WO2020179662A1 - 六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法 - Google Patents

六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法 Download PDF

Info

Publication number
WO2020179662A1
WO2020179662A1 PCT/JP2020/008288 JP2020008288W WO2020179662A1 WO 2020179662 A1 WO2020179662 A1 WO 2020179662A1 JP 2020008288 W JP2020008288 W JP 2020008288W WO 2020179662 A1 WO2020179662 A1 WO 2020179662A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
boron nitride
hexagonal boron
resin
less
Prior art date
Application number
PCT/JP2020/008288
Other languages
English (en)
French (fr)
Inventor
祐一 池田
祥太 台木
藤波 恭一
縄田 輝彦
手嶋 勝弥
山田 哲也
Original Assignee
株式会社トクヤマ
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ, 国立大学法人信州大学 filed Critical 株式会社トクヤマ
Priority to KR1020217017877A priority Critical patent/KR20210132639A/ko
Priority to CN202080006815.4A priority patent/CN113165874B/zh
Priority to US17/312,567 priority patent/US20220041445A1/en
Priority to JP2021504045A priority patent/JP7431417B2/ja
Priority to EP20766617.3A priority patent/EP3932858A4/en
Publication of WO2020179662A1 publication Critical patent/WO2020179662A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0646Preparation by pyrolysis of boron and nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/02Single-crystal growth from melt solutions using molten solvents by evaporation of the molten solvent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to a hexagonal boron nitride powder, a resin composition, a resin sheet and a method for producing hexagonal boron nitride powder.
  • Hexagonal boron nitride is used as a material having dielectric strength and thermal conductivity in electronic parts.
  • the flux method disclosed in Patent Document 1 is known.
  • the melamine method disclosed in Patent Documents 2 and 3 the vapor phase method disclosed in Patent Document 4, and the like are known as prior arts.
  • An aspect of the present invention is to provide a hexagonal boron nitride powder capable of realizing a resin sheet having high thermal conductivity and high dielectric strength.
  • the present invention includes the following configurations.
  • the hexagonal boron nitride primary particles include agglomerated hexagonal boron nitride particles, have a specific surface area of 0.5 m 2 /g or more and 5.0 m 2 /g or less, and the major axis of the hexagonal boron nitride primary particles is 0.
  • Hexagonal boron nitride powder having an aspect ratio of 1.5 or more and 5.0 or less and a thickness of 0.6 ⁇ m or more and 4.0 ⁇ m or less.
  • It includes a heating step of heating a mixed powder containing a boron oxide, an organic compound containing nitrogen, and lithium carbonate, and a weight ratio of boron atoms to nitrogen atoms in the mixed powder is 0.2 or more and 0.4 or less.
  • the weight ratio of boron atom to lithium carbonate in the mixed powder is 0.22 or more and 0.98 or less, and the mixed powder is heated at a maximum temperature of 1200° C. or more and 1500° C. or less in the heating step.
  • a method for producing a hexagonal boron nitride powder is a method for producing a hexagonal boron nitride powder.
  • a hexagonal boron nitride powder capable of realizing a resin sheet having high thermal conductivity and high dielectric strength can be provided.
  • a hexagonal boron nitride powder according to an embodiment of the present invention includes hexagonal boron nitride agglomerated particles obtained by aggregating hexagonal boron nitride primary particles, and has a specific surface area of 0.5 m 2 /g or more and 5.0 m 2 /g.
  • the major axis of the hexagonal boron nitride primary particles is 0.6 ⁇ m or more and 4.0 ⁇ m or less, and the aspect ratio is 1.5 or more and 5.0 or less.
  • the hexagonal boron nitride powder contains hexagonal boron nitride agglomerated particles formed by agglomerating plate-shaped hexagonal boron nitride primary particles having a small particle size and a wall thickness at a high density. Therefore, in the resin sheet produced using the hexagonal boron nitride powder, the anisotropy is improved, and the hexagonal boron nitride powder is densely packed to exhibit high thermal conductivity and high dielectric strength.
  • the hexagonal boron nitride powder has a small amount of fine powder, it is possible to effectively suppress an increase in viscosity when kneading with a resin.
  • the hexagonal boron nitride powder is excellent in filling property into the resin, the resin sheet produced by using the hexagonal boron nitride powder further exhibits high thermal conductivity and high dielectric strength.
  • the hexagonal boron nitride primary particle means a single particle of hexagonal boron nitride.
  • the hexagonal boron nitride primary particles are also referred to as h-BN primary particles.
  • the h-BN primary particles are usually plate-shaped particles.
  • the maximum diameter of the plate particles on the plate surface is referred to as the major axis.
  • the length perpendicular to the plate surface is called the thickness.
  • the value obtained by dividing the major axis by the thickness is called the aspect ratio.
  • the major axis of the h-BN primary particles is preferably 0.6 ⁇ m or more and 4.0 ⁇ m or less, more preferably 1.0 ⁇ m or more and 3.5 ⁇ m or less, and 1.5 ⁇ m or more and 3.5 ⁇ m or less. It is more preferable to have.
  • the aspect ratio of the h-BN primary particles is preferably 1.5 or more and 5.0 or less, more preferably 2.0 or more and 4.5 or less, and 2.5 or more and 4.0 or less. Is more preferable.
  • the fact that the major axis and the aspect ratio of the h-BN primary particles are in the above ranges indicates that the h-BN primary particles are plate-like particles having a small particle size and a thick wall.
  • the major axis and the aspect ratio of the h-BN primary particles are within the above ranges, the obtained aggregated particles have a substantially spherical shape, and thus voids are unlikely to occur in the aggregated particles, and the increase in viscosity of the resin composition can be suppressed.
  • the major axis and the aspect ratio of the h-BN primary particles represent an average value measured by a measuring method described in Examples below.
  • hexagonal boron nitride agglomerated particles mean particles in which h-BN primary particles are agglomerated.
  • the major axis of the hexagonal boron nitride agglomerated particles is usually 5 to 40 ⁇ m.
  • the hexagonal boron nitride agglomerated particles are also referred to as h-BN agglomerated particles.
  • the shape of the h-BN agglomerated particles has the shape shown in FIGS. 1 and 2, and is, for example, a substantially spherical shape in which at least two or more h-BN primary particles are continuous in the thickness direction, and the substantially spherical particles. It is a shape in which the particles are connected in a bead shape, or a shape in which large and small h-BN primary particles are aggregated in multiple directions.
  • the hexagonal boron nitride powder comprises h-BN agglomerated particles.
  • the hexagonal boron nitride powder is also referred to as h-BN powder.
  • the h-BN powder may further include h-BN primary particles. That is, the h-BN powder may be a mixture of h-BN primary particles and h-BN agglomerated particles.
  • the specific surface area of the h-BN powder is preferably 0.5 m 2 /g or more and 5.0 m 2 /g or less, more preferably 1.0 m 2 /g or more and 4.5 m 2 /g or less. It is preferable that it is 1.5 m 2 / g or more and 4.0 m 2 / g or less.
  • the specific surface area of the h-BN powder of 0.5 m 2 /g or more means that the relatively small h-BN primary particles are appropriately aggregated in the h-BN powder.
  • the resin sheet produced using the h-BN powder according to the embodiment of the present invention has improved anisotropy and good thermal conductivity.
  • the specific surface area of the h-BN powder being 5.0 m 2 /g or less means that the content of the fine powder contained in the h-BN powder is small and the thickness of the h-BN primary particles is large. .. If the content of the fine powder is small, an increase in the viscosity of the resin composition is suppressed when the h-BN powder is kneaded with the resin. Therefore, it is easy to fill the h-BN powder into the resin. As a result, the resin sheet produced by using the h-BN powder according to the embodiment of the present invention exhibits good thermal conductivity and good dielectric strength.
  • Tapped bulk density of the h-BN powder according to an embodiment of the present invention is preferably 0.40 g / cm 3 or more, more preferably 0.45 g / cm 3 or more, 0.50 g / cm It is more preferably 3 or more.
  • the tap bulk density of 0.40 g/cm 3 or more means that h-BN primary particles having a specific shape are appropriately aggregated to form an h-BN powder having a high particle size distribution with high packing property. Represents. That is, when the tap bulk density is 0.40 g/cm 3 or more, the h-BN agglomerated particles are not coarse and/or the h-BN agglomerated particles are well filled in the resin composition.
  • the particle size distribution with high packing property means that h-BN primary particles and h-BN agglomerated particles having various particle sizes are appropriately contained.
  • voids are likely to occur between the h-BN primary particles or the h-BN agglomerated particles. , Difficult to fill densely.
  • the D95 of the h-BN powder according to one embodiment of the present invention is preferably 5 to 15 ⁇ m, more preferably 5 to 12 ⁇ m, and even more preferably 5 to 10 ⁇ m.
  • D95 represents the particle diameter of which the cumulative volume frequency in the particle size distribution curve is 95%. If D95 is 15 ⁇ m or less, the h-BN powder according to one embodiment of the present invention does not include particles having a large particle size, and therefore, when a thin resin sheet is formed using the h-BN powder. Also, the smoothness of the resin sheet surface can be obtained. In other words, by using the h-BN powder according to the embodiment of the present invention, a thin resin sheet can be easily produced.
  • the D95 of the h-BN powder is 5 ⁇ m or more, it is more than the average particle size of the h-BN primary particles, and therefore the h-BN primary particles are not monodispersed and are sufficiently aggregated. Recognize.
  • the D10 of the h-BN powder according to the embodiment of the present invention is preferably 1.5 ⁇ m or more, more preferably 1.8 ⁇ m or more, and further preferably 2.0 ⁇ m or more. ..
  • D10 represents the particle diameter of which the cumulative volume frequency in the particle size distribution curve is 10%. When D10 is 1.5 ⁇ m or more, it can be seen that the amount of fine powder contained in the h-BN powder is small.
  • the viscosity of the resin is preferably low.
  • the silicone resin (CY52-276A manufactured by Dow Toray Co., Ltd.) contains 20% by volume of the h-BN powder.
  • the resin filling viscosity in the case of filling is preferably 130 Pa ⁇ S or less, and more preferably 125 Pa ⁇ S or less.
  • the resin filling viscosity is 130 Pa ⁇ S or less, the h-BN powder can be filled in the resin with high density. Furthermore, since the fluidity of the resin is good, the resin sheet can be easily manufactured.
  • the h-BN powder is a DBP absorption amount (mL/100 g) calculated from a curve of horizontal axis: DBP dropping amount (mL) and vertical axis: torque (Nm) measured according to JIS-K-6217-4. ), it is preferably 70 mL/100 g or less, more preferably 65 mL/100 g or less, and further preferably 60 mL/100 g or less.
  • the DBP absorption amount is 70 mL/100 g or less, it is possible to suppress an increase in the resin filling viscosity as compared with the h-BN powder having the same specific surface area and the DBP absorption amount exceeding 70 mL/100 g.
  • the resin composition according to one embodiment of the present invention contains the above-mentioned h-BN powder and resin.
  • the method for producing the resin composition is not particularly limited, and the resin composition can be produced by a known production method.
  • the resin is not particularly limited and may be, for example, a silicone resin or an epoxy resin.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, bisphenol A type hydrogenated epoxy resin, polypropylene glycol type epoxy resin, polytetramethylene glycol type epoxy resin, and naphthalene type.
  • examples thereof include epoxy resins, phenylmethane type epoxy resins, tetrakisphenolmethane type epoxy resins, biphenyl type epoxy resins, epoxy resins having a triazine nucleus in the skeleton, and bisphenol A alkylene oxide adduct type epoxy resins.
  • epoxy resins individually by 1 type or in mixture of 2 or more types.
  • a curing agent an amine resin, an acid anhydride resin, a phenol resin, imidazoles and the like may be used. These curing agents may be used alone or in combination of two or more.
  • the compounding amount of these curing agents with respect to the epoxy resin is 0.5 to 1.5 equivalent ratio, preferably 0.7 to 1.3 equivalent ratio with respect to the epoxy resin. In the present specification, these curing agents are also included in the resin.
  • silicone-based resin a known curable silicone resin that is a mixture of an addition reaction type silicone resin and a silicone-based crosslinking agent can be used without limitation.
  • addition reaction type silicone resin include polyorganosiloxane such as polydimethylsiloxane having an alkenyl group such as a vinyl group or a hexenyl group as a functional group in the molecule.
  • silicone-based cross-linking agent examples include dimethylhydrogensiloxy group-endcapped dimethylsiloxane-methylhydrogensiloxane copolymer, trimethylsiloxy group-endcapped dimethylsiloxane-methylhydrogensiloxane copolymer, trimethylsiloxane group-endblocked poly( Examples thereof include polyorganosiloxane having a silicon atom-bonded hydrogen atom such as methylhydrogensiloxane) and poly (hydrogencil sesquioxane).
  • a known platinum-based catalyst or the like used for curing the silicone resin can be used without limitation. Examples thereof include fine particle platinum, fine particle platinum supported on carbon powder, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complex of chloroplatinic acid, palladium, and rhodium catalyst.
  • the compounding ratio of the resin and the h-BN powder in the resin composition according to one embodiment of the present invention may be appropriately determined according to the application.
  • the above-mentioned h-BN powder is preferably contained in the entire resin composition.
  • the resin composition may contain components other than hexagonal boron nitride and resin. Such components are referred to herein as "other components”.
  • a part of the h-BN powder may be replaced with an inorganic filler.
  • the inorganic filler include aluminum oxide, silicon oxide, zinc oxide, magnesium oxide, titanium oxide, silicon nitride, aluminum nitride, aluminum hydroxide, magnesium hydroxide, silicon carbide, calcium carbonate, barium sulfate, talc and the like.
  • the resin composition contains a curing accelerator, a discoloration preventing agent, a surfactant, a dispersant, a coupling agent, a colorant, a plasticizer, a viscosity modifier, an antibacterial agent, etc. within a range that does not affect the effects of the present invention. May be included as appropriate.
  • the application of the resin composition according to one embodiment of the present invention is, for example, an adhesive film, a sheet-shaped laminated material (resin sheet) such as prepreg, a circuit board (used as a laminated board or a multilayer printed wiring board), a solder resist, an underlayer.
  • a sheet-shaped laminated material such as prepreg
  • a circuit board used as a laminated board or a multilayer printed wiring board
  • a solder resist an underlayer.
  • -Fill material thermal adhesive, die bonding material, semiconductor encapsulant, hole filling resin, component embedding resin, thermal interface material (sheet, gel, grease, etc.), power module substrate, heat dissipation member for electronic components, etc. Can be done.
  • the resin sheet which concerns on one Embodiment of this invention contains the above-mentioned resin composition.
  • the resin sheet can also be said to be a sheet formed from the resin composition.
  • the thickness of the resin sheet can be appropriately set according to the application, and may be, for example, 20 to 200 ⁇ m, 20 to 100 ⁇ m, or 20 to 50 ⁇ m.
  • a thin resin sheet has excellent thermal conductivity, but tends to have poor dielectric strength.
  • the resin sheet according to the embodiment of the present invention contains the above-mentioned h-BN powder, it can have excellent thermal conductivity and dielectric strength even when it is relatively thin.
  • the method for forming the resin composition into a sheet is not particularly limited, and a known method can be used.
  • the plane orientation index B of the resin sheet is preferably 0.95 or less.
  • the plane orientation index B is calculated by the following formula.
  • Plane orientation index B log (A/6.67)
  • A represents the peak ratio of the (002) plane and the (100) plane derived from the h-BN primary particles as measured by XRD, and is calculated from the following formula.
  • the value of the peak derived from the (002) plane is simply represented as (002)
  • the value of the peak derived from the (100) plane is simply represented as (100).
  • Peak ratio A (002)/(100)
  • anisotropic means that the thermal conductivity in the plane direction of the resin sheet is good, while the thermal conductivity in the thickness direction is poor, for example.
  • improved of anisotropy means that the thermal conductivity in the thickness direction of the resin sheet is improved.
  • the resin sheet preferably has a thermal conductivity of 3.5 W / m ⁇ K or more, preferably 4.5 W / m ⁇ K or more, measured in accordance with the temperature wave thermal analysis method (ISO22007-3). Is more preferable.
  • the thermal conductivity is 3.5 W / m ⁇ K or more, the resin sheet has good thermal conductivity.
  • the resin sheet preferably has a withstand voltage of 30 kV/mm or more, measured in accordance with "5.8 Withstand voltage (molding material)" of the general thermosetting plastic test method of JIS K6911:2006, and is preferably 35 kV/mm. More preferably, it is at least mm.
  • the withstand voltage is 30 kV/mm or more, the resin sheet has good insulating properties.
  • the resin sheet has both high thermal conductivity and high dielectric strength.
  • the method for producing an h-BN powder according to an embodiment of the present invention includes a heating step of heating a mixed powder containing a boron oxide, an organic compound containing nitrogen, and lithium carbonate.
  • the h-BN powder used for producing the resin sheet having the above-mentioned high thermal conductivity and high dielectric strength can be obtained.
  • boron oxide contained in the mixed powder examples include diboron trioxide (boron oxide), diboron dioxide, tetraboron trioxide, tetraboron pentoxide, borax, or anhydrous borax, among which diboron trioxide. Is preferably used.
  • diboron trioxide As the boron oxide, it is industrially advantageous because an inexpensive raw material is used. Two or more boron oxides may be used in combination.
  • Examples of the nitrogen-containing organic compound contained in the mixed powder include melamine, ammeline, ammelide, melam, melon, dicyandiamide, and urea. Among them, melamine is preferably used. By using melamine as an organic compound containing nitrogen, it is industrially beneficial because an inexpensive raw material is used. Two or more kinds may be used in combination as the organic compound containing nitrogen.
  • lithium carbonate melts it becomes a flux that acts as an auxiliary agent for growing h-BN primary particles. Further, when lithium carbonate is used, it tends to be easy to obtain h-BN primary particles having a specific shape as described above.
  • the mixed powder may contain an alkali carbonate such as calcium carbonate or sodium carbonate in addition to the boron oxide, the organic compound containing nitrogen and lithium carbonate.
  • an alkali carbonate such as calcium carbonate or sodium carbonate in addition to the boron oxide, the organic compound containing nitrogen and lithium carbonate.
  • the weight ratio (B/N) of boron atoms to nitrogen atoms in the mixed powder is preferably 0.2 or more and 0.4 or less, and more preferably 0.25 or more and 0.35 or less.
  • the B source can be secured and a sufficient yield can be secured.
  • the B / N is 0.4 or less, a sufficient N source for nitriding can be secured.
  • the nitrogen atom in the mixed powder heated in the heating step is derived from an organic compound containing nitrogen
  • the boron atom in the mixed powder heated in the heating step is derived from boron oxide.
  • the weight ratio of boron atoms to lithium carbonate (B/Li 2 CO 3 ) in the mixed powder is preferably 0.22 or more and 0.98 or less, and more preferably 0.30 or more and 0.80 or less. preferable.
  • B/ Li 2 CO 3 is 0.22 or more
  • the amount of flux can be appropriately suppressed, so that the h-BN primary particles can be appropriately aggregated.
  • B/Li 2 CO 3 is 0.98 or less, a sufficient amount of flux can be formed, and thus h-BN primary particles having a specific shape can be uniformly obtained.
  • the heating step it is preferable to heat the mixed powder at a maximum temperature of 1200 ° C. or higher and 1500 ° C. or lower.
  • the maximum temperature is more preferably 1250°C or higher, further preferably 1300°C or higher.
  • volatilization of lithium carbonate can be prevented, and at the same time, the particle size and aspect ratio of h-BN primary particles can be prevented from increasing. More preferably, the maximum temperature is 1450°C or lower.
  • the heating step it is preferable to heat the mixed powder under an inert gas atmosphere and under a normal pressure or reduced pressure environment.
  • an inert gas atmosphere refers to a state in which an inert gas is introduced into a container for heating the mixed powder and the gas inside the container is replaced with the inert gas.
  • the inflow of the inert gas is not particularly limited, but the inflow of the inert gas is 5 L / min. That may be the above.
  • the inert gas may be, for example, nitrogen gas, carbon dioxide gas, argon gas, or the like.
  • the heating step it is also possible to exemplify that a mixed powder is placed inside a reaction vessel in which gas exchange does not occur during the heating step.
  • the boron oxide contained in the mixed powder is used in the formation reaction of the h-BN powder, but a part of it is volatilized by heating and is not used in the formation reaction of the h-BN powder.
  • volatilization of the boron oxide from the mixed powder can be suppressed.
  • the amount of boron oxide used in the reaction for producing the h-BN powder can be increased, and the yield of the h-BN powder can be improved.
  • gas exchange does not occur means that the gas inside the reaction vessel and the gas outside the reaction vessel are not exchanged.
  • gas is generated inside the reaction vessel due to the progress of the formation reaction of the h-BN powder and the volatilization or decomposition of the mixed powder. Therefore, it is not necessary to intentionally introduce gas from the outside into the reaction container, and it is not necessary to prevent the gas inside the reaction container from being completely discharged to the outside of the reaction container.
  • the structure, size, shape, material, etc. of the reaction vessel are not particularly limited, and the reaction vessel should have sufficient durability, heat resistance, pressure resistance, corrosion resistance, etc. in consideration of the manufacturing conditions such as heating temperature and raw materials. Can be decided.
  • reaction vessel with a lid As a mechanism for preventing gas exchange, for example, the use of a reaction vessel with a lid as the reaction vessel can be mentioned.
  • a reaction vessel with a lid since it is separated from the outside by the lid, the inflow of gas from the outside of the reaction vessel can be suppressed, and gas exchange does not occur.
  • the inside of the container may be deteriorated due to the progress of the reaction for producing the h-BN powder, the generation of gas by volatilization or decomposition of the mixed powder, or the expansion of the gas in the reaction container by heating.
  • the pressure will increase.
  • the reaction vessel may be damaged, or the material and shape of the reaction vessel may be restricted because the reaction vessel has a pressure-resistant structure. Therefore, it is preferable to appropriately release the excess gas inside the reaction vessel within a range that does not significantly affect the yield of the h-BN powder.
  • Examples of the method of releasing the excess gas inside the reaction vessel include a method of attaching a pressure control valve to the reaction vessel and a method of making a small hole in the reaction vessel. Also, when the reaction container is a container with a lid, the lid is placed on the upper portion of the reaction container, and by placing the lid without fixing it, the reaction container is closed by the dead weight of the lid when the internal pressure is low. When the internal pressure rises, the lid is lifted and the gas inside the reaction vessel is discharged to the outside. Therefore, by using a container with a lid, it is possible to easily prevent gas exchange and to release an excessive amount of gas inside the reaction container, which is a preferable mode.
  • the weight of the lid per unit area is preferably in the range of 5 kg / m 2 to 20 kg / m 2 .
  • the weight of the lid per unit area is a value obtained by dividing the weight of the lid by the area of the lid facing the internal space of the reaction container.
  • the shape of the reaction vessel is not particularly limited, and any shape such as a cylindrical shape or a square shape can be used.
  • the shape of the reaction vessel is preferably cylindrical from the viewpoint of preventing damage to the reaction vessel due to repeated heating and cooling, and from the viewpoint of effectively utilizing the space when installing in the heating furnace to improve production efficiency. From the above, a rectangular shape is preferable.
  • the material of the reaction vessel is not particularly limited as long as it can withstand the heating temperature of 1200° C. or more and 1500° C. or less in the heating step, and alumina, titania, zirconia, silica, magnesia and calcia, and silica and alumina as main components.
  • Various types of sintered ceramics such as cordierite and mullite.
  • the material of the reaction vessel is boron nitride, and the inner surface (mixed powder) of the reaction vessel manufactured of a material other than boron nitride is preferable. And coating the surface of the produced h-BN powder with which it comes into contact) with boron nitride can also be mentioned as a preferable mode.
  • the amount of the mixed powder to be placed inside the reaction vessel is not particularly limited, but if it is too small, the volatilization of boron oxide is not sufficiently suppressed because there are many gas phases in the reaction vessel, and the effect of improving the yield is limited. It becomes a target. On the other hand, if the amount of the mixed powder is too large, the pressure in the reaction vessel tends to increase because the gas phase portion is small. Therefore, the volume occupied by the mixed powder in the reaction vessel is preferably in the range of 50% to 90% of the volume of the reaction vessel, and more preferably 60% to 80%. In the present specification, the volume occupied by the mixed powder is the volume occupied by the mixed powder including the voids between the particles of the mixed powder when placed in the reaction vessel.
  • the method of heating the mixed powder placed inside the reaction vessel where gas exchange does not occur is not particularly limited, but it is preferable to install the reaction vessel in a heating furnace and heat it to a desired temperature because it can be easily carried out. It is a form.
  • the method for producing the h-BN powder may include a step other than the heating step. Such steps are referred to as "other steps" in the present specification. Other steps included in the method for producing the h-BN powder include, for example, a mixing step, an acid washing step, a water washing step, a drying step, and a classifying step.
  • the mixing step is a step of mixing boron oxide, an organic compound containing nitrogen, lithium carbonate, etc. before the heating step.
  • the reaction proceeds substantially uniformly, so that fluctuations in the particle diameter and the like of the produced h-BN primary particles are suppressed.
  • the acid washing step is a step of washing the h-BN powder with an acid to remove lithium carbonate, boron oxide, or a composite oxide of lithium carbonate and boron oxide, etc. adhering to the h-BN powder.
  • dilute acid such as hydrochloric acid is preferably used.
  • the acid cleaning method is not particularly limited, and may be acid cleaning by showering, acid cleaning by soaking, or acid cleaning by stirring.
  • the water washing step is a step of washing the h-BN powder with water in order to remove the acid adhering to the h-BN powder in the acid washing step.
  • the method of washing with water is not particularly limited, and after washing the h-BN powder by filtration, washing with water may be performed or washing with water may be performed.
  • the drying step is a step of drying the produced h-BN powder.
  • the drying method is not particularly limited, such as high temperature drying or reduced pressure drying.
  • the classification step is a step of dividing the h-BN powder according to the particle size and / or the particle shape and the like.
  • the classification operation may be sieving, wet classification or air flow classification.
  • Hexagonal boron nitride primary particles including agglomerated hexagonal boron nitride agglomerated particles having a specific surface area of 0.5 m 2 /g or more and 5.0 m 2 /g or less.
  • a hexagonal boron nitride powder having a major axis of 0.6 ⁇ m or more and 4.0 ⁇ m or less and an aspect ratio of 1.5 or more and 5.0 or less.
  • a peak ratio A (002)/(100) of the (002) plane and the (100) plane derived from the hexagonal boron nitride primary particles by XRD measurement, which contains the resin composition according to [4].
  • a resin sheet having a plane orientation index B log (A / 6.67) calculated from 0.95 or less.
  • a heating step of heating a mixed powder containing a boron oxide, an organic compound containing nitrogen, and lithium carbonate is included, and the weight ratio of the boron atom to the nitrogen atom in the mixed powder is 0.2 or more and 0.
  • the weight ratio of boron atoms to lithium carbonate in the mixed powder is 0.22 or more and 0.98 or less, and the mixed powder is heated to a maximum temperature of 1200° C. or more and 1500° C. in the heating step.
  • the thermal conductivity (W/m ⁇ K) of the resin sheet was obtained by thermal diffusivity (m 2 /sec) ⁇ density (kg/m 3 ) ⁇ specific heat (J/kg ⁇ K).
  • Thermal diffusivity is temperature wave thermal analysis method (Ai-Phase Mobile u, ISO22007-3), density is Archimedes method (METTLER TOLEDO: XS204V), specific heat is differential scanning calorimetry (DSC) method. (Made by Rigaku: Thermo Plus Evo DSC8230) was used for measurement.
  • the withstand voltage (kV/mm) of the resin sheet was measured by using a withstand voltage tester YPAD-0225 manufactured by Keinan Electric Co., Ltd., and the general test method of thermosetting plastics of JIS K6911:2006 "5.8 Withstand voltage (molding Material)”.
  • the plane orientation index of the resin sheet was measured using XRD.
  • XRD X-ray diffractometer
  • SmartLab manufactured by Rigaku Co.
  • the measurement conditions were a scan speed of 20 degrees / minute, a step width of 0.02 degrees, and a scan range of 10 to 90 degrees.
  • the particle size distribution of the h-BN powder was measured using a particle size distribution measuring device MT3000 manufactured by Nikkiso Co., Ltd.
  • the measurement sample was prepared by the method described below. First, 20 g of ethanol was added as a dispersion medium to a 50 mL screw tube bottle, and 1 g of h-BN powder was dispersed in ethanol. Then, the tip of the tip was placed 10 mm from the bottom of the screw tube using an ultrasonic homogenizer (SONIFIER SFX250) manufactured by BRANSON, and ultrasonic treatment was performed at an amplitude of 40% for 20 minutes. And the particle size distribution measurement of the measurement sample which performed the ultrasonic treatment was performed.
  • SONIFIER SFX250 ultrasonic homogenizer
  • ⁇ Tap bulk density> The tap bulk density of the h-BN powder was measured using Tap Denser KYT-5000 manufactured by Seishin Enterprise Co., Ltd. Using a 100 mL sample cell, the measurement conditions were a tap speed of 120 times / minute, a tap height of 5 cm, and a tap count of 500 times.
  • ⁇ Resin filling viscosity> A resin composition prepared by filling a silicone resin (CY52-276A manufactured by Dow Toray Co., Ltd.) with 20% by volume of h-BN powder was measured with a rheometer (AR 2000ex manufactured by TA Instruments) at a temperature of 25° C. and a shear rate of 1 The viscosity at the time of /S was measured. This viscosity was defined as the resin filling viscosity.
  • DBP absorption amount (mL/100g) calculated from the curve of abscissa: DBP dropping amount (mL) and ordinate: torque (Nm) of h-BN powder measured according to JIS-K-6217-4. Asked.
  • S-500 manufactured by Asahi Soken Co., Ltd. was used. The measurement conditions were a DBP dropping rate of 4 mL / min, a stirring blade rotation speed of 125 rpm, a sample loading amount of 15 to 25 g, and a dropping amount of 70% of the maximum torque as the DBP absorption amount.
  • DBP Dibutyl Phthalate
  • a special grade reagent distributed to Wako Pure Chemical Industries, Ltd. was used.
  • Example 1 First, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 24 g of melamine as an organic compound containing nitrogen, and 10.4 g of lithium carbonate. In the prepared mixed powder, B / N was 0.28 and B / Li 2 CO 3 was 0.44.
  • FIG. 1 is a view showing a scanning electron microscope image of h-BN powder according to Example 1, where (a) is 2000 times magnification, (b) is 5000 times magnification, and (c) is 10000 times magnification. It is a figure.
  • a base resin As a base resin, a mixture of 100 parts by weight of an epoxy resin (JER806 manufactured by Mitsubishi Chemical Corporation) and 28 parts by weight of a curing agent (alicyclic polyamine-based curing agent, JER Cure 113 manufactured by Mitsubishi Chemical Corporation) was prepared.
  • an epoxy resin JER806 manufactured by Mitsubishi Chemical Corporation
  • a curing agent alicyclic polyamine-based curing agent, JER Cure 113 manufactured by Mitsubishi Chemical Corporation
  • the dried resin composition is cast into a mold and cured using a hot press under the conditions of temperature: 150° C., pressure: 5 MPa, holding time: 1 hour, diameter 10 mm, thickness 0.15 mm Sheet was prepared.
  • Example 2 An h-BN powder, a resin composition and a resin sheet were produced in the same manner as in Example 1 except that the maximum temperature in the heating step was 1500°C.
  • FIG. 2 is a diagram showing a scanning electron microscope image of the h-BN powder according to Example 2. (a) was magnified 2000 times, (b) was magnified 5000 times, and (c) was magnified 10000 times. It is a figure.
  • Example 3 In the heating step, the prepared mixed powder was placed in a reaction vessel with a lid on the top and a lid that does not cause gas exchange.
  • the reaction container with a lid has inner dimensions of 170 mm ⁇ 170 mm ⁇ height of 30 mm (volume: 867,000 mm 3 ), and the weight of the lid is 300 g (weight of the lid per unit area: 0.0104 g/mm 2 ).
  • an h-BN powder was produced in the same manner as in Example 1 except that the reaction container with a lid containing the mixed powder was placed in a batch type firing furnace and heated.
  • the volume of the mixed powder in the reaction vessel with the lid was 578,000 mm 3 , and the volume occupied by the mixed powder in the reaction vessel with the lid was 67%.
  • Comparative Example 1 As Comparative Example 1, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 40 g of melamine as an organic compound containing nitrogen, and 10.4 g of lithium carbonate. The prepared mixed powder had a B / N of 0.17 and a B / Li 2 CO 3 of 0.44.
  • the h-BN powder, the resin composition and the resin sheet were prepared by the same method as in Example 2 except that the amount of melamine was large.
  • Comparative Example 2 As Comparative Example 2, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 12.3 g of melamine as an organic compound containing nitrogen, and 10.4 g of lithium carbonate. The prepared mixed powder had a B / N of 0.55 and a B / Li 2 CO 3 of 0.44. An h-BN powder, a resin composition and a resin sheet were produced by the same method as in Example 2 except that the amount of melamine was small.
  • Comparative Example 3 As Comparative Example 3, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 24 g of melamine as an organic compound containing nitrogen, and 3.76 g of lithium carbonate. The prepared mixed powder had a B / N of 0.28 and a B / Li 2 CO 3 of 1.22. An h-BN powder, a resin composition and a resin sheet were produced by the same method as in Example 2 except that the amount of lithium carbonate was small.
  • Comparative Example 4 As Comparative Example 4, a mixed powder was prepared by mixing 14.6 g of boron oxide as a boron oxide, 24 g of melamine as an organic compound containing nitrogen, and 25 g of lithium carbonate. The prepared mixed powder had a B / N of 0.28 and a B / Li 2 CO 3 of 0.18.
  • the h-BN powder, the resin composition and the resin sheet were prepared by the same method as in Example 2 except that the amount of lithium carbonate was large.
  • Comparative Example 5 As Comparative Example 5, an h-BN powder, a resin composition, and a resin sheet were prepared by the same method as in Example 1 except that the maximum temperature in the heating step was changed to 1100 ° C.
  • Comparative Example 6 As Comparative Example 6, an h-BN powder, a resin composition, and a resin sheet were prepared by the same method as in Example 1 except that the maximum temperature in the heating step was changed to 1600 ° C.
  • FIG. 3 is a view showing a scanning electron microscope image of the h-BN powder according to Comparative Example 7, where (a) is 2000 times, (b) is 5000 times, and (c) is 10000 times. It is a figure.
  • FIG. 4 is a diagram showing a scanning electron microscope image of the hexagonal boron nitride powder according to Comparative Example 8, (a) being 2000 times, (b) being 5000 times, and (c) being being magnified at 10000 times.
  • FIG. 4 is a diagram showing a scanning electron microscope image of the hexagonal boron nitride powder according to Comparative Example 8, (a) being 2000 times, (b) being 5000 times, and (c) being being magnified at 10000 times.
  • Tables 1 to 3 show the production conditions and physical properties of the h-BN powder and the resin sheet.
  • Table 4 shows the yield of h-BN powder. The yield was calculated as the amount of h-BN powder actually obtained with respect to the production amount of h-BN calculated from the amount of boron atoms in the mixed powder of raw materials.
  • Examples 1 to 3 h-BN primary particles having a major axis and an aspect ratio within a specific range, and h-BN powder having a specific surface area within a specific range were obtained. Further, since the h-BN powders produced in Examples 1 and 2 both have low resin filling viscosities, it is considered that the h-BN powder can be filled with high density with respect to the resin. Furthermore, the plane orientation index of the resin sheet was 0.95 or less, and the anisotropy was improved. The resin sheets produced in Examples 1 and 2 had good thermal conductivity and dielectric strength.
  • Example 3 in which the mixed powder is placed inside the reaction vessel in which gas exchange does not occur in the heating step uses a reaction vessel in which gas exchange does not occur. It was possible to produce h-BN in a higher yield as compared to Example 1 which did not include it.
  • MARUKA AP-10S which has a large aspect ratio and specific surface area, is considered to be inferior in filling property because of high resin filling viscosity.
  • the resin sheet using this h-BN powder also had a plane orientation index exceeding 0.95 and was anisotropy. And this resin sheet was inferior in thermal conductivity and dielectric strength.
  • Comparative Example 8 RBN manufactured by Nisshin Rifura Co., Ltd., which has a large specific surface area and a small tap bulk density, is considered to be inferior in filling property because the resin filling viscosity is high.
  • the resin sheet using this h-BN powder also had a plane orientation index exceeding 0.95 and was anisotropy. And this resin sheet was inferior in thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高熱伝導性および高絶縁耐力を備えた樹脂シートを実現することを目的とする。本発明の一態様に係る六方晶窒化ホウ素粉末は、六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、比表面積が0.5m2/g以上、5.0m2/g以下であり、前記六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である。

Description

六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法
 本発明は六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法に関する。
 電子部品において、絶縁耐力および熱伝導性を備えた素材として、六方晶窒化ホウ素が用いられる。六方晶窒化ホウ素の単結晶の製造方法として、例えば、特許文献1に開示されているフラックス法が知られている。また、六方晶窒化ホウ素粉末の製造方法として、例えば、特許文献2および3に開示されているメラミン法、特許文献4に開示されている気相法等が従来技術として知られている。
特開2016-141600号公報 特開平10-059702号公報 特開2006-188411号公報 国際公開第2015/122378号公報
 しかしながら、上述のような従来技術では、高熱伝導性および高絶縁耐力を示す樹脂シートを実現する観点から改善の余地があった。本発明の一態様は、高熱伝導性および高絶縁耐力を備えた樹脂シートを実現し得る六方晶窒化ホウ素粉末を提供することを目的とする。
 上記の課題を解決するために、本発明者が鋭意研究を行った結果、特定の形状の六方晶窒化ホウ素一次粒子が凝集した凝集粒子を含む粉末を用いることにより、高熱伝導性および高絶縁耐力を備えた樹脂シートを作製できることを見出した。即ち、本発明は以下の構成を含む。
 六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、比表面積が0.5m/g以上、5.0m/g以下であり、前記六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である、六方晶窒化ホウ素粉末。
 ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムとを含む混合粉末を加熱する加熱工程を含み、前記混合粉末における窒素原子に対するホウ素原子の重量比は、0.2以上、0.4以下であり、前記混合粉末における炭酸リチウムに対するホウ素原子の重量比は、0.22以上、0.98以下であり、前記加熱工程において、前記混合粉末を、最高温度1200℃以上、1500℃以下で加熱する、六方晶窒化ホウ素粉末の製造方法。
 本発明の一態様によれば、高熱伝導性および高絶縁耐力を備えた樹脂シートを実現し得る六方晶窒化ホウ素粉末を提供できる。
実施例1に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。 実施例2に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。 比較例7に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。 比較例8に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。 実施例1および2、並びに比較例7および8に係る六方晶窒化ホウ素粉末の粒度分布のグラフである。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。
 <1.六方晶窒化ホウ素粉末>
 本発明の一実施形態に係る六方晶窒化ホウ素粉末は、六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、比表面積が0.5m/g以上、5.0m/g以下であり、六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である。
 前記六方晶窒化ホウ素粉末は、小粒径かつ肉厚の板状の六方晶窒化ホウ素一次粒子が高密度に凝集することにより構成された六方晶窒化ホウ素凝集粒子を含む。このため、六方晶窒化ホウ素粉末を用いて作製した樹脂シートでは、異方性が改善され、かつ、六方晶窒化ホウ素粉末が密に充填されることにより、高熱伝導性および高絶縁耐力を示す。
 また、前記六方晶窒化ホウ素粉末は、微粉の含有量が少ないため、樹脂へ混練する際、粘度の上昇を効果的に抑制することができる。これにより、該六方晶窒化ホウ素粉末は樹脂への充填性に優れるため、六方晶窒化ホウ素粉末を用いて作製した樹脂シートはさらに高熱伝導性および高絶縁耐力を示す。
 本明細書において、六方晶窒化ホウ素一次粒子は、六方晶窒化ホウ素の単粒子を意味する。以下では、六方晶窒化ホウ素一次粒子をh-BN一次粒子とも称する。h-BN一次粒子は、通常、板状粒子である。本明細書では、この板状粒子の板面において最大となる径を長径と称する。また、この板面に垂直な長さを厚さと称する。そして、この長径を厚さで除した値をアスペクト比と称する。
 h-BN一次粒子の長径は、0.6μm以上、4.0μm以下であることが好ましく、1.0μm以上、3.5μm以下であることがより好ましく、1.5μm以上、3.5μm以下であることがさらに好ましい。h-BN一次粒子のアスペクト比は、1.5以上、5.0以下であることが好ましく、2.0以上、4.5以下であることがより好ましく、2.5以上、4.0以下であることがさらに好ましい。h-BN一次粒子の長径およびアスペクト比が上記の範囲であることは、h-BN一次粒子が小粒径、かつ、肉厚の板状粒子であることを表す。また、h-BN一次粒子の長径およびアスペクト比が上記の範囲であれば、得られる凝集粒子は略球形であるため、凝集粒子に間隙が生じにくく、樹脂組成物の粘度の上昇を抑制できる。なお、本明細書において、h-BN一次粒子の長径およびアスペクト比は、後述の実施例に記載の測定方法によって測定された平均値を表す。
 本明細書において、六方晶窒化ホウ素凝集粒子は、h-BN一次粒子が凝集した粒子を意味する。六方晶窒化ホウ素凝集粒子の長径は、通常、5~40μmである。以下では、六方晶窒化ホウ素凝集粒子をh-BN凝集粒子とも称する。h-BN凝集粒子の形状は、図1および図2に示される形状を有し、例えば、少なくとも2個以上のh-BN一次粒子が厚さ方向に連なって成る略球形、該略球形の粒子が数珠状に繋がった形状、または、大小のh-BN一次粒子が多方向を向いて凝集した形状である。
 六方晶窒化ホウ素粉末は、h-BN凝集粒子を含んでなる。以下では、六方晶窒化ホウ素粉末をh-BN粉末とも称する。h-BN粉末はさらに、h-BN一次粒子を含んでもよい。すなわち、h-BN粉末は、h-BN一次粒子とh-BN凝集粒子との混合物であり得る。
 h-BN粉末は、比表面積が0.5m/g以上、5.0m/g以下であることが好ましく、1.0m/g以上、4.5m/g以下であることがより好ましく、1.5m/g以上、4.0m/g以下であることがさらに好ましい。h-BN一次粒子が比較的肉厚である場合に、h-BN粉末の比表面積が上記範囲となる傾向がある。また、h-BN粉末の比表面積が0.5m/g以上であることは、h-BN粉末において比較的小さなh-BN一次粒子が適度に凝集していることを表す。その結果、本発明の一実施形態に係るh-BN粉末を用いて作製した樹脂シートでは、異方性が改善され、良好な熱伝導性が得られる。
 また、h-BN粉末の比表面積が、5.0m/g以下であることは、h-BN粉末に含まれる微粉の含有量が少なく、肉厚のh-BN一次粒子が多いことを表す。微粉の含有量が少なければh-BN粉末を樹脂に混練する際、樹脂組成物の粘度の上昇が抑制される。このため、h-BN粉末を樹脂へ充填しやすい。その結果、本発明の一実施形態に係るh-BN粉末を用いて作製した樹脂シートでは、良好な熱伝導性および良好な絶縁耐力を示す。
 本発明の一実施形態に係るh-BN粉末のタップ嵩密度は、0.40g/cm以上であることが好ましく、0.45g/cm以上であることがより好ましく、0.50g/cm以上であることがさらに好ましい。タップ嵩密度が0.40g/cm以上であることは、特定の形状を有するh-BN一次粒子が適度に凝集し、充填性の高い粒度分布を有するh-BN粉末が形成されていることを表す。すなわち、タップ嵩密度が0.40g/cm以上であれば、h-BN凝集粒子が粗でない、かつ/または、h-BN凝集粒子の樹脂組成物への充填性が良好である。その結果、本発明の一実施形態に係るh-BN粉末を用いて作製した樹脂シートでは、空隙が生じにくく、均一な熱伝導性を示す。なお、充填性の高い粒度分布とは、様々な粒子径を有するh-BN一次粒子およびh-BN凝集粒子が適度に含まれていることを表す。例えば、h-BN粉末が、単一の粒子径を有するh-BN一次粒子またはh-BN凝集粒子のみを含む場合、h-BN一次粒子またはh-BN凝集粒子の間に空隙が生じやすいため、密に充填することは難しい。
 本発明の一実施形態に係るh-BN粉末の、D95は、5~15μmであることが好ましく、5~12μmであることがより好ましく、5~10μmであることがさらに好ましい。なお、D95は、粒度分布曲線における累積体積頻度が95%の粒子径を表す。D95が15μm以下であれば、本発明の一実施形態に係るh-BN粉末は、粒子径の大きな粒子を含まないため、当該h-BN粉末を用いて薄い樹脂シートを形成した場合であっても、樹脂シート表面の平滑性が得られる。換言すれば、本発明の一実施形態に係るh-BN粉末を用いることにより、薄い樹脂シートが作製しやすくなる。さらに、h-BN粉末のD95が5μm以上であれば、h-BN一次粒子の平均粒子径以上であるため、h-BN一次粒子が単分散しておらず、十分に凝集していることがわかる。
 また、本発明の一実施形態に係るh-BN粉末の、D10は、1.5μm以上であることが好ましく、1.8μm以上であることがより好ましく、2.0μm以上であることがさらに好ましい。なお、D10は、粒度分布曲線における累積体積頻度が10%の粒子径を表す。D10が1.5μm以上であることにより、h-BN粉末に含まれる微粉が少ないことがわかる。
 h-BN粉末を樹脂に充填した際の樹脂の粘度(樹脂充填粘度)は、低い方が好ましく、例えば、シリコーン樹脂(ダウ・東レ株式会社製CY52-276A)にh-BN粉末を20体積%充填した場合における樹脂充填粘度が、130Pa・S以下であることが好ましく、125Pa・S以下であることがより好ましい。樹脂充填粘度が130Pa・S以下であることにより、h-BN粉末を高密度に樹脂へ充填することができる。さらに、樹脂の流動性がよいため、樹脂シートの作製が容易となる。
 h-BN粉末は、JIS-K-6217-4に準拠して測定した横軸:DBP滴下量(mL)、縦軸:トルク(Nm)、の曲線から算出されるDBP吸収量(mL/100g)において、70mL/100g以下であることが好ましく、65mL/100g以下であることがより好ましく、60mL/100g以下であることがさらに好ましい。DBP吸収量が70mL/100g以下であることにより、比表面積が同じであってDBP吸収量が70mL/100gを超えるh-BN粉末に比べて樹脂充填粘度の上昇を抑制できる。
 <2.樹脂組成物>
 本発明の一実施形態に係る樹脂組成物は、上述のh-BN粉末および樹脂を含む。樹脂組成物の作製方法は特に限定されず、公知の作製方法により樹脂組成物を作製できる。
 (2-1.樹脂)
 樹脂は、特に制限されず、例えばシリコーン系樹脂またはエポキシ系樹脂であってよい。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルメタン型エポキシ樹脂、テトラキスフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリアジン核を骨格に有するエポキシ樹脂、およびビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂等が挙げられる。これらエポキシ樹脂の1種を単独で、あるいは、2種以上を混合して使用してもよい。また、硬化剤としてアミン系樹脂、酸無水物系樹脂、フェノール系樹脂、イミダゾール類等を用いてもよい。これら硬化剤も1種を単独で、あるいは、2種以上を混合して使用してもよい。これら、硬化剤のエポキシ樹脂に対する配合量は、エポキシ樹脂に対する当量比で、0.5~1.5当量比、好ましくは0.7~1.3当量比である。本明細書において、これらの硬化剤も樹脂に包含される。
 また、シリコーン系樹脂としては、付加反応型シリコーン樹脂とシリコーン系架橋剤との混合物である公知の硬化性シリコーン樹脂を制限なく使用することができる。付加反応型シリコーン樹脂としては、例えば、分子中にビニル基またはヘキセニル基等のアルケニル基を官能基としてもつポリジメチルシロキサン等のポリオルガノシロキサン等が挙げられる。シリコーン系架橋剤としては、例えば、ジメチルハイドロジェンシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキサン基末端封鎖ポリ(メチルハイドロジェンシロキサン)、ポリ(ハイドロジェンシルセスキオキサン)等のケイ素原子結合水素原子を有するポリオルガノシロキサン等が挙げられる。また、硬化触媒には、シリコーン樹脂の硬化に用いられる公知の白金系触媒等を制限なく使用することができる。例えば、微粒子状白金、炭素粉末に担持した微粒子状白金、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、パラジウム、ロジウム触媒等が挙げられる。
 本発明の一実施形態に係る樹脂組成物における樹脂とh-BN粉末との配合比は、用途に応じて適宜決定すればよく、例えば、全樹脂組成物中に上述のh-BN粉末を好ましくは30~90体積%、より好ましくは40~80体積%、さらに好ましくは50~70体積%配合することができる。
 (2-2.その他の成分)
 樹脂組成物は、六方晶窒化ホウ素および樹脂以外の成分を含んでいてもよい。このような成分を本明細書において「その他の成分」と称する。
 例えば、樹脂組成物は前記h-BN粉末の一部を無機フィラーに置き換えてもよい。無機フィラーとしては、酸化アルミニウム、酸化ケイ素、酸化亜鉛、酸化マグネシウム、酸化チタン、窒化ケイ素、窒化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭化ケイ素、炭酸カルシウム、硫酸バリウム、タルク等が挙げられる。
 さらに、樹脂組成物は、硬化促進剤、変色防止剤、界面活性剤、分散剤、カップリング剤、着色剤、可塑剤、粘度調整剤、抗菌剤などを本発明の効果に影響を与えない範囲で適宜含んでいてもよい。
 本発明の一実施形態に係る樹脂組成物の用途は、例えば、接着フィルム、プリプレグ等のシート状積層材料(樹脂シート)、回路基板(積層板用途、多層プリント配線板用途)、ソルダーレジスト、アンダ-フィル材、熱接着剤、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂、熱インターフェース材(シート、ゲル、グリース等)、パワーモジュール用基板、電子部品用放熱部材等を挙げることができる。
 <3.樹脂シート>
 本発明の一実施形態に係る樹脂シートは、上述の樹脂組成物を含む。樹脂シートは、樹脂組成物から形成されたシートとも言える。樹脂シートの厚さは用途に応じて適宜設定でき、例えば、20~200μmであってもよく、20~100μmであってもよく、20~50μmであってもよい。通常、薄い樹脂シートは熱伝導性には優れるが、絶縁耐力に劣る傾向がある。本発明の一実施形態に係る樹脂シートは、上述のh-BN粉末を含んでいるため、比較的薄い場合にも優れた熱伝導性と絶縁耐力とを兼ね備えることができる。樹脂組成物をシート状に形成する方法は、特に限定されず、公知の方法を用いることができる。
 樹脂シートは、面配向指数Bが0.95以下であることが好ましい。面配向指数Bは下記式より算出される。
面配向指数B=log(A/6.67)
 式中、Aは、XRD測定による、h-BN一次粒子由来の(002)面と(100)面とのピーク比を表し、下記式より算出される。なお、下記式では、(002)面由来のピークの値を単に(002)と表し、(100)面由来のピークの値を単に(100)と表している。
ピーク比A=(002)/(100)
 樹脂シートにおける、面配向指数Bが0.95以下であることにより、作製した樹脂シートでは、異方性が改善され、良好な熱伝導性を示す。面配向指数Bは0に近いほど、h-BN一次粒子の熱伝導性の高い面が樹脂シートの面方向に対して垂直に近い状態で配向していることを表す。本明細書において、「異方性」とは、例えば、樹脂シートの面方向の熱伝導性が良好である一方で、厚さ方向の熱伝導性が劣ることを意図する。そして、「異方性の改善」とは、樹脂シートにおける厚さ方向の熱伝導性が改善されたことを示す。
 樹脂シートは、温度波熱分析法(ISO22007-3)に準拠して測定した熱伝導率が、3.5W/m・K以上であることが好ましく、4.5W/m・K以上であることがより好ましい。熱伝導率が3.5W/m・K以上であれば、樹脂シートは良好な熱伝導性を有する。
 樹脂シートの絶縁耐力の指標として耐電圧を用いることができる。樹脂シートは、JIS K6911:2006の熱硬化性プラスチック一般試験方法の「5.8 耐電圧(成形材料)」に準拠して測定した耐電圧が、30kV/mm以上であることが好ましく、35kV/mm以上であることがより好ましい。耐電圧が30kV/mm以上であれば、樹脂シートは良好な絶縁性を有する。
 さらに、熱伝導率が3.5W/m・K以上、かつ、耐電圧が30kV/mm以上であれば、樹脂シートは、高熱伝導性と高絶縁耐力とを兼ね備える。
 <4.六方晶窒化ホウ素粉末の製造方法>
 本発明の一実施形態に係るh-BN粉末の製造方法は、ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムと、を含む混合粉末を加熱する加熱工程を含む。当該製造方法により、上述の高熱伝導性および高絶縁耐力を示す樹脂シートの作製に用いられるh-BN粉末を得ることができる。
 (4-1.混合粉末)
 混合粉末に含まれるホウ素酸化物としては、三酸化二ホウ素(酸化ホウ素)、二酸化二ホウ素、三酸化四ホウ素、五酸化四ホウ素、硼砂、または無水硼砂等を例示でき、なかでも三酸化二ホウ素を用いることが好ましい。ホウ素酸化物として三酸化二ホウ素を用いることにより、安価な原料を使用するので工業的に有益である。なお、ホウ素酸化物として、二種以上を併用してもよい。
 混合粉末に含まれる窒素を含む有機化合物としては、メラミン、アンメリン、アンメリド、メラム、メロン、ジシアンジアミド、および尿素等を例示でき、なかでもメラミンを用いることが好ましい。窒素を含む有機化合物としてメラミンを用いることにより、安価な原料を使用するので工業的に有益である。なお、窒素を含む有機化合物として、二種以上を併用してもよい。
 炭酸リチウムは、溶融することにより、h-BN一次粒子を成長させるための助剤として作用するフラックスとなる。また、炭酸リチウムを用いた場合、上述のような特定の形状を有するh-BN一次粒子を得やすい傾向がある。
 混合粉末は、ホウ素酸化物、窒素を含む有機化合物および炭酸リチウム以外に炭酸カルシウム、または炭酸ナトリウム等のアルカリ炭酸塩を含んでいてもよい。
 混合粉末における窒素原子に対するホウ素原子の重量比(B/N)は、0.2以上、0.4以下であることが好ましく、0.25以上、0.35以下であることがより好ましい。B/Nが0.2以上であることにより、B源を確保し、十分な収率を確保することができる。また、B/Nが0.4以下であることにより、窒化に十分なN源を確保することができる。なお、加熱工程において加熱する混合粉末における窒素原子は、窒素を含む有機化合物由来であり、過熱工程において加熱する混合粉末におけるホウ素原子は、ホウ素酸化物由来である。
 混合粉末における炭酸リチウムに対するホウ素原子の重量比(B/LiCO)は、0.22以上、0.98以下であることが好ましく、0.30以上、0.80以下であることがより好ましい。B/LiCOが0.22以上であることにより、フラックスの量を適度に抑制できるため、h-BN一次粒子を適度に凝集させることができる。また、B/LiCOが0.98以下であることにより、十分な量のフラックスを形成することができるため、特定の形状を有するh-BN一次粒子を均一に得ることができる。
 (4-2.加熱工程)
 加熱工程では、混合粉末を最高温度1200℃以上、1500℃以下で加熱することが好ましい。1200℃以上の温度で混合粉末を加熱することにより、h-BN一次粒子の粒子径が過度に小さくなることを防ぎ、かつ、アスペクト比が大きくなることを抑制できる。最高温度は、1250℃以上であることがより好ましく、1300℃以上であることがさらに好ましい。また、1500℃以下の温度で混合粉末を加熱することにより、炭酸リチウムの揮発を防ぐことができるとともに、h-BN一次粒子の粒子径およびアスペクト比が大きくなることを抑制できる。最高温度は1450℃以下であることがより好ましい。
 加熱工程では、不活性ガス雰囲気下であって、常圧または減圧環境下において、混合粉末を加熱することが好ましい。上記環境において加熱することにより、加熱炉体の損傷を抑制できる。なお、本明細書において、不活性ガス雰囲気下とは、混合粉末を加熱する容器に不活性ガスを流入させ、当該容器内部の気体を不活性ガスで置換した状態である。不活性ガスの流入量は、特に限定されないが、不活性ガスの流入量が5L/min.以上であってよい。また、不活性ガスは、例えば窒素ガス、炭酸ガスまたはアルゴンガス等であってよい。
 加熱工程では、当該加熱工程中にガス交換が起こらない反応容器の内部に混合粉末を配置して行うことも、好ましい手法として例示できる。加熱工程において、混合粉末に含まれるホウ素酸化物はh-BN粉末の生成反応に使用されるが、一部は加熱により揮発するためh-BN粉末の生成反応に使用されない。ここで、加熱工程中にガス交換が起こらない反応容器の内部に混合粉末を配置することにより、混合粉末からのホウ素酸化物の揮発を抑制できる。これにより、h-BN粉末の生成反応に使用されるホウ素酸化物の量を増加させることができ、h-BN粉末の収率を向上させることができる。
 なお、本明細書において「ガス交換が起こらない」とは、反応容器内部の気体と反応容器外部の気体とが交換されないことを意味する。なお、加熱工程では、h-BN粉末の生成反応の進行、および混合粉末の揮発または分解により反応容器内部で気体が発生する。そのため、意図的に反応容器内部に外部から気体を取り入れなければよく、反応容器内部の気体を完全に反応容器外部に放出されないようにする必要はない。
 反応容器の構造、大きさ、形状、材質などは特に限定されず、加熱温度または原料などの製造条件を考慮して、十分な耐久性、耐熱性、耐圧性、耐腐食性などを有するように決定され得る。
 ガス交換が起こらないようにする機構としては、例えば反応容器として蓋付きの反応容器を使用することが挙げられる。蓋付きの反応容器であれば、蓋により外部と区切られているため、反応容器外部からの気体の流入を抑制することができ、ガス交換が起こらない。
 また、反応容器が完全に密閉されていると、h-BN粉末の生成反応の進行、および混合粉末の揮発または分解による気体の発生、または加熱による反応容器内の気体の膨張などにより、容器内部の圧力が高くなる。このような場合、反応容器が破損する虞があったり、反応容器を耐圧構造とするために反応容器の材質および形状に制限が発生したりする。そのため、h-BN粉末の収率に大きな影響を与えない範囲で、過剰な反応容器内部の気体を適宜放出させることが好ましい。
 過剰な反応容器内部の気体を放出する方法としては、例えば、反応容器に圧力調節弁を取り付ける方法、または反応容器に小さな穴を空けておく方法などが挙げられる。また、反応容器が蓋付き容器である場合は、蓋を反応容器上部に配置し、特に固定をせずに乗せ置くことで、内部圧力が低い時は蓋の自重により反応容器は密閉されるが、内部圧力が高くなれば蓋が持ち上げられて、反応容器内部の気体が外部に排出される。そのため、蓋付き容器とすることで簡便にガス交換が起こらないようにしつつ、過剰な反応容器内部の気体を放出することが可能であり、好ましい形態として挙げられる。この場合、単位面積当たりの蓋の重量は、5kg/m~20kg/mの範囲であることが好ましい。なお、単位面積当たりの蓋の重量は、蓋の重量を反応容器の内部空間に面する蓋の面積で除した値である。
 反応容器の形状は特に制限されず、円筒状または方形状など任意の形状を使用可能である。反応容器の形状は、加熱および冷却の繰り返しによる反応容器の破損を防止する観点からは円筒状であることが好ましく、加熱炉内に設置する際にスペースを有効活用して生産効率を向上させる観点からは方形状が好ましい。
 反応容器の材質は、加熱工程における加熱温度である1200℃以上1500℃以下に耐えられるものであれば特に制限されず、アルミナ、チタニア、ジルコニア、シリカ、マグネシアおよびカルシア、並びにシリカおよびアルミナを主成分とするコージライト、ムライト等の各種セラミックス焼結体が挙げられる。また、反応生成物であるh-BN粉末の汚染防止の観点からは、反応容器の材質を窒化ホウ素とすることも好ましい態様であり、窒化ホウ素以外の材料で製造した反応容器の内面(混合粉末および生成したh-BN粉末が接触する面)を窒化ホウ素で被覆することも好ましい様態として挙げることができる。
 反応容器の内部に配置する混合粉末の量は特に限定されないが、少なすぎると反応容器内の気相部が多いため、ホウ素酸化物の揮発が十分に抑制されず、収率の向上効果が限定的になってしまう。一方、混合粉末の量が多すぎると、気相部が少ないため反応容器内の圧力が上がりやすくなる。そのため、反応容器内で混合粉末が占める容積は、反応容器の容積の50%~90%の範囲内であることが好ましく、60%~80%であることがさらに好ましい。なお、本明細書において混合粉末が占める容積とは、反応容器に入れた際に混合粉末の粒子間の空隙も含んだ混合粉末が占める部分の容積である。
 ガス交換が起こらない反応容器の内部に配置した混合粉末を加熱する方法は特に限定されないが、加熱炉中に当該反応容器を設置して所望の温度に加熱することが、簡便に実施できるため好ましい形態である。
 (4-3.その他の工程)
 h-BN粉末の製造方法では、加熱工程以外の工程を含んでよい。このような工程を本明細書において「その他の工程」と称する。h-BN粉末の製造方法に含まれるその他の工程としては、例えば、混合工程、酸洗浄工程、水洗浄工程、乾燥工程、および分級工程が挙げられる。
 混合工程は、ホウ素酸化物、窒素を含む有機化合物、および炭酸リチウム等を加熱工程前に混合する工程である。事前に混合粉末を混合することにより、反応が略均一に進むため、作製されたh-BN一次粒子の粒子径等の変動が抑制される。
 酸洗浄工程は、酸を用いてh-BN粉末を洗浄することにより、h-BN粉末に付着した炭酸リチウム、酸化ホウ素、または炭酸リチウムおよび酸化ホウ素の複合酸化物等を除去する工程である。酸洗浄工程では、塩酸等の希酸を用いることが好ましい。酸洗浄方法は特に限定されず、シャワリングによる酸洗浄であってもよく、漬け置きによる酸洗浄、または撹拌による酸洗浄であってもよい。
 水洗浄工程は、酸洗浄工程でh-BN粉末に付着した酸を除去するために、h-BN粉末を水洗浄する工程である。水洗浄方法は特に限定されず、h-BN粉末を濾別後、シャワリングによる水洗浄であってもよく、漬け置きによる水洗浄であってもよい。
 乾燥工程は、作製したh-BN粉末を乾燥させる工程である。乾燥方法は、高温乾燥、または減圧乾燥など、特に限定されない。
 分級工程は、h-BN粉末を粒子の大きさおよび/または粒子の形状等に応じて分ける工程である。分級操作は、篩分けであってもよく、湿式分級または気流分級であってよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔まとめ〕
 〔1〕六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、比表面積が0.5m/g以上、5.0m/g以下であり、前記六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である、六方晶窒化ホウ素粉末。
 〔2〕タップ嵩密度が0.40g/cm以上である、〔1〕に記載の六方晶窒化ホウ素粉末。
 〔3〕粒度分布測定により測定されたD95が5~15μmである、〔1〕または〔2〕に記載の六方晶窒化ホウ素粉末。
 〔4〕〔1〕~〔3〕のいずれか1項に記載の六方晶窒化ホウ素粉末および樹脂を含む、樹脂組成物。
 〔5〕〔4〕に記載の樹脂組成物を含み、XRD測定による、前記六方晶窒化ホウ素一次粒子由来の(002)面と(100)面とのピーク比A=(002)/(100)から算出される面配向指数B=log(A/6.67)が0.95以下である、樹脂シート。
 〔6〕ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムとを含む混合粉末を加熱する加熱工程を含み、前記混合粉末における窒素原子に対するホウ素原子の重量比は、0.2以上、0.4以下であり、前記混合粉末における炭酸リチウムに対するホウ素原子の重量比は、0.22以上、0.98以下であり、前記加熱工程において、前記混合粉末を、最高温度1200℃以上、1500℃以下で加熱する、六方晶窒化ホウ素粉末の製造方法。
 〔7〕前記加熱工程は、加熱工程中にガス交換が起こらない反応容器の内部に前記混合粉末を配置して行われる、〔6〕に記載の六方晶窒化ホウ素粉末の製造方法。
 本発明の一実施例について以下に説明する。
 〔h-BN一次粒子の評価方法〕
 <長径・アスペクト比>
 h-BN一次粒子の長径およびアスペクト比はFE-SEM(日立ハイテクノロジーズ株式会社製:S5500)を用いて測定した。倍率5000倍の走査電子顕微鏡観察像から異なるh-BN一次粒子100個を無作為に選び、h-BN一次粒子の長径の長さ、厚みを測定してそれぞれのアスペクト比(長径の長さ/厚みの長さ)を算出し、その平均値をアスペクト比とした。また、長径の長さは、測定された値の平均値を算出して求めた。
 〔h-BN粉末の評価方法〕
 <比表面積>
 h-BN粉末の比表面積は、マウンテック社製:Macsorb HM model-1201を使用して測定した。
 <熱伝導率>
 樹脂シートの熱伝導率(W/m・K)は、熱拡散率(m/秒)×密度(kg/m)×比熱(J/kg・K)で求めた。
 熱拡散率は温度波熱分析法(アイフェイズ社製:ai-Phase Mobile u、ISO22007-3)、密度はアルキメデス法(メトラー・トレド社製:XS204V)、比熱は示差走査熱量計(DSC)法(リガク社製:Thermo Plus Evo DSC8230)を使用して測定した。
 <耐電圧>
 樹脂シートの耐電圧(kV/mm)は、京南電機社製:耐電圧試験器YPAD-0225を使用し、JIS K6911:2006の熱硬化性プラスチック一般試験方法の「5.8 耐電圧(成形材料)」に準じて測定した。
 <面配向指数>
 樹脂シートの面配向指数は、XRDを用いて測定した。測定装置としては、Rigaku社製全自動水平型多目的X線回折装置 SmartLabを用いた。測定条件はスキャンスピード20度/分、ステップ幅0.02度、スキャン範囲10~90度とした。
 <粒度分布>
 h-BN粉末の粒度分布は、日機装株式会社製:粒子径分布測定装置MT3000を使用して測定した。なお、測定サンプルは、以下に示す方法により調製した。まず、50mLスクリュー管瓶にエタノール20gを分散媒として加え、エタノール中にh-BN粉末1gを分散させた。次いでBRANSON社製:超音波ホモジナイザー(SONIFIER SFX250)を用いて、チップ先端をスクリュー管底面から10mmに設置し、振幅40%、20分間の超音波処理を行った。そして、超音波処理を行った測定サンプルの粒度分布測定を行った。
 <タップ嵩密度>
 h-BN粉末のタップ嵩密度は、株式会社セイシン企業製:タップデンサーKYT-5000を使用して測定した。100mLの試料セルを用い、測定条件は、タップ速度120回/分、タップ高さ5cm、タップ回数500回とした。
 <樹脂充填粘度>
 シリコーン樹脂(ダウ・東レ株式会社製CY52-276A)にh-BN粉末を20体積%充填することにより作製した樹脂組成物について、レオメーター(TA Instruments社AR2000ex)で測定温度25℃、せん断速度1/S時の粘度を測定した。この粘度を、樹脂充填粘度とした。
 <DBP吸収量>
 h-BN粉末についてJIS-K-6217-4に準拠して測定した横軸:DBP滴下量(mL)、縦軸:トルク(Nm)、の曲線から算出されるDBP吸収量(mL/100g)を求めた。測定装置としては、株式会社あさひ総研製:S-500を用いた。測定条件は、DBP滴下速度4mL/min、撹拌翼回転数125rpm、試料投入量15~25g、最大トルクの70%の滴下量を用いてDBP吸収量とした。DBP(Dibutyl Phthalate)としては和光純薬工業株式会社製:特級試薬(販売元コード021-06936)を用いた。
 〔実施例1〕
 まず、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン24g、炭酸リチウム10.4g、を混合することによって混合粉末を作製した。作製した混合粉末において、B/Nは、0.28であり、B/LiCOは0.44であった。
 作製した混合粉末に対してバッチ式焼成炉を用い、加熱工程において、窒素雰囲気下で最高温度1400℃にて1時間加熱することによりh-BN粉末を作製した。作製したh-BN粉末を5%塩酸水溶液で酸洗浄した後、濾別、水洗浄、および乾燥させた。図1は、実施例1に係るh-BN粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。
 基剤樹脂として、エポキシ樹脂(三菱化学株式会社製JER806)100重量部と硬化剤(脂環式ポリアミン系硬化剤、三菱化学株式会社製JERキュア113)28重量部との混合物を準備した。
 次に、各基材樹脂40体積%と、作製したh-BN粉末60体積%とをメチルエチルケトンを溶媒として混合した後、溶媒を乾固させて樹脂組成物を得た。
 乾固させた樹脂組成物を金型体に注型し、熱プレスを使用し、温度:150℃、圧力:5MPa、保持時間:1時間の条件で硬化させ、直径10mm、厚さ0.15mmのシートを作製した。
 〔実施例2〕
 加熱工程における最高温度が1500℃であること以外は実施例1と同様の方法で、h-BN粉末、樹脂組成物および樹脂シートを作製した。図2は、実施例2に係るh-BN粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。
 〔実施例3〕
 加熱工程において、作製した混合粉末を、上部に蓋のある、ガス交換が起こらない蓋付き反応容器に入れた。蓋付き反応容器は、内寸170mm×170mm×高さ30mm(容積867000mm)であり、蓋の重量が300g(単位面積当たりの蓋の重量:0.0104g/mm)である。そして、混合粉末を入れた蓋付き反応容器をバッチ式焼成炉内に配置して加熱した以外は、実施例1と同様の方法でh-BN粉末を作製した。なお、蓋付き反応容器内における混合粉末の容積は、578000mmであり、蓋付き反応容器内で混合粉末が占める容積は67%であった。
 〔比較例1〕
 比較例1として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン40g、炭酸リチウム10.4g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.17であり、B/LiCOが0.44であった。メラミンの量が多いこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
 〔比較例2〕
 比較例2として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン12.3g、炭酸リチウム10.4g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.55であり、B/LiCOが0.44であった。メラミンの量が少ないこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
 〔比較例3〕
 比較例3として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン24g、炭酸リチウム3.76g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.28であり、B/LiCOが1.22であった。炭酸リチウムの量が少ないこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
 〔比較例4〕
 比較例4として、ホウ素酸化物として酸化ホウ素14.6g、窒素を含む有機化合物としてメラミン24g、炭酸リチウム25g、を混合することによって混合粉末を作製した。作製した混合粉末は、B/Nが0.28であり、B/LiCOが0.18であった。炭酸リチウムの量が多いこと以外は実施例2と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
 〔比較例5〕
 比較例5として、加熱工程における最高温度を1100℃へ変更したこと以外は実施例1と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
 〔比較例6〕
 比較例6として、加熱工程における最高温度を1600℃へ変更したこと以外は実施例1と同じ方法によりh-BN粉末、樹脂組成物および樹脂シートを作製した。
 〔比較例7〕
 h-BN粉末を株式会社MARUKA製AP-10Sへ変更したこと以外は、実施例1と同じ方法により樹脂組成物および樹脂シートを作製した。図3は、比較例7に係るh-BN粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。
 〔比較例8〕
 h-BN粉末を日新リフラテック株式会社製RBNへ変更したこと以外は、実施例1と同じ方法により樹脂組成物および樹脂シートを作製した。図4は、比較例8に係る六方晶窒化ホウ素粉末の走査電子顕微鏡画像を示す図であり、(a)は2000倍、(b)は5000倍、(c)は10000倍に拡大して撮影した図である。
 〔結果〕
 表1~3に、h-BN粉末および樹脂シートの作製条件および物性等を示す。また、表4にh-BN粉末の収率を示す。収率は、原料の混合粉末中のホウ素原子の量から計算されるh-BNの作製量に対する実際に得られたh-BN粉末の量として算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~3では、長径およびアスペクト比が特定の範囲であるh-BN一次粒子、並びに比表面積が特定の範囲であるh-BN粉末が得られた。また、実施例1および実施例2にて作製したh-BN粉末はいずれも樹脂充填粘度が低いため、樹脂に対してh-BN粉末を高密度に充填できると考えられる。さらに、樹脂シートの面配向指数も0.95以下を示し、異方性が改善されていた。そして、実施例1および実施例2にて作製した樹脂シートは、熱伝導性および絶縁耐力ともに良好であった。以上のことより、長径およびアスペクト比が特定の範囲であるh-BN一次粒子を凝集させたh-BN凝集粒子を含み、かつ比表面積が特定の範囲であるh-BN粉末を用いることにより、高熱伝導性および高絶縁耐力を示す樹脂シートが得られることがわかる。
 また、実施例1と実施例3とを比較すると、加熱工程において、ガス交換が起こらない反応容器の内部に前記混合粉末を配置した実施例3は、ガス交換が起こらない反応容器を使用していない実施例1と比較して高い収率でh-BNを製造することができた。
 実施例2に比べてB/Nが低い比較例1の作製方法では、h-BN一次粒子の長径が長くなった。また、h-BN粉末は、タップ嵩密度が小さいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。
 実施例2に比べB/Nが高い比較例2の作製方法では、h-BN一次粒子のアスペクト比が大きくなった。また、h-BN粉末は、樹脂充填密度が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、絶縁耐力に劣った。
 実施例2に比べB/LiCOが高い比較例3の作製方法では、h-BN一次粒子のアスペクト比が大きくなった。また、h-BN粉末は、比表面積および樹脂充填密度が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、絶縁耐力に劣った。
 実施例2に比べB/LiCOが低い比較例4の作製方法では、h-BN一次粒子の長径が長くなった。また、h-BN粉末は、タップ嵩密度が小さいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。
 実施例2に比べ加熱工程における最高温度が低い比較例5の作製方法では、h-BN一次粒子の長径が小さくなり、アスペクト比が大きくなった。また、h-BN粉末は、比表面積、D95および樹脂充填密度が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。
 実施例2に比べ加熱工程における最高温度が高い比較例6の作製方法では、h-BN一次粒子の長径およびアスペクト比が大きくなった。また、h-BN粉末は、タップ嵩密度が小さく、かつ、D95が大きいため、充填性に劣ると考えられる。このh-BN粉末を用いて得られた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。
 比較例7において、アスペクト比および比表面積が大きいMARUKA社製AP-10Sは、樹脂充填粘度が高いため、充填性に劣ると考えられる。このh-BN粉末を用いた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性および絶縁耐力に劣った。
 比較例8において、比表面積が大きく、タップ嵩密度が小さい日新リフラ社製のRBNは、樹脂充填粘度が高いため、充填性に劣ると考えられる。このh-BN粉末を用いた樹脂シートは、面配向指数も0.95を超え、異方性があった。そして、この樹脂シートは、熱伝導性に劣った。
 本発明は、熱伝導性および絶縁耐力に優れた電子部品に利用することができる。

 

Claims (7)

  1.  六方晶窒化ホウ素一次粒子が凝集した六方晶窒化ホウ素凝集粒子を含み、
     比表面積が0.5m/g以上、5.0m/g以下であり、
     前記六方晶窒化ホウ素一次粒子の長径が0.6μm以上、4.0μm以下、かつ、アスペクト比が1.5以上、5.0以下である、六方晶窒化ホウ素粉末。
  2.  タップ嵩密度が0.40g/cm以上である、請求項1に記載の六方晶窒化ホウ素粉末。
  3.  粒度分布測定により測定されたD95が5~15μmである、請求項1または2に記載の六方晶窒化ホウ素粉末。
  4.  請求項1~3のいずれか1項に記載の六方晶窒化ホウ素粉末および樹脂を含む、樹脂組成物。
  5.  請求項4に記載の樹脂組成物を含み、
     XRD測定による、前記六方晶窒化ホウ素一次粒子由来の(002)面と(100)面とのピーク比A=(002)/(100)から算出される面配向指数B=log(A/6.67)が0.95以下である、樹脂シート。
  6.  ホウ素酸化物と、窒素を含む有機化合物と、炭酸リチウムとを含む混合粉末を加熱する加熱工程を含み、
     前記混合粉末における窒素原子に対するホウ素原子の重量比は、0.2以上、0.4以下であり、
     前記混合粉末における炭酸リチウムに対するホウ素原子の重量比は、0.22以上、0.98以下であり、
     前記加熱工程において、前記混合粉末を、最高温度1200℃以上、1500℃以下で加熱する、六方晶窒化ホウ素粉末の製造方法。
  7.  前記加熱工程は、加熱工程中にガス交換が起こらない反応容器の内部に前記混合粉末を配置して行われる、請求項6に記載の六方晶窒化ホウ素粉末の製造方法。

     
PCT/JP2020/008288 2019-03-01 2020-02-28 六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法 WO2020179662A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217017877A KR20210132639A (ko) 2019-03-01 2020-02-28 육방정 질화붕소 분말, 수지 조성물, 수지 시트 및 육방정 질화붕소 분말의 제조 방법
CN202080006815.4A CN113165874B (zh) 2019-03-01 2020-02-28 六方晶氮化硼粉末、树脂组合物、树脂片以及六方晶氮化硼粉末的制造方法
US17/312,567 US20220041445A1 (en) 2019-03-01 2020-02-28 Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
JP2021504045A JP7431417B2 (ja) 2019-03-01 2020-02-28 六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法
EP20766617.3A EP3932858A4 (en) 2019-03-01 2020-02-28 HEXAGONAL BORON NITRIDE POWDER, RESIN COMPOSITION, RESIN SHEET, AND METHOD FOR PRODUCTION OF HEXAGONAL BORON NITRIDE POWDER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-037541 2019-03-01
JP2019037541 2019-03-01
JP2019-168462 2019-09-17
JP2019168462 2019-09-17

Publications (1)

Publication Number Publication Date
WO2020179662A1 true WO2020179662A1 (ja) 2020-09-10

Family

ID=72338735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008288 WO2020179662A1 (ja) 2019-03-01 2020-02-28 六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法

Country Status (7)

Country Link
US (1) US20220041445A1 (ja)
EP (1) EP3932858A4 (ja)
JP (1) JP7431417B2 (ja)
KR (1) KR20210132639A (ja)
CN (1) CN113165874B (ja)
TW (1) TWI832979B (ja)
WO (1) WO2020179662A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158127A1 (ja) * 2021-01-20 2022-07-28 国立大学法人信州大学 窒化ホウ素の製造方法
JP7175412B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP7175413B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2022255294A1 (ja) * 2021-06-02 2022-12-08 株式会社トクヤマ 六方晶窒化ホウ素粉末
WO2023120092A1 (ja) 2021-12-21 2023-06-29 株式会社トクヤマ 六方晶窒化ホウ素粉末およびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059702A (ja) 1996-08-09 1998-03-03 Otsuka Chem Co Ltd 窒化ホウ素及びその製造方法
JP2006188411A (ja) 2004-12-28 2006-07-20 General Electric Co <Ge> 窒化ホウ素の製造方法
WO2009041300A1 (ja) * 2007-09-26 2009-04-02 Mitsubishi Electric Corporation 熱伝導性シート及びパワーモジュール
WO2015122378A1 (ja) 2014-02-12 2015-08-20 電気化学工業株式会社 窒化ホウ素微粒子およびその製造方法
JP2016141600A (ja) 2015-02-02 2016-08-08 三菱化学株式会社 六方晶窒化ホウ素単結晶およびその製造方法、該六方晶窒化ホウ素単結晶を配合した複合材組成物並びに該複合材組成物を成形してなる放熱部材
WO2017145869A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
WO2018123571A1 (ja) * 2016-12-26 2018-07-05 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP2018165241A (ja) * 2017-03-28 2018-10-25 デンカ株式会社 六方晶窒化ホウ素粉末、その製造方法、及び化粧料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898009A (en) * 1996-03-19 1999-04-27 Advanced Ceramics Corporation High density agglomerated boron nitride particles
CN101970549A (zh) * 2008-03-18 2011-02-09 株式会社钟化 高导热性树脂成形体
JP2011021069A (ja) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd 放熱性フィラー組成物、樹脂組成物、放熱性グリース及び放熱性塗料組成物
KR102187240B1 (ko) * 2013-03-07 2020-12-04 덴카 주식회사 질화 붕소 분말 및 이를 함유하는 수지 조성물
WO2017038512A1 (ja) * 2015-09-03 2017-03-09 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
KR102265035B1 (ko) * 2016-12-28 2021-06-15 쇼와 덴코 가부시키가이샤 육방정 질화붕소 분말, 그 제조 방법, 수지 조성물 및 수지 시트
JP6822836B2 (ja) * 2016-12-28 2021-01-27 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059702A (ja) 1996-08-09 1998-03-03 Otsuka Chem Co Ltd 窒化ホウ素及びその製造方法
JP2006188411A (ja) 2004-12-28 2006-07-20 General Electric Co <Ge> 窒化ホウ素の製造方法
WO2009041300A1 (ja) * 2007-09-26 2009-04-02 Mitsubishi Electric Corporation 熱伝導性シート及びパワーモジュール
WO2015122378A1 (ja) 2014-02-12 2015-08-20 電気化学工業株式会社 窒化ホウ素微粒子およびその製造方法
JP2016141600A (ja) 2015-02-02 2016-08-08 三菱化学株式会社 六方晶窒化ホウ素単結晶およびその製造方法、該六方晶窒化ホウ素単結晶を配合した複合材組成物並びに該複合材組成物を成形してなる放熱部材
WO2017145869A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
WO2018123571A1 (ja) * 2016-12-26 2018-07-05 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP2018165241A (ja) * 2017-03-28 2018-10-25 デンカ株式会社 六方晶窒化ホウ素粉末、その製造方法、及び化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3932858A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158127A1 (ja) * 2021-01-20 2022-07-28 国立大学法人信州大学 窒化ホウ素の製造方法
JP7175412B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP7175413B1 (ja) * 2021-06-02 2022-11-18 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2022255294A1 (ja) * 2021-06-02 2022-12-08 株式会社トクヤマ 六方晶窒化ホウ素粉末
WO2023120092A1 (ja) 2021-12-21 2023-06-29 株式会社トクヤマ 六方晶窒化ホウ素粉末およびその製造方法

Also Published As

Publication number Publication date
KR20210132639A (ko) 2021-11-04
TWI832979B (zh) 2024-02-21
EP3932858A1 (en) 2022-01-05
JP7431417B2 (ja) 2024-02-15
CN113165874B (zh) 2024-01-23
JPWO2020179662A1 (ja) 2020-09-10
EP3932858A4 (en) 2022-12-21
CN113165874A (zh) 2021-07-23
TW202043141A (zh) 2020-12-01
US20220041445A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2020179662A1 (ja) 六方晶窒化ホウ素粉末、樹脂組成物、樹脂シートおよび六方晶窒化ホウ素粉末の製造方法
JP7207384B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP7069485B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
KR20160078340A (ko) 수지 조성물, 방열 재료 및 방열 부재
JP2018104260A (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP7517323B2 (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
JP7467980B2 (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイスの製造方法
WO2021193046A1 (ja) 六方晶窒化ホウ素粉末の製造方法
JP7152003B2 (ja) 高熱伝導性無機フィラー複合粒子及びその製造方法
TW202243990A (zh) 六方晶氮化硼粉末及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020766617

Country of ref document: EP