the like.
  • FIG. 1A as the electrode formed by the conductive member 20, two strip-shaped configuration examples are shown, but the electrode may be formed in a suitable shape depending on the application.
  • the shape of the electrode formed by the conductive member 20 can be arbitrarily changed by performing patterning. As a patterning method, it is most convenient and preferable to form a film through a mask.
  • the material constituting the conductive member 20 may have conductivity.
  • metals such as copper, gold, aluminum, silver and zinc can be used. From the viewpoint of conductivity, copper and silver are particularly preferable. When used in a living body or the like, it is preferable to use stable gold in order to suppress unnecessary reactions.
  • the network ratio ⁇ defined by the formula (2) is preferably 0.05 or more, and more preferably 0.1 or more.
  • the fiber occupancy C in the fiber net 10 is preferably 20% to 90%, and more preferably the occupancy C is 30% to 70%.
  • the fiber network 10 has a part in which nanofibers are formed and a part made up of voids. Therefore, the “fiber occupancy C in the fiber network” means the ratio of the portion where the nanofibers are formed in a plan view. This occupancy rate can be obtained as an average value of the areas of the nanofibers formed in each photograph after taking 10 images of the surface of the fiber network at an arbitrary size of 1 mm ⁇ 1 mm. .. If the fiber occupancy C in the fiber net 10 is too high, the permeability of gas and water decreases.
  • the occupancy rate of the conductive member 20 and the occupancy rate C of the fibers in the fiber net 10 have a positive correlation, if the occupancy rate C of the fibers in the fiber net 10 is too low, the conductive member 20 becomes sparse. It becomes difficult to secure sufficient conductivity.
  • the fibers constituting the fiber net 10 preferably have a diameter of 100 nm to 10 ⁇ m. Above all, when it is used by being attached to the skin, so-called nanofiber having a thickness of 200 nm to 2 ⁇ m is preferable. Within this range, it is possible to obtain an electronic functional member having sufficient strength and having high gas and moisture permeability.
  • the diameter of the nanofibers can be obtained, for example, by measuring a cross section of the resin composition at arbitrary 10 points with a scanning electron microscope and obtaining the average value of the diameters.
  • a fiber network in which the fibers constituting the fiber network are nanofibers is referred to as a nanomesh
  • an electronic functional member in which the fiber network is a nanomesh is sometimes referred to as a nanomesh electrode.
  • the electronic functional member is placed on an object to be attached such as skin so that the first fiber net 12 comes into contact with the electronic functional member, and water is applied. As a result, the first fiber net 12 is mainly dissolved, and as a result, the electronic functional member is attached to the skin.
  • the number of times until the conductive member 20 of the electronic functional member was repeatedly rubbed from the surface side and was broken while being attached to artificial skin was measured. This measuring method will be described.
  • EVA Ethylene-Vinyl Acetate
  • An EVA sponge sheet is coated with 100 ⁇ m thick artificial skin (manufactured by Beaulux) to prepare a substrate.
  • a 4 mm ⁇ 30 mm nanomesh electrode is attached on the substrate with water to prepare a sample for evaluation.
  • three nanomesh electrodes were formed at intervals of 2.5 mm.
  • the friction and wear test is a test method in which a measuring indenter is pressed against and slid with a constant load.
  • a polyurethane ball having a diameter of 5 mm was used as the indenter for measurement, and the weighted load was 50 g.
  • the evaluation sample was fixed to the linear reciprocating sliding unit of the friction and wear tester and slid at 20 mm / sec, and the number of times until the nanomesh electrode was broken was measured.
  • the measurement results are shown in the table below.
  • the table shows an example of the first electronic functional member and a comparative example of the conventional electronic functional member.
  • the resin constituting the fiber net PVA derivatives having the basic structure represented by the above formula (1), having a saponification degree of 86.5 to 89.0 [mol%], and having different viscosities were used. An example is shown.
  • the resins constituting each fiber net are distinguished by the viscosity [mm 2 / s].
  • the heat crimping of the second fiber net in the example was carried out at 180 ° C. for 1 to 5 minutes, and in the case of the comparative example with heat crimping, the press was performed at 180 ° C. for 5 minutes.
  • the number of times until disconnection is 1000 times or more.
  • 1000 times means 1000 times or more.
  • the number of times is 50 to 300 times.
  • Comparative Examples 1 to 5 are cases where the fiber net is composed only of a water-soluble resin
  • Comparative Examples 6 to 7 are cases where the fiber net is composed only of a poorly water-soluble resin.
  • the fiber net is more wear resistant than the case where it contains both the water-soluble resin and the poorly water-soluble resin, the case where it is composed only of the water-soluble resin, and the case where it is composed only of the poorly water-soluble resin. It can be seen that the property is improved.
  • the electrode can be easily attached without breaking, and the resistance to water is improved as compared with the conventional products (for example, Comparative Examples 1 to 5). Was done.
  • FIG. 5 (A) is a schematic diagram for explaining the second electronic functional member
  • FIG. 5 (B) is a schematic diagram showing an outline of the fiber net included in the second electronic functional member.
  • FIG. 5 (A) is a schematic cross-sectional view cut along a line similar to the line I-I of FIG. 1 (A).
  • the fiber net 110 is composed of a first resin and a second resin which are water-soluble and have different solubility in water after heat pressure bonding.
  • the first resin 32 is, for example, EG-40P or EG-48P
  • the second resin 34 is EG-18P to 30P.
  • the first resin 32 when EG-48P is used as the first resin 32 and EG-22P is used as the second resin 34, the first resin 32 exhibits water solubility by thermocompression bonding, but the second resin 34 exhibits poor water solubility. Is shown.
  • the second electronic functional member is manufactured by using two nozzles in the electrospinning deposition method.
  • the first solution 156 in the first syringe 152 is sprayed onto the support 58 from the first needle 154.
  • the second solution 157 in the second syringe 153 is sprayed onto the support 58 from the second needle 155.
  • the first solution 156 is the first resin 32 dissolved in a solvent.
  • the second solution 157 is a solution in which the second resin 34 is dissolved in a solvent. Fibers made of the first resin 32 are formed from the first needle 154, and fibers made of the second resin 34 are formed from the second needle 155.
  • the description is omitted because it is the same as the manufacturing method of the first electronic functional member except that the two syringes are filled with solutions in which different resins are dissolved and the solution is sprayed from the two needles at the same time.
  • the fiber net 110 is composed of a fiber containing the first resin 32 that is water-soluble and still water-soluble after heating and pressure bonding, and a fiber containing the second resin 34 that is water-soluble and changes into poorly water-soluble after heating and pressure bonding.
  • the electrode is easily broken by water when attached to the skin. Was able to be suppressed. Further, even if it was attached to artificial skin and immersed in water for 5 minutes, it did not peel off, the water resistance was greatly improved, and the wire was not broken up to 500 times in the abrasion resistance test.
  • FIG. 7 (A) is a schematic diagram for explaining the third electronic functional member
  • FIG. 7 (B) is a schematic diagram showing an outline of the fiber net included in the third electronic functional member.
  • FIG. 7 (A) is a schematic cross-sectional view taken along a line similar to the line I-I of FIG. 1 (A).
  • the third electronic functional member includes a fiber network 210 that is water-soluble and that includes a first resin 32 and a second resin 34 that have different solubilities in water after thermocompression bonding.
  • the conductive member 20 formed on the fiber net 210 is provided.
  • the third electronic function member is configured to include fibers including both the first resin 32 and the second resin 34, which are resins having different water solubility.
  • the first resin 32 and the second resin 34 for example, the same resin as the above-mentioned second electronic functional member can be used.
  • the third electronic function member is improved in that the electrode is easily broken by water when applied to the skin.
  • the electrode is attached to artificial skin and immersed in water for 5 minutes. It did not break and the water resistance was greatly improved. Also, in the wear resistance test, the durability was greatly improved without disconnection at least 1000 times.
  • a method of manufacturing the third electronic functional member will be described with reference to FIG.
  • a solution 256 in which both the first resin 32 and the second resin 34 are dissolved in a solvent is used as the solution.
  • fibers containing both the first resin 32 and the second resin 34 are formed from the needle 54.
  • the description is omitted because it is the same as the method of manufacturing the first electronic functional member except that a solution in which two different types of resins are dissolved is used.
  • the fiber net may be formed by using one kind of resin. Even when the fiber network is constructed using one kind of water-soluble resin, the molecules may become partially water-insoluble due to chemical or physical binding force or cohesive force. Also in this case, as a result, a part of the fiber net is dissolved in water and a part of the fiber net remains.
  • Table 2 below shows the abrasion resistance when one type of resin is used. The measurement was performed in the same manner as the friction and wear test on the above-mentioned first electronic functional member.
  • Table 2 shows an example in which PVA derivatives having different viscosities are used as the resin constituting the fiber network.
  • Examples 10 to 12 show cases where the PVA derivative A having an average viscosity of 50 mPa ⁇ s, the PVA derivative B having an average viscosity of 20 mPa ⁇ s, and the PVA derivative C having an average viscosity of 15 mPa ⁇ s were used, respectively. There is.
  • the viscosity is distinguished by the so-called kinematic viscosity, but in Table 2, the viscosity is distinguished by the viscosity.
  • the viscosity here is also measured according to the Pharmaceutical Additives Standard (JPE) under the conditions of a 4% aqueous solution and 20°C.
  • PVA derivative A is a highly viscous, poorly water-soluble resin. In this case, the wear resistance is poor.
  • PVA derivative C is a water-soluble resin having a low viscosity.
  • the abrasion resistance may be good or bad depending on the situation at the time of attachment to the artificial skin.
  • the viscosity of PVA derivative B is between PVA derivative A and PVA derivative C, and although it shows water-soluble properties, it is less soluble in water than PVA derivative C. For this reason, when it is submerged, part of it melts and part of it remains. As a result, the wear resistance is excellent.
  • the PVA derivative A has an initial resistance value of 110 ⁇ or more, the network ratio ⁇ obtained by the above formula (2) is less than 0.05, and the PVA derivative B has an initial resistance value of 34 to 45 ⁇ .
  • the network rate is 0.1 or more.
  • FIGS. 9 and 10 are diagrams showing the results of adhesion evaluation.
  • the horizontal axis shows the spinning time (minutes) in the electrospinning device
  • the vertical axis shows the area remaining in the standardized peeling test.
  • the unheated EG-22P single-layer product is a white square
  • the EG-22P single-layer product heated at 130° C. is a white triangle
  • the unheated EG-22P and EG- is a white triangle
  • a black square indicates a mixture of 48P
  • a black circle indicates a mixture of EG-22P and EG-48P heated at 180°C.
  • the vertical axis is standardized by the area after peeling of the mixture of EG-22P and EG-48P heated at 180° C. when the spinning time is 20 minutes.
  • the horizontal axis shows the spinning time (minutes) in the electrospinning apparatus
  • the vertical axis shows the thickness ( ⁇ m) of the nanomesh layer.
  • the thickness of the nanomesh layer is shown by a black circle as a result of measurement with a laser microscope, and the thickness measured from the cross section of the nanomesh layer is shown as a white triangle. There is.
  • FIG. 10 is a photograph showing the result of the adhesion evaluation.
  • 10 (A) to 10 (D) show a single-layer product without heating, a mixed product without heating, a single-layer product with heating, and a mixed product with heating, respectively.
  • (1) and (6), (2) and (7), (3) and (8), (4) and (9), and (5) and (10) are respectively Corresponds to spinning times of 20, 30, 40, 50 and 60 minutes.
  • the spinning time was 20 minutes for the single-layer product without heating, and the spinning time was 20 for the single-layer product without heating, the single-layer product with heating, and the mixed product with heating.
  • Adhesion is high in the case of 1 to 30 minutes. That is, it is shown that the thinner the nanomesh layer, the higher the adhesion.
  • the mixed product with heating has high adhesion, but in particular, the mixed product with heating having a spinning time of 20 minutes has the highest adhesiveness. ..
  • FIG. 11 is a schematic view for explaining the fourth electronic functional member.
  • 11 (A) is a schematic plan view
  • FIG. 11 (B) is a schematic cross-sectional view taken along the line II of FIG. 11 (A)
  • FIG. 11 (C) is a schematic cross-sectional view. Is a schematic diagram showing a fiber network included in the fourth electronic functional member.
  • the fourth electronic functional member includes a fiber net 410 and a conductive member 420 formed on the fiber net 410.
  • the fiber net 410 is formed by laminating a first fiber net 412 and a second fiber net 414.
  • the conductive member 420 is provided on the second fiber net 414 of the fiber net 410.
  • the first fiber net 412 and the second fiber net 414 are formed by any suitable conventionally known method.
  • the resin composition is sprayed by the electrospinning deposition method. Is formed.
  • the first fiber net 412 is composed of a first resin 432 that dissolves in water when flooded.
  • the first resin 432 is, for example, a water-soluble resin having a basic structure represented by the above formula (1).
  • EG-22P of the Gosenol EG series of Mitsubishi Chemical Corporation is available.
  • the second fiber net 414 is configured to include a water-insoluble second resin 434 that remains without being dissolved in water when immersed in water.
  • a water-insoluble second resin 434 that remains without being dissolved in water when immersed in water.
  • polyurethane is used as the water-insoluble second resin 434.
  • the fiber net 410 is obtained by laminating the first fiber net 412 and the second fiber net 414 and attaching them by any suitable means. Further, as another example, the formation of the first fiber nets 412 by the electrospinning method and subsequent formation of the second fiber nets 414 by the electrospinning method can obtain the fiber nets 410.
  • the second resin 434 forming the second fiber net 414 does not dissolve even if immersed in water, and therefore, if water is immersed for a predetermined time, the first resin 432 forming the first fiber net 412 is wholly or partly water-soluble. On the other hand, almost all of the second resin 434 remains.
  • the conductive member 420 can be formed using, for example, a vapor deposition method, a sputtering method, a chemical vapor deposition method, an inkjet method, a screen printing method, a gravure printing method, a flexographic printing method, or the like.
  • FIG. 11A shows an example of two strip-shaped configurations as the electrode formed by the conductive member 20, the shape may be suitable depending on the application.
  • the shape of the electrodes formed by the conductive member 420 can be arbitrarily changed by performing patterning. As a patterning method, it is most convenient and preferable to form a film through a mask.
  • the material constituting the conductive member 420 may have conductivity.
  • metals such as copper, gold, aluminum, silver and zinc can be used. From the viewpoint of conductivity, copper and silver are particularly preferable. When used in a living body or the like, it is preferable to use stable gold in order to suppress unnecessary reactions.
  • FIG. 12 is a schematic view for explaining the fifth electronic functional member.
  • 12 (A) is a schematic plan view
  • FIGS. 12 (B) and 12 (C) are schematic views showing a cross section of a fiber included in the fifth electronic functional member.
  • the fifth electronic functional member includes a fiber net 510 and a conductive member 520 formed on the fiber net 510.
  • the fiber net 510 is composed of a water-soluble first resin 532 and a water-insoluble second resin 534.
  • the first resin 532 is, for example, a water-soluble resin having a basic structure represented by the above formula (1), like the fourth electronic functional member.
  • the second resin 534 for example, polyparaxylene is used as the second resin 534.
  • the fibers that form the fiber network 510 are configured to include a first resin 532 and a second resin 534 that covers all or part of the surface of the fibers formed of the first resin 532.
  • the first resin 532 is exposed at the lower part of the fibers located in the lowermost layer of the fiber network 510 (see FIG. 12C).
  • the fibers located in the fiber net 510 other than the bottom layer are covered with the second resin 534 over the entire surface of the first resin 532 (see FIG. 12B).
  • the conductive member 520 can be configured in the same manner as the fourth electronic functional member, a duplicate description will be omitted.
  • FIG. 13 is a photograph showing the results of the water resistance test of the fourth electronic functional member and the fifth electronic functional member.
  • a nanomesh electrode was attached to the skin inside the human forearm as a fourth electronic function member and a fifth electronic function member by exposing it to water vapor.
  • a non-water-soluble resin is not used, but a fiber network is formed only by the water-soluble resin, and the electronic functional member on which the conductive member is formed is also exposed to water vapor and the skin inside the human forearm is exposed. I pasted it on top.
  • FIGS. 13 (A) and 13 (B) a comparative example, a fourth electronic functional member and a fifth electronic functional member are shown from the left.
  • the fourth functional member includes a second fiber network of polyurethane (PU) provided on the first fiber network of EG-22P, and a conductive layer of gold (Au) provided on the second fiber network.
  • the fifth electronic function member is provided with polyparaxylene (parylene) on the surface of the fiber of EG-22P, and has a conductive layer of gold (Au) on the surface of polyparaxylene.
  • a gold (Au) conductive layer is provided on the fiber net of EG-22P.
  • FIG. 13(A) shows 5 hours after application
  • FIG. 13(B) shows 54 hours after application.
  • the bath was not taken until 5 hours after the application, and then three times were taken by 54 hours after the application.
  • the fourth electronic functional member and the fifth electronic functional member have improved water resistance as compared with the conventional configuration shown as a comparative example.
  • the first to fifth electronic functional members (hereinafter, also referred to as nanomesh electrodes) composed of a fiber network of nanofibers (also referred to as nanomesh) are excellent in gas and moisture permeability. Therefore, the nanomesh electrode can be attached to the surface of the living body for a long time.
  • the measurement module when measuring biological signals such as measurement of electrocardiogram and skin resistance, the measurement module is also configured to be attached to the surface of the biological body. In this case, the measurement module itself is often poor in air permeability, and the feature of the nanomesh electrode that is excellent in gas and moisture permeability may not be utilized.
  • FIG. 14 is a schematic diagram for explaining a configuration example of the biometric sensor.
  • the biometric sensor includes one or more nanomesh electrodes 910, a measurement module 920, a breathable electrode 912 provided between the measurement module 920 and each nanomesh electrode 910, and a ventilation member 930. It is composed of.
  • the nanomesh electrode 910, the air-permeable electrode 912, and the ventilation member 930 are provided on the same side with respect to the measurement module 920.
  • the air-permeable electrode 912 includes, for example, a conductive and porous structure and a sponge electrode having elasticity, and an electrode having a structure in which a conductive thread is knitted to provide air permeability and elasticity. Further, as the ventilation member 930, a sponge or the like made of a non-conductive resin material and having a porous structure and elasticity is used.
  • the nanomesh electrode 910 and the ventilation member 930 are attached to the living body 950, which is the object to be measured, so as to be in contact with each other. Further, a nanomesh electrode 910, a breathable electrode 912, or a breathable member 930 is arranged between the measurement module 920 and the living body 950. In this way, since a member having air permeability is arranged between the measurement module 920 and the living body 950, even if the measurement module 920 itself has poor air permeability, the whole biometric sensor has air permeability. Excellent.
  • Conductive sheet 10, 110, 210, 410, 510 Fiber net 12, 412 First fiber net 14, 414 Second fiber net 20, 420, 520 Conductive member 30 Resin composition 32, 432, 532 First resin 34, 434, 534 2 resin 52, 152, 153 syringes 54, 154, 155 Needle 56, 156, 157, 256 Solution 58 Support 60 Conductive sheet

Abstract

【課題】耐摩耗性にすぐれる電子機能部材を提供する。 【解決手段】水溶性樹脂及び難水溶性樹脂を含んで構成される繊維網と、繊維網上に形成された導電部材とを備えて構成される。ここで、水溶性樹脂及び難水溶性樹脂は、例えば、ポリビニルアルコール誘導体である。この発明の電子機能部材の実施形態によれば、繊維網は、水溶性の第1樹脂を含む繊維で構成される第1繊維網と、難水溶性の第2樹脂を含む繊維で構成される第2繊維網とを積層して構成される。また、繊維網を、水溶性の第1樹脂を含む繊維と、難水溶性の第2樹脂を含む繊維とで構成してもよい。また、繊維網を、水溶性の第1樹脂及び難水溶性の第2樹脂を含む繊維で構成してもよい。

Description

電子機能部材及びその製造方法、並びに、生体測定センサ
 この発明は、電子機能部材及びその製造方法、さらに、電子機能部材を用いて構成される生体測定センサに関する。
 近年、フレキシブルエレクトロニクスは、素材の軟らかさから様々な応用用途を有し、高い注目を集めている。中でも、世界的な社会の高齢化に伴い、ヘルスケア分野への関心が高まっている。例えば、人体の表面や体内への装着により、細胞や組織から直接生体情報を得る手段として注目を集めている。
  一般に、フレキシブルエレクトロニクスは、フレキシブルな基材上にエレクトロニクスデバイスを形成することで作製されるが、その柔軟性は十分とは言えない。そのため、表面追従性が十分とは言えず、高い精度の情報を得ることや装着時の違和感等を十分に低減することができない。
 このような問題を解決するために、エレクトロスピニング法で、水溶性のポリビニルアルコール(PVA)からなるナノファイバーの繊維網を形成し、その上に金を蒸着して電極層を形成することで、表面追従性、横方向への伸張性、ガスや水分の透過性、透明性が十分高い電子機能部材が提案されている(例えば、非特許文献1)。
Akihito Miyamoto et.al.,Nature Nanotechnology 12,907(2017)
 しかしながら、上述の従来技術の電子機能部材を皮膚に直接貼り付けて使用する場合、こすれにより電極層が破壊されたり、水にぬれた場合に皮膚からはがれやすかったりするなど、耐久性に改善の余地がある。
 そこで、この出願に係る発明者らが鋭意検討したところ、繊維網を、互いに水に対する溶解性が異なる2種類の樹脂を含む構成にすることにより、耐久性が改善されることを見出した。
 この発明は、上述の点に鑑みてなされたものであり、この発明の目的は、耐久性が改善された電子機能部材を提供することにある。
 上述した目的を達成するために、この発明の電子機能部材は、樹脂を含んで構成され、浸水すると、一部が水に溶け、一部が残存する繊維網と、繊維網上に形成された導電部材とを備えて構成される。ここで、樹脂は、例えば、ポリビニルアルコール誘導体である。
 この発明の電子機能部材の実施形態によれば、繊維網は、樹脂として、互いに水への溶解性が異なる、第1樹脂及び第2樹脂を含んでいる。好適な実施形態では、繊維網は、第1樹脂を含む繊維で構成される第1繊維網と、第2樹脂を含む繊維で構成される第2繊維網とを積層して構成される。また、他の好適な実施形態では、繊維網が、第1樹脂を含む繊維と、第2樹脂を含む繊維とで構成される。また、さらに他の好適な実施形態では、繊維網が、第1樹脂及び第2樹脂を含む繊維で構成される。
 また、この発明の電子機能部材では、繊維網における繊維の占有率が好ましくは20%~90%であり、より好ましくは、占有率が30%~70%である。
 また、この発明の電子機能部材の製造方法によれば、水溶性の第1樹脂を含む繊維で構成される第1繊維網を形成する工程と、水溶性であり加熱及び圧着後に難水溶性に変化する第2樹脂を含む繊維で構成される第2繊維網を形成する工程と、第2繊維網に対して、加熱し、及び、圧着することにより、第2樹脂を難水溶性にする工程と、第1繊維網、第2繊維網、及び導電部材を積層する工程とを備えて構成される。
 また、この発明の電子機能部材の製造方法の他の実施形態によれば、水溶性であり加熱及び圧着後も水溶性である第1樹脂を含む繊維と、水溶性であり加熱及び圧着後に難水溶性に変化する第2樹脂を含む繊維とで構成される繊維網を形成する工程と、この繊維網を、加熱し、及び、圧着する工程と、繊維網上に、導電部材を設ける工程とを備えて構成される。
 また、この発明の電子機能部材の製造方法の他の実施形態によれば、水溶性であり加熱及び圧着後も水溶性である第1樹脂、及び、水溶性であり加熱及び圧着後に難水溶性に変化する第2樹脂を含む繊維で構成される繊維網を形成する工程と、繊維網を、加熱及び圧着し、さらに、繊維網上に、導電部材を設ける工程とを備えて構成される。
 この発明の電子機能部材によれば、繊維網を浸水させたときに水に溶ける樹脂と、残存する樹脂を備えて構成することにより、従来の、ポリビニルアルコール(PVA)からなるナノファイバーの繊維網を形成し、その上に金を蒸着して電極層を形成した電子機能部材に比べて、耐久性が改善される。
第1電子機能部材を説明するための模式図である。 第1電子機能部材の製造方法を説明するための模式図である。 樹脂の水溶性の試験結果を示す図である。 加熱温度による、結晶化度の違いを示す図である。 第2電子機能部材を説明するための模式図である。 第2電子機能部材の製造方法を説明するための模式図である。 第3電子機能部材を説明するための模式図である。 第3電子機能部材の製造方法を説明するための模式図である。 密着性評価の結果を示す図である。 密着性評価の結果を示す写真である。 第4電子機能部材を説明するための模式図である。 第5電子機能部材を説明するための模式図である。 耐水性の試験結果を示す図である。 生体測定センサを説明するための模式図である。
 以下、図を参照して、この発明の実施形態について説明するが、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例につき説明するが、各構成要素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の実施の形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。
 (第1電子機能部材の構成及び製造方法)
 図1及び図2を参照して、この発明の第1実施形態に係る電子機能部材(以下、第1電子機能部材と称する。)を説明する。図1は、第1電子機能部材を説明するための模式図である。図1(A)は、模式的な平面図であり、図1(B)は、図1(A)のI-I線に沿って切った模式的な断面図であり、図1(C)は、第1電子機能部材が備える繊維網10の概要を示す模式図である。また、図2は、第1電子機能部材の製造方法を説明するための模式図である。
 第1電子機能部材は、樹脂を含んで構成される繊維網10と、繊維網10上に形成された導電部材20とを備えて構成される。繊維網10は、第1樹脂を含む第1繊維網12と、第2樹脂を含む第2繊維網14とが積層されて構成される。ここで、第1樹脂及び第2樹脂は、互いに水への溶解性が異なる。導電部材20は、繊維網10の第2繊維網14上に設けられる。
 第1繊維網12及び第2繊維網14は、任意好適な従来公知の方法で形成されるが、例えば、エレクトロスピニングデポジション法で、樹脂組成物を噴射して形成される(図2)。
 エレクトロスピニングデポジション法では、シリンジ52のニードル54と導電シート60の間に高電圧を印加しながら、シリンジ52中の溶液56を押し出す。このときニードル54と導電シート60の電位差によって、溶液56がシリンジ52から急激に引き出され、導電シート60に向かってスプレーされる。シリンジ52と導電シート60の間に支持体58を挟むことで、スプレーされた溶液56は、支持体58上に樹脂組成物30となり繊維網を生み出す。溶液56は、樹脂組成物30が溶媒に溶解したものであり、その溶媒はニードル54と支持体58の間でほとんど蒸発する。このようにして、それぞれ、第1繊維網12及び第2繊維網14が形成される。支持体58は、繊維網10を支持する機能を果たせば、特に材質等の制限はない。
 繊維網10における繊維が、シリコーンやポリウレタンのように柔らかい材料であると、簡単に伸びてしまって切れやすい。また、ポリカーボネートのように固い材料であると、皮膚への追随性が悪くなる。このため、繊維網における繊維は、ヤング率が、500MPa~8000MPaの範囲内の繊維であることが好ましく、1000MPa~5000MPaの範囲内の繊維であることがより好ましい。
 繊維網10における繊維を構成する樹脂として、例えば、ヤング率が2000~4000MPa程度である、ポリビニルアルコール(PVA)誘導体を用いることができる。
 第1繊維網12は、浸水したときに水に溶ける第1樹脂32で構成される。第1樹脂32は、例えば、以下の式(1)で表される基本構造を持つ水溶性樹脂である。第1繊維網12は、第1樹脂32を含む繊維で構成される。
Figure JPOXMLDOC01-appb-C000001
 ここで、第1樹脂32では、けん化度は75以上[mol%]、粘度が5.0~65.0[mm/s]の中から選ばれればよく、好ましくはけん化度が86.5~89.0[mol%]で、粘度が15.3~55.7[mm/s]のPVA誘導体が用いられる。また、けん化度は、{m/(m+n)}×100[mol%]で得られる。なお、粘度は、4%水溶液、20℃の条件で、医薬品添加物規格(JPE)に沿って測定したものである。
 上記性質を有するPVA誘導体として、三菱ケミカル工業株式会社のゴーセノールEGシリーズのEG-18P、22P、30P、40P及び48Pが入手可能である。
 第2繊維網14は、浸水したときに水に溶けずに残存する、難水溶性の第2樹脂34を含んで構成される。難水溶性である第2樹脂34は、水溶性である第1樹脂32を、加熱及び圧着して得られる。例えば、上記の式(1)で示される基本構造を持ち、けん化度が86.5~89.0[mol%]で、粘度が15.3~34.5[mm/s]のPVA誘導体を加熱圧着して得られる。このPVA誘導体として、上述のEG-18P、22P及び30Pが用いられる。加熱圧着の条件は、任意好適に設定することができるが、例えば、90~180℃の範囲内の温度で1~5分の間でプレスする条件にすることができる。
 PVA誘導体の樹脂に加熱圧着を施すと、その加熱温度や加熱時間を変えることで水への溶解性が変化する。例えば180℃で3分間加熱圧着した樹脂で構成される繊維は、120℃で1分間加熱圧着した繊維よりも水に溶けにくくなる。ここで、水溶性の樹脂が難水溶性に変化する点については、非特許文献2(Polymer Vol.39, No.18 pp.4295-4302, 1998)に報告されている。
 なお、ここでは、加熱圧着装置を用いて、難水溶性の樹脂を得ているが、加熱をする方法はこれに限定されず種々の装置や方法を用いることができる。また、加熱圧着を同時に行わずに、加熱及び圧着をそれぞれ行ってもよい。
 第1繊維網12と第2繊維網14を積層して任意好適な手段で貼り付けることで繊維網10が得られる。
 繊維網10は、樹脂として、互いに水への溶解性が異なる、第1樹脂及び第2樹脂を含んでいる。第1樹脂32は、浸水したときに水に溶ける。一方、第2樹脂34は、浸水したときに直ぐには解けない。
 図3に、樹脂を浸水させたときの水溶性を調べた結果を示す。ここでは、第1樹脂としてEG-48P、及び、第2樹脂としてEG-22Pをともに、180℃で1分間加熱圧着している。図3に示すように、第1樹脂では、全て水溶し、第2樹脂では、一部が残存していることがわかる。このように、第1樹脂と第2樹脂とで、加熱圧着により溶解度が異なることが明確である。
 このため、第1電子機能部材を所定時間浸水すると、第1繊維網12を構成する第1樹脂32は、直ちにほぼ全て水溶するのに対し、第2樹脂34は、所定量残存する。この出願に係る発明者らは、この作用により、後述のとおり、耐摩耗性が向上することを見出した。
 また、第1繊維網12、及び、加熱圧着されていない第2繊維網14はアモルファス状態であるが、第2繊維網14を加熱圧着すると、第2繊維網14は結晶化する。このため、X線回折による構造解析を行うと、結晶化度に応じて、例えばX線回折角や半値幅、強度等が変わる。このように、X線回折により得られる回折プロファイルによっても、水溶性樹脂と難水溶性樹脂とを区別することができる。
 図4に、加熱温度による、EG-22P、及び、EG-48Pの結晶化度の違いを調べた結果を示す。図4では、横軸に温度(℃)を取って示し、縦軸に結晶化度(%)を取って示している。結晶化度は、X線回折による構造解析により得られる。EG-22P、及び、EG-48Pの両者ともに、90℃以上の温度で加熱すると、結晶化度が高くなる。特に、90℃及び180℃付近の温度で、EG-22PとEG-48Pとで結晶化度が異なり、いずれの温度でも、EG-22Pの方が結晶化度が高い。したがって、例えば、第1樹脂32としてEG-48Pを用い、第2樹脂34としてEG-22Pを用いると、180℃での加熱により、結晶化度の低いEG-48Pで構成される第1樹脂32は、水溶性を示し、結晶化度の高いEG-22Pで構成される第2樹脂34は、難水溶性を示す。
 また、水溶性の樹脂や難水溶性の樹脂を水に浸漬した際に溶解する樹脂成分についても、高分子材料を分析する一般的な方法、例えばゲル浸透クロマトグラフィー(GPC)法で樹脂の分子量を容易に測定することできるため各々の繊維を区別することが可能となる。
 導電部材20は、例えば、蒸着法、スパッタ法、化学気相蒸着法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等を用いて形成することができる。図1(A)では、導電部材20が構成する電極として、2本の帯状の構成例を示しているが、用途に応じて、好適な形状にしてもよい。
 導電部材20が構成する電極の形状は、パターニングを行うことで任意に変更することができる。パターニングの方法としては、マスクを介して成膜することが最も簡便で好ましい。
 導電部材20を構成する材料は、導電性を有していればよい。例えば、銅、金、アルミニウム、銀、亜鉛等の金属を用いることができる。導電性の観点からは、中でも銅や銀が好ましい。また生体等に用いる場合は、不要な反応を抑制するために、安定的な金を用いることが好ましい。
 ここで、導電部材が構成する電極の、長さをL、幅をw、厚さをd、比抵抗をρ、抵抗値をR、繊維網における繊維の占有率をCとしたとき、以下の式(2)で定義されるネットワーク率αが0.05以上であるのが好ましく、0.1以上であるのがより好ましい。
  α=πρL/2wdRC (2)
 ネットワーク率αが小さい場合、上下に交差する繊維同士が融着する箇所が少なくなる。この結果、こすれなど、電極の厚さ方向に直交する方向に力が加わると、上下に交差する繊維がずれて、断線しやすくなると考えられる。なお、ネットワーク率については、上記の式(2)によって求めることができる。また、走査型プローブ顕微鏡により、上下に交差したファイバー上の導電部材が導通しているかどうかを確認することができる。
 繊維網10における繊維の占有率Cは、20%~90%であることが好ましく、さらに占有率Cが30%~70%であることが好ましい。繊維網10は、ナノ繊維が形成されている部分と空隙からなる部分とを有する。そのため、「繊維網における繊維の占有率C」とは、平面視した際にナノ繊維が形成されている部分の比率を意味する。この占有率は、繊維網の表面を1mm×1mmの大きさで任意の10点撮影した後、各写真におけるナノ繊維が形成されている部分の面積を求め、それらの平均値として求めることができる。繊維網10における繊維の占有率Cが高すぎると、ガス及び水分の透過性が低下する。一方で、導電部材20の占有率と、繊維網10における繊維の占有率Cとは正の相関があるので、繊維網10における繊維の占有率Cが低すぎると、導電部材20が疎になり十分な導電性を確保することが難しくなる。
 繊維網10を構成する繊維は、その直径が100nm~10μmであることが好ましい。また中でも、皮膚に貼り付けて使用する場合などは、200nm~2μmである、いわゆるナノファイバーであることが好ましい。当該範囲であれば十分に強度を有し、かつガス及び水分の透過性の高い電子機能部材を得ることができる。ナノ繊維の直径は、例えば、任意の10点の樹脂組成物の断面を走査型電子顕微鏡で測定し、それらの直径の平均値として求めることができる。
 ここでは、繊維網を構成する繊維がナノファイバーである繊維網をナノメッシュと称し、繊維網がナノメッシュである電子機能部材をナノメッシュ電極と称することもある。
 (第1電子機能部材の使用方法及び特性)
 電子機能部材を、第1繊維網12が接触するように、皮膚などの貼り付け対象物上に載置し、水を付与する。これにより、主に第1繊維網12が溶解し、その結果、電子機能部材が皮膚に貼り付く。
 貼り付け対象物として、人口皮膚に貼り付けた状態で、電子機能部材の導電部材20を表面側から繰り返しこすり、断線するまでの回数を測定した。この測定方法について説明する。
 先ず、1mm厚のスライドガラス状にEVA(Ethylene-Vinyl Acetate)スポンジシートを両面テープで固定する。EVAスポンジシート上に、100μm厚の人工皮膚(Beaulax社製)を貼り付けた基体を準備する。その後、基体上に、4mm×30mmのナノメッシュ電極を水で貼り付けて評価用のサンプルを作成する。ここで、ナノメッシュ電極は、2.5mm間隔で3本形成した。
 次に、摩擦摩耗試験機(株式会社レスカ製FPR2200)を用いて、摩擦摩耗試験を行う。摩擦摩耗試験は、一定の加重で測定用圧子を押し付けて摺動させる試験方法である。ここでは、測定用圧子を5mmφのポリウレタンボールを用い、加重負荷を50gとした。評価用のサンプルを、摩擦摩耗試験機の直線往復摺動ユニットに固定して、20mm/秒で摺動させて、ナノメッシュ電極の断線までの回数を計測した。
 断線したか否かの判定は、市販のテスターを用いて、ナノメッシュ電極の長手方向の電気抵抗を測定し、抵抗値が1000Ω以上を断線と判断した。
 測定結果を、以下の表に示す。表には、第1電子機能部材の実施例と従来の電子機能部材の比較例を示している。ここでは、繊維網を構成する樹脂として、上記の式(1)で示される基本構造を持ち、けん化度が86.5~89.0[mol%]であり、粘度が異なるPVA誘導体を用いた例を示している。また、各繊維網を構成する樹脂を、粘度[mm/s]で区別している。
Figure JPOXMLDOC01-appb-T000002
 実施例における第2繊維網の加熱圧着は180℃で1~5分の間で実施し、比較例における加熱圧着有の場合、180℃で5分間プレスしている。
 各実施例では、断線までの回数は1000回以上となる。なお、ここでは、断線しない場合でも1000回で終了しているので、1000回とは、1000回以上を意味する。これに対し、従来の構成の比較例では、50~300回である。
 ここで、比較例1~5は、繊維網が水溶性樹脂のみで構成されている場合であり、比較例6~7は、繊維網が難水溶性樹脂のみで構成されている場合である。
 このように、繊維網を、水溶性樹脂及び難水溶性樹脂の双方を含む場合、水溶性樹脂のみで構成する場合、及び、難水溶性樹脂のみで構成する場合のいずれの場合よりも耐摩耗性が向上することがわかる。
 また、本発明の繊維網を水で皮膚へ貼り付けるときでも電極が容易に壊れることがなく装着することが可能となり、従来品(例えば比較例1~5)に比べ、水への耐性も改善された。
 (第2電子機能部材)
 図5を参照して、この発明の第2実施形態に係る電子機能部材(以下、第2電子機能部材と称する。)を説明する。図5(A)は、第2電子機能部材を説明するための模式図であり、図5(B)は、第2電子機能部材が備える繊維網の概要を示す模式図である。図5(A)は、図1(A)のI-I線と同様の線に沿って切った模式的な断面図である。
 第2電子機能部材では、繊維網110は、水溶性であり加熱圧着後に水への溶解性が異なる第1樹脂と第2樹脂を含んで構成される。第1樹脂32は、例えば、EG-40P又はEG-48Pであり、第2樹脂34は、EG-18P~30Pである。
 これら第1樹脂32からなる繊維と、第2樹脂34からなる繊維を含む繊維網110を加熱圧着すると、第2樹脂34の水への溶解性が変化し、第2樹脂34の方が第1樹脂32より水に溶けにくくなる。
 例えば、第1樹脂32としてEG-48Pを用い、第2樹脂34としてEG-22Pを用いると、加熱圧着により、第1樹脂32は、水溶性を示すが、第2樹脂34は、難水溶性を示す。
 図6を参照して、第2電子機能部材の製造方法を説明する。第2電子機能部材は、エレクトロスピニングデポジション法において、2つのノズルを用いて製造される。
 第1のシリンジ152中の第1の溶液156が、第1のニードル154から支持体58上にスプレーされる。一方、第2のシリンジ153中の第2の溶液157が、第2のニードル155から支持体58上にスプレーされる。第1の溶液156は、第1樹脂32が溶媒に溶解したものである。また、第2の溶液157は、第2樹脂34が溶媒に溶解したものである。第1のニードル154からは、第1樹脂32からなる繊維が形成され、第2のニードル155から、第2樹脂34からなる繊維が形成される。
 2つのシリンジにそれぞれ異なる樹脂が溶解した溶液を充填し、同時に、2つのニードルから溶液をスプレーすることを除いて、第1電子機能部材の製造方法と同様なので説明を省略する。
 この結果、水溶性であり加熱及び圧着後も水溶性である第1樹脂32を含む繊維と、水溶性であり加熱圧着後に難水溶性に変化する第2樹脂34を含む繊維とで構成される繊維網110を加熱し、及び、圧着することにより、繊維網110が、互いに水への溶解性が異なる、第1樹脂32及び第2樹脂34を含む第2電子機能部材が得られる。
 第1樹脂32からなる繊維と第2樹脂34からなる繊維とが混在して繊維網110が構成された第2電子機能部材は、皮膚への貼り付けの際、電極が水で容易に壊れることを抑制することができた。さらに、人口皮膚に貼り付けて5分間水に浸漬しても剥がれることはなく水耐性が大きく改善するとともに耐摩耗性試験でも500回まで断線しなかった。
 (第3電子機能部材)
 図7を参照して、この発明の第3実施形態に係る電子機能部材(以下、第3電子機能部材と称する。)を説明する。図7(A)は、第3電子機能部材を説明するための模式図であり、図7(B)は、第3電子機能部材が備える繊維網の概要を示す模式図である。図7(A)は、図1(A)のI-I線と同様の線に沿って切った模式的な断面図である。
 第3電子機能部材は、第2電子機能部材と同様に、水溶性であり加熱圧着後に水への溶解性が互いに異なる第1樹脂32と第2樹脂34を含んで構成される繊維網210と、繊維網210上に形成された導電部材20とを備えて構成される。第3電子機能部材は、水溶性が異なる樹脂である第1樹脂32及び第2樹脂34の双方を含む繊維を備えて構成される。第1樹脂32及び第2樹脂34として、例えば、上述した第2電子機能部材と同様の樹脂を用いることができる。
 第3電子機能部材も第2電子機能部材と同様に、皮膚への貼り付けの際、電極が水で容易に壊れることが改善され、例えば、人口皮膚に貼り付けて水に5分間浸漬しても壊れることはなく水耐性が大きく改善した。また耐摩耗性試験でも少なくとも1000回では断線することなく耐久性が大きく改善した。
 図8を参照して、第3電子機能部材の製造方法を説明する。第3電子機能部材では、溶液として、第1樹脂32及び第2樹脂34の双方が溶媒に溶解した溶液256を用いる。この結果、ニードル54からは、第1樹脂32及び第2樹脂34の双方を含む繊維が形成される。異なる2種類の樹脂が溶解した溶液を用いることを除いて、第1電子機能部材の製造方法と同様なので説明を省略する。
 上述した、第2電子機能部材及び第3電子機能部材では、繊維網の構成として、異なる2種類の樹脂を用いて、一方の樹脂が加熱及び圧着により、難水溶性に変化する例を示しているが、これに限定されない。本発明の目的を達成できればよく、2種類の樹脂以外の他の樹脂が含まれていてもよい。
 また、1種類の樹脂を用いて繊維網を構成してもよい。1種類の水溶性の樹脂を用いて繊維網を構成する場合であっても、分子同士が化学的あるいは物理的な結合力や凝集力により部分的に難水溶性になる場合がある。この場合も、結果的に、一部が水に溶け、一部が残存する繊維網になる。
 1種類の樹脂を用いた場合の耐摩耗性を、以下の表2に示す。測定は、上述した第1電子機能部材での、摩擦摩耗試験と同様に行った。
Figure JPOXMLDOC01-appb-T000003
 表2では、繊維網を構成する樹脂として、粘度が異なるPVA誘導体を用いた例を示している。実施例10~12は、それぞれ、平均粘度が50mPa・sのPVA誘導体A、平均粘度が20mPa・sのPVA誘導体B、及び、平均粘度が15mPa・sのPVA誘導体Cを用いた場合を示している。なお、表1では、粘度としていわゆる動粘度で区別しているが、表2では、粘度として粘性率で区別している。なお、ここでの、粘度も、4%水溶液、20℃の条件で、医薬品添加物規格(JPE)に沿って測定したものである。
 PVA誘導体Aは、粘度が高い、難水溶性の樹脂である。この場合、耐摩耗性が悪い。
 PVA誘導体Cは、粘度が低い、水溶性の樹脂である。この場合、人工皮膚への貼り付けの際の状況に応じて、耐摩耗性が良かったり悪かったりする。
 PVA誘導体Bは、粘度が、PVA誘導体AとPVA誘導体Cの間であり、水溶性の性質を示しつつも、PVA誘導体Cよりも水に溶けにくい。このため、浸水させたとき、一部が溶け、一部が残存する。この結果、耐摩耗性が優れている。
 なお、PVA誘導体Aでは、初期抵抗値が110Ω以上であり、上記式(2)で得られるネットワーク率αが0.05未満であり、PVA誘導体Bでは、初期抵抗値が34~45Ωであり、ネットワーク率が0.1以上となっている。
 図9及び図10を参照して、第3電子機能部材の密着性評価について説明する。図9(A)及び(B)は、密着性評価の結果を示す図である。
 図9(A)は、横軸にエレクトロスピニング装置でのスピニング時間(分)を取って示し、縦軸に規格化した剥離試験で残った面積を取って示している。図9(A)では、加熱なしのEG-22Pの単層品を白抜きの四角、130℃で加熱したEG-22Pの単層品を白抜きの三角、加熱なしのEG-22P及びEG-48Pの混合品を黒塗りの四角、180℃で加熱したEG-22P及びEG-48Pの混合品を黒丸で、それぞれ示している。なお、縦軸は、スピニング時間20分の場合の、180℃で加熱したEG-22P及びEG-48Pの混合品の剥離後の面積で規格化している。
 図9(B)は、横軸にエレクトロスピニング装置でのスピニング時間(分)を取って示し、縦軸にナノメッシュ層の厚さ(μm)を取って示している。なお、図9(B)では、ナノメッシュ層の厚さについては、レーザ顕微鏡で厚さを測定した結果を黒丸で示し、ナノメッシュ層の断面から計測した厚さを白抜きの三角で示している。
 図10は、密着性評価の結果を示す写真である。図10(A)~(D)は、それぞれ、加熱なしの単層品、加熱なしの混合品、加熱ありの単層品、加熱ありの混合品を示している。また、図中、(1)及び(6)、(2)及び(7)、(3)及び(8)、(4)及び(9)、並びに、(5)及び(10)は、それぞれ、20分、30分、40分、50分及び60分のスピニング時間に対応する。
 ここでは、4種類のナノメッシュを人工皮膚に水で貼り付けた後、JIS規格のテープを用いて剥離試験を行った。
 密着性評価の結果、加熱なしの単層品では、スピニング時間が20分の場合、また、加熱なしの混合品、加熱ありの単層品、及び、加熱ありの混合品では、スピニング時間が20分から30分の場合に、密着性が高い。すなわち、ナノメッシュ層の厚さが薄いほうが、密着性が高いことが示されている。
 また、4種類のナノメッシュの中で、加熱ありの混合品の密着性が高いことが示されているが、特に、スピニング時間が20分の、加熱ありの混合品において、密着性が最も高い。
 (第4電子機能部材)
 図11を参照して、この発明の第4実施形態に係る電子機能部材(以下、第4電子機能部材と称する。)を説明する。図11は、第4電子機能部材を説明するための模式図である。図11(A)は、模式的な平面図であり、図11(B)は、図11(A)のI-I線に沿って切った模式的な断面図であり、図11(C)は、第4電子機能部材が備える繊維網を示す模式図である。
 第4電子機能部材は、繊維網410と繊維網410上に形成された導電部材420とを備えて構成される。繊維網410は、第1繊維網412と第2繊維網414が積層されて構成される。導電部材420は、繊維網410の第2繊維網414上に設けられる。
 第1繊維網412及び第2繊維網414は、任意好適な従来公知の方法で形成されるが、例えば、第1電子機能部材と同様に、エレクトロスピニングデポジション法で、樹脂組成物を噴射して形成される。
 第1繊維網412は、浸水したときに水に溶ける第1樹脂432で構成される。第1樹脂432は、例えば、上記式(1)で表される基本構造を持つ水溶性樹脂である。第1樹脂432として、三菱ケミカル株式会社のゴーセノールEGシリーズのEG-22Pが入手可能である。
 第2繊維網414は、浸水したときに水に溶けずに残存する、非水溶性の第2樹脂434を含んで構成される。非水溶性である第2樹脂434として、例えば、ポリウレタンが用いられる。
 第1繊維網412と第2繊維網414を積層して任意好適な手段で貼り付けることで繊維網410が得られる。また、他の例として、エレクトロスピニング法による第1繊維網412の形成に続いて、エレクトロスピニング法による第2繊維網414の形成を行うことで、繊維網410が得られる。
 第2繊維網414を構成する第2樹脂434は水に浸漬しても溶けないため、所定時間浸水すると、第1繊維網412を構成する第1樹脂432は、全て又は一部が水溶するのに対し、第2樹脂434は、ほぼ全て残存する。
 導電部材420は、例えば、蒸着法、スパッタ法、化学気相蒸着法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等を用いて形成することができる。図11(A)では、導電部材20が構成する電極として、2本の帯状の構成例を示しているが、用途に応じて、好適な形状にしてもよい。
 導電部材420が構成する電極の形状は、パターニングを行うことで任意に変更することができる。パターニングの方法としては、マスクを介して成膜することが最も簡便で好ましい。
 導電部材420を構成する材料は、導電性を有していればよい。例えば、銅、金、アルミニウム、銀、亜鉛等の金属を用いることができる。導電性の観点からは、中でも銅や銀が好ましい。また生体等に用いる場合は、不要な反応を抑制するために、安定的な金を用いることが好ましい。
 (第5電子機能部材)
 図12を参照して、この発明の第5実施形態に係る電子機能部材(以下、第5電子機能部材と称する。)を説明する。図12は、第5電子機能部材を説明するための模式図である。図12(A)は、模式的な平面図であり、図12(B)及び(C)は、第5電子機能部材が備える繊維の断面を示す模式図である。
 第5電子機能部材は、繊維網510と繊維網510上に形成された導電部材520とを備えて構成される。繊維網510は、水溶性の第1樹脂532と、非水溶性の第2樹脂534で構成される。第1樹脂532は、第4電子機能部材と同様に、例えば、上記式(1)で表される基本構造を持つ水溶性樹脂である。また、第2樹脂534として、例えば、ポリパラキシレンが用いられる。
 繊維網510を構成する繊維は、第1樹脂532と、第1樹脂532で構成される繊維の表面の全部又は一部を覆う第2樹脂534を備えて構成される。繊維網510の最下層に位置する繊維は、その下部に第1樹脂532が露出している(図12(C)参照)。繊維網510の、最下層以外に位置する繊維は、第1樹脂532の全面を、第2樹脂534が覆っている(図12(B)参照)。
 導電部材520については、第4電子機能部材と同様に構成できるので、重複する説明を省略する。
 (耐水性試験)
 図13を参照して、第4電子機能部材及び第5電子機能部材の耐水性試験について説明する。図13は、第4電子機能部材及び第5電子機能部材の耐水性試験の結果を示す写真である。
 人間の前腕内側の皮膚上に、第4電子機能部材及び第5電子機能部材として、ナノメッシュ電極を水蒸気を暴露して貼り付けた。また、比較例として、非水溶性の樹脂を用いずに、水溶性樹脂のみで繊維網を形成し、その上に導電部材を形成した電子機能部材も水蒸気を暴露して人間の前腕内側の皮膚上に貼り付けた。
 図13(A)及び図13(B)では、左から、比較例、第4電子機能部材及び第5電子機能部材を示している。第4機能部材は、EG-22Pの第1繊維網上に、ポリウレタン(PU)の第2繊維網を設け、第2繊維網上に金(Au)の導電層を備えている。また、第5電子機能部材は、EG-22Pの繊維の表面に、ポリパラキシレン(パリレン)を設け、ポリパラキシレンの表面に、金(Au)の導電層を備えている。一方、比較例では、EG-22Pの繊維網上に、金(Au)の導電層を備えている。
 図13(A)は、貼付け5時間後を示し、図13(B)は、貼付け54時間後を示している。貼付け5時間後までは入浴せず、その後、貼付け54時間後までに3回入浴した。
 比較例では、入浴を3回行った貼付け54時間後には、ほとんど残存していない。一方第4電子機能部材及び第5電子機能部材では、入浴を3回行った貼付け54時間後においても、皮膚にしっかり張り付いていることが確認された。
 このように、第4電子機能部材及び第5電子機能部材は、比較例として示している従来構成に比べて、耐水性が向上していることが示された。
 (使用例)
 ナノ繊維の繊維網(ナノメッシュとも称する。)で構成される第1~第5電子機能部材(以下、ナノメッシュ電極とも称する。)は、ガスや水分の透過性に優れる。このため、ナノメッシュ電極を長時間、生体表面に取り付けておくことができる。
 ここで、心電や皮膚抵抗の測定など、生体信号の測定を行う場合には、測定モジュールも生体表面に取り付ける構成が取られる。この場合、測定モジュール自体が通気性に乏しいことが多く、ガスや水分の透過性に優れるというナノメッシュ電極の特徴が生かされないことがある。
 そこで、この出願に係る発明者らが検討したところ、測定モジュール自体が通気性に乏しい場合であっても、全体として通気性に優れる生体測定センサに想到した。
 図14を参照して、生体測定センサについて説明する。図14は、生体測定センサの構成例を説明するための模式図である。
 生体測定センサは、1又は複数のナノメッシュ電極910と、測定モジュール920と、測定モジュール920と各ナノメッシュ電極910との間に設けられた通気性を有する電極912と、通気部材930とを備えて構成される。ナノメッシュ電極910、通気性を有する電極912及び通気部材930は、測定モジュール920に対して同じ側に設けられている。
 通気性を有する電極912として、例えば、導電性があり多孔性の構造及び弾力性を有するスポンジ電極や、導電糸を編んで通気性及び弾力性を持たせた構造の電極などがある。また、通気部材930として、非導電性の樹脂材料からなる、多孔性の構造及び弾力性を有するスポンジなどが用いられる。
 測定対象物である生体950には、ナノメッシュ電極910及び通気部材930が接するように取り付けられる。また、測定モジュール920と生体950の間には、ナノメッシュ電極910及び通気性を有する電極912、又は、通気部材930が配置される。このように、測定モジュール920と生体950の間には、通気性を有する部材が配置されるので、測定モジュール920自体が通気性が乏しい場合であっても、生体測定センサ全体として、通気性に優れる。したがって、長時間生体表面に取り付けておいても、皮膚表面の通気性を損なうことに伴う皮膚炎症を起こす可能性を低くすることができ、取り付けられた測定対象者のかゆみやかぶれを低減することができる。
 10、110、210、410、510  繊維網
 12、412  第1繊維網
 14、414  第2繊維網
 20、420、520  導電部材
 30  樹脂組成物
 32、432、532  第1樹脂
 34、434、534  第2樹脂  
 52、152、153  シリンジ  
 54、154、155  ニードル
 56、156、157、256  溶液
 58  支持体
 60  導電シート

Claims (18)

  1.  樹脂を含んで構成され、浸水すると、一部が水に溶け、一部が残存する繊維網と、
     前記繊維網上に形成された導電部材と      
    を備えることを特徴とする電子機能部材。
  2.  前記樹脂が、ポリビニルアルコール誘導体である
    ことを特徴とする請求項1に記載の電子機能部材。
  3.  前記繊維網が、前記樹脂として、互いに水への溶解性が異なる第1樹脂及び第2樹脂を含む
    ことを特徴とする請求項1又は2に記載の電子機能部材。
  4.  前記繊維網が、
     前記第1樹脂を含む繊維で構成される第1繊維網と、
     前記第2樹脂を含む繊維で構成される第2繊維網と
    を積層して構成される
    ことを特徴とする請求項3に記載の電子機能部材。
  5.  前記繊維網が、
     前記第1樹脂を含む繊維と、前記第2樹脂を含む繊維と
    で構成される
    ことを特徴とする請求項3に記載の電子機能部材。
  6.  前記繊維網が、
     前記第1樹脂及び前記第2樹脂を含む繊維
    で構成される
    ことを特徴とする請求項3に記載の電子機能部材。
  7.  前記繊維網が、
     前記第1樹脂を含む繊維で構成される第1繊維網と、
     前記第2樹脂を含む繊維で構成される第2繊維網と
    を積層して構成され、
     前記第1樹脂が水溶性の樹脂であり、
     前記第2樹脂が非水溶性の樹脂である
    ことを特徴とする請求項1に記載の電子機能部材。
  8.  前記第1樹脂が、ポリビニルアルコール誘導体であり、
     前記第2樹脂が、ポリウレタンである
    ことを特徴とする請求項7に記載の電子機能部材。
  9.  前記繊維網が、
     前記第1樹脂を含む繊維と、前記第2樹脂を含む繊維と
    で構成され、
     前記第1樹脂が水溶性の樹脂であり、
     前記第2樹脂が非水溶性の樹脂であり、
     前記第2樹脂が、前記第1樹脂の繊維の表面の、全部又は一部を覆うように設けられている
    ことを特徴とする請求項1に記載の電子機能部材。
  10.  前記第1樹脂が、ポリビニルアルコール誘導体であり、
     前記第2樹脂が、ポリパラキシレンである
    ことを特徴とする請求項9に記載の電子機能部材。
  11.  前記繊維網における繊維の占有率が20%~90%である
    ことを特徴とする請求項1~10のいずれか一項に記載の電子機能部材。
  12.  前記繊維網における繊維の占有率が30%~70%である
    ことを特徴とする請求項1~11のいずれか一項に記載の電子機能部材。
  13.  水溶性の第1樹脂を含む繊維で構成される第1繊維網を形成する工程と、
     水溶性であり加熱及び圧着後に難水溶性に変化する第2樹脂を含む繊維で構成される第2繊維網を形成する工程と、
     前記第2繊維網を、加熱し、及び、圧着することにより、第2樹脂を難水溶性にする工程と、
     前記第1繊維網、前記第2繊維網、及び、導電部材を積層する工程と
    を備えることを特徴とする電子機能部材の製造方法。
  14.  水溶性であり加熱及び圧着後も水溶性である第1樹脂を含む繊維と、水溶性であり加熱及び圧着後に難水溶性に変化する第2樹脂を含む繊維とで構成される繊維網を形成する工程と、
     前記繊維網を、加熱し、及び、圧着する工程と、
     前記繊維網上に、導電部材を設ける工程と  
    を備えることを特徴とする電子機能部材の製造方法。
  15.  水溶性であり加熱及び圧着後も水溶性である第1樹脂、並びに、水溶性であり加熱及び圧着後に難水溶性に変化する第2樹脂を含む繊維で構成される繊維網を形成する工程と、
     前記繊維網を、加熱し、及び圧着し、さらに、前記繊維網上に、導電部材を設ける工程と
    を備えることを特徴とする電子機能部材の製造方法。
  16.  水溶性の第1樹脂を含む繊維で構成される第1繊維網を形成する工程と、
     非水溶性の第2樹脂を含む繊維で構成される第2繊維網を形成する工程と、
     前記第1繊維網、前記第2繊維網、及び、導電部材を積層する工程と
    を備えることを特徴とする電子機能部材の製造方法。
  17.  水溶性の第1樹脂で構成される繊維の表面に非水溶性の第2樹脂を設けて繊維網を形成する工程と、
     前記繊維網上に、導電部材を積層する工程と
    を備えることを特徴とする電子機能部材の製造方法。
  18.  1又は複数のナノメッシュ電極と、
     測定モジュールと、
     前記測定モジュール及び前記ナノメッシュ電極の間に設けられた通気性を有する電極と、
     通気部材と
    を備えて構成され、
     前記ナノメッシュ電極、前記通気性を有する電極及び前記通気部材は、前記測定モジュールに対して同じ側に設けられ、
     測定対象物に前記ナノメッシュ電極及び前記通気部材が接触するように取り付けられ、
     前記ナノメッシュ電極が、請求項1~12のいずれか一項に記載の電子機能部材であることを特徴とする生体測定センサ。
PCT/JP2020/009645 2019-03-07 2020-03-06 電子機能部材及びその製造方法、並びに、生体測定センサ WO2020179907A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202110365WA SG11202110365WA (en) 2019-03-07 2020-03-06 Electronic functional member, method for manufacturing same, and biological measurement sensor
US17/436,251 US20220240826A1 (en) 2019-03-07 2020-03-06 Electronic functional member, method for manufacturing same, and biological measurement sensor
CN202080018710.0A CN113614906A (zh) 2019-03-07 2020-03-06 电子功能部件及其制造方法和机体测定传感器
JP2021503666A JP7194469B2 (ja) 2019-03-07 2020-03-06 電子機能部材及びその製造方法、並びに、生体測定センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019041623 2019-03-07
JP2019-041623 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020179907A1 true WO2020179907A1 (ja) 2020-09-10

Family

ID=72338190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009645 WO2020179907A1 (ja) 2019-03-07 2020-03-06 電子機能部材及びその製造方法、並びに、生体測定センサ

Country Status (5)

Country Link
US (1) US20220240826A1 (ja)
JP (1) JP7194469B2 (ja)
CN (1) CN113614906A (ja)
SG (1) SG11202110365WA (ja)
WO (1) WO2020179907A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157688A1 (ja) * 2020-02-07 2021-08-12 花王株式会社 皮膚外用組成物
JP2021123594A (ja) * 2020-02-07 2021-08-30 花王株式会社 皮膚外用組成物
WO2022071231A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 生体信号センシング電極
WO2022191323A1 (ja) 2021-03-11 2022-09-15 国立大学法人東京大学 皮膚抵抗計測装置、皮膚の応答能の評価方法、及び行動情動判定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109073A (ja) * 2006-03-30 2008-05-08 Kyocera Corp 配線基板および実装構造体
WO2017203685A1 (ja) * 2016-05-27 2017-11-30 国立研究開発法人科学技術振興機構 電子機能部材、電子部品及びウェアラブルデバイス
WO2019177030A1 (ja) * 2018-03-15 2019-09-19 国立大学法人東京大学 電子機能部材及び電子部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109073A (ja) * 2006-03-30 2008-05-08 Kyocera Corp 配線基板および実装構造体
WO2017203685A1 (ja) * 2016-05-27 2017-11-30 国立研究開発法人科学技術振興機構 電子機能部材、電子部品及びウェアラブルデバイス
WO2019177030A1 (ja) * 2018-03-15 2019-09-19 国立大学法人東京大学 電子機能部材及び電子部品

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157688A1 (ja) * 2020-02-07 2021-08-12 花王株式会社 皮膚外用組成物
JP2021123594A (ja) * 2020-02-07 2021-08-30 花王株式会社 皮膚外用組成物
JP6997890B2 (ja) 2020-02-07 2022-01-18 花王株式会社 皮膚外用組成物
US11642288B2 (en) 2020-02-07 2023-05-09 Kao Corporation Skin external composition
WO2022071231A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 生体信号センシング電極
JP7452684B2 (ja) 2020-09-30 2024-03-19 株式会社村田製作所 生体信号センシング電極
WO2022191323A1 (ja) 2021-03-11 2022-09-15 国立大学法人東京大学 皮膚抵抗計測装置、皮膚の応答能の評価方法、及び行動情動判定方法

Also Published As

Publication number Publication date
JPWO2020179907A1 (ja) 2020-09-10
US20220240826A1 (en) 2022-08-04
SG11202110365WA (en) 2021-10-28
JP7194469B2 (ja) 2022-12-22
CN113614906A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2020179907A1 (ja) 電子機能部材及びその製造方法、並びに、生体測定センサ
Guo et al. Stretchable polymeric multielectrode array for conformal neural interfacing
Miyamoto et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes
JP5563817B2 (ja) ナノファイバシートの付着方法
Wang et al. Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application
Xu et al. Bioinspired perspiration‐wicking electronic skins for comfortable and reliable multimodal health monitoring
Kim et al. Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging
Wang et al. A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires
JP6603554B2 (ja) 導電性フィルム
JP2007248409A (ja) 可撓性湿度センサ
Miyamoto et al. Highly Precise, Continuous, Long‐Term Monitoring of Skin Electrical Resistance by Nanomesh Electrodes
DE112017000918T5 (de) Haftpräventionsschicht für medizinische Vorrichtungen sowie medizinische Vorrichtung
Yan et al. Highly breathable, surface-hydrophobic and wet-adhesive silk based epidermal electrode for long-term electrophysiological monitoring
KR101273346B1 (ko) 은도금 나노섬유 웹 및 이를 이용한 건식 전극
KR102163164B1 (ko) 나노섬유 메쉬 생체전극 및 이의 제조방법
Li et al. Textile‐Integrated Liquid Metal Electrodes for Electrophysiological Monitoring
Baek et al. Interconnection of multichannel polyimide electrodes using anisotropic conductive films (ACFs) for biomedical applications
US20220031204A1 (en) Thread-Based Real-Time Monitoring of Bodily Fluids
CN113647952A (zh) 基于银/氯化银纳米线制成的柔性干电极及其制备方法
Kim et al. Advances in ultrathin soft sensors, integrated materials, and manufacturing technologies for enhanced monitoring of human physiological signals
WO2021095480A1 (ja) 生体用電極、その製造方法及び装着方法
CN111430060A (zh) 蚕丝柔性电极及其制作方法
Raho et al. Reusable flexible dry electrodes for biomedical wearable devices
Angkawinitwong et al. Electrospun materials for wearable sensor applications in healthcare
JP7088204B2 (ja) 伸縮性積層シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766167

Country of ref document: EP

Kind code of ref document: A1