WO2020179579A1 - 化合物、組成物、フィルム、積層構造体、発光装置、ディスプレイ及び化合物の製造方法 - Google Patents

化合物、組成物、フィルム、積層構造体、発光装置、ディスプレイ及び化合物の製造方法 Download PDF

Info

Publication number
WO2020179579A1
WO2020179579A1 PCT/JP2020/007706 JP2020007706W WO2020179579A1 WO 2020179579 A1 WO2020179579 A1 WO 2020179579A1 JP 2020007706 W JP2020007706 W JP 2020007706W WO 2020179579 A1 WO2020179579 A1 WO 2020179579A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
perovskite
composition
perovskite compound
Prior art date
Application number
PCT/JP2020/007706
Other languages
English (en)
French (fr)
Inventor
翔太 内藤
瑞穂 杉内
孝 有村
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080032179.2A priority Critical patent/CN113784925B/zh
Publication of WO2020179579A1 publication Critical patent/WO2020179579A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/16Halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/20Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic unsaturated carbon skeleton
    • C07C211/21Monoamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/30Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having nitrogen atoms of imino groups quaternised
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a compound, a composition, a film, a laminated structure, a light emitting device, a display, and a method for producing a compound.
  • a light emitting semiconductor compound As a light emitting material, a light emitting semiconductor compound is drawing attention. In order to manufacture a light-emitting material having high color purity, a light-emitting semiconductor compound is required to have a narrow half-width of the emission spectrum and a sharp emission peak.
  • Non-Patent Document 1 a compound having a perovskite type crystal structure has been reported (Non-Patent Document 1).
  • the compound having the perovskite type crystal structure described in Non-Patent Document 1 has a wide half-value width of the emission spectrum and cannot be expected to improve the color purity.
  • the present invention has been made in view of the above problems, the half width of the emission spectrum is narrow, a compound having a perovskite type crystal structure, a composition containing the compound, a film using the composition as a forming material, and It is an object of the present invention to provide a laminated structure including a film, a light emitting device including the laminated structure, a display, and a method for producing a compound.
  • the present invention includes the following [1] to [10].
  • (A is a component located at each apex of the hexahedron centered on B in the perovskite type crystal structure, and is a monovalent cation.
  • X is a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is at least one anion selected from the group consisting of halide ions and thiocyanate ions.
  • B is a component located at the center of a hexahedron having A at its apex and an octahedron having X at its apex, and is a metal ion.
  • the present invention includes a step of mixing a raw material containing either one or both of a simple substance of the metal element M and a compound containing the metal element M and water, and a step of reacting the raw material in the presence of the water.
  • a method of manufacturing a semiconductor compound for the mass W M of a metal element M contained in the raw material, is the ratio of the mass W W of the water (W W / W M) is 0.05 ⁇ 100, X A method for producing a semiconductor compound containing a metal element M in which a half-value width of a peak of a surface mirror index (001) is 0.10 or more and less than 0.60 in a line diffraction pattern.
  • a compound having a narrow half-width of emission spectrum having a perovskite type crystal structure, a composition containing the compound, a film using the composition as a forming material, a laminated structure containing the film, the laminated structure
  • a light emitting device having a body and a display can be provided. Further, according to the present invention, it is possible to provide a method for producing a compound having a narrow half-value width of the emission spectrum.
  • the compound of the present embodiment is a compound having a perovskite type crystal structure having A, B and X as constituent components (hereinafter, also referred to as “(1) perovskite compound” or simply “(1)”).
  • A is a component located at each vertex of a hexahedron centered on B and is a monovalent cation.
  • B is a component located at the center of a hexahedron in which A is arranged at the apex and an octahedron in which X is arranged at the apex in the perovskite type crystal structure, and is a metal ion.
  • B is a metal cation capable of taking the octahedral coordination of X.
  • X is a component located at each vertex of the octahedron centered on B in the perovskite type crystal structure, and is at least one anion selected from the group consisting of halide ion and thiocyanate ion.
  • the structure of the perovskite compound having A, B, and X as constituent components may be any of a three-dimensional structure, a two-dimensional structure, and a pseudo two-dimensional (quasi-2D) structure.
  • the composition formula of the perovskite compound is represented by ABX (3+ ⁇ ) .
  • the composition formula of the perovskite compound is represented by A 2 BX (4+ ⁇ ) .
  • is a number that can be appropriately changed according to the charge balance of B, and is ⁇ 0.7 or more and 0.7 or less.
  • A is a monovalent cation
  • B is a divalent cation
  • X is a monovalent anion
  • can be selected so that the perovskite compound becomes electrically neutral.
  • the perovskite compound is electrically neutral, it means that the charge of the perovskite compound is zero.
  • the perovskite compound contains an octahedron centered on B and with the apex X.
  • the octahedron is represented by BX 6 . If perovskite compound has a 3-dimensional structure, BX 6 contained in the perovskite compound, share one X is located at the apex in octahedral (BX 6), 2 octahedral adjacent in the crystal (BX 6) By doing so, a three-dimensional network is constructed.
  • perovskite compound has a two-dimensional structure, BX 6 contained in the perovskite compound, shared by the two X located at the vertices in octahedral (BX 6), 2 octahedral adjacent in the crystal (BX 6) By doing so, the ridgeline of the octahedron is shared and a two-dimensionally continuous layer is formed.
  • the perovskite compound has a structure in which two-dimensionally continuous layers of BX 6 and layers of A are alternately laminated.
  • the crystal structure of the perovskite compound can be confirmed by an X-ray diffraction pattern (hereinafter, also referred to as XRD). Furthermore, the crystal distribution of each perovskite compound in the aggregate of perovskite compounds composed of a plurality of perovskite compounds can also be confirmed by XRD.
  • XRD X-ray diffraction pattern
  • the perovskite compound preferably has a three-dimensional structure.
  • the half width is preferably 0.15 (deg) or more and 0.50 (deg) or less, preferably 0.20 (deg) or more and 0.30 (deg) or less, and 0.15 (deg) or more and 0. It is preferably 0.28 (deg) or less, more preferably 0.20 (deg) or more and 0.25 (deg) or less.
  • the half-value width of the peak is 0.20 or more, in addition to the above effects, the absorption rate of excitation light is improved.
  • 0.05 mL of the dispersion liquid composition containing the perovskite compound of the present embodiment or the semiconductor compound produced by the production method described below is added dropwise to a washed non-reflective plate and air-dried.
  • a constituting the perovskite compound is a monovalent cation.
  • Examples of A include cesium ion, organic ammonium ion, and amidinium ion.
  • organic ammonium ion Specific examples of the organic ammonium ion of A include a cation represented by the following formula (A3).
  • R 6 to R 9 independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group. However, at least one of R 6 to R 9 is an alkyl group or a cycloalkyl group, and all of R 6 to R 9 are not hydrogen atoms at the same time.
  • the alkyl group represented by R 6 to R 9 may be linear or branched.
  • the alkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.
  • the alkyl groups represented by R 6 to R 9 have an independent number of carbon atoms, usually 1 to 20, preferably 1 to 4, and more preferably 1 to 3. It is more preferably 1. In some embodiments, the number of carbon atoms of the alkyl groups represented by R 6 to R 9 is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 independently. , 14, 15, 16, 17, 18, 19 and above. In another embodiment, the number of carbon atoms of the alkyl groups represented by R 6 to R 9 is 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, respectively. It is 8, 7, 6, 5, 4, 3, 2 or less.
  • the cycloalkyl groups represented by R 6 to R 9 may each independently have an amino group as a substituent.
  • the cycloalkyl groups represented by R 6 to R 9 have an independent number of carbon atoms, usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8. ..
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the carbon atoms of the cycloalkyl groups represented by R 6 to R 9 are independently 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 , 14, and so on. It is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or more.
  • the carbon atoms of the cycloalkyl groups represented by R 6 to R 9 are independently 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19 respectively. , 18, 17, 16, 15, 14, 13, 12, 12, 11, 10, 9, 8, 7, 6, 5, and 4 or less.
  • the groups represented by R 6 to R 9 are preferably hydrogen atoms or alkyl groups, respectively.
  • the perovskite compound contains, as A, an organic ammonium ion represented by the above formula (A3)
  • the number of alkyl groups and cycloalkyl groups that can be contained in the formula (A3) is preferably small.
  • the number of carbon atoms of the alkyl group and the cycloalkyl group which can be included in the formula (A3) is preferably small. This makes it possible to obtain a perovskite compound having a three-dimensional structure with high emission intensity.
  • the total number of carbon atoms contained in the alkyl group and cycloalkyl group represented by R 6 to R 9 is preferably 1 to 4.
  • one of R 6 ⁇ R 9 is an alkyl group having 1 to 3 carbon atoms
  • three of R 6 ⁇ R 9 is a hydrogen atom More preferably.
  • the alkyl group of R 6 to R 9 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group.
  • the cycloalkyl group of R 6 ⁇ R 9, include those independently R 6 ⁇ exemplified alkyl group having 3 or more carbon atoms in the alkyl group R 9 is to form a ring.
  • Examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group.
  • the present invention is not limited to these.
  • the organic ammonium ion represented by A is CH 3 NH 3 + (also referred to as methylammonium ion), C 2 H 5 NH 3 + (also referred to as ethylammonium ion), or C 3 H 7 NH. 3 + (also called propyl ammonium ions.) is preferably, more preferably a methyl ammonium ion or tetraethylammonium ion, more preferably a methyl ammonium ion.
  • R 10 to R 13 independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
  • the alkyl groups represented by R 10 to R 13 may be independently linear or branched.
  • the alkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
  • the alkyl groups represented by R 10 to R 13 have usually independently usually 1 to 20 carbon atoms, preferably 1 to 4 and more preferably 1 to 3.
  • the number of carbon atoms of the alkyl groups represented by R 10 to R 13 is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 independently. , 14, 15, 16, 17, 18, 19 and above.
  • the number of carbon atoms of the alkyl groups represented by R 10 to R 13 is 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, respectively. It is 8, 7, 6, 5, 4, 3, 2 or less.
  • the cycloalkyl groups represented by R 10 to R 13 may each independently have an amino group as a substituent.
  • the cycloalkyl groups represented by R 10 to R 13 have usually independently usually 3 to 30, preferably 3 to 11, and more preferably 3 to 8. ..
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the carbon atoms of the cycloalkyl groups represented by R 10 to R 13 are independently 3, 4, 5, 6, 7, 8, 9, 10 , 11, 12 , 13 , 14 , and so on. It is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or more.
  • the carbon atoms of the cycloalkyl groups represented by R 10 to R 13 are independently 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19 respectively. , 18, 17, 16, 15, 14, 13, 12, 12, 11, 10, 9, 8, 7, 6, 5, and 4 or less.
  • alkyl group of R 10 to R 13 include the same groups as the alkyl groups exemplified in R 6 to R 9 each independently.
  • cycloalkyl group of R 10 to R 13 include the same groups as the cycloalkyl group exemplified in R 6 to R 9 each independently.
  • the groups represented by R 10 to R 13 are preferably each independently a hydrogen atom or an alkyl group.
  • the total number of carbon atoms contained in the alkyl group represented by R 10 to R 13 and the cycloalkyl group in the amidinium ion is preferably 1 to 4, and R 10 has 1 carbon atom. It is more preferably an alkyl group in which R 11 to R 13 are hydrogen atoms.
  • the perovskite compound when A is a cesium ion, an organic ammonium ion having 3 or less carbon atoms, or an amidinium ion having 3 or less carbon atoms, the perovskite compound generally has a three-dimensional structure.
  • the perovskite compound when A is an organic ammonium ion having 4 or more carbon atoms or an amidinium ion having 4 or more carbon atoms, the perovskite compound has either a two-dimensional structure or a pseudo two-dimensional (quasi-2D) structure. Have one or both. In this case, the perovskite compound can have a two-dimensional structure or a pseudo-two-dimensional structure in a part or the whole of the crystal. When a plurality of two-dimensional perovskite type crystal structures are laminated, they become equivalent to a three-dimensional perovskite type crystal structure (references: P. PBoix et al., J. Phys. Chem. Lett. 2015, 6, 898-907 etc.).
  • a in the perovskite compound is preferably a cesium ion or an amidinium ion, more preferably an amidinium ion.
  • perovskite compound only one type of A may be used, or two or more types may be used in combination.
  • Component B constituting the perovskite compound may be one or more kinds of metal ions selected from the group consisting of monovalent metal ions, divalent metal ions, and trivalent metal ions.
  • B preferably comprises a divalent metal ion, more preferably one or more metal ions selected from the group consisting of lead ions, tin ions, antimony ions, bismuth ions, and indium ions. Lead ions or tin ions are more preferable, and lead ions are particularly preferable.
  • Component X constituting the perovskite compound may be at least one anion selected from the group consisting of a halide ion and a thiocyanate ion.
  • halide ion chloride ion, bromide ion, fluoride ion, iodide ion can be mentioned.
  • X is preferably a bromide ion.
  • the content ratio of the halide ions can be appropriately selected depending on the emission wavelength.
  • it can be a combination of a bromide ion and a chloride ion, or a combination of a bromide ion and an iodide ion.
  • X can be appropriately selected according to the desired emission wavelength.
  • the perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 480 nm or more, preferably 500 nm or more, more preferably 520 nm or more.
  • the perovskite compound where X is a bromide ion is 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650. , 660, 670, 680, and 690 nm or more can emit fluorescence having a maximum intensity peak.
  • the perovskite compound in which X is a bromide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 700 nm or less, preferably 600 nm or less, more preferably 580 nm or less.
  • the perovskite compound in which X is a bromide ion is 700, 690, 680, 670, 660, 650, 640, 630, 620, 600, 590, 580, 570, 560, 550, 540, 530, 520. It is possible to emit fluorescence having a maximum intensity peak in the wavelength range of 510 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of fluorescence emitted is usually 480 to 700 nm, preferably 500 to 600 nm, and more preferably 520 to 580 nm.
  • the perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 520 nm or more, preferably 530 nm or more, more preferably 540 nm or more.
  • the perovskite compound where X is an iodide ion is 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, It can emit fluorescence having a maximum intensity peak in the wavelength range of 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790 nm or more.
  • the perovskite compound in which X is an iodide ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 800 nm or less, preferably 750 nm or less, more preferably 730 nm or less.
  • the perovskite compound where X is iodide is 800, 790, 780, 770, 760, 750, 740, 730, 720, 710, 700, 690, 680, 670, 660, 650, 640, It can emit fluorescence having a maximum intensity peak in the wavelength range of 630, 620, 600, 590, 580, 570, 560, 550, 540 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the emission peak of fluorescence is usually 520 to 800 nm, preferably 530 to 750 nm, and more preferably 540 to 730 nm.
  • the perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 300 nm or more, preferably 310 nm or more, more preferably 330 nm or more.
  • the perovskite compound in which X is chloride is 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, It can emit fluorescence having a maximum intensity peak in a wavelength range of 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590 nm or more.
  • the perovskite compound in which X is a chloride ion can emit fluorescence having a maximum intensity peak in a wavelength range of usually 600 nm or less, preferably 580 nm or less, more preferably 550 nm or less.
  • the perovskite compound in which X is chloride ion is 600, 590, 580, 570, 560, 550, 540, 530, 520, 510, 500, 490, 480, 470, 460, 450, 440, It can emit fluorescence having a maximum intensity peak in the wavelength range of 430, 420, 410, 400, 390, 380, 370, 360, 350, 340, 330, 320, 310 nm or less.
  • the upper limit value and the lower limit value of the above wavelength range can be arbitrarily combined.
  • the peak of fluorescence emitted is usually 300 to 600 nm, preferably 310 to 580 nm, and more preferably 330 to 550 nm.
  • Preferred examples of the perovskite compound having a three-dimensional structure represented by ABX (3+ ⁇ ) include CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr (3-y.
  • the perovskite compound having a three-dimensional structure examples include CH 3 NH 3 Pb (1-a) Ca a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Sr a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) La a Br (3+ ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ 0.7), CH 3 NH 3 Pb ( 1-a) Ba a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Dy a Br (3+ ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ 0.7 ) Can also be mentioned, but is not limited to these.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ⁇ 0), CH 3 NH. 3 Pb (1-a) Li a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned, but is not limited thereto.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CsPb (1-a) Na a Br (3+ ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ 0) and CsPb (1-a) Li. a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0) can also be mentioned, but is not limited thereto.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Na a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3+ ⁇ y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ 0, 0 ⁇ y ⁇ 3 ), CH 3 NH 3 Pb (1-a) Na a Br (3+ ⁇ -y) Cl y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ 0, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Li a Br (3+ ⁇ y) Cl y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ 0, 0 ⁇ y ⁇ 3) can also be mentioned. Is not limited.
  • Preferred examples of the three-dimensional perovskite compound include CsPbBr 3 , CsPbCl 3 , CsPbI 3 , CsPbBr (3-y) I y (0 ⁇ y ⁇ 3), CsPbBr (3-y) Cl y (0 ⁇ y ⁇ 3) can also be mentioned, but the invention is not limited thereto.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb (1-a) Al a Br ( 3+ ⁇ ) (0 ⁇ a ⁇ 0.7, 0 ⁇ 0.7), CH 3 NH 3 Pb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CH 3 NH 3 Pb ( 1-a) Mn a Br 3 (0 ⁇ a ⁇ 0.7) and CH 3 NH 3 Pb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7) can also be mentioned. Is not limited.
  • Preferred examples of perovskite compound having a three-dimensional structure is, CsPb (1-a) Zn a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Al a Br (3 + ⁇ ) (0 ⁇ a ⁇ 0 .7,0 ⁇ ⁇ 0.7), CsPb (1-a) Co a Br 3 (0 ⁇ a ⁇ 0.7), CsPb (1-a) Mn a Br 3 (0 ⁇ a ⁇ 0.7 ), CsPb (1-a) Mg a Br 3 (0 ⁇ a ⁇ 0.7), but is not limited thereto.
  • Preferred examples of the perovskite compound having a three-dimensional structure include CH 3 NH 3 Pb (1-a) Zn a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Al a Br (3 + ⁇ -y) I y (0 ⁇ a ⁇ 0.7,0 ⁇ ⁇ 0.7,0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1- a) Co a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Mn a Br (3-y) I y (0 ) ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Mg a Br (3-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 3), CH 3 NH 3 Pb (1-a) Zn a Br (3-y) Cl y (0 ⁇ a ⁇ 0.7
  • CsPbBr 3 , CsPbBr (3-y) I y (0 ⁇ y ⁇ 3), (H 2 N CH-NH 2 ) PbBr 3 are more preferable, and (H 2 N). ⁇ CH—NH 2 )PbBr 3 is more preferred.
  • perovskite compound having a two-dimensional structure Preferable examples of the perovskite compound having a two-dimensional structure include (C 4 H 9 NH 3 ) 2 PbBr 4 , (C 4 H 9 NH 3 ) 2 PbCl 4 , (C 4 H 9 NH 3 ) 2 PbI 4 , and (C 7 H 15 NH 3 ) 2 PbBr 4 , (C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, -0.7 ⁇ ⁇ ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ ) (0 ⁇ a ⁇ ) 0.7, ⁇ 0.7 ⁇ 0), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb
  • a preferable example of the perovskite compound having a two-dimensional structure is (C 7 H 15 NH 3 ) 2 Pb (1-a) Na a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ 0. ), (C 7 H 15 NH 3 ) 2 Pb (1-a) Li a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ 0), (C 7 H 15 NH 3 ).
  • 2 Pb (1-a) Rb a Br (4 + ⁇ ) (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ 0) can also be mentioned, but is not limited thereto.
  • a preferable example of the perovskite compound having a two-dimensional structure is (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4+ ⁇ -y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7). ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+ ⁇ y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+ ⁇ y) I y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4) can also be mentioned, but is not limited thereto.
  • Preferred examples of perovskite compound in two-dimensional structure (C 4 H 9 NH 3 ) 2 Pb (1-a) Na a Br (4 + ⁇ -y) Cl y (0 ⁇ a ⁇ 0.7, -0.7 ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+ ⁇ -y) Cl y (0 ⁇ a ⁇ 0.7, -0.7 ⁇ 0, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Rb a Br (4+ ⁇ y) Cl y (0 ⁇ a ⁇ 0.7, ⁇ 0.7 ⁇ ⁇ ⁇ 0, 0 ⁇ y ⁇ 4) can also be mentioned, but is not limited thereto.
  • perovskite compound in two-dimensional structure (C 4 H 9 NH 3 ) 2 PbBr 4, but (C 7 H 15 NH 3) 2 PbBr 4 can also be mentioned, but not limited to.
  • perovskite compound having a two-dimensional structure examples include (C 4 H 9 NH 3 ) 2 PbBr (4-y) Cl y (0 ⁇ y ⁇ 4) and (C 4 H 9 NH 3 ) 2 PbBr (4- y) I y (0 ⁇ y ⁇ 4) can also be mentioned, but is not limited thereto.
  • the perovskite compound having a two-dimensional structure examples include (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7), ( C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) can also be mentioned, but is not limited thereto.
  • the perovskite compound having a two-dimensional structure examples include (C 7 H 15 NH 3 ) 2 Pb (1-a) Zn a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Mg a Br 4 (0 ⁇ a ⁇ 0.7), (C 7 H 15 NH 3 ) 2 Pb (1-a) Co a Br 4 (0 ⁇ a ⁇ 0.7), ( C 7 H 15 NH 3 ) 2 Pb (1-a) Mn a Br 4 (0 ⁇ a ⁇ 0.7) can also be mentioned, but is not limited thereto.
  • a preferred example of a perovskite compound having a two-dimensional structure is (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mg a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH) 3 ) 2 Pb (1-a) Co a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) I y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4) can also be mentioned, but is not limited thereto.
  • Preferred examples of perovskite compound in two-dimensional structure (C 4 H 9 NH 3 ) 2 Pb (1-a) Zn a Br (4-y) Cl y (0 ⁇ a ⁇ 0.7,0 ⁇ y ⁇ 4), (C 4 H 9 NH 3) 2 Pb (1-a) Mg a Br (4-y) Cl y (0 ⁇ a ⁇ 0.7,0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Co a Br (4-y) Cl y (0 ⁇ a ⁇ 0.7, 0 ⁇ y ⁇ 4), (C 4 H 9 NH 3 ) 2 Pb (1-a) Mn a Br (4-y) Cl y is (0 ⁇ a ⁇ 0.7,0 ⁇ y ⁇ 4) can be cited also, but not limited to.
  • the average particle size of the perovskite compound is preferably 13.5 nm or more and 80.0 nm or less.
  • the average particle diameter of the (1) perovskite compound is preferably 15.0 nm or more, and more preferably 17.0 nm or more, from the viewpoint that the (1) perovskite compound can be stably dispersed in the dispersion liquid. More preferably, it is more preferably 18.0 nm or more.
  • the average particle size of the (1) perovskite compound is preferably 80.0 nm or less, more preferably 25.0 nm or less, from the viewpoint of obtaining the (1) perovskite compound having high emission intensity.
  • the average particle size of the perovskite compound is 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28. , 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53.
  • the average particle size of the perovskite compound is 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67.
  • the average particle size of the perovskite compound can be measured by, for example, a transmission electron microscope (hereinafter also referred to as TEM) or a scanning electron microscope (hereinafter also referred to as SEM). Specifically, the length of the longest side of the cube-shaped or rectangular parallelepiped-shaped particles of 30 or more (1) perovskite compounds randomly selected by TEM or SEM is measured, and the arithmetic mean value of the measured values is measured. The average particle diameter can be determined by calculating a transmission electron microscope (hereinafter also referred to as TEM) or a scanning electron microscope (hereinafter also referred to as SEM). Specifically, the length of the longest side of the cube-shaped or rectangular parallelepiped-shaped particles of 30 or more (1) perovskite compounds randomly selected by TEM or SEM is measured, and the arithmetic mean value of the measured values is measured. The average particle diameter can be determined by calculating
  • Examples of the method (1) of observing the perovskite compound of the present embodiment include a method of observing the dispersion composition containing the (1) perovskite compound using SEM or TEM. Furthermore, detailed element distribution can be analyzed by energy dispersive X-ray analysis (EDX) measurement using SEM or TEM. From the viewpoint of high spatial resolution, the TEM observation method is preferable.
  • EDX energy dispersive X-ray analysis
  • Examples of the method of observing the perovskite compound by TEM include (1) a method of casting a dispersion composition containing the perovskite compound on a grid with a support film dedicated to TEM and air-drying the composition.
  • Examples of the method for analyzing the average particle size of the perovskite compound include a method in which a TEM image is taken into a computer and analyzed using image analysis software. First, the TEM image is taken into a computer and binarized using image analysis software. (1) A binarized image in which the perovskite compound is converted to black and the other parts are converted to white is obtained. At this time, it is compared with the element mapping image obtained by the TEM-EDX measurement, and it is confirmed that (1) the portion where the component derived from the perovskite compound is detected is converted to black. If a discrepancy is found, adjust the threshold value for binarization processing. With respect to the binarized image, (1) the average particle size of the perovskite compound is measured using image analysis software. As the image analysis software, Image J, Photoshop, or the like can be appropriately selected.
  • the perovskite compound is a perovskite aggregate in which a plurality of compounds having the perovskite crystal structure are collected.
  • the perovskite aggregate is composed of one or more compounds having a perovskite crystal structure. Therefore, the perovskite aggregate is composed of one or more monovalent cations, metal ions, or anions.
  • composition 1 of the present embodiment comprises the above-mentioned (1) perovskite compound, the following (2-1), the following (2-1) modified product, the following (2-2) and the following (2-2). And at least one compound selected from the group consisting of modified compounds.
  • composition 1 of the present embodiment comprises the above-mentioned (1) perovskite compound and at least one compound selected from the group consisting of the modified form of (2-1) and (2-1). , Are preferably included.
  • composition 1 of the present embodiment may further contain at least one selected from the group consisting of the following (3), the following (4) and the following (5).
  • composition 2 of the present embodiment includes the above-mentioned (1) perovskite compound and at least one selected from the group consisting of the above (3), the above (4) and the above (5).
  • compositions 1 and 2 of the present embodiment the (1) perovskite compound may be dispersed in these dispersion media.
  • dispersed means (1) a state where the perovskite compound is suspended in the dispersion medium, or (1) a state where the perovskite compound is suspended in the dispersion medium.
  • a part of the (1) perovskite compound may be precipitated.
  • composition 1 and the composition 2 of the present embodiment may further contain the following (6).
  • the details of (6) below will be described later.
  • composition 1 and the composition 2 of the present embodiment may have other components other than the above (1) to (6).
  • the composition of the present embodiment may further contain a small amount of impurities, (1) a compound having an amorphous structure composed of the elements constituting the perovskite compound, and a polymerization initiator.
  • the composition 1 of the present embodiment contains (1) a perovskite compound (2) as a surface protectant, (2-1) silazane, a modified product of the above (2-1), (2-2) an amino group, and an alkoxy group. And a silicon compound having at least one group selected from the group consisting of alkylthio groups, and at least one compound selected from the group consisting of the modified product of (2-2) above.
  • composition 1 of the present embodiment has the effects of (2) the surface protective agent covering the surface of the (1) perovskite compound, thereby improving the quantum yield and shortening the emission wavelength.
  • Silazane is a compound having a Si-N-Si bond.
  • the silazane may be linear, branched or cyclic.
  • the silazane may be a low molecular weight silazane or a high molecular weight silazane.
  • the polymer silazane may be referred to as polysilazane.
  • small molecule means that the number average molecular weight is less than 600.
  • polymer means that the number average molecular weight is 600 or more and 20000 or less.
  • the “number average molecular weight” means a polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
  • disilazane represented by the following formula (B1) is preferable.
  • R 14 and R 15 are independently hydrogen atom, alkyl group having 1 to 20 carbon atoms, alkenyl group having 1 to 20 carbon atoms, and cycloalkyl having 3 to 20 carbon atoms, respectively. It represents a group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 may have a substituent such as an amino group.
  • a plurality of R 15's may be the same or different.
  • Examples of the low-molecular silazane represented by the formula (B1) include 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, and 1,1,1, Examples include, but are not limited to, 3,3,3-hexamethyldisilazane.
  • low-molecular-weight silazane for example, low-molecular-weight silazane represented by the following formula (B2) is also preferable.
  • a plurality of R 14's may be the same or different.
  • a plurality of R 15's may be the same or different.
  • n 1 represents an integer of 1 or more and 20 or less. n 1 may be an integer of 1 or more and 10 or less, or 1 or 2.
  • Examples of the low-molecular silazane represented by the formula (B2) include octamethylcyclotetrasilazane, 2,2,4,4,6,6-hexamethylcyclotrisilazane, and 2,4,6-trimethyl-2,4. , 6-trivinylcyclotrisilazane, but is not limited thereto.
  • octamethylcyclotetrasilazane and 1,3-diphenyltetramethyldisilazane are preferable as the low-molecular silazane, and octamethylcyclotetrasilazane is more preferable.
  • polysilazane represented by the following formula (B3) is preferable.
  • Polysilazane is a polymer compound having a Si—N—Si bond.
  • the constitutional unit of the polysilazane represented by the formula (B3) may be one kind or plural kinds.
  • R 14, and R 15 are the same as R 14, and R 15 in the formula (B1).
  • * represents a bond.
  • R 14 is bonded to the bond of the N atom at the end of the molecular chain.
  • R 15 is bonded to the bond of the Si atom at the end of the molecular chain.
  • a plurality of R 14's may be the same or different.
  • a plurality of R 15's may be the same or different.
  • M represents an integer of 2 or more and 10000 or less.
  • the polysilazane represented by the formula (B3) may be, for example, perhydropolysilazane in which all of R 14 and R 15 are hydrogen atoms.
  • the polysilazane represented by the formula (B3) may be, for example, an organopolysilazane in which at least one R 15 is a group other than a hydrogen atom.
  • Perhydropolysilazane and organopolysilazane may be appropriately selected depending on the intended use, and may be mixed and used.
  • the composition of the present embodiment preferably contains the organopolysilazane represented by the formula (B3) from the viewpoint of improving the dispersibility of (1) and enhancing the effect of suppressing aggregation.
  • R 14 and R 15 has an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms. It may be an organopolysilazane which is a cycloalkyl group, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
  • an organopolysilazane represented by the formula (B3) in which at least one of R 14 and R 15 is a methyl group is preferable.
  • polysilazane having a structure represented by the following formula (B4) is also preferable.
  • the polysilazane may have a ring structure in a part of the molecule, for example, may have the structure represented by the formula (B4).
  • * represents a bond.
  • the bond of the formula (B4) may be bonded to the bond of the polysilazane represented by the formula (B3) or the bond of the constitutional unit of the polysilazane represented by the formula (B3).
  • the bond of the structure represented by the formula (B4) is a bond of the structure represented by another formula (B4). It may be directly connected to the hand.
  • R 14 is bonded to the bond of the non-N atom.
  • R 15 is bonded to the bond of the non-Si atom.
  • n 2 represents an integer between 1 and 10000. n 2 may be an integer of 1 or more and 10 or less, or 1 or 2.
  • the composition of the present embodiment preferably contains an organopolysilazane having a structure represented by formula (B4).
  • an organopolysilazane having a structure represented by the formula (B4) at least one bond is bonded to R 14 or R 15, and at least one of the R 14 and R 15 is an alkyl having 1 to 20 carbon atoms.
  • polysilazane containing a structure represented by the formula (B4), in which at least one bond is bound to R 14 or R 15 and at least one of R 14 and R 15 is a methyl group is preferable. ..
  • a general polysilazane has, for example, a structure having a linear structure and a ring structure such as a 6-membered ring or an 8-membered ring, that is, a structure represented by the formula (B3) or the formula (B4). ..
  • a general polysilazane has a number average molecular weight (Mn) of about 600 to 2000 (in terms of polystyrene), and may be a liquid or solid substance depending on the molecular weight.
  • a commercially available product may be used as polysilazane, and as the commercially available product, NN120-10, NN120-20, NAX120-20, NN110, NAX120, NAX110, NL120A, NL110A, NL150A, NP110, NP140 (AZ Electronic Materials Co., Ltd. Company), AZNN-120-20, Durazane (registered trademark) 1500 Slow Cure, Durazane 1500 Rapid Cure, Durazane 1800, Durazane 1033 (Merck Performance Materials Co., Ltd.), and the like, but are not limited thereto.
  • the polysilazane is preferably AZNN-120-20, Durazane 1500 Slow Cure, Durazane 1500 Rapid Cure, and more preferably Durazane 1500 Slow Cure.
  • Modified product of silazane means that a silicon compound having a Si—N bond, a Si—SR bond (R is a hydrogen atom or an organic group) or a Si—OR bond (R is a hydrogen atom or an organic group) is hydrolyzed. Then, a silicon compound having a Si—O—Si bond is produced.
  • the Si—O—Si bond may be formed by an intermolecular condensation reaction or an intramolecular condensation reaction.
  • the “modified body” refers to a compound obtained by modifying a silicon compound having a Si—N bond, a Si—SR bond or a Si—OR bond.
  • Examples of the modified product of (2-1) include a modified product of disilazane represented by the formula (B1), a modified product of low molecular silazane represented by the formula (B2), and a modified product of the formula (B3).
  • the modified polysilazane is preferably a modified polysilazane having the structure represented by the formula (B4) in the molecule.
  • a nitrogen atom is bonded to all silicon atoms contained in the modified low molecular silazane represented by the formula (B2). It is preferable that the proportion of unreacted silicon atoms is 0.1 to 100%. Further, in another embodiment, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.
  • the “ratio of silicon atoms not bonded to nitrogen atoms” is defined as ((Si(mol)) ⁇ (N(mol) in Si—N bond))/Si(mol ) ⁇ 100. Considering the reforming reaction, the “ratio of silicon atoms not bonded to nitrogen atoms” means the “ratio of silicon atoms contained in the siloxane bond generated by the modifying treatment”.
  • the modified polysilazane represented by the formula (B3) silicon not bonded to the nitrogen atom with respect to all silicon atoms contained in the modified polysilazane represented by the formula (B3).
  • the atomic ratio is preferably 0.1 to 100%. Further, in another embodiment, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 98%, further preferably 30 to 95%.
  • a modified product of polysilazane having a structure represented by formula (B4) has nitrogen atoms for all silicon atoms contained in the modified product of polysilazane having a structure represented by formula (B4).
  • the proportion of silicon atoms not bonded with is preferably 0.1 to 99%. Further, in another embodiment, the ratio of silicon atoms not bonded to nitrogen atoms is more preferably 10 to 97%, further preferably 30 to 95%.
  • the number of Si atoms and the number of Si—N bonds in the modified product can be measured by X-ray photoelectron spectroscopy (XPS).
  • the “ratio of silicon atoms not bonded to nitrogen atoms” with respect to all silicon atoms of the modified product is 0.1 to 99%. Is more preferable, 10 to 99% is more preferable, and 30 to 95% is still more preferable.
  • composition 1 of the present embodiment may contain a silicon compound having at least one group selected from the group consisting of (2-2) amino group, alkoxy group and alkylthio group.
  • silicon compounds having at least one group selected from the group consisting of (2-2) amino group, alkoxy group and alkylthio group may be collectively referred to as “(2-2) silicon compound”.
  • Silicon compounds include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, dodecyltrimethoxysilane, trimethoxyphenylsilane, 1H,1H,2H,2H-perfluorooctyltriethoxysilane Examples thereof include, but are not limited to, trimethoxy(1H,1H,2H,2H-nonafluorohexyl)silane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane.
  • 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, and trimethoxyphenylsilane are preferable, and trimethoxyphenylsilane is more preferable, from the viewpoint of durability of (1).
  • the modified form of the (2-2) silicon compound refers to a compound obtained by modifying the above-mentioned (2-2) silicon compound.
  • the “modification” is the same as the description in the modified form of (2-1) silazane.
  • composition 1 of the present embodiment may have only one type of the above-mentioned (2) surface protective agent, or may use two or more types in combination.
  • the surface of the (1) perovskite compound of the present embodiment may be covered with a surface modifier layer.
  • the surface modifier layer may be located between (1) the perovskite compound and (2) the surface protectant.
  • the surface modifier layer covers the "surface” of the (1) perovskite compound
  • the surface modifier layer covers (1) in direct contact with the perovskite compound
  • the surface modifier layer covers (1) the perovskite compound. It is formed in direct contact with the surface of another layer formed on the surface of (1), and also includes (1) covering the surface of the perovskite compound without directly contacting it.
  • the surface modifier layer forms at least one ion or compound selected from the group consisting of ammonium ions, amines, primary to quaternary ammonium cations, ammonium salts, carboxylic acids, carboxylate ions, and carboxylate salts.
  • the material for forming the surface modifier layer may be referred to as “(6) surface modifier”.
  • the surface modifier has an action of (1) covering the surface of the perovskite compound and (1) stably dispersing the perovskite compound in the composition when the composition of the present embodiment is produced by the production method described later. It is a compound.
  • ammonium salt which is a surface modifier is a salt containing an ion represented by the following formula (A1).
  • R 1 to R 4 represent a hydrogen atom or a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R 1 to R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • saturated hydrocarbon group include an alkyl group and a cycloalkyl group.
  • the alkyl group represented by R 1 to R 4 may be linear or branched. In some embodiments, the alkyl group represented by R 1 to R 4 usually has 1 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • the number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon groups R 1 to R 4 may be linear or branched.
  • the unsaturated hydrocarbon groups R 1 to R 4 usually have 2 to 20 carbon atoms, preferably 5 to 20 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • R 1 to R 4 are preferably hydrogen atoms, alkyl groups, or unsaturated hydrocarbon groups, respectively.
  • the unsaturated hydrocarbon group is preferably an alkenyl group.
  • R 1 to R 4 are each independently an alkenyl group having 8 to 20 carbon atoms.
  • alkyl groups of R 1 to R 4 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl groups of R 1 to R 4 include the cycloalkyl groups exemplified in R 6 to R 9 .
  • a single bond (CC) between any one carbon atom is two.
  • preferred alkenyl group R 1 ⁇ R 4 are, for example, ethenyl group, propenyl group, 3-butenyl, 2-butenyl, 2-pentenyl group, 2-hexenyl group, 2-nonenyl , 2-dodecenyl group, 9-octadecenyl group, but not limited thereto.
  • the counter anion is not particularly limited.
  • the counter anion halide ion, carboxylate ion and the like are preferable.
  • the halide ion include bromide ion, chloride ion, iodide ion, and fluoride ion.
  • ammonium salt having the ammonium cation represented by the formula (A1) and the counter anion include n-octyl ammonium salt and oleyl ammonium salt.
  • the amine as a surface modifier can be represented by the following formula (A11).
  • R 1 ⁇ R 3 represent the same groups as R 1 ⁇ R 3 to the formula (A1) has. However, at least one of R 1 to R 3 is a monovalent hydrocarbon group.
  • the amine as the surface modifier may be any of primary to tertiary amines, but primary amines and secondary amines are preferable, and primary amines are more preferable.
  • oleylamine is preferable as the amine as the surface modifier.
  • the carboxylate ion, which is a surface modifier is represented by the following formula (A2).
  • the carboxylate salt, which is a surface modifier is a salt containing ions represented by the following formula (A2). R 5 -CO 2 - ⁇ (A2 )
  • carboxylic acid as a surface modifier examples include, but are not limited to, a carboxylic acid in which a proton (H + ) is bonded to the carboxylate anion represented by (A2) above.
  • R 5 represents a monovalent hydrocarbon group.
  • the hydrocarbon group represented by R 5 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • Examples of the saturated hydrocarbon group include, but are not limited to, an alkyl group and a cycloalkyl group.
  • the alkyl group represented by R 5 may be linear or branched.
  • the number of carbon atoms in the alkyl group represented by R 5 is usually 1 to 20, preferably 5 to 20, and more preferably 8-20.
  • the number of carbon atoms of the cycloalkyl group is usually 3 to 30, preferably 3 to 20, and more preferably 3 to 11.
  • the number of carbon atoms also includes the number of carbon atoms of the substituent.
  • the unsaturated hydrocarbon group represented by R 5 may be linear or branched.
  • the number of carbon atoms in the unsaturated hydrocarbon group represented by R 5 is usually 2 to 20, preferably 5 to 20, and more preferably 8-20.
  • R 5 is preferably an alkyl group or an unsaturated hydrocarbon group.
  • unsaturated hydrocarbon group an alkenyl group is preferable.
  • alkyl group of R 5 include the alkyl groups exemplified in R 6 to R 9 .
  • cycloalkyl group for R 5 include the cycloalkyl groups exemplified for R 6 to R 9 .
  • alkenyl group of R 5 include the alkenyl groups exemplified in R 1 to R 4 .
  • the carboxylate anion represented by the formula (A2) is preferably an oleate anion.
  • the counter cation is not particularly limited, but preferable examples include an alkali metal cation, an alkaline earth metal cation, and an ammonium cation.
  • Oleic acid is preferable as the carboxylic acid that is a surface modifier.
  • ammonium salts ammonium ions, primary to quaternary ammonium cations, carboxylate salts and carboxylate ions are preferable.
  • ammonium salts and ammonium ions oleylamine salt and oleylammonium ion are more preferable.
  • carboxylate salts and carboxylate ions oleate and oleate anion are more preferable.
  • composition 1 and the composition 2 of the present embodiment may have only one kind of the above-mentioned (6) surface modifier, or may use two or more kinds in combination.
  • the solvent contained in the composition of the present embodiment is not particularly limited as long as it is a medium in which the (1) perovskite compound of the present embodiment can be dispersed.
  • the solvent contained in the composition of the present embodiment is preferably one in which the (1) perovskite compound of the present embodiment is difficult to dissolve.
  • solvent refers to a substance that is in a liquid state at 1 atm and 25 ° C. However, the solvent does not include the polymerizable compound described later.
  • the solvent may include, but are not limited to, the following (a) to (k).
  • Examples of (a) ester include, but are not limited to, methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate, and the like.
  • Examples of the (b) ketone include, but are not limited to, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone.
  • ether (c) examples include diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole and phenetole. Etc., but are not limited to these.
  • glycol ethers examples include, but are not limited to, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, and triethylene glycol dimethyl ether.
  • Examples of the organic solvent having an amide group include, but are not limited to, N,N-dimethylformamide, acetamide, and N,N-dimethylacetamide.
  • organic solvent having a (g) nitrile group examples include, but are not limited to, acetonitrile, isobutyronitrile, propionitrile, and methoxyacetonitrile.
  • Examples of the organic solvent having a carbonate group include, but are not limited to, ethylene carbonate and propylene carbonate.
  • halogenated hydrocarbon examples include, but are not limited to, methylene chloride, chloroform and the like.
  • Examples of the (j) hydrocarbon include, but are not limited to, n-pentane, cyclohexane, n-hexane, 1-octadecene, benzene, toluene, xylene and the like.
  • solvents (a) ester, (b) ketone, (c) ether, (g) nitrile group-containing organic solvent, (h) carbonate group-containing organic solvent, (i) halogenated Hydrocarbons and (j) hydrocarbons are preferable because they have low polarity and are considered to be difficult to dissolve the (1) perovskite compound of the present embodiment.
  • halogenated hydrocarbons and (j) hydrocarbons are more preferable as the solvent used in the composition of the present embodiment.
  • composition 1 and the composition 2 of the present embodiment only one type of the above-mentioned solvent may be used, or two or more types may be used in combination.
  • the polymerizable compound contained in the composition of the present embodiment is preferably one that is difficult to dissolve the (1) perovskite compound of the present embodiment at the temperature for producing the composition of the present embodiment.
  • the “polymerizable compound” means a monomer compound (monomer) having a polymerizable group.
  • the polymerizable compound may be a monomer that is in a liquid state at 1 atm and 25°C.
  • the polymerizable compound is not particularly limited.
  • the polymerizable compound include known polymerizable compounds such as styrene, acrylic acid ester, methacrylic acid ester, and acrylonitrile.
  • the polymerizable compound either one or both of acrylic acid ester and methacrylic acid ester, which are monomers of the acrylic resin, is preferable.
  • composition 1 and composition 2 of the present embodiment only one type of polymerizable compound may be used, or two or more types may be used in combination.
  • the ratio of the total amount of acrylic acid ester and methacrylic acid ester to all (4) polymerizable compounds may be 10 mol% or more. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
  • the polymer contained in the composition of the present embodiment is preferably a polymer having a low solubility of the (1) perovskite compound of the present embodiment at the temperature for producing the composition of the present embodiment.
  • the polymer when produced at room temperature and under normal pressure, is not particularly limited, and examples thereof include known polymers such as polystyrene, acrylic resin, and epoxy resin, but are not limited thereto. Among them, an acrylic resin is preferable as the polymer.
  • the acrylic resin contains one or both of a structural unit derived from an acrylic acid ester and a structural unit derived from a methacrylic acid ester.
  • the ratio of the total amount of the structural unit derived from the acrylic acid ester and the structural unit derived from the methacrylic acid ester to all the structural units contained in the polymer (5) is 10 mol% or more. It may be. The same ratio may be 30 mol% or more, 50 mol% or more, 80 mol% or more, or 100 mol%.
  • the weight average molecular weight of the polymer is preferably 100 to 1200000, more preferably 1000 to 800000, and further preferably 5000 to 150,000.
  • the “weight average molecular weight” means a polystyrene conversion value measured by a gel permeation chromatography (GPC) method.
  • composition 1 and the composition 2 of the present embodiment may have only one kind of the above-mentioned (5) polymer, or may use two or more kinds in combination.
  • the content ratio of the (1) perovskite compound to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 90% by mass or less, more preferably 40% by mass or less, and further preferably 10% by mass or less, from the viewpoint of preventing concentration quenching. It is particularly preferable that it is% or less.
  • the content ratio is preferably 0.0002 mass% or more, more preferably 0.002 mass% or more, and 0.01 from the viewpoint of obtaining a good quantum yield. It is more preferably mass% or more.
  • the content ratio of (1) perovskite compound to the total mass of the composition is usually 0.0002 to 90% by mass.
  • the content ratio of the (1) perovskite compound to the total mass of the composition is preferably 0.001 to 40% by mass, more preferably 0.002 to 10% by mass, and 0.01 More preferably, it is from 3% by mass.
  • the content ratio of the (1) perovskite compound is 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.05, 0.1, 0.5, It is 1, 10, 20, 30, 40, 50, 60, 70, 80% by mass or more.
  • the content ratio of (1) perovskite compound is 90, 80, 70, 60, 50, 40, 30, 20, 10, 1, 0.5, 0.1, 0.05, 0.01. , 0.005, 0.002, 0.001, 0.0005 mass% or less.
  • a composition in which (1) the content ratio of the perovskite compound with respect to the total mass of the composition is within the above range is preferable because (1) aggregation of the perovskite compound is unlikely to occur and luminescence is well exhibited.
  • the content ratio of (2) the surface protective agent to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 30% by mass or less, and more preferably 10% by mass or less, from the viewpoint of (1) improving the dispersibility of the perovskite compound and improving the durability. It is more preferably 7.5% by mass or less.
  • the content ratio is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and 0.1% by mass or more from the viewpoint of improving durability. Is more preferable.
  • the content ratio is 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 7.5, 10, 15, 20, 25 mass. % Or more.
  • the content ratio is 30, 25, 20, 15, 10, 10, 7.5, 5, 1, 0.5, 0.1, or 0.05 mass% or less.
  • the content ratio of (2) surface protectant to the total mass of the composition is usually 0.001 to 30% by mass.
  • the content of the (2) surface protectant with respect to the total mass of the composition is preferably 0.001 to 30% by mass, more preferably 0.001 to 10% by mass, and 0. More preferably, it is 1 to 7.5% by mass.
  • (2) the content ratio of the surface protective agent is 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 7.5, 10, 15, 20, It is 25 mass% or more.
  • the content ratio of the (2) surface protective agent is 30, 25, 20, 15, 15, 10, 7.5, 5, 1, 0.5, 0.1, 0.05 mass% or less. ..
  • composition 1 and composition 2 of this embodiment the content ratio of the dispersion medium to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 99.99% by mass or less, and from 99.9% by mass or less, from the viewpoint of improving (1) dispersibility of the perovskite compound and improving durability. It is more preferable that the amount is 99% by mass or less.
  • the content ratio is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 10% by mass or more, from the viewpoint of improving durability. More preferably, it is more preferably 50% by mass or more, further preferably 80% by mass or more, and most preferably 90% by mass or more.
  • the content of the dispersion medium to the total mass of the composition is usually 0.1-99.99% by mass.
  • the content of the dispersion medium with respect to the total mass of the composition is preferably 1 to 99% by mass, more preferably 10 to 99% by mass, further preferably 20 to 99% by mass. It is preferably 50 to 99% by mass, most preferably 90 to 99% by mass.
  • the content ratio of the dispersion medium is 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95% by mass or more.
  • the content ratio of the dispersion medium is 99, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5% by mass or less.
  • the total content of the (1) perovskite compound, (2) surface protectant and dispersion medium in the composition may be 90% by mass or more with respect to the total mass of the composition.
  • the amount may be 95% by mass or more, 99% by mass or more, and 100% by mass.
  • composition 1 and composition 2 of the present embodiment the content ratio of (6) surface modifier to the total mass of the composition is not particularly limited.
  • the content ratio is preferably 30% by mass or less, more preferably 1% by mass or less, and further preferably 0.1% by mass or less, from the viewpoint of improving durability.
  • the content ratio is preferably 0.0001 mass% or more, more preferably 0.001 mass% or more, and 0.01 mass% from the viewpoint of improving thermal durability. It is more preferable that the above is satisfied.
  • the content ratio is 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15, 20, 25% by mass or more. ..
  • the content ratio is 30, 25, 20, 15, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005% by mass or less.
  • the content ratio of the (6) surface modifier to the total mass of the composition is usually 0.0001 to 30% by mass.
  • the content ratio of (6) surface modifier to the total mass of the composition is preferably 0.001 to 1% by mass, and more preferably 0.01 to 0.1% by mass.
  • (6) the content ratio of the surface modifier is 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, It is 5, 10, 15, 20, 25% by mass or more.
  • (6) the content ratio of the surface modifier is 30, 25, 20, 15, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005 mass. % Or less.
  • a composition in which the content ratio of the (6) surface modifier to the total mass of the composition is within the above range is preferable in terms of excellent heat durability.
  • the total content of some impurities, (1) the compound having an amorphous structure composed of the elements constituting the perovskite compound, and the polymerization initiator is based on the total mass of the composition. It is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 1% by mass or less.
  • the mass ratio [(1) perovskite compound/dispersion medium] of the (1) perovskite compound to the dispersion medium may be 0.00001 to 10, or 0.0001 to 5 Or may be 0.0005 to 3.
  • a composition in which (1) the range of the blending ratio of the perovskite compound and the dispersion medium is within the above range is preferable because (1) the perovskite compound is less likely to aggregate and emits good light.
  • the compounding ratio of the (1) perovskite compound and (2) surface protective agent can be appropriately determined according to the types of (1) and (2) and the like.
  • the molar ratio [Si/B] of (1) the metal ion as the B component of the perovskite compound and (2) the Si element of the surface protective agent is 0.001 to 200. It may be 0.01 to 50.
  • composition 1 of the present embodiment (2) when the surface protective agent is a modified product of the silazane represented by the formula (B1) or (B2), (1) a metal ion which is the B component of the perovskite compound.
  • a metal ion which is the B component of the perovskite compound.
  • the molar ratio [Si/B] of the (2-1) silazane modified product to Si may be 0.001 to 100, or 0.001 to 50, or 1 to 20. It may be.
  • composition 1 of the present embodiment (2) when the surface protective agent is polysilazane having a structural unit represented by the formula (B3), (1) a metal ion which is a B component of the perovskite compound, and (2) -1)
  • the molar ratio [Si/B] of the modified silazane to the Si element may be 0.001 to 100, 0.01 to 100, or 0.1 to 100. It may be present, may be 1 to 50, and may be 1 to 20.
  • the molar ratio [Si/B] between the metal ion that is the B component of the perovskite compound and (2) the Si element of the surface protective agent can be determined by the following method.
  • the number of moles (B) of the metal ion that is the B component of the perovskite compound is converted into moles after calculating the mass of the metal that is the B component contained in the perobskite compound by inductively coupled plasma mass spectrometry (ICP-MS). Seek by.
  • ICP-MS inductively coupled plasma mass spectrometry
  • (2) the number of moles (Si) of the Si element of the surface protective agent is obtained by converting the mass of the (2) surface protective agent used into moles.
  • the ratio of (2) the number of moles (Si) of the Si element of the surface protective agent to the number of moles (B) of the metal ion which is the B component of the perovskite compound is [Si / B].
  • the mass of the (2) surface protective agent is preferably 1.1 parts by mass with respect to the mass of the (1) perovskite compound. Or more, more preferably 1.5 parts by mass or more, and further preferably 1.8 parts by mass or more. Further, in another aspect, the mass of the surface protective agent (2) is preferably 10 parts by mass or less, more preferably 4.9 parts by mass or less, and still more preferably the mass of the (1) perovskite compound. Is 2.5 parts by mass or less. The above upper limit value and lower limit value can be arbitrarily combined.
  • the half width of the peak of the Miller index (001) of the surface is 0.10 or more and less than 0.60. It is possible to manufacture a semiconductor compound containing the metal element M which is
  • the method for producing a semiconductor compound according to the present embodiment includes a step of mixing water with a raw material containing one or both of a simple substance of the metal element M and a compound containing the metal element M, and the raw material in the presence of the water. And the step of reacting. Further, the ratio of the mass W W of the water to the mass W M of a metal element M contained in the raw material (W W / W M) is 0.05-100.
  • Metal element M included in the method for producing a semiconductor compound of the present embodiment include metal elements of groups 2 to 14 in the periodic table.
  • the metal element of Groups 2 to 14 of the periodic table is not particularly limited, but examples thereof include Mg, Ca, Sr, Ba, Cu, Zn, Cd, Hg, Al, Ga, In, Sn, and Pb.
  • the semiconductor compound of the present embodiment may contain non-metal elements of Groups 13 to 17 of the periodic table in addition to the metal element M.
  • the non-metal element of Group 13 to 17 of the periodic table is not particularly limited, and examples thereof include B, C, N, P, As, Sb, Se, Te, F, Cl, Br, I, and S.
  • Examples of the semiconductor compound produced by the production method of the present embodiment include (1) the perovskite compound of the present embodiment, and the following semiconductor compounds (i) to (vii).
  • (I) Semiconductor compound containing Group II-VI compound ii) Semiconductor compound containing Group II-V compound (iii) Semiconductor compound containing Group III-V compound (iv) Group III-IV compound Semiconductor compound (v) Semiconductor compound containing group III-VI compound (vi) Semiconductor compound containing group IV-VI compound (vii) Semiconductor compound containing transition metal-p-block compound
  • the semiconductor compound containing a Group II-VI compound includes a semiconductor compound containing a compound containing a Group 2 element and a Group 16 element of the periodic table, and a Group 12 element and a Group 16 element of the periodic table.
  • Semiconductor compounds including compounds may be mentioned, but the invention is not limited thereto.
  • the "periodic table” means a long-periodic table.
  • a semiconductor compound containing a compound containing a Group 2 element and a Group 16 element is referred to as a “semiconductor compound (i-1)”, and a semiconductor compound containing a compound containing a Group 12 element and a Group 16 element is used. May be referred to as “semiconductor compound (i-2)”.
  • examples of the binary semiconductor compound include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, or BaTe. Examples include, but are not limited to:
  • (I-1-1) A ternary semiconductor compound containing one type of Group 2 element and two types of Group 16 element (i-1-2) Two types of Group 2 element and one type of Group 16 element A ternary semiconductor compound (i-1-3) containing two types may be a quaternary semiconductor compound containing two types of Group 2 elements and two types of Group 16 elements.
  • examples of the binary semiconductor compound include ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, and HgTe. Is not limited.
  • (i-2-1) A ternary semiconductor compound containing one type of Group 12 element and two types of Group 16 element (i-2-2) Two types of Group 12 element and one type of Group 16 element A ternary semiconductor compound (i-2-3) containing two kinds of group 12 elements and a quaternary semiconductor compound containing two kinds of group 16 elements may be used.
  • the group II-VI semiconductor compound may contain an element other than the group 2 element, the group 12 element, and the group 16 element as a doping element.
  • the group II-V semiconductor compound contains a group 12 element and a group 15 element.
  • binary semiconductor compounds include, for example, Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , or Zn 3 N. 2, but is not limited thereto.
  • the II-V semiconductor compound includes (Ii-1) A ternary semiconductor compound containing one group 12 element and two group 15 elements (ii-2) A ternary semiconductor compound containing two group 12 elements and one group 15 element System-based semiconductor compound (ii-3) A quaternary semiconductor compound containing two types of Group 12 elements and two types of Group 15 elements may be used.
  • the group II-V semiconductor compound may contain an element other than the group 12 element and the group 15 element as a doping element.
  • Group III-V semiconductor compounds include Group 13 elements and Group 15 elements.
  • binary semiconductor compounds include AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, or AlN. Not limited to these.
  • the group III-V semiconductor compound is (Iii-1) a ternary semiconductor compound containing one group 13 element and two group 15 elements (iii-2) ternary semiconductor compound containing two group 13 elements and one group 15 element System-based semiconductor compound (iii-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 15 elements may be used.
  • the group III-V semiconductor compound may contain an element other than the group 13 element and the group 15 element as a doping element.
  • Group III-IV semiconductor compounds include Group 13 elements and Group 14 elements.
  • examples of binary semiconductor compounds include Al 4 C 3 and Ga 4 C 3 .
  • group III-IV semiconductor compound (Iv-1) A ternary semiconductor compound containing one group 13 element and two group 14 elements (iv-2) Two ternary semiconductor compounds containing one group 13 element and one group 14 element System-based semiconductor compound (iv-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 14 elements may be used.
  • the group III-IV semiconductor compound may contain an element other than the group 13 element and the group 14 element as a doping element.
  • Group III-VI semiconductor compounds include Group 13 elements and Group 16 elements.
  • binary semiconductor compounds include Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , GaTe, In 2 S 3 , In 2 Se 3 , In 2 Te 3 , or InTe, but are not limited thereto.
  • the group III-VI semiconductor compound is (V-1) A ternary semiconductor compound containing one group 13 element and two group 16 elements (v-2) A ternary semiconductor compound containing two group 13 elements and one group 16 element Systemic semiconductor compound (v-3) A quaternary semiconductor compound containing two types of Group 13 elements and two types of Group 16 elements may be used.
  • the group III-VI semiconductor compound may contain an element other than the group 13 element and the group 16 element as a doping element.
  • the group IV-VI semiconductor compound contains a group 14 element and a group 16 element.
  • examples of the binary semiconductor compounds include, but are not limited to, PbS, PbSe, PbTe, SnS, SnSe, and SnTe.
  • the IV-VI semiconductor compound is (Vi-1) A ternary semiconductor compound containing one group 14 element and two group 16 elements (vi-2) A ternary semiconductor compound containing two group 14 elements and one group 16 element System-based semiconductor compound (vi-3) A quaternary semiconductor compound containing two types of Group 14 elements and two types of Group 16 elements may be used.
  • the group IV-VI semiconductor compound may contain an element other than the group 14 element and the group 16 element as a doping element.
  • the transition metal-p-block semiconductor compound contains a transition metal element and a p-block element.
  • the “p-block element” is an element belonging to Groups 13 to 18 of the periodic table.
  • transition metal-p-block semiconductor compounds examples include, but are not limited to, NiS and CrS.
  • the transition metal-p-block semiconductor compound is (Vii-1) ternary semiconductor compound containing one transition metal element and two p-block elements (vii-2) ternary semiconductor compound containing two transition metal elements and one p-block element Semiconductor compound (vii-3) A quaternary semiconductor compound containing two types of transition metal elements and two types of p-block elements may be used.
  • the transition metal-p-block semiconductor compound may contain a transition metal element and an element other than the p-block element as a doping element.
  • ternary semiconductor compound and quaternary semiconductor compound include ZnCdS, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSte, HgSeS, HgSeTe, HgSte, CdZnS, CdZnSe, CdZnTe, CdZH.
  • the semiconductor compound of the present embodiment is preferably (1) the perovskite compound of the present embodiment, a semiconductor compound containing Cd which is a Group 12 element, and a semiconductor compound containing In which is a Group 13 element.
  • the compound of the present embodiment is more preferably (1) a perovskite compound, a semiconductor compound containing Cd and Se, and a semiconductor compound containing In and P.
  • the semiconductor compound containing Cd and Se is preferably a binary semiconductor compound, a ternary semiconductor compound, or a quaternary semiconductor compound.
  • CdSe which is a binary semiconductor compound, is particularly preferable.
  • the semiconductor compound containing In and P is preferably a binary semiconductor compound, a ternary semiconductor compound, or a quaternary semiconductor compound.
  • InP which is a binary semiconductor compound, is particularly preferable.
  • the preferable average particle diameter of the semiconductor compound produced by the method for producing a semiconductor compound of the present embodiment is the same as the average particle diameter of the above-mentioned (1) perovskite compound.
  • the average particle size of the semiconductor compound produced by the method for producing the semiconductor compound of the present embodiment can be measured by the same method as the above-mentioned (1) Measurement of the average particle size of the perovskite compound.
  • a raw material containing either one or both of the simple substance of the metal element M and the compound containing the metal element M is used (hereinafter, the simple substance of the metal element M and the metal element M are used.
  • a raw material containing either one or both of the contained compounds may be referred to as a "raw material containing the metal element M").
  • the semiconductor compound contains a non-metal element, it is preferable to use a compound further containing the non-metal element as the raw material (hereinafter, the compound containing the non-metal element may be referred to as a "raw material compound containing the non-metal element". .).
  • the simple substance of the metal element M is not particularly limited, but examples thereof include the simple substance of the metal element M described above.
  • the compound containing the metal element M is not particularly limited, and examples thereof include oxides, acetates, organometallic compounds, halides, nitrates and the like containing the metal element M described above.
  • the raw material compound containing a non-metal element is not particularly limited, but a compound containing a non-metal element contained in a semiconductor compound can be used.
  • the above-mentioned compounds containing non-metal elements of Groups 13 to 17 of the periodic table can be used without limitation.
  • the raw material compound containing the above-mentioned non-metal element may be used, or two or more kinds may be used in combination.
  • the semiconductor compounds (i) to (vii) can be produced by a method of heating a mixed solution of a raw material containing the metal element M constituting the semiconductor compound and a fat-soluble solvent. In addition, it is preferable to add a compound containing a non-metal element constituting a semiconductor compound to the mixed solution, if necessary.
  • the fat-soluble solvent examples include a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, an oxygen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, and the like.
  • hydrocarbon group having 4 to 20 carbon atoms examples include a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • saturated aliphatic hydrocarbon group having 4 to 20 carbon atoms examples include n-butyl group, isobutyl group, n-pentyl group, octyl group, decyl group, dodecyl group, hexadecyl group and octadecyl group.
  • An oleyl group can be mentioned as an unsaturated aliphatic hydrocarbon group having 4 to 20 carbon atoms.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclopentyl group and a cyclohexyl group.
  • aromatic hydrocarbon group having 4 to 20 carbon atoms examples include phenyl group, benzyl group, naphthyl group and naphthylmethyl group.
  • hydrocarbon group having 4 to 20 carbon atoms a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group are preferable.
  • Examples of the nitrogen-containing compound include amines and amides.
  • Examples of the oxygen-containing compound include fatty acids.
  • nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms are preferable.
  • nitrogen-containing compounds include alkylamines such as n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, dodecylamine, hexadecylamine and octadecylamine, and oleylamine.
  • Alkenylamines are preferred.
  • Such a fat-soluble solvent can be bonded to the surface of a semiconductor compound produced by synthesis.
  • Examples of the bond when the fat-soluble solvent binds to the surface of the semiconductor compound include chemical bonds such as covalent bond, ionic bond, coordination bond, hydrogen bond, and van der Waals bond.
  • the heating temperature of the mixed solution may be appropriately set depending on the type of raw material (single substance or compound) used.
  • the temperature of the mixed solution is usually room temperature to 300°C. For example, 130 to 300° C. is preferable, and 240 to 300° C. is more preferable.
  • the heating temperature is at least the above lower limit value, the crystal structure is likely to be unified, which is preferable.
  • the heating temperature is not more than the above upper limit value, the crystal structure of the resulting semiconductor compound is less likely to collapse and the desired product can be easily obtained, which is preferable.
  • the heating temperature is 0, 5, 10, 50, 75, 100, 130, 150, 175, 200, 250 ° C. or higher.
  • the heating temperature is 300, 250, 200, 175, 150, 130, 100, 75, 50, 10, 5 ° C. or less.
  • the heating time of the mixed solution may be appropriately set according to the type of raw material (single substance or compound) used and the heating temperature.
  • the heating time of the mixed solution is, for example, preferably several seconds to several hours, more preferably 1 to 60 minutes.
  • a precipitate containing the target semiconductor compound can be obtained by cooling the mixed solution after heating. By separating the precipitate and appropriately washing it, the desired semiconductor compound can be obtained.
  • a solvent in which the synthesized semiconductor compound is insoluble or sparingly soluble is added to generate a precipitate by reducing the solubility of the semiconductor compound in the supernatant liquid, and the semiconductor compound contained in the supernatant liquid is added. It may be collected.
  • the "solvent in which the semiconductor compound is insoluble or sparingly soluble” include methanol, ethanol, acetone, and acetonitrile.
  • the separated precipitate may be put in an organic solvent (eg chloroform, toluene, hexane, n-butanol, etc.) to form a solution containing the semiconductor compound.
  • an organic solvent eg chloroform, toluene, hexane, n-butanol, etc.
  • the method for producing a semiconductor compound according to this embodiment includes a step of mixing water with a raw material containing one or both of a simple substance of the metal element M and a compound containing the metal element M.
  • the above-mentioned solution before heating may be added to water, or water may be added to one or both of the above-mentioned solution before heating and the solution during heating. Above all, it is preferable to add water to either or both of the above-mentioned solution before heating and the solution during heating.
  • the temperature of the solution at the time of addition is preferably 155 ° C. or lower, more preferably 150 ° C. or lower, and even more preferably 140 ° C. or lower.
  • the amount of water added is to the weight W M of the metal element M contained in the raw material containing a metal element M, is the ratio of the mass W W of the added water (W W / W M) is a 0.05-100 To be.
  • the metal element M may be (1) the metal element of B constituting the perovskite compound.
  • the W M is used as the sum of the masses of all the single bodies of the metal element M used. It can be obtained by summing the sum of the masses of the metal elements M in the compound containing all the metal elements M.
  • the mass of all the added water can be adopted as WW .
  • W M is (1) contained in the perovskite compound, lead, tin, antimony, bismuth, And may be the total mass of one or more metal elements selected from the group consisting of indium.
  • the (W W / W M) is 0.05,0.06,0.07,0.09,0.1,0.2,0.3,0.4 , 0.5, 0.6, 0.7, 0.8, 0.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2 and at .7,2.8,2.9,3.0 above, wherein (W W / W M) is 3.0,2.9,2.8,2.7,2.6,2. 5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0. It is 09, 0.08, 0.07, 0.06 or less.
  • the solution to which water is added contains an ionic compound.
  • an ionic compound an ammonium compound or a halide is preferable.
  • the amount of water in the solution can be measured using a trace amount water measuring device (AQ-2000, Hiranuma Sangyo Co., Ltd., a ketone-based electrolytic solution Hydralal-Coulomat AK).
  • the method for producing a perovskite compound can be produced by the method described below with reference to known literature (Nano Lett. 2015, 15, 3692-3696, ACSNano, 2015, 9, 4533-4542).
  • the method for producing the perovskite compound includes a step of dissolving the component B, the component X, and the component A constituting the perovskite compound in the above-mentioned (3) solvent at high temperature to obtain a solution, and a step of cooling the solution. Can be mentioned.
  • the compound containing the component B and the component X and the compound containing the component A are dissolved in the high temperature solvent (3) to obtain a solution.
  • the “compound containing the component A” may contain the component X.
  • each compound may be added to a high-temperature (3) solvent and dissolved to obtain a solution.
  • a solution may be obtained by adding each compound to the solvent (3) and then raising the temperature.
  • the solution is preferably obtained by adding each compound to the solvent (3) and then raising the temperature.
  • a solvent capable of dissolving the compound containing the component B and the component X, which is a raw material, and the compound containing the component A is preferable.
  • High temperature means a solvent at a temperature at which each raw material dissolves.
  • the temperature of the high temperature solvent (3) is preferably 60 to 600°C, and more preferably 80 to 400°C.
  • the holding temperature after raising the temperature is, for example, preferably 80 to 150° C., and preferably 120 to 140° C. More preferred.
  • the temperature of the solution at the time of addition is preferably 155 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 140 ° C. or lower.
  • the amount of water added is to the weight W M of the metal element M contained in the raw material containing a metal element M, is the ratio of the mass W W of the added water (W W / W M) is a 0.05-100 To be.
  • (W W / W M) is 0.5,0.75,1.0,1.1,1.5,2.0,2.2,2.5 more. In another aspect, (W W / W M) is 3.0,2.5,2.2,2.0,1.5,1.1,1.0,0.75 less.
  • the raw material containing a metal element M if using a plurality of compounds containing a single metal element M, or a metal element M, wherein W M, all using the sum of the single mass of all the metal elements M used It can be obtained by summing the sum of the masses of the metal elements M in the compound containing the metal element M.
  • the mass of all the added water can be adopted as WW .
  • the B component is the metal element M.
  • the solution to which water is added contains an ionic compound.
  • an ionic compound an ammonium compound or a halide is preferable.
  • the cooling temperature is preferably ⁇ 20 to 50° C., more preferably ⁇ 10 to 30° C. In some embodiments, the cooling temperature is -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 ° C. or higher. In another aspect, the cooling temperature is 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0, -5, -10, -15°C or lower.
  • the cooling rate is preferably 0.1 to 1500 ° C./min, more preferably 10 to 150 ° C./min. In one aspect, the cooling rate is 0.1, 0.5, 1, 5, 10, 25, 50, 75, 100, 150, 250, 500, 750, 1000, 1250° C./min or higher. In another aspect, the cooling rate is 1500, 1250, 1000, 750, 500, 250, 150, 100, 75, 50, 25, 10, 1, 0.5° C./min or less.
  • the perovskite compound By cooling the high temperature solution, the perovskite compound can be precipitated due to the difference in solubility due to the temperature difference of the solution. As a result, a dispersion liquid containing the perovskite compound is obtained.
  • the perovskite compound can be recovered by performing solid-liquid separation on the obtained dispersion containing the perovskite compound.
  • the solid-liquid separation method include filtration and concentration by evaporation of the solvent. By performing solid-liquid separation, only the perovskite compound can be recovered.
  • the above-mentioned production method preferably includes the step (6) of adding the surface modifier, since the particles of the perovskite compound obtained are easily and stably dispersed in the dispersion liquid.
  • the step of adding the surface modifier is preferably carried out before the step of cooling.
  • the surface modifier may be added to (3) the solvent, or may be added to a solution in which the compound containing the B component and the X component and the compound containing the A component are dissolved. ..
  • the above-mentioned manufacturing method preferably includes a step of removing coarse particles by a technique such as centrifugation or filtration after the cooling step.
  • the size of the coarse particles removed by the removing step is preferably more than 10 ⁇ m, more preferably more than 1 ⁇ m, and further preferably more than 500 nm.
  • (Second manufacturing method) As a method for producing a perovskite compound, a step of obtaining a first solution containing a component A and a component B constituting a perovskite compound, a step of obtaining a second solution containing a component X constituting a perovskite compound, a first solution and a first solution Examples thereof include a manufacturing method including a step of mixing the two solutions to obtain a mixed solution and a step of cooling the obtained mixed solution.
  • the compound containing the component A and the compound containing the component B are dissolved in a high-temperature second solvent to obtain a first solution.
  • each compound may be added to a high-temperature (3) solvent and dissolved to obtain a first solution.
  • the first solution may be obtained by (3) adding each compound to the solvent and then raising the temperature.
  • the first solution is obtained by adding each compound to the solvent (3) and then raising the temperature.
  • a solvent capable of dissolving the compound containing the A component and the compound containing the B component is preferable.
  • the "high temperature” may be any temperature at which the compound containing the A component and the compound containing the B component are dissolved.
  • the temperature of the high temperature solvent (3) is preferably 60 to 600°C, and more preferably 80 to 400°C.
  • the holding temperature after raising the temperature is, for example, preferably 80 to 150° C., and 120 to 140° C. Is more preferable.
  • the holding temperature after heating is 80, 90, 100, 110, 120, 130, 140 ° C. or higher. In one aspect, the holding temperature after heating is 150, 140, 130, 120, 110, 100, 90, 80, 70° C. or lower.
  • the compound containing the X component is dissolved in the above-mentioned solvent (3) to obtain a second solution.
  • the second solution may be obtained by dissolving the compound containing the component X and the compound containing the component B in the solvent (3).
  • Examples of the solvent include solvents that can dissolve the compound containing the component X.
  • the first solution and the second solution obtained are mixed to obtain a mixed solution.
  • mixing the first solution and the second solution one may be dropped on the other. Further, it is preferable to mix the first solution and the second solution while stirring.
  • water may be added to either or both of the first solution and the second solution before or during the temperature rise, and the first solution and the second solution may be added.
  • water may be added to the mixed solution with, it is preferable to add water to either or both of the first solution and the second solution before or during the temperature increase. More preferably, it is added to the solution.
  • the temperature of the solution at the time of addition is preferably 155 ° C. or lower, more preferably 150 ° C. or lower, and 140 ° C. or lower. Is even more preferable.
  • the temperature of the first solution at the time of mixing is preferably 155 ° C. or lower, more preferably 150 ° C. or lower, and 140 ° C. or lower. Is even more preferable.
  • the temperature of the mixed solution at the time of addition is preferably 155 ° C. or lower, more preferably 150 ° C. or lower. , 140° C. or lower is more preferable.
  • the amount of water added is to the weight W M of the metal element M contained in the raw material containing a metal element M, is the ratio of the mass W W of the added water (W W / W M) is 0 It should be between 0.05 and 100.
  • the metal element M may be (1) the metal element of B constituting the perovskite compound.
  • the raw material containing a metal element M if using a plurality of compounds containing a single metal element M, or a metal element M, wherein W M is the sum of the single mass of all the metal elements M used can be obtained by summing the sum of the masses of the metal elements M in the compound containing all the metal elements M used. Further, when water is added in a plurality of times, the mass of all the added water can be adopted as the WW .
  • the W M is a total mass of (1) contained in the perovskite compound, one or more metal elements selected lead, tin, antimony, bismuth, and from the group consisting of indium You may.
  • the (W W / W M) is 0.05,0.06,0.07,0.09,0.1,0.2,0.3,0.4 , 0.5, 0.6, 0.7, 0.8, 0.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2 and at .7,2.8,2.9,3.0 above, wherein (W W / W M) is 3.0,2.9,2.8,2.7,2.6,2. 5, 2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0. It is 09, 0.08, 0.07, 0.06 or less.
  • the solution to which water is added contains an ionic compound.
  • the ionic compound is preferably an ammonium compound or a halide.
  • the cooling temperature is preferably ⁇ 20 to 50° C., more preferably ⁇ 10 to 30° C.
  • the cooling temperature is -20, -15, -10, -5, 0, 5, 10, 15, 20, 25 ° C. or higher.
  • the cooling temperature is 30, 25, 20, 15, 10, 5, 0, -5, -10, -15 ° C or lower.
  • the cooling rate is preferably 0.1 to 1500° C./min, more preferably 10 to 150° C./min.
  • the perovskite compound by cooling the mixed solution, the perovskite compound can be precipitated due to the difference in solubility due to the difference in temperature of the mixed solution. As a result, a dispersion liquid containing the perovskite compound is obtained.
  • the perovskite compound can be recovered by solid-liquid separation of the obtained dispersion liquid containing the perovskite compound.
  • the solid-liquid separation method include the method described in the first manufacturing method.
  • the above-mentioned production method includes the step of adding the above-mentioned (6) surface modifier because the particles of the obtained perovskite compound are easily dispersed stably in the dispersion liquid. preferable.
  • the step (6) of adding the surface modifier is preferably performed before the step of cooling.
  • the (6) surface modifier may be added to any of the (3) solvent, the first solution, the second solution, and the mixed solution.
  • the above-described manufacturing method includes a step of removing coarse particles by a method such as centrifugation or filtration shown in the first manufacturing method after the cooling step.
  • composition 1-1 is a liquid composition.
  • the composition 1-1 of the present embodiment mixes (1) a perovskite compound and (2) a surface protectant with one or both of (3) a solvent and (4) a polymerizable compound.
  • a perovskite compound mixes (1) a perovskite compound and (2) a surface protectant with one or both of (3) a solvent and (4) a polymerizable compound.
  • the mixing of (1) perovskite compound and (2) surface protectant and / or both of (3) solvent and (4) polymerizable compound is carried out with stirring. Is preferable.
  • the temperature at the time of mixing is not particularly limited. Since the (1) perovskite compound and (2) surface protectant can be easily mixed uniformly, the temperature at the time of mixing is preferably in the range of 0 ° C. to 100 ° C., and preferably in the range of 10 ° C. to 80 ° C. More preferable.
  • the temperature at the time of mixing (1) perovskite compound and (2) surface protective agent with either or both of (3) solvent and (4) polymerizable compound is 0, 5, 10, 15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95 degreeC or more.
  • the temperature at the time of mixing (1) perovskite compound and (2) surface protective agent with either or both of (3) solvent and (4) polymerizable compound is 100, 95, 90. , 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 25, 20, 15, 10, 5 ° C. or lower.
  • a method for producing a composition containing (1) a perovskite compound, (2) a surface protective agent, and (3) a solvent may be, for example, the following production method (a1) or the following production method (a2). ).
  • Production method (a1) A composition comprising a step of mixing (1) a perovskite compound and (3) a solvent, and a step of mixing the obtained mixture and (2) a surface protective agent. Production method.
  • Production method (a2) A composition comprising a step of mixing (1) a perovskite compound and (2) a surface protective agent, and a step of mixing the obtained mixture and (3) a solvent. Production method.
  • the (3) solvent used in the production methods (a1) and (a2) is preferably one that is difficult to dissolve the (1) perovskite compound.
  • a solvent (3) is used, the mixture obtained by the production method (a1) and the compositions obtained by the production methods (a1) and (a2) become a dispersion liquid.
  • composition of the present embodiment contains (2) a surface protective agent, one or both of the modified product of (2-1) silazane and the modified product of (2-2) silicon compound
  • the composition The manufacturing method may be the following manufacturing method (a3) or the following manufacturing method (a4).
  • Production method (a3) a step of mixing (1) a perovskite compound and (3) a solvent, the obtained mixture, and any one of the (2-1) silazane and the (2-2) silicon compound
  • a method for producing a composition which comprises a step of mixing one or both of them and a step of subjecting the obtained mixture to a modification treatment.
  • Production Method (a4) (1) a step of mixing the perovskite compound with either or both of the (2-1) silazane and the (2-2) silicon compound, and the resulting mixture, 3) A method for producing a composition, which comprises a step of mixing a solvent and a step of modifying the obtained mixture.
  • the polymer may be dissolved or dispersed in the solvent (3).
  • the mixing step included in the above-mentioned production method it is preferable to perform stirring from the viewpoint of enhancing dispersibility.
  • the temperature is not particularly limited as long as mixing is possible, but from the viewpoint of uniform mixing, it is preferably in the range of 0°C or higher and 100°C or lower, and 10°C or higher. It is more preferably in the range of 80°C or lower.
  • the temperature of the mixing step included in the above-described manufacturing method is 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, The temperature is 80, 85, 90, 95°C or higher.
  • the temperature of the mixing step included in the above-described manufacturing method is 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25. , 20, 15, 10, 5° C. or lower.
  • the method for producing the composition is preferably the production method (a1) or the production method (a3) from the viewpoint of (1) improving the dispersibility of the perovskite compound.
  • the reforming method includes a method of irradiating the (2-1) silazane and the (2-2) silicon compound with ultraviolet rays, and the (2-1) silazane and the (2-2) silicon compound and water vapor. Examples thereof include known methods such as a method of reacting with.
  • the treatment of reacting the (2-1) silazane and the (2-2) silicon compound with water vapor may be referred to as “humidification treatment”.
  • the wavelength of ultraviolet rays used in the method of irradiating with ultraviolet rays is usually 10 to 400 nm, preferably 10 to 350 nm, and more preferably 100 to 180 nm.
  • the light source for generating ultraviolet rays include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV laser light.
  • the wavelength of ultraviolet light used in the method of irradiating ultraviolet light is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350 nm or more.
  • the wavelength of the ultraviolet light used in the method of irradiating ultraviolet light is 400, 390, 380, 370, 360, 350, 340, 330, 320, 310, 300, 290, 280, 270, 260, 250, It is 240, 230, 220, 210, 200, 190, 180, 150, 100 nm or less.
  • the composition When the humidifying treatment is performed, the composition may be allowed to stand for a certain period of time under the temperature and humidity conditions described below, or may be stirred for a certain period of time under the same conditions.
  • the temperature in the humidification treatment may be a temperature at which reforming proceeds sufficiently.
  • the temperature in the humidification treatment is, for example, preferably 5 to 150 ° C., more preferably 10 to 100 ° C., and even more preferably 15 to 80 ° C. In some embodiments, the temperature in the humidification treatment is 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 ° C. or higher. In another aspect, the temperature in the humidification treatment is 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10 ° C. or less.
  • the humidity in the humidification treatment may be any humidity that can sufficiently supply water to (2-1) and (2-2) in the composition.
  • the humidity in the humidifying treatment is, for example, preferably 30% to 100%, more preferably 40% to 95%, further preferably 60% to 90%.
  • the time required for the humidification treatment may be any time that allows the reforming to proceed sufficiently.
  • the time required for the humidification treatment is, for example, preferably 10 minutes or more and 1 week or less, more preferably 1 hour or more and 5 days or less, and further preferably 2 hours or more and 3 days or less.
  • stirring is preferable.
  • Water may be supplied in the humidification treatment by flowing a gas containing water vapor into the reaction vessel, or by stirring in an atmosphere containing water vapor to supply water from the interface.
  • the durability of the resulting composition is improved, so that the flow rate of the gas containing water vapor is preferably 0.01 L/min or more and 100 L/min or less, 0.1 L/min or more and 10 L/min or less is more preferable, and 0.15 L/min or more and 5 L/min or less is further preferable.
  • the gas containing water vapor include nitrogen containing a saturated amount of water vapor.
  • the gas flow rate including water vapor is 0.01, 0.5, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 L/min or more.
  • the gas flow rate including water vapor is 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 1, 0.5 L/min or less.
  • (2) the surface protectant and (3) the solvent may be mixed in any of the steps included in the above-mentioned method for producing the perovskite compound.
  • the following manufacturing methods (a5) and (a6) may be used.
  • a manufacturing method including a step of obtaining a solution and a step of cooling the solution.
  • a manufacturing method including.
  • the surface protective agent is dissolved in either or both of the first solution and the second solution.
  • the conditions of each step included in these production methods are the same as the conditions of the first production method and the second production method in the above-mentioned (1) method for producing a perovskite compound.
  • composition 1-2 containing a polymerizable compound ((4) Method for producing composition 1-2 containing a polymerizable compound)
  • Examples of the method for producing a composition containing (1) a perovskite compound, (2) a surface protectant, and (4) a polymerizable compound include the following production methods (c1) to (c3).
  • Production method (c3) A production method including a step of dispersing a mixture of (1) a perovskite compound and (2) a surface protectant in (4) a polymerizable compound.
  • the production method (c1) is preferable from the viewpoint of increasing the dispersibility of the (1) perovskite compound.
  • the polymerizable compound may be added dropwise to each material, or each material may be added dropwise to (4) the polymerizable compound. Good. In some embodiments, it is preferable to drop at least one of (1) a perovskite compound and (2) a surface protectant onto (4) a polymerizable compound because it is easy to disperse uniformly.
  • the dispersion in each mixing step, may be dropped onto each material, or each material may be dropped onto the dispersion.
  • At least one of the solvent (3) and the polymer (5) may be dissolved or dispersed in the polymerizable compound (4).
  • the solvent for dissolving or dispersing the polymer is not particularly limited.
  • the solvent is preferably a solvent in which the (1) perovskite compound is difficult to dissolve.
  • the solvent in which the polymer is dissolved include the above-mentioned solvent (3).
  • halogenated hydrocarbons and hydrocarbons are more preferred among the (3) solvents.
  • the method for producing the composition of the present embodiment may be the following production method (c4) or production method (c5).
  • Production method (c4) (1) a step of dispersing a perovskite compound in a solvent (3) to obtain a dispersion, and (4) a polymerizable compound and (5) a polymer are mixed in the obtained dispersion. And a step of mixing the obtained mixed solution and (2) a surface protective agent.
  • Production method (c5) (1) A step of dispersing a perovskite compound in a solvent (3) to obtain a dispersion, and the obtained dispersion, the (2-1) silazan and the (2-2) silicon compound. One or both of them are mixed to obtain a mixed solution, and the obtained mixed solution is subjected to a modification treatment to obtain the modified product of the (2-1) silazane and the (2-2) silicon compound.
  • a method for producing a composition comprising: a step of obtaining a mixed solution containing one or both of the modified products; and a step of mixing the obtained mixed solution and (3) a solvent.
  • a surface modifier is used in the production method 1 of the composition 1, it can be added together with (2) a surface protectant.
  • the method for producing the composition of the present embodiment includes a step of mixing (1) a perovskite compound, (2) a surface protectant, and (4) a polymerizable compound, and (4) polymerizing the polymerizable compound. And a manufacturing method including the steps.
  • the composition obtained by the production method 2 of the composition 1 preferably has a total of (1) a perovskite compound, (2) a surface protectant, and (5) a polymer in an amount of 90% by mass or more of the total composition.
  • a step of mixing (1) a perovskite compound, (2) a surface protective agent, (3) a polymer (5) dissolved in a solvent, (3) A step of removing the solvent may also be included.
  • the same mixing method as the method shown in the above-mentioned manufacturing method 1 of the composition 1 can be used.
  • Examples of the method for producing the composition include the following production methods (d1) and (d2).
  • Production method (d1) Production including (4) a step of dispersing (1) a perovskite compound and (2) a surface protective agent in a polymerizable compound, and (4) a step of polymerizing the polymerizable compound. Method.
  • the dispersing step there is no limitation on the order of adding (1) perovskite compound and (2) surface protective agent to (4) polymerizable compound.
  • the (1) perovskite compound may come first, (2) the surface protectant may come first, and (1) the perovskite compound and (2) the surface protectant may be added at the same time.
  • the perovskite compound and (2) the surface protectant are added to the solvent.
  • the (1) perovskite compound may come first, (2) the surface protectant may come first, and (1) the perovskite compound and (2) the surface protectant may be added at the same time.
  • the step (3) of removing the solvent which is included in the production method (d2), may be a step of allowing to stand at room temperature and naturally drying, or may be a reduced pressure drying using a vacuum dryer. Alternatively, the step (3) of evaporating the solvent by heating may be performed.
  • the solvent (3) can be removed by, for example, drying at 0° C. or higher and 300° C. or lower for 1 minute or more and 7 days or less.
  • the step (4) of polymerizing the polymerizable compound included in the production method (d1) can be carried out by appropriately using a known polymerization reaction such as radical polymerization.
  • a radical polymerization initiator is added to a mixture of (1) a perovskite compound, (2) a surface protectant, and (4) a polymerizable compound, and a radical is generated to carry out a polymerization reaction. You can proceed.
  • the radical polymerization initiator is not particularly limited, and examples thereof include a photoradical polymerization initiator.
  • photo-radical polymerization initiator examples include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
  • a surface modifier is used in the production method 2 of the composition 1, it can be added together with (2) a surface protectant.
  • Method 3 for producing composition 1 As the method for producing the composition of the present embodiment, the following production methods (d3) to (d6) can also be adopted.
  • Production method (d3) A production method including a step of melt-kneading (1) a perovskite compound, (2) a surface protective agent, and (5) a polymer.
  • Production method (d4) a step of melt-kneading (1) perovskite compound, either or both of (2-1) silazane and (2-2) silicon compound, and (5) polymer , (5) A production method including a step of performing a humidification treatment in a molten state of the polymer.
  • Production method (d5) a step of producing a liquid composition containing (1) a perovskite compound and (2) a surface protective agent, a step of extracting solids from the obtained liquid composition, and the obtained solid
  • a production method including a step of melt-kneading the minutes and (5) the polymer.
  • Production method (d6) (2) a step of producing a liquid composition containing (1) a perovskite compound without containing a surface protective agent, a step of extracting a solid content from the obtained liquid composition, and the obtained solid
  • a production method comprising a step of melt-kneading a portion, (2) a surface protective agent, and (5) a polymer.
  • melt-kneading the polymer (5) a known method as a polymer kneading method can be adopted.
  • extrusion processing using a single screw extruder or a twin screw extruder can be adopted.
  • the above-mentioned method can be adopted as the step of performing the humidification treatment of the manufacturing method (d4).
  • the above-mentioned production method (a1) or (a2) can be adopted for the step of producing the liquid composition of the production methods (d5) and (d6).
  • the surface protective agent may not be added in the above-mentioned production method (a1) or (a2).
  • the step of producing the liquid composition of the production method (d5) for example, the above-mentioned production method (a3) or (a4) can be adopted.
  • the steps of producing solids in the production methods (d5) and (d6) include (3) a solvent and (4) a polymerizable compound that constitute the liquid composition from the liquid composition, for example, by heating, depressurizing, blowing air, or a combination thereof. By removing.
  • a surface modifier when (6) a surface modifier is used in Method 3 of the composition, it can be added together with (2) a surface protectant.
  • composition 2 of the present embodiment can be produced in the same manner as the above-mentioned production methods 1 to 3 of the composition 1 except that (2) the addition of the surface protective agent and the modification treatment are not performed. ..
  • a layer of an inorganic silicon compound having a siloxane bond may be further formed on the surface of the (1) perovskite compound after forming the surface protective layer comprising the surface protective agent (2).
  • the term “inorganic silicon compound having a siloxane bond” refers to modification of a compound containing an organic group and a silicon element, and all the organic groups being organic groups that are eliminated by a modification treatment (hydrolysis). It means a modified form of a compound containing a silicon element having no body or organic group.
  • the inorganic silicon compound having a siloxane bond for example, in the formula (B1), modification of disilazane all are hydrogen atom of a plurality of R 15, in the formula (B2), all the plurality of R 15 modification of low molecular silazane is hydrogen atom, in the above formula (B3), modification of all of the plurality of R 15 are polymeric silazane is a hydrogen atom, a structure represented by the above formula (B4)
  • Examples of the polysilazane having a plurality of polysilazanes include a modified form of high molecular weight silazane in which all of a plurality of R 15s are hydrogen atoms, and a modified form of sodium silicate (Na 2 SiO 3 ).
  • the solid content concentration (% by mass) of the (1) perovskite compound contained in the composition of the present embodiment can be calculated by the dry mass method. Details of the dry mass method will be described in Examples.
  • the full width at half maximum, the absorptance, and the emission wavelength of the emission spectrum of the (1) perovskite compound of the present invention were measured by using an absolute PL quantum yield measuring device (for example, C9920-02 manufactured by Hamamatsu Photonics KK) with excitation light of 450 nm. Measure at room temperature in the air. As the emission wavelength, the wavelength having the highest emission intensity is used.
  • the absorption rate of the excitation light of the (1) perovskite compound of the present embodiment is preferably 0.2 or more and less than 1, more preferably 0.3 or more and less than 0.9, and more preferably 0.6 or more. It is more preferably less than 0.9.
  • (1) the absorptance of excitation light of the perovskite compound is 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or more. is there.
  • (1) the absorptance of the excitation light of the perovskite compound is 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 or less. ..
  • the film according to the present invention contains (1) a perovskite compound of the present embodiment.
  • the film according to this embodiment uses the above-mentioned composition as a forming material.
  • the film according to the present embodiment contains (1) perovskite compound and (5) polymer, and the total of (1) perovskite compound and (5) polymer is 90% by mass or more of the entire film.
  • the film shape is not particularly limited, and can be any shape such as a sheet shape or a bar shape.
  • the “bar-like shape” means, for example, a band-like shape in plan view extending in one direction. Examples of the band-like shape in plan view include a plate-like shape whose sides have different lengths.
  • the thickness of the film may be 0.01 ⁇ m to 1000 mm, 0.1 ⁇ m to 10 mm, or 1 ⁇ m to 1 mm.
  • the thickness of the film refers to the front surface and the back surface in the thickness direction of the film when the side having the smallest value among the length, width, and height of the film is defined as the "thickness direction". Refers to the distance between. Specifically, the thickness of the film is measured at any three points on the film using a micrometer, and the average value of the measured values at the three points is taken as the film thickness.
  • the film thickness is 0.01 ⁇ m, 0.5 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 25 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, 250 ⁇ m, 500 ⁇ m, 750 ⁇ m, 1 mm, 5 mm, 10 mm. , 25 mm, 50 mm, 75 mm, 100 mm, 250 mm, 500 mm, 750 mm or more.
  • the film thickness is 1000 mm, 750 mm, 500 mm, 250 mm, 100 mm, 75 mm, 50 mm, 25 mm, 10 mm, 5 mm, 1 mm, 750 ⁇ m, 500 ⁇ m, 250 ⁇ m, 100 ⁇ m, 75 ⁇ m, 50 ⁇ m, 25 ⁇ m, 10 ⁇ m, 5 ⁇ m, It is 1 ⁇ m, 0.5 ⁇ m, 0.1 ⁇ m, 0.05 ⁇ m or less.
  • the film may be a single layer or multiple layers.
  • the compositions of the same type of embodiments may be used for each layer, or the compositions of different types of embodiments may be used for each layer.
  • the film formed on the substrate can be obtained by the method for producing a laminated structure described below. Further, the film can be obtained by peeling it from the substrate.
  • the laminated structure according to the present embodiment has a plurality of layers, and at least one layer is the above-mentioned film.
  • examples of layers other than the above-mentioned film include arbitrary layers such as a substrate, a barrier layer, and a light scattering layer.
  • the shape of the laminated film is not particularly limited, and may be any shape such as a sheet shape and a bar shape.
  • the substrate is not particularly limited, but may be a film.
  • the substrate is preferably light transmissive.
  • a laminated structure having a light-transmitting substrate is preferable because it is easy to take out the light emitted by the (1) perovskite compound.
  • a material for forming the substrate for example, a polymer such as polyethylene terephthalate or a known material such as glass can be used.
  • a polymer such as polyethylene terephthalate or a known material such as glass can be used.
  • the above-mentioned film may be provided on the substrate.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the laminated structure of this embodiment.
  • the film 10 of the present embodiment is provided between the first substrate 20 and the second substrate 21.
  • the film 10 is sealed by the sealing layer 22.
  • One aspect of the present invention includes a first substrate 20, a second substrate 21, a film 10 according to the present embodiment, which is located between the first substrate 20 and the second substrate 21, and a sealing.
  • a laminated structure having a layer 22 and the encapsulating layer 22 is disposed on a surface of the film 10 that is not in contact with the first substrate 20 and the second substrate 21. It is a structure 1a.
  • the layer that the laminated structure according to the present embodiment may have is not particularly limited, and examples thereof include a barrier layer.
  • a barrier layer may be included from the viewpoint of protecting the above-mentioned composition from water vapor in the outside air and air in the atmosphere.
  • the barrier layer is not particularly limited, but a transparent one is preferable from the viewpoint of extracting the emitted light.
  • a polymer such as polyethylene terephthalate or a known barrier layer such as a glass film can be used.
  • the layer that the laminated structure according to the present embodiment may have is not particularly limited, and examples thereof include a light scattering layer.
  • a light scattering layer may be included from the viewpoint of effectively utilizing the incident light.
  • the light scattering layer is not particularly limited, but is preferably transparent from the viewpoint of extracting emitted light.
  • As the light scattering layer light scattering particles such as silica particles or a known light scattering layer such as an amplification diffusion film can be used.
  • the light emitting device can be obtained by combining the compound, composition or the laminated structure of the embodiment of the present invention with a light source.
  • the light-emitting device is a device which emits light by irradiating a compound, a composition, or a laminated structure provided in a subsequent stage with light emitted from a light source so that the compound, the composition, or the laminated structure emits light.
  • the layers other than the above-mentioned film, substrate, barrier layer, and light scattering layer include a light reflection member, a brightness enhancement section, a prism sheet, a light guide plate, and between elements.
  • One aspect of the present invention is a light emitting device 2 in which a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order.
  • the light source constituting the light emitting device according to the present invention is not particularly limited, but from the viewpoint of emitting the above compound, the above composition, or the (1) perovskite compound in the laminated structure, an emission wavelength of 600 nm or less.
  • a known light source such as a light emitting diode (LED) such as a blue light emitting diode, a laser, or an electroluminescent (EL) can be used.
  • the layer that may be included in the laminated structure that constitutes the light emitting device according to the present invention is not particularly limited, and examples thereof include a light reflecting member.
  • a light reflecting member may be included from the viewpoint of irradiating the light of the light source toward the above-mentioned compound, composition, or laminated structure.
  • the light reflection member is not particularly limited, but may be a reflection film.
  • the reflecting film for example, a known reflecting film such as a reflecting mirror, a film of reflecting particles, a reflecting metal film or a reflector can be used.
  • the layer that may be included in the laminated structure that constitutes the light emitting device according to the present invention is not particularly limited, and examples thereof include a brightness enhancing portion.
  • a brightness enhancement section may be included from the viewpoint of reflecting a part of the light back toward the direction in which the light was transmitted.
  • the layer that may be included in the laminated structure that constitutes the light emitting device according to the present invention is not particularly limited, but a prism sheet can be used.
  • the prism sheet typically has a base material portion and a prism portion.
  • the base material portion may be omitted depending on the adjacent member.
  • the prism sheet can be attached to an adjacent member via any appropriate adhesive layer (for example, an adhesive layer, a pressure-sensitive adhesive layer).
  • the prism sheet is formed by arranging a plurality of convex unit prisms in parallel on the side opposite to the viewing side (back side). By arranging the convex portion of the prism sheet so as to face the back surface side, it becomes easier to collect light that passes through the prism sheet.
  • the layer that may be included in the laminated structure forming the light emitting device according to the present invention is not particularly limited, and examples thereof include a light guide plate.
  • a light guide plate for example, a light guide plate having a lens pattern formed on the back side and a prism shape or the like formed on the back side and/or the viewing side so that light from the lateral direction can be deflected in the thickness direction.
  • Any suitable light guide plate can be used, such as a light guide plate.
  • the layer that may be included in the laminated structure that constitutes the light emitting device according to the present invention is not particularly limited, but a layer composed of one or more medium materials (on the optical path between adjacent elements (layers) ( The medium material layer between the elements).
  • the one or more media contained in the media material layer between the elements include, but are not limited to, vacuum, air, gas, optical materials, adhesives, optical adhesives, glasses, polymers, solids, liquids, gels, cures.
  • the light emitting device includes those provided with a wavelength conversion material for electroluminescent (EL) displays and liquid crystal displays.
  • EL electroluminescent
  • the composition of the present invention is put in a glass tube or the like and sealed, and this is arranged along the end face (side face) of the light guide plate between the blue light emitting diode which is the light source and the light guide plate, Backlight that converts blue light into green light or red light (on-edge backlight),
  • E2 The composition of the present invention is formed into a sheet, and a film obtained by sandwiching the composition with two barrier films and sealing the film is placed on the light guide plate, and blue light emission is placed on the end surface (side surface) of the light guide plate.
  • a backlight that converts blue light emitted from the diode through the light guide plate to the sheet into green light or red light surface mount backlight
  • the composition of the embodiment of the present invention is molded and arranged in the subsequent stage of the blue light emitting diode as a light source to convert blue light into green light or red light. Illumination that emits white light.
  • the display 3 of the present embodiment includes a liquid crystal panel 40 and the above-described light emitting device 2 in this order from the viewing side.
  • the light emitting device 2 includes a second laminated structure 1b and a light source 30.
  • the above-mentioned first laminated structure 1a further includes a prism sheet 50 and a light guide plate 60.
  • the display may further comprise any suitable other member.
  • One aspect of the present invention is a liquid crystal display 3 in which a liquid crystal panel 40, a prism sheet 50, a light guide plate 60, the first laminated structure 1a, and a light source 30 are laminated in this order.
  • the liquid crystal panel typically includes a liquid crystal cell, a viewing side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the back side of the liquid crystal cell.
  • the viewing-side polarizing plate and the back-side polarizing plate may be arranged such that their absorption axes are substantially orthogonal or parallel.
  • the liquid crystal cell has a pair of substrates and a liquid crystal layer as a display medium sandwiched between the substrates.
  • one substrate is provided with a color filter and a black matrix
  • the other substrate is provided with a switching element for controlling electro-optical characteristics of liquid crystal and a gate for the switching element.
  • a scan line that gives a signal, a signal line that gives a source signal, a pixel electrode, and a counter electrode are provided.
  • the distance (cell gap) between the substrates can be controlled by a spacer or the like.
  • an alignment film made of polyimide can be provided on the side of the substrate in contact with the liquid crystal layer.
  • the polarizing plate typically has a polarizer and protective layers disposed on both sides of the polarizer.
  • the polarizer is typically an absorption-type polarizer. Any appropriate polarizer is used as the above-mentioned polarizer.
  • a dichroic substance such as iodine or a dichroic dye is adsorbed on a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene/vinyl acetate copolymer partially saponified film.
  • Uniaxially stretched film, polyene oriented film such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
  • a polarizer obtained by uniaxially stretching a polyvinyl alcohol-based film by adsorbing a dichroic substance such as iodine has a high polarization dichroic ratio, and is particularly preferable.
  • the compound or composition of the present embodiment can be used, for example, as a material for a light emitting layer of an LED.
  • the LED containing the compound or composition of the present embodiment for example, the compound or composition of the present embodiment and conductive particles such as ZnS are mixed and laminated in a film form, and an n-type transport layer is laminated on one side. It has a structure in which a p-type transport layer is laminated on the other side, and holes of the p-type semiconductor and electrons of the n-type semiconductor are contained in the composition of the bonding surface by passing an electric current.
  • Perovskite compound There is a method of emitting light by canceling the charge in the particles.
  • the compound or composition of this embodiment can be used as an electron transporting material contained in the active layer of a solar cell.
  • the configuration of the solar cell is not particularly limited, but examples thereof include a fluorine-doped tin oxide (FTO) substrate, a titanium oxide dense layer, a porous aluminum oxide layer, an active layer containing the compound or composition of the present embodiment, A hole transport layer such as 2,2′,7,7′-tetrakis (N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-MeOTAD) and a silver (Ag) electrode are provided.
  • FTO fluorine-doped tin oxide
  • Ti titanium oxide dense layer
  • a porous aluminum oxide layer an active layer containing the compound or composition of the present embodiment
  • a hole transport layer such as 2,2′,7,7′-tetrakis (N,N′-di-p-methoxyphenylamine)-9,9′
  • the titanium oxide dense layer has a function of electron transport, an effect of suppressing roughness of FTO, and a function of suppressing reverse electron transfer.
  • the porous aluminum oxide layer has a function of improving the light absorption efficiency.
  • the compound or composition of this embodiment contained in the active layer has the functions of charge separation and electron transport.
  • Examples of the film manufacturing method include the following manufacturing methods (e1) to (e3).
  • Manufacturing method (e1) a method for manufacturing a film, which includes a step of applying a liquid composition to obtain a coating film, and a step of (3) removing a solvent from the coating film.
  • a method of manufacturing a film including.
  • Production method (e3) A method for producing a film by molding the composition obtained in the above production methods (d1) and (d2).
  • Examples of the method for manufacturing the laminated structure include the following manufacturing methods (f1) to (f3).
  • Production method (f1) Lamination including a step of producing a liquid composition, a step of applying the obtained liquid composition onto a substrate, and a step of removing (3) a solvent from the obtained coating film Method of manufacturing the structure.
  • Manufacturing method (f2) A manufacturing method of a laminated structure including a step of laminating a film on a substrate.
  • Production method (f3) (4) a step of producing a liquid composition containing a polymerizable compound, a step of applying the obtained liquid composition on a substrate, and a step of applying the obtained coating film (4) And a step of polymerizing the polymerizable compound.
  • the above-mentioned manufacturing methods (c1) to (c4) can be adopted for the step of manufacturing the liquid composition in the manufacturing methods (f1) and (f3).
  • the step of applying the liquid composition on the substrate in the production methods (f1) and (f3) is not particularly limited, but is a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, Known coating and coating methods such as a die coating method can be used.
  • the step (3) of removing the solvent in the production method (f1) can be the same as the step of removing the solvent (3) included in the production method (d2) described above.
  • the step of polymerizing the (4) polymerizable compound in the production method (f3) can be the same as the step of polymerizing the (4) polymerizable compound contained in the above-mentioned production method (d1).
  • any adhesive can be used.
  • the adhesive is not particularly limited as long as it does not dissolve (1) the perovskite compound, and a known adhesive can be used.
  • the method for producing a laminated structure may further include a step of laminating an arbitrary film on the obtained laminated structure.
  • a reflection film or a diffusion film can be mentioned.
  • Arbitrary adhesive can be used in the process of laminating the films.
  • the above-mentioned adhesive is not particularly limited as long as it does not dissolve the compound of the present embodiment, and a known adhesive can be used.
  • ⁇ Method of manufacturing light emitting device> a manufacturing method including the above-mentioned light source and a step of installing the above-mentioned compound, the above-mentioned composition, or the laminated structure on the optical path downstream from the light source can be mentioned.
  • the compound or composition of the present embodiment includes an image detection unit (image sensor), a fingerprint detection unit, a face detection unit, a vein detection unit, an iris detection unit, and the like for a solid-state image sensor such as an X-ray image sensor and a CMOS image sensor. It can be used as a photoelectric conversion element (photodetection element) material included in a detection unit that detects a predetermined characteristic of a part of a living body or a detection unit of an optical biosensor such as a pulse oximeter.
  • Mass M W of the added water Mass M W of the added water, the trace moisture measuring device (AQ-2000, Hiranuma Sangyo Co., ketone electrolyte Hydranal-Coulomat AK) was used for the measurement.
  • the average particle size of the perovskite compounds obtained in Examples 1 to 5 and Comparative Example 1 was calculated using image analysis software Image J.
  • Image J image analysis software
  • the compounds obtained in Examples 1 to 5 and Comparative Example 1 were converted into black, and the other compounds were converted into white to obtain a binarized image.
  • the positions where the components derived from the perovskite compounds obtained in Examples 1 to 5 and Comparative Example 1 were detected were converted to black by comparing with the element mapping images obtained by TEM-EDX measurement. I confirmed that.
  • the size of the perovskite compound was measured for the binarized image.
  • the average particle size was calculated from the average of the longest side lengths of 300 randomly selected cubic or rectangular parallelepiped particles.
  • Example 1 After mixing 25 mL of oleylamine and 200 mL of ethanol, the mixture was stirred while cooling with ice, 17.12 mL of hydrobromic acid solution (48%) was added, and then dried under reduced pressure to obtain a precipitate. The precipitate was washed with diethyl ether and then dried under reduced pressure to give oleylammonium bromide.
  • the half width of the emission spectrum is 20.93 nm
  • the absorption rate of excitation light is 0.65
  • the emission wavelength is It was 541 nm.
  • a solution obtained by mixing 100 mL of toluene and 50 mL of acetonitrile with 200 mL of the above dispersion 1 was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 100 mL of toluene and 50 mL of acetonitrile twice, and filtered. Thereby, (1) a perovskite compound was obtained.
  • Example 2 The water content of the solution containing oleylammonium bromide in the manufacturing process of the perovskite compound was adjusted to water (g) with respect to the mass (g) of lead in lead acetate trihydrate (raw material containing lead as the metal element M) /Dispersion liquid was obtained in the same manner as in Example 1 except that the lead (g) was 1.13.
  • the half width of (hkl) (001) was 0.232.
  • the full width at half maximum of the emission spectrum was 20.68 nm, the absorption rate of excitation light was 0.72, and the emission wavelength was 541 nm.
  • the average particle size measured by TEM was 21.6 nm.
  • Example 3 The water content of the solution containing oleylammonium bromide in the manufacturing process of the perovskite compound was adjusted to water (g) with respect to the mass (g) of lead in lead acetate trihydrate (raw material containing lead as the metal element M) /A dispersion was obtained in the same manner as in Example 1 except that the lead (g) was 1.69.
  • the half width of (hkl) (001) was 0.213.
  • the full width at half maximum of the emission spectrum was 20.15 nm, the absorption rate of the excitation light was 0.65, and the emission wavelength was 542 nm.
  • the average particle size measured by TEM was 18.4 nm.
  • Example 4 The water content of the solution containing oleylammonium bromide in the manufacturing process of the perovskite compound was adjusted to water (g) with respect to the mass (g) of lead in lead acetate trihydrate (raw material containing lead as the metal element M) /Dispersion liquid was obtained in the same manner as in Example 1 except that the lead (g) was changed to 2.25.
  • the half width of (hkl) (001) was 0.150.
  • the full width at half maximum of the emission spectrum was 20.16 nm, the absorption rate of excitation light was 0.29, and the emission wavelength was 539 nm.
  • the average particle size measured by TEM was 26.6 nm.
  • Example 5 After mixing 25 mL of oleylamine and 200 mL of ethanol, 17.12 mL of a hydrobromic acid solution (48%) was added with stirring while cooling with ice, and then dried under reduced pressure to obtain a precipitate. The precipitate was washed with diethyl ether and then dried under reduced pressure to give oleylammonium bromide.
  • a solution obtained by mixing 100 mL of toluene and 50 mL of acetonitrile with 200 mL of the above dispersion 3 was separated into solid and liquid by filtration. Then, the solid content on the filtration was washed by flowing a mixed solution of 100 mL of toluene and 50 mL of acetonitrile twice, and filtered. Thereby, (1) a perovskite compound was obtained.
  • the above perovskite compound was mixed with xylene to prepare 185 mL of Dispersion Liquid 5 so that the solid content concentration was 0.9% by mass.
  • 2 parts by mass of organopolysilazane (1500 Slow Cure, Durazane, manufactured by Merck Performance Materials Co., Ltd.) was added to 1 part by mass of the perovskite compound in the dispersion liquid 5.
  • the full width at half maximum of the emission spectrum was measured by the above method, it was 20.60 nm and the emission wavelength was 538 nm.
  • the full width at half maximum of the emission spectrum was measured by the above method, it was 24.30 nm, the absorptance of the excitation light was 0.64, and the emission wavelength was 535 nm.
  • the average particle size measured by TEM was 13.1 nm.
  • Table 1 shows the results of Examples 1 to 5 and Comparative Example 1.
  • a resin composition can be obtained by forming the compound or composition described in Examples 1 to 5 into a sheet, and a film obtained by sandwiching this with two barrier films and setting the film on the light guide plate. As a result, a backlight capable of converting the blue light emitted from the blue light emitting diode placed on the end surface (side surface) of the light guide plate to the sheet through the light guide plate into green light or red light is manufactured.
  • a wavelength conversion material can be obtained by removing the solvent after mixing the compounds or compositions according to Examples 1 to 5 with a resist. By arranging the obtained wavelength conversion material between the blue light emitting diode which is the light source and the light guide plate or in the subsequent stage of the OLED which is the light source, a backlight capable of converting the blue light of the light source into green light and red light is provided. To manufacture.
  • a titanium oxide dense layer was laminated on the surface of a fluorine-doped tin oxide (FTO) substrate, and a porous aluminum oxide layer was laminated thereon, and the compound or the composition described in Examples 1 to 5 was laminated thereon.
  • FTO fluorine-doped tin oxide
  • a porous aluminum oxide layer was laminated thereon, and the compound or the composition described in Examples 1 to 5 was laminated thereon.
  • Spiro-OMeTAD 2,2',7,7'-tetrakis-(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene
  • the hole transport layer is laminated, and the silver (Ag) layer is laminated on the laminated hole transport layer to prepare a solar cell.
  • the composition of the present embodiment can be obtained by removing the solvent of the compounds or compositions described in Examples 1 to 5 and molding the mixture.
  • a photoelectric conversion element (photodetection element) material used for a detection unit that detects light is manufactured.
  • the photoelectric conversion element material is used for a part of a living body such as an image detection unit (image sensor) for a solid-state imaging device such as an X-ray imaging device and a CMOS image sensor, a fingerprint detection unit, a face detection unit, a vein detection unit and an iris detection unit. It is used in an optical biosensor such as a detection unit and a pulse oximeter that detects a predetermined feature.
  • a compound having a perovskite-type crystal structure having a narrow half-value width of the emission spectrum a composition containing the compound, a film using the composition as a forming material, a laminated structure containing the film, and the laminated structure. It is possible to provide a light emitting device and a display including the above. Therefore, a compound having a perovskite-type crystal structure of the present invention, a composition containing the compound, a film using the composition as a forming material, a laminated structure containing the film, and a light emitting device and a display including the laminated structure. Can be suitably used in light emitting applications.
  • the present invention also includes the following [1] to [28].
  • a perovskite aggregate composed of a plurality of compounds having. (A is a component located at each apex of the hexahedron centered on B in the perovskite type crystal structure, and is a monovalent cation.
  • X is a component located at each vertex of an octahedron centered on B in the perovskite crystal structure, and is at least one anion selected from the group consisting of halide ions and thiocyanate ions.
  • B is a component located at the center of a hexahedron having A at its apex and an octahedron having X at its apex, and is a metal ion.
  • the perovskite assembly according to any one of [1] to [5], which is composed of one or more metal ions selected from the group consisting of lead ions, tin ions, antimony ions, bismuth ions, and indium ions. body.
  • the compound is composed of one or more monovalent cations selected from the group consisting of cesium ion, organic ammonium ion, and amidinium ion.
  • Perovskite aggregate is composed of one or more monovalent cations selected from the group consisting of cesium ion, organic ammonium ion, and amidinium ion.
  • a composition comprising the perovskite aggregate of the above and at least one selected from the group consisting of the following (3), the following (4) and the following (5).
  • [20] Includes a step of mixing water with a raw material containing either one or both of a simple substance of the metal element M and a compound containing the metal element M, and a step of reacting the raw material in the presence of the water.
  • a method of manufacturing a semiconductor compound, for the mass W M of a metal element M contained in the raw material, is the ratio of the mass W W of the water (W W / W M) is 0.05 ⁇ 100
  • X A method for producing an aggregate composed of a plurality of semiconductor compounds containing a metal element M having a half-value width of a peak of a surface mirror index (001) of 0.10 or more and less than 0.60 in a line diffraction pattern.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

X線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満であり、1価の陽イオンであるA、金属イオンであるB、及びハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンであるXを構成成分とする(1)ペロブスカイト型結晶構造を有する化合物。

Description

化合物、組成物、フィルム、積層構造体、発光装置、ディスプレイ及び化合物の製造方法
 本発明は、化合物、組成物、フィルム、積層構造体、発光装置、ディスプレイ及び化合物の製造方法に関する。
 発光材料として、発光性の半導体化合物が注目されている。色純度の高い発光材料を製造するため、発光性の半導体化合物は、その発光スペクトルの半値幅がより狭く急峻な発光ピークとなることが求められている。
Advanced Materials 2016, 28, p.10088-10094
 上述の発光性の半導体化合物として、例えば、ペロブスカイト型結晶構造を有する化合物が報告されている(非特許文献1)。しかしながら、非特許文献1に記載のペロブスカイト型結晶構造を有する化合物は、発光スペクトルの半値幅が広く、色純度の向上が期待できるものではない。
 本発明は、上記課題に鑑みてなされたものであって、発光スペクトルの半値幅が狭い、ペロブスカイト型結晶構造を有する化合物、前記化合物を含む組成物、前記組成物を形成材料とするフィルム、前記フィルムを含む積層構造体、前記積層構造体を備える発光装置、ディスプレイ及び化合物の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明者らは鋭意検討した結果、以下の本発明に至った。
 本発明は下記の[1]~[10]を包含する。
[1] X線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満であり、A、B、及びXを構成成分とするペロブスカイト型結晶構造を有する化合物。
(Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する6面体、及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。)
[2] 請求項1に記載の化合物と、下記(2-1)、下記(2-1)の改質体、下記(2-2)及び下記(2-2)の改質体からなる群より選ばれる少なくとも1つの化合物と、を含む組成物。
 (2-1)シラザン
 (2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物
[3] [1]に記載の化合物と、下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種と、を含む組成物。
 (3)溶媒
 (4)重合性化合物
 (5)重合体
[4] 更に、下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種を含む[2]に記載の組成物。
 (3)溶媒
 (4)重合性化合物
 (5)重合体
[5] [1]に記載の化合物を含むフィルム。
[6] [2]~[4]のいずれか一項に記載の組成物を形成材料とするフィルム。
[7] [5]又は[6]に記載のフィルムを含む積層構造体。
[8] [7]に記載の積層構造体を備える発光装置。
[9] [7]に記載の積層構造体を備えるディスプレイ。
[10] 金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料と水とを混合する工程と、前記水の存在下で前記原料を反応させる工程と、を含む半導体化合物の製造方法であって、前記原料に含まれる金属元素Mの質量Wに対する、前記水の質量Wの比である(W/W)が0.05~100である、X線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満である金属元素Mを含む半導体化合物の製造方法。
 本発明によれば、発光スペクトルの半値幅が狭い、ペロブスカイト型結晶構造を有する化合物、前記化合物を含む組成物、前記組成物を形成材料とするフィルム、前記フィルムを含む積層構造体、前記積層構造体を備える発光装置及びディスプレイを提供することができる。
 また、本発明によれば、発光スペクトルの半値幅が狭い、化合物の製造方法を提供することができる。
本発明に係る積層構造体の一実施形態を示す断面図である。 本発明に係るディスプレイの一実施形態を示す断面図である。
 以下、実施形態を示して本発明を詳細に説明する。
<ペロブスカイト型結晶構造を有する化合物>
 本実施形態の化合物はA、B、及びXを構成成分とするペロブスカイト型結晶構造を有する化合物(以下、「(1)ペロブスカイト化合物」、又は単に「(1)」ともいう。)である。
 Aは、ペロブスカイト型結晶構造において、Bを中心とする六面体の各頂点に位置する成分であって、1価の陽イオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する六面体、及びXを頂点に配置する八面体の中心に位置する成分であって、金属イオンである。BはXの八面体配位をとることができる金属カチオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする八面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
 A、B、及びXを構成成分とするペロブスカイト化合物の構造としては、3次元構造、2次元構造、疑似2次元(quasi-2D)構造のいずれの構造であってもよい。
 3次元構造の場合、ペロブスカイト化合物の組成式は、ABX(3+δ)で表される。
 2次元構造の場合、ペロブスカイト化合物の組成式は、ABX(4+δ)で表される。
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。例えば、Aが1価の陽イオン、Bが2価の陽イオン、Xが1価の陰イオンである場合、ペロブスカイト化合物が電気的に中性となるようにδを選択することができる。ペロブスカイト化合物が電気的に中性とは、ペロブスカイト化合物の電荷が0であることを意味する。
 ペロブスカイト化合物は、Bを中心とし、頂点をXとする八面体を含む。八面体は、BXで表される。
 ペロブスカイト化合物が3次元構造を有する場合、ペロブスカイト化合物に含まれるBXは、八面体(BX)において頂点に位置する1つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで、3次元ネットワークを構成する。
 ペロブスカイト化合物が2次元構造を有する場合、ペロブスカイト化合物に含まれるBXは、八面体(BX)において頂点に位置する2つのXを、結晶中で隣り合う2つの八面体(BX)で共有することで八面体の稜線を共有し、2次元的に連なった層を構成する。ペロブスカイト化合物では、2次元的に連なったBXからなる層と、Aからなる層と、が交互に積層された構造を有する。
 本明細書において、ペロブスカイト化合物の結晶構造は、X線回折パターン(以下、XRDともいう)により確認することができる。更に、複数のペロブスカイト化合物で構成されるペロブスカイト化合物の集合体中のペロブスカイト化合物それぞれの結晶分布もまたXRDにより確認することができる。
 ペロブスカイト化合物が3次元構造のペロブスカイト型結晶構造を有する場合、通常、X線回折パターンにおいて、ペロブスカイト化合物の面のミラー指数(hkl)は、2θ=12~18°の位置に、(hkl)=(001)に由来するピークが確認される。又は2θ=18~25°の位置に、(hkl)=(110)に由来するピークが確認される。
 ペロブスカイト化合物が3次元構造のペロブスカイト型結晶構造を有する場合、通常、X線回折パターンにおいて、ペロブスカイト化合物の面のミラー指数(hkl)は、2θ=13~16°の位置に、(hkl)=(001)に由来するピークが確認される、又は2θ=20~23°の位置に、(hkl)=(110)に由来するピークが確認されることが好ましい。
 ペロブスカイト化合物が2次元構造のペロブスカイト型結晶構造を有する場合、通常、X線回折パターンにおいて、ペロブスカイト化合物の面のミラー指数(hkl)は、2θ=1~10°の位置に、(hkl)=(002)由来のピークが確認される。また、2θ=2~8°の位置に、(hkl)=(002)由来のピークが確認されることが好ましい。
 ペロブスカイト化合物は、3次元構造を有することが好ましい。
 XRDによって測定したX線回折パターンにおいて、本実施形態の(1)ペロブスカイト化合物の(hkl)=(001)のピークの半値幅は0.10(deg)以上、0.60(deg)未満である。前記半値幅は、0.15(deg)以上、0.50(deg)以下が好ましく、0.20(deg)以上、0.30(deg)以下が好ましく、0.15(deg)以上、0.28(deg)以下が好ましく、0.20(deg)以上、0.25(deg)以下が好ましい。
 本実施形態の他の態様において、(1)ペロブスカイト化合物の(hkl)=(001)のピークの半値幅は、0.10、0.11、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.35、0.40、0.45、0.50、0.55(deg)以上である。
 本実施形態の他の態様において、(1)ペロブスカイト化合物の(hkl)=(001)のピークの半値幅は、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.40、0.41、0.42、0.43、0.44、0.45、0・46、0.47、0.48、0.49、0.50、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59(deg)以下である。 (1)ペロブスカイト化合物の(hkl)=(001)のピークの半値幅が0.15以上であると、ペロブスカイト化合物の結晶が安定的に形成される。また、前記ピークの半値幅が0.20以上であると、上記効果に加え、励起光の吸収率が向上する。
 (1)ペロブスカイト化合物の(hkl)=(001)のピークの半値幅が0.60未満であると、発光波長の半値幅が狭くなる。
 (1)ペロブスカイト化合物の(hkl)=(001)の半値幅は、XRDパターン(CuKα線)より、統合粉末X線解析ソフトウェア PDXL(リガク社製)を用いて算出することができる。
 本実施形態のペロブスカイト化合物及び後述の製造方法で製造される半導体化合物の(hkl)=(001)の半値幅は、具体的には、以下のようにして確認することが出来る。
 本実施形態のペロブスカイト化合物又は後述の製造方法で製造される半導体化合物を含む分散液組成物を洗浄した無反射板に0.05mL滴下し、自然乾燥させる。CuKαを線源とし、かつ回折角2θの測定範囲を5°以上60°以下とする粉末X線回折測定を行い、(hkl)=(001)に対応するピークを決定する。さらに、上述の解析ソフトを用いて、決定した(hkl)=(001)の半値幅を算出する。
(構成成分A)
 ペロブスカイト化合物を構成するAは、1価の陽イオンである。Aとしては、セシウムイオン、有機アンモニウムイオン、又はアミジニウムイオンが挙げられる。
(有機アンモニウムイオン)
 Aの有機アンモニウムイオンとして具体的には、下記式(A3)で表される陽イオンが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(A3)中、R~Rは、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。但し、R~Rは、少なくとも1つがアルキル基又はシクロアルキル基であり、R~Rの全てが同時に水素原子となることはない。
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。また、R~Rで表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。
 ある態様では、R~Rで表されるアルキル基の炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましく、1であることがさらに好ましい。
 ある態様では、R~Rで表されるアルキル基の炭素原子数は、それぞれ独立に、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19以上である。他の態様では、R~Rで表されるアルキル基の炭素原子数は、それぞれ独立に、20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4、3、2以下である。
 R~Rで表されるシクロアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。
 ある態様では、R~Rで表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。
 ある態様では、R~Rで表されるシクロアルキル基の炭素原子数は、それぞれ独立に、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29以上である。他の態様では、R~Rで表されるシクロアルキル基の炭素原子数は、それぞれ独立に、30、29、28、27、26、25、24、23、22、21、20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4以下である。
 ある態様では、R~Rで表される基としては、それぞれ独立に、水素原子又はアルキル基であることが好ましい。
 ペロブスカイト化合物が、Aとして上記式(A3)で表される有機アンモニウムイオンを含む場合、式(A3)に含まれ得るアルキル基及びシクロアルキル基の数は少ないとよい。また、式(A3)に含まれ得るアルキル基及びシクロアルキル基の炭素原子数は小さいとよい。これにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。
 式(A3)で表される有機アンモニウムイオンにおいて、R~Rで表されるアルキル基及びシクロアルキル基に含まれる炭素原子の合計数は1~4であることが好ましい。
また、式(A3)で表される有機アンモニウムイオンにおいて、R~Rのうちの1つが炭素原子数1~3のアルキル基であり、R~Rのうちの3つが水素原子であることがより好ましい。
 R~Rのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できるが、これらには限定されない。
 R~Rのシクロアルキル基としては、それぞれ独立にR~Rのアルキル基で例示した炭素原子数3以上のアルキル基が環を形成したものが挙げられる。一例として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等を例示できるが、これらには限定されない。
 ある態様では、Aで表される有機アンモニウムイオンとしては、CHNH (メチルアンモニウムイオンともいう。)、CNH (エチルアンモニウムイオンともいう。)又はCNH (プロピルアンモニウムイオンともいう。)であることが好ましく、メチルアンモニウムイオン又はエチルアンモニウムイオンであることより好ましく、メチルアンモニウムイオンであることがさらに好ましい。
(アミジニウムイオン)
 ある態様では、Aで表されるアミジニウムイオンとしては、例えば、下記式(A4)で表されるアミジニウムイオンが挙げられる。
(R1011N=CH-NR1213・・・(A4)
 式(A4)中、R10~R13は、それぞれ独立に、水素原子、アルキル基、又はシクロアルキル基を表す。
 R10~R13で表されるアルキル基は、それぞれ独立に直鎖状であっても、分岐鎖状であってもよい。また、R10~R13で表されるアルキル基は、それぞれ独立に置換基としてアミノ基を有していてもよい。
 ある態様では、R10~R13で表されるアルキル基の炭素原子数は、それぞれ独立に通常1~20であり、1~4であることが好ましく、1~3であることがより好ましい。 ある態様では、R10~R13で表されるアルキル基の炭素原子数は、それぞれ独立に、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19以上である。他の態様では、R10~R13で表されるアルキル基の炭素原子数は、それぞれ独立に、20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4、3、2以下である。
 R10~R13で表されるシクロアルキル基は、それぞれ独立に置換基として、アミノ基を有していてもよい。
 ある態様では、R10~R13で表されるシクロアルキル基の炭素原子数は、それぞれ独立に通常3~30であり、3~11であることが好ましく、3~8であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。
 ある態様では、R10~R13で表されるシクロアルキル基の炭素原子数は、それぞれ独立に、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29以上である。他の態様では、R10~R13で表されるシクロアルキル基の炭素原子数は、それぞれ独立に、30、29、28、27、26、25、24、23、22、21、20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4以下である。
 R10~R13のアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したアルキル基と同じ基が挙げられる。
 R10~R13のシクロアルキル基の具体例としては、それぞれ独立にR~Rにおいて例示したシクロアルキル基と同じ基が挙げられる。
 ある態様では、R10~R13で表される基としては、それぞれ独立に水素原子又はアルキル基が好ましい。
 式(A4)に含まれる、アルキル基及びシクロアルキル基の数を少なくすること、並びにアルキル基及びシクロアルキル基の炭素原子数を小さくすることにより、発光強度が高い3次元構造のペロブスカイト化合物を得ることができる。
 ある態様では、アミジニウムイオンにおいて、R10~R13で表されるアルキル基及びシクロアルキル基に含まれる炭素原子の合計数は1~4であることが好ましく、R10が炭素原子数1のアルキル基であり、R11~R13が水素原子であることがさらに好ましい。
 ペロブスカイト化合物において、Aがセシウムイオン、炭素原子数が3以下の有機アンモニウムイオン、又は炭素原子数が3以下のアミジニウムイオンである場合、一般的にペロブスカイト化合物は3次元構造を有する。
 ペロブスカイト化合物において、Aが炭素原子数4以上の有機アンモニウムイオン、又は炭素原子数4以上のアミジニウムイオンである場合、ペロブスカイト化合物は、2次元構造及び擬似2次元(quasi-2D)構造のいずれか一方又は両方を有する。この場合、ペロブスカイト化合物は、2次元構造又は疑似2次元構造を、結晶の一部又は全体に有することができる。
 2次元のペロブスカイト型結晶構造が複数積層すると3次元のペロブスカイト型結晶構造と同等になる(参考文献:P.PBoixら、J.Phys.Chem.Lett.2015,6,898-907など)。
 ある態様では、ペロブスカイト化合物中のAは、セシウムイオン、又はアミジニウムイオンが好ましいく、アミジニウムイオンがより好ましい。
 (1)ペロブスカイト化合物において、Aを1種のみ用いてもよく、2種以上を併用してもよい。
(構成成分B)
 ペロブスカイト化合物を構成するBは、1価の金属イオン、2価の金属イオン、及び3価の金属イオンからなる群より選ばれる1種類以上の金属イオンであってよい。ある態様では、Bは2価の金属イオンを含むことが好ましく、鉛イオン、スズイオン、アンチモンイオン、ビスマスイオン、及びインジウムイオンからなる群より選ばれる1種類以上の金属イオンを含むことがより好ましく、鉛イオン又はスズイオンがさらに好ましく、鉛イオンが特に好ましい。
 (1)ペロブスカイト化合物において、Bを1種のみ用いてもよく、2種以上を併用してもよい。
(構成成分X)
 ペロブスカイト化合物を構成するXは、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンであってよい。
 ハロゲン化物イオンとしては、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオンを挙げることができる。Xは、臭化物イオンであることが好ましい。
 (1)ペロブスカイト化合物において、Xを1種のみ用いてもよく、2種以上を併用してもよい。
 Xが2種以上のハロゲン化物イオンを含む場合、ハロゲン化物イオンの含有比率は、発光波長により適宜選ぶことができる。例えば、臭化物イオンと塩化物イオンとの組み合わせ、又は、臭化物イオンとヨウ化物イオンとの組み合わせとすることができる。
 Xは、所望の発光波長に応じて適宜選択することができる。
 ある態様では、Xが臭化物イオンであるペロブスカイト化合物は、通常480nm以上、好ましくは500nm以上、より好ましくは520nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。
 他の態様では、Xが臭化物イオンであるペロブスカイト化合物は、480、490、500、510、520、530、540、550、560、570、580、590、600、610、620、630、640、650、660、670、680、690nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。
 ある態様では、Xが臭化物イオンであるペロブスカイト化合物は、通常700nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 他の態様では、Xが臭化物イオンであるペロブスカイト化合物は、700、690、680、670、660、650、640、630、620、600、590、580、570、560、550、540、530、520、510nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
 ある態様では、ペロブスカイト化合物中のXが臭化物イオンの場合、発する蛍光のピークは、通常480~700nmであり、500~600nmであることが好ましく、520~580nmであることがより好ましい。
 ある態様では、Xがヨウ化物イオンであるペロブスカイト化合物は、通常520nm以上、好ましくは530nm以上、より好ましくは540nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。
 他の態様では、Xがヨウ化物イオンであるペロブスカイト化合物は、520、530、540、550、560、570、580、590、600、610、620、630、640、650、660、670、680、690、700、710、720、730、740、750、760、770、780、790nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。
 ある態様では、Xがヨウ化物イオンであるペロブスカイト化合物は、通常800nm以下、好ましくは750nm以下、より好ましくは730nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 他の態様では、Xがヨウ化物イオンであるペロブスカイト化合物は、800、790、780、770、760、750、740、730、720、710、700、690、680、670、660、650、640、630、620、600、590、580、570、560、550、540nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
 ある態様では、ペロブスカイト化合物中のXがヨウ化物イオンの場合、発する蛍光のピークは、通常520~800nmであり、530~750nmであることが好ましく、540~730nmであることがより好ましい。
 ある態様では、Xが塩化物イオンであるペロブスカイト化合物は、通常300nm以上、好ましくは310nm以上、より好ましくは330nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。
 他の態様では、Xが塩化物イオンであるペロブスカイト化合物は、300、310、320、330、340、350、360、370、380、390、400、410、420、430、440、450、460、470、480、490、500、510、520、530、540、550、560、570、580、590nm以上の波長範囲に強度の極大ピークがある蛍光を発することができる。
 ある態様では、Xが塩化物イオンであるペロブスカイト化合物は、通常600nm以下、好ましくは580nm以下、より好ましくは550nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 他の態様では、Xが塩化物イオンであるペロブスカイト化合物は、600、590、580、570、560、550、540、530、520、510、500、490、480、470、460、450、440、430、420、410、400、390、380、370、360、350、340、330、320、310nm以下の波長範囲に強度の極大ピークがある蛍光を発することができる。
 上記波長範囲の上限値及び下限値は、任意に組み合わせることができる。
 ある態様では、ペロブスカイト化合物中のXが塩化物イオンの場合、発する蛍光のピークは、通常300~600nmであり、310~580nmであることが好ましく、330~550nmであることがより好ましい。
(3次元構造のペロブスカイト化合物の例示)
 ABX(3+δ)で表される3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbIを挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、(HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7、0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7、0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7、0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7、0<δ≦0.7、0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7、0<δ≦0.7、0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7、0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができるが、これらには限定されない。
 3次元構造のペロブスカイト化合物の好ましい例としては、(HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7、0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7、0<y<3)も挙げることができるが、これらには限定されない。
 上述した3次元構造のペロブスカイト化合物の中でも、CsPbBr、CsPbBr(3-y)(0<y<3)、(HN=CH-NH)PbBrがより好ましく、(HN=CH-NH)PbBrがさらに好ましい。
(2次元構造のペロブスカイト化合物の例示)
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr、(CNHPbCl、(CNHPbI、(C15NHPbBr、(C15NHPbCl、(C15NHPbI、(CNHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(CNHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)を挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(C15NHPb(1-a)NaBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)LiBr(4+δ)(0<a≦0.7、-0.7≦δ<0)、(C15NHPb(1-a)RbBr(4+δ)(0<a≦0.7、-0.7≦δ<0)も挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7、-0.7≦δ<0、0<y<4)も挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr、(C15NHPbBrも挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPbBr(4-y)Cl(0<y<4)、(CNHPbBr(4-y)(0<y<4)も挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(0<a≦0.7)、(CNHPb(1-a)MgBr(0<a≦0.7)、(CNHPb(1-a)CoBr(0<a≦0.7)、(CNHPb(1-a)MnBr(0<a≦0.7)も挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(C15NHPb(1-a)ZnBr(0<a≦0.7)、(C15NHPb(1-a)MgBr(0<a≦0.7)、(C15NHPb(1-a)CoBr(0<a≦0.7)、(C15NHPb(1-a)MnBr(0<a≦0.7)も挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)(0<a≦0.7、0<y<4)も挙げることができるが、これらには限定されない。
 2次元構造のペロブスカイト化合物の好ましい例としては、(CNHPb(1-a)ZnBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MgBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)CoBr(4-y)Cl(0<a≦0.7、0<y<4)、(CNHPb(1-a)MnBr(4-y)Cl(0<a≦0.7、0<y<4)も挙げることができるが、これらには限定されない。
<(1)ペロブスカイト化合物の粒径>
 (1)ペロブスカイト化合物の平均粒径は、13.5nm以上80.0nm以下であることが好ましい。
 ある態様では、分散液中において(1)ペロブスカイト化合物が安定的に分散できる観点から、(1)ペロブスカイト化合物の平均粒径は15.0nm以上であることが好ましく、17.0nm以上であることがより好ましく、18.0nm以上であることがさらに好ましい。他の態様では、発光強度が高い(1)ペロブスカイト化合物を得る観点から、(1)ペロブスカイト化合物の平均粒径は80.0nm以下であることが好ましく、25.0nm以下であることがより好ましく、22.0nm以下であることがさらに好ましい。
 他の態様では、ペロブスカイト化合物の平均粒径は、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79nm以上である。
 他の態様では、ペロブスカイト化合物の平均粒径は、85、84、83、82、81、80、79、78、77、76、75、74、73、72、71、70、69、68、67、66、65、64、63、62、61、60、59、58、57、56、55、54、53、52、51、50、49、48、47、46、45、44、43、42、41、40、39、38、37、36、35、34、33、32、31、30、29、28、27、26、25、24、23、22、21、20、19、18、17、16、15、14、13nm以下である。
 本明細書において、(1)ペロブスカイト化合物の平均粒径は、例えば透過型電子顕微鏡(以下、TEMともいう。)、又は走査型電子顕微鏡(以下、SEMともいう。)により測定することができる。具体的には、TEM、又はSEMにより、無作為に選んだ30個以上の(1)ペロブスカイト化合物の立方体もしくは直方体形状をした粒子の最も長い辺の長さを測定し、測定値の算術平均値を計算することにより、平均粒径を求めることができる。
 本実施形態の(1)ペロブスカイト化合物を観察する方法としては、例えば、(1)ペロブスカイト化合物を含む分散液組成物をSEM、又はTEMなどを用いて観察する方法が挙げられる。さらに、SEM、またはTEMを用いたエネルギー分散型X線分析(EDX)測定によって、詳細な元素分布を解析することができる。空間分解能が高い観点から、TEMで観察する方法が好ましい。
 (1)ペロブスカイト化合物をTEMで観察する方法としては、(1)ペロブスカイト化合物を含む分散液組成物をTEM専用の支持膜付きグリッドにキャストし、自然乾燥させたものを用いる方法が挙げられる。
 (1)ペロブスカイト化合物の平均粒径を解析する方法としては、TEM像をコンピュータに取り込み、画像解析ソフトを用いて解析する方法が挙げられる。
 まず、前記TEM像をコンピュータに取り込み、画像解析ソフトを用いて二値化処理を行う。(1)ペロブスカイト化合物を黒色とし、それ以外を白色として変換した二値化処理済み画像を得る。このとき、TEM-EDX測定で得られた元素マッピング像と比較し、(1)ペロブスカイト化合物に由来する成分が検出されている部分が黒色に変換されていることを確認する。齟齬が見られた場合は、二値化処理を行う閾値の調整を行う。前記二値化処理済み画像について、画像解析ソフトを用いて、(1)ペロブスカイト化合物の平均粒径を測定する。画像解析ソフトは、Image JやPhotoshop等を適宜選択することができる。
 本実施形態の他の態様においては、(1)ペロブスカイト化合物は、前記ペロブスカイト結晶構造をもつ化合物が複数集まったペロブスカイト集合体である。前記ペロブスカイト集合体は、1種または2種以上のペロブスカイト結晶構造をもつ化合物で構成されている。よって、前記ペロブスカイト集合体は、1種または2種以上の1価の陽イオン、金属イオン、又は陰イオンで構成されている。
<組成物1>
 本実施形態の組成物1は、上述の(1)ペロブスカイト化合物と、下記(2-1)、下記(2-1)の改質体、下記(2-2)及び下記(2-2)の改質体からなる群より選ばれる少なくとも1つの化合物とを含む。
 (2-1)シラザン
 (2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物
 本明細書においては、前記(2-1)、前記(2-1)の改質体、前記(2-2)及び前記(2-2)の改質体からなる群より選ばれる少なくとも1つの化合物を「(2)表面保護剤」と総称することがある。
 ある態様では、本実施形態の組成物1は、上述の(1)ペロブスカイト化合物と、前記(2-1)及び前記(2-1)の改質体からなる群より選ばれる少なくとも1つの化合物と、を含むことが好ましい。
 本実施形態の組成物1は、更に下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種を含んでいてもよい。
 (3)溶媒
 (4)重合性化合物
 (5)重合体
<組成物2>
 本実施形態の組成物2は、上述の(1)ペロブスカイト化合物と、前記(3)、前記(4)及び前記(5)からなる群から選ばれる少なくとも一種と、を含む。
 以下の説明においては、(3)溶媒、(4)重合性化合物、(5)重合体を「分散媒」と総称することがある。本実施形態の組成物1及び組成物2において(1)ペロブスカイト化合物は、これらの分散媒に分散していてもよい。
 本明細書において「分散している」とは、(1)ペロブスカイト化合物が分散媒に浮遊している状態、又は(1)ペロブスカイト化合物が分散媒に懸濁している状態のことを指す。(1)ペロブスカイト化合物が分散媒に分散している場合、(1)ペロブスカイト化合物の一部は沈降していてもよい。
 本実施形態の組成物1及び組成物2は、さらに下記(6)を含んでいてもよい。なお、下記(6)の詳細については後述する。
 (6)表面修飾剤
 本実施形態の組成物1及び組成物2は、前記(1)~前記(6)以外のその他の成分を有していてもよい。例えば、本実施形態の組成物は、若干の不純物、(1)ペロブスカイト化合物を構成する元素からなるアモルファス構造を有する化合物、重合開始剤をさらに含んでいてもよい。
 以下、本実施形態の組成物に含まれる前記(2)~前記(6)について説明を行う。
<(2)表面保護剤>
 本実施形態の組成物1は(1)ペロブスカイト化合物の(2)表面保護剤として、(2-1)シラザン、前記(2-1)の改質体、(2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物、及び前記(2-2)の改質体からからなる群より選ばれる少なくとも1つの化合物を含む。
 本実施形態の組成物1は、(2)表面保護剤が(1)ペロブスカイト化合物の表面を覆うことによって、量子収率の向上、発光波長を短波長化するという効果が得られる。
<(2-1)シラザン>
 (2-1)シラザンは、Si-N-Si結合を有する化合物である。シラザンは、直鎖状、分岐鎖状、又は環状のいずれであってもよい。
 シラザンは、低分子シラザンであっても、高分子シラザンであってもよい。本明細書では、高分子シラザンをポリシラザンと記載することがある。
 本明細書において「低分子」とは、数平均分子量が600未満であることを意味する。
また、本明細書において「高分子」とは、数平均分子量が600以上20000以下であることを意味する。
 本明細書において「数平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。
(2-1-1.低分子シラザン)
 低分子シラザンとしては、例えば、下記式(B1)で表されるジシラザンであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(B1)中、R14及びR15は、それぞれ独立して、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基を表す。
 R14及びR15は、アミノ基などの置換基を有していてもよい。複数あるR15は、同一であってもよく、異なっていてもよい。
 式(B1)で表される低分子シラザンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、及び1,1,1,3,3,3-ヘキサメチルジシラザンが挙げられるが、これらには限定されない。
(2-1-2.低分子シラザン)
 低分子シラザンとしては、例えば、下記式(B2)で表される低分子シラザンも好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(B2)中、R14、及びR15は、上記式(B1)におけるR14、及びR15と同様である。
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
 式(B2)中、nは1以上20以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。
 式(B2)で表される低分子シラザンとしては、オクタメチルシクロテトラシラザン、2,2,4,4,6,6-ヘキサメチルシクロトリシラザン、及び2,4,6-トリメチル-2,4,6-トリビニルシクロトリシラザンが挙げられるが、これらには限定されない。
 ある態様では、低分子のシラザンとしては、オクタメチルシクロテトラシラザン、及び1,3-ジフェニルテトラメチルジシラザンが好ましく、オクタメチルシクロテトラシラザンがより好ましい。
(2-1-3.高分子シラザン)
 高分子シラザンとしては、例えば、下記式(B3)で表される高分子シラザン(ポリシラザン)が好ましい。
 ポリシラザンは、Si-N-Si結合を有する高分子化合物である。式(B3)で表されるポリシラザンの構成単位は、一種であっても、複数種であってもよい。
Figure JPOXMLDOC01-appb-C000004
 式(B3)中、R14、及びR15は、上記式(B1)におけるR14、及びR15と同様である。
 式(B3)中、*は、結合手を表す。分子鎖末端のN原子の結合手には、R14が結合している。
 分子鎖末端のSi原子の結合手には、R15が結合している。
 複数あるR14は、同一であってもよく、異なっていてもよい。
 複数あるR15は、同一であってもよく、異なっていてもよい。
 mは、2以上10000以下の整数を表す。
 式(B3)で表されるポリシラザンは、例えば、R14、及びR15のすべてが水素原子であるパーヒドロポリシラザンでもよい。
 また、式(B3)で表されるポリシラザンは、例えば、少なくとも1つのR15が水素原子以外の基であるオルガノポリシラザンであってもよい。用途に応じて、適宜にパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 ある態様では、(1)の分散性を向上させ、凝集を抑制する効果が高まる観点から、本実施形態の組成物は、式(B3)で表されるオルガノポリシラザンを含むことが好ましい。
 式(B3)で表されるオルガノポリシラザンとしては、R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。
 ある態様では、オルガノポリシラザンの中でも、式(B3)で表され、R14及びR15の少なくとも1つがメチル基であるオルガノポリシラザンが好ましい。
(2-1-4.高分子シラザン)
 高分子シラザンとしては、例えば、下記式(B4)で表される構造を有するポリシラザンも好ましい。
 ポリシラザンは、分子内の一部に環構造を有していてもよく、例えば、式(B4)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(B4)中、*は、結合手を表す。
 式(B4)の結合手は、式(B3)で表されるポリシラザンの結合手、又は式(B3)で表されるポリシラザンの構成単位の結合手と結合していてもよい。
 また、ポリシラザンが、分子内に複数の式(B4)で表される構造を含む場合、式(B4)で表される構造の結合手は、他の式(B4)で表される構造の結合手と直接結合していてもよい。
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないN原子の結合手には、R14が結合している。
 式(B3)で表されるポリシラザンの結合手、式(B3)で表されるポリシラザンの構成単位の結合手、及び他の式(B4)で表される構造の結合手のいずれとも結合していないSi原子の結合手には、R15が結合している。
 ある態様では、nは、1以上10000以下の整数を表す。nは、1以上10以下の整数でもよく、1又は2でもよい。
 (1)の分散性を向上させ、凝集を抑制する効果が高まる観点から、本実施形態の組成物は、式(B4)で表される構造を有するオルガノポリシラザンを含むことが好ましい。
 式(B4)で表される構造を有するオルガノポリシラザンとしては、少なくとも1つの結合手がR14又はR15と結合し、当該R14及びR15の少なくとも1つが、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のアリール基、又は炭素原子数1~20のアルキルシリル基であるオルガノポリシラザンであってもよい。
 その中でも、式(B4)で表される構造を含み、少なくとも1つの結合手がR14又はR15と結合し、当該R14及びR15の少なくとも1つがメチル基であるポリシラザンであることが好ましい。
 一般的なポリシラザンは、例えば、直鎖構造と、6員環、又は8員環等の環構造とが存在した構造、すなわち前記式(B3)、前記式(B4)で表される構造を有する。一般的なポリシラザンの分子量は、数平均分子量(Mn)で600~2000程度(ポリスチレン換算)であり、分子量によって液体又は固体の物質でありうる。
 ポリシラザンは、市販品を使用してもよく、市販品としては、NN120-10、NN120-20、NAX120-20、NN110、NAX120、NAX110、NL120A、NL110A、NL150A、NP110、NP140(AZエレクトロニックマテリアルズ株式会社製)並びに、AZNN-120-20、Durazane(登録商標)1500 Slow Cure、Durazane1500 Rapid Cure、Durazane1800、及びDurazane1033(メルクパフォーマンスマテリアルズ株式会社製)等が挙げられるが、これらには限定されない。
 ある態様では、ポリシラザンは、好ましくはAZNN-120-20、Durazane1500 Slow Cure、Durazane1500 Rapid Cureであり、より好ましくはDurazane1500 Slow Cureである。
<(2-1)シラザンの改質体>
 本明細書において「改質」とは、Si-N結合、Si-SR結合(Rは水素原子又は有機基)又はSi-OR結合(Rは水素原子又は有機基)を有するケイ素化合物が加水分解し、Si-O-Si結合を有するケイ素化合物が生成することをいう。Si-O-Si結合は、分子間の縮合反応で生成してもよく、分子内の縮合反応で生成してもよい。
 本明細書において「改質体」とは、Si-N結合、Si-SR結合又はSi-OR結合を有するケイ素化合物を改質することにより得られた化合物をいう。
 (2-1)の改質体としては、前記式(B1)で表されるジシラザンの改質体、前記式(B2)で表される低分子シラザンの改質体、前記式(B3)で表されるポリシラザンの改質体、前記式(B4)で表される構造を分子内に有するポリシラザンの改質体であることが好ましい。
 ある態様では、式(B2)で表される低分子シラザンの改質体について、式(B2)で表される低分子シラザンの改質体に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~100%であることが好ましい。また、他の態様では、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。
 なお、「窒素原子と結合していないケイ素原子の割合」は、後述する測定値を用いて、((Si(モル))-(Si-N結合中のN(モル)))/Si(モル)×100で求められる。改質反応を考慮すると、「窒素原子と結合していないケイ素原子の割合」とは、「改質処理にて生じるシロキサン結合に含まれるケイ素原子の割合」を意味する。
 ある態様では、式(B3)で表されるポリシラザンの改質体について、式(B3)で表されるポリシラザンの改質体に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~100%であることが好ましい。また、他の態様では、窒素原子と結合していないケイ素原子の割合は、10~98%であることがより好ましく、30~95%であることがさらに好ましい。
 ある態様では、式(B4)で表される構造を有するポリシラザンの改質体について、式(B4)で表される構造を有するポリシラザンの改質体に含まれる全てのケイ素原子に対して窒素原子と結合していないケイ素原子の割合は0.1~99%であることが好ましい。また、他の態様では、窒素原子と結合していないケイ素原子の割合は、10~97%であることがより好ましく、30~95%であることがさらに好ましい。
 改質体中のSi原子数、Si-N結合の数は、X線光電子分光法(XPS)によって測定することができる。
 ある態様では、改質体について、上述の方法による測定値を用いて求められる、全てのケイ素原子に対する「窒素原子と結合していないケイ素原子の割合」は、0.1~99%であることが好ましく、10~99%であることがより好ましく、30~95%であることがさらに好ましい。
<(2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物>
 本実施形態の組成物1は、(2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物を含んでいてもよい。以下、(2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物を「(2-2)ケイ素化合物」と総称することがある。
 (2-2)ケイ素化合物としては、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、ドデシルトリメトキシシラン、トリメトキシフェニルシラン、1H,1H,2H,2H-パーフルオロオクチルトリエトキシシラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが例として挙げられるが、これらには限定されない。
 ある態様では、ケイ素化合物の中でも、(1)の耐久性の観点から、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、トリメトキシフェニルシランが好ましく、トリメトキシフェニルシランがより好ましい。
<(2-2)ケイ素化合物の改質体>
 (2-2)ケイ素化合物の改質体は、上述の(2-2)ケイ素化合物を改質することにより得られる化合物をいう。「改質」に関しては、(2-1)シラザンの改質体における説明と同様である。
 本実施形態の組成物1において、上述の(2)表面保護剤を1種のみ有していてもよく、2種以上を併用してもよい。
<(6)表面修飾剤>
 本実施形態の(1)ペロブスカイト化合物の表面は表面修飾剤層により覆われていてもよい。表面修飾剤層は、(1)ペロブスカイト化合物と(2)表面保護剤との間に位置していてもよい。
 なお、表面修飾剤層が(1)ペロブスカイト化合物の「表面」を覆うとは、表面修飾剤層が(1)ペロブスカイト化合物に直接接して覆うことの他、表面修飾剤層が(1)ペロブスカイト化合物の表面に形成された他の層の表面に直接接して形成され、(1)ペロブスカイト化合物の表面に直接接することなく覆うことも含む。
<表面修飾剤層>
 表面修飾剤層は、アンモニウムイオン、アミン、第1級~第4級アンモニウムカチオン、アンモニウム塩、カルボン酸、カルボキシレートイオン、及びカルボキシレート塩からなる群より選ばれる少なくとも一種のイオン又は化合物を形成材料とする。
 中でも、表面修飾剤層は、アミン、及びカルボン酸からなる群より選ばれる少なくとも一種を形成材料とすることが好ましい。
 以下、表面修飾剤層の形成材料を「(6)表面修飾剤」と称することがある。
 表面修飾剤は、後述する製造方法で本実施形態の組成物を製造する際に、(1)ペロブスカイト化合物の表面を覆い、(1)ペロブスカイト化合物を組成物中に安定して分散させる作用を有する化合物である。
<アンモニウムイオン、第1級~第4級アンモニウムカチオン、アンモニウム塩>
 (6)表面修飾剤であるアンモニウムイオン、及び第1級~第4級アンモニウムカチオンは、下記式(A1)で表される。(6)表面修飾剤であるアンモニウム塩は、下記式(A1)で表されるイオンを含む塩である。
Figure JPOXMLDOC01-appb-C000006
 式(A1)で表されるイオンにおいて、R~Rは、水素原子、又は1価の炭化水素基を表す。
 R~Rで表される炭化水素基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。飽和炭化水素基としては、アルキル基、又はシクロアルキル基を挙げることができる。
 R~Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。
 ある態様では、R~Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 ある態様では、シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数を含む。
 R~Rの不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
 ある態様では、R~Rの不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 ある態様では、R~Rは、それぞれ独立に、水素原子、アルキル基、又は不飽和炭化水素基であることが好ましい。
ある態様では、不飽和炭化水素基としては、アルケニル基が好ましい。ある態様では、R~Rは、それぞれ独立に、炭素原子数8~20のアルケニル基であることが好ましい。
 R~Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 R~Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
 R~Rのアルケニル基としては、R~Rにおいて例示した前記直鎖状又は分岐鎖状のアルキル基において、いずれか一つの炭素原子間の単結合(C-C)が、二重結合(C=C)に置換されたものが例示でき、二重結合の位置は限定されない。
 ある態様では、R~Rのアルケニル基の好ましいものとしては、例えば、エテニル基、プロペニル基、3-ブテニル基、2-ブテニル基、2-ペンテニル基、2-ヘキセニル基、2-ノネニル基、2-ドデセニル基、9-オクタデセニル基が挙げられるが、これらには限定されない。
 式(A1)で表されるアンモニウムカチオンが塩を形成する場合、カウンターアニオンとしては、特に制限は無い。カウンターアニオンとしては、ハロゲン化物イオンや、カルボキシレートイオンなどが好ましい。ハロゲン化物イオンとしては、臭化物イオン、塩化物イオン、ヨウ化物イオン、フッ化物イオンが挙げられる。
 式(A1)で表されるアンモニウムカチオンと、カウンターアニオンとを有するアンモニウム塩としては、n-オクチルアンモニウム塩、オレイルアンモニウム塩が好ましい例として挙げられる。
<アミン>
 表面修飾剤であるアミンとしては、下記式(A11)で表すことができる。
Figure JPOXMLDOC01-appb-C000007
 上記式(A11)において、R~Rは、上記式(A1)が有するR~Rと同じ基を表す。ただし、R~Rのうち少なくとも1つは1価の炭化水素基である。
 ある態様では、表面修飾剤であるアミンとしては、第1級~第3級アミンのいずれであってもよいが、第1級アミン及び第2級アミンが好ましく、第1級アミンがより好ましい。
 ある態様では、表面修飾剤であるアミンとしては、オレイルアミンが好ましい。
<カルボン酸、カルボキシレートイオン、カルボキシレート塩>
 表面修飾剤であるカルボキシレートイオンは、下記式(A2)で表される。表面修飾剤であるカルボキシレート塩は、下記式(A2)で表されるイオンを含む塩である。
 R-CO ・・・(A2)
 表面修飾剤であるカルボン酸は、上記(A2)で表されるカルボキシレートアニオンにプロトン(H)が結合したカルボン酸が挙げられるが、これらには限定されない。
 式(A2)で表されるイオンにおいて、Rは、一価の炭化水素基を表す。Rで表される炭化水素基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよい。
飽和炭化水素基としては、アルキル基、又はシクロアルキル基を挙げることができるが、これらには限定されない。
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であってもよい。
 ある態様では、Rで表されるアルキル基の炭素原子数は、通常1~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 シクロアルキル基の炭素原子数は、通常3~30であり、3~20であることが好ましく、3~11であることがより好ましい。炭素原子数は、置換基の炭素原子数も含む。
 Rで表される不飽和炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
 ある態様では、Rで表される不飽和炭化水素基の炭素原子数は、通常2~20であり、5~20であることが好ましく、8~20であることがより好ましい。
 Rはアルキル基又は不飽和炭化水素基であることが好ましい。不飽和炭化水素基としては、アルケニル基が好ましい。
 Rのアルキル基の具体例としては、R~Rにおいて例示したアルキル基が挙げられる。
 Rのシクロアルキル基の具体例としては、R~Rにおいて例示したシクロアルキル基が挙げられる。
 Rのアルケニル基の具体例としては、R~Rにおいて例示したアルケニル基が挙げられる。
 ある態様では、式(A2)で表されるカルボキシレートアニオンは、オレイン酸アニオンが好ましい。
 カルボキレートアニオンが塩を形成する場合、カウンターカチオンとしては、特に制限は無いが、アルカリ金属カチオン、アルカリ土類金属カチオン、アンモニウムカチオンなどが好ましい例として挙げられる。
 表面修飾剤であるカルボン酸としては、オレイン酸が好ましい。
 上述した表面修飾剤の中では、アンモニウム塩、アンモニウムイオン、第1級~第4級アンモニウムカチオン、カルボキシレート塩、カルボキシレートイオンが好ましい。
 アンモニウム塩、アンモニウムイオンの中では、オレイルアミン塩、オレイルアンモニウムイオンがより好ましい。
 カルボキシレート塩、カルボキシレートイオンの中では、オレイン酸塩、オレイン酸アニオンがより好ましい。
 本実施形態の組成物1及び組成物2において、上述の(6)表面修飾剤を1種のみ有していてもよく、2種以上を併用してもよい。
<(3)溶媒>
 本実施形態の組成物が有する溶媒は、本実施形態の(1)ペロブスカイト化合物を分散させることができる媒体であれば特に限定されない。本実施形態の組成物が有する溶媒は、本実施形態の(1)ペロブスカイト化合物を溶解し難いものが好ましい。
 本明細書において「溶媒」とは、1気圧、25℃において液体状態である物質のことをいう。ただし、溶媒には、後述する重合性化合物は含まれない。
 溶媒としては、下記(a)~(k)を挙げることができるが、これらには限定されない。
(a)エステル
(b)ケトン
(c)エーテル
(d)アルコール
(e)グリコールエーテル
(f)アミド基を有する有機溶媒
(g)ニトリル基を有する有機溶媒
(h)カーボネート基を有する有機溶媒
(i)ハロゲン化炭化水素
(j)炭化水素
(k)ジメチルスルホキシド
 (a)エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等を挙げることができるが、これらには限定されない。
 (b)ケトンとしては、γ-ブチロラクトン、N-メチル-2-ピロリドン、アセトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等を挙げることができるが、これらには限定されない。
 (c)エーテルとしては、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等を挙げることができるが、これらには限定されない。
 (d)アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等を挙げることができるが、これらには限定されない。
 (e)グリコールエーテルとしては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等を挙げることができるが、これらには限定されない。
 (f)アミド基を有する有機溶媒としては、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等を挙げることができるが、これらには限定されない。
 (g)ニトリル基を有する有機溶媒としては、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等を挙げることができるが、これらには限定されない。
 (h)カーボネート基を有する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等を挙げることができるが、これらには限定されない。
 (i)ハロゲン化炭化水素としては、塩化メチレン、クロロホルム等を挙げることができるが、これらには限定されない。
 (j)炭化水素としては、n-ペンタン、シクロヘキサン、n-ヘキサン、1-オクタデセン、ベンゼン、トルエン、キシレン等を挙げることができるが、これらには限定されない。
 ある態様では、これらの溶媒の中でも、(a)エステル、(b)ケトン、(c)エーテル、(g)ニトリル基を有する有機溶媒、(h)カーボネート基を有する有機溶媒、(i)ハロゲン化炭化水素及び(j)炭化水素は、極性が低く、本実施形態の(1)ペロブスカイト化合物を溶解し難いと考えられるため好ましい。
 さらに、本実施形態の組成物に用いる溶媒としては、(i)ハロゲン化炭化水素、(j)炭化水素がより好ましい。
 本実施形態の組成物1及び組成物2においては、上述の溶媒を1種のみ用いてもよく、2種以上を併用してもよい。
<(4)重合性化合物>
 本実施形態の組成物が有する重合性化合物は、本実施形態の組成物を製造する温度において、本実施形態の(1)ペロブスカイト化合物を溶解し難いものが好ましい。
 本明細書において「重合性化合物」とは、重合性基を有する単量体化合物(モノマー)を意味する。例えば、重合性化合物は、1気圧、25℃において液体状態であるモノマーを挙げることができる。
 例えば、常温、常圧下において製造する場合、重合性化合物としては、特に制限は無い。重合性化合物としては、例えば、スチレン、アクリル酸エステル、メタクリル酸エステル、アクリロニトリル等の公知の重合性化合物が挙げられる。なかでも、重合性化合物としては、アクリル系樹脂の単量体であるアクリル酸エステル及びメタクリル酸エステルのいずれか一方又は両方が好ましい。
 本実施形態の組成物1及び組成物2においては、重合性化合物を1種のみ用いてもよく、2種以上を併用してもよい。
 本実施形態の組成物において、全ての(4)重合性化合物に対する、アクリル酸エステル及びメタクリル酸エステルの合計量の割合は、10mol%以上であってもよい。同割合は、30mol%以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく、100mol%であってもよい。
<(5)重合体>
 本実施形態の組成物に含まれる重合体は、本実施形態の組成物を製造する温度において、本実施形態の(1)ペロブスカイト化合物の溶解度が低い重合体が好ましい。
 例えば、常温、常圧下において製造する場合、重合体としては、特に制限は無いが、例えば、ポリスチレン、アクリル系樹脂、エポキシ樹脂等の公知の重合体が挙げられるが、これらには限定されない。なかでも、重合体としては、アクリル系樹脂が好ましい。アクリル系樹脂は、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位のいずれか一方又は両方を含む。
 本実施形態の組成物において、(5)重合体に含まれる全ての構成単位に対する、アクリル酸エステルに由来する構成単位及びメタクリル酸エステルに由来する構成単位の合計量の割合は、10mol%以上であってもよい。同割合は、30mol%以上であってもよく、50mol%以上であってもよく、80mol%以上であってもよく、100mol%であってもよい。
 (5)重合体の重量平均分子量は、100~1200000であることが好ましく、1000~800000であることがより好ましく、5000~150000であることがさらに好ましい。
 本明細書において「重量平均分子量」とは、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値を意味する。
 本実施形態の組成物1及び組成物2において、上述の(5)重合体を1種のみ有していてもよく、2種以上を併用してもよい。
<組成物中の各成分の含有量>
 本実施形態の組成物1及び組成物2において、組成物の総質量に対する(1)ペロブスカイト化合物の含有割合は、特に限定されるものではない。
 ある態様では、上記含有割合は、濃度消光を防ぐ観点から、90質量%以下であることが好ましく、40質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。
 また、他の態様では、上記含有割合は、良好な量子収率を得る観点から、0.0002質量%以上であることが好ましく、0.002質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。
 組成物の総質量に対する(1)ペロブスカイト化合物の含有割合は、通常0.0002~90質量%である。
 ある態様では、組成物の総質量に対する(1)ペロブスカイト化合物の含有割合は、0.001~40質量%であることが好ましく、0.002~10質量%であることがより好ましく、0.01~3質量%であることがさらに好ましい。
 ある態様では、(1)ペロブスカイト化合物の含有割合は、0.0002、0.0005、0.001、0.002、0.005、0.01、0.05、0.1、0.5、1、10、20、30、40、50、60、70、80質量%以上である。
 他の態様では、(1)ペロブスカイト化合物の含有割合は、90、80、70、60、50、40、30、20、10、1、0.5、0.1、0.05、0.01、0.005、0.002、0.001、0.0005質量%以下である。
 組成物の総質量に対する(1)ペロブスカイト化合物の含有割合が上記範囲内である組成物は、(1)ペロブスカイト化合物の凝集が生じ難く、発光性も良好に発揮される点で好ましい。
 本実施形態の組成物1において、組成物の総質量に対する(2)表面保護剤の含有割合は、特に限定されるものではない。
 ある態様では、上記含有割合は、(1)ペロブスカイト化合物の分散性を向上させる観点、及び耐久性を向上させる観点から、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、7.5質量%以下であることがさらに好ましい。
 また、ある態様では、上記含有割合は、耐久性を向上させる観点から、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。
 他の態様では、上記含有割合は、0.001、0.005、0.01、0.05、0.1、0.5、1、5、7.5、10、15、20、25質量%以上である。他の態様では、上記含有割合は、30、25、20、15、10、7.5、5、1、0.5、0.1、0.05質量%以下である。
 上記上限値及び下限値は任意に組み合わせることができる。
 ある態様では、組成物の総質量に対する(2)表面保護剤の含有割合は、通常0.001~30質量%である。
 ある態様では、組成物の総質量に対する(2)表面保護剤の含有割合は、0.001~30質量%であることが好ましく、0.001~10質量%であることがより好ましく、0.1~7.5質量%であることがさらに好ましい。
 他の態様では、(2)表面保護剤の含有割合は、0.001、0.01、0.05、0.1、0.5、1、5、7.5、10、15、20、25質量%以上である。他の態様では、(2)表面保護剤の含有割合は、30、25、20、15、10、7.5、5、1、0.5、0.1、0.05質量%以下である。
 本実施形態の組成物1及び組成物2において、組成物の総質量に対する分散媒の含有割合は、特に限定されるものではない。
 ある態様では、上記含有割合は、(1)ペロブスカイト化合物の分散性を向上させる観点、及び耐久性を向上させる観点から、99.99質量%以下であることが好ましく、99.9質量%以下であることがより好ましく、99質量%以下であることがさらに好ましい。
 また、ある態様では、上記含有割合は、耐久性を向上させる観点から、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることがもっとも好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 ある態様では、組成物の総質量に対する分散媒の含有割合は、通常0.1~99.99質量%である。
 ある態様では、組成物の総質量に対する分散媒の含有割合は、1~99質量%であることが好ましく、10~99質量%であることがより好ましく、20~99質量%であることがさらに好ましく、50~99質量%であることが特に好ましく、90~99質量%であることが最も好ましい。
 他の態様では、分散媒の含有割合は、1、5、10、20、30、40、50、60、70、80、90、95質量%以上である。他の態様では、分散媒の含有割合は、99、95、90、80、70、60、50、40、30、20、10、5質量%以下である。
 また、ある態様では、上記組成物において、(1)ペロブスカイト化合物、(2)表面保護剤及び分散媒の合計含有割合は、組成物の総質量に対して90質量%以上であってもよく、95質量%以上であってもよく、99質量%以上であってもよく、100質量%であってもよい。
 本実施形態の組成物1及び組成物2において、組成物の総質量に対する(6)表面修飾剤の含有割合は、特に限定されるものではない。
 ある態様では、上記含有割合は、耐久性向上の観点から、30質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
 また、ある態様では、上記含有割合は、熱耐久性を向上させる観点から、0.0001質量%以上であることが好ましく、0.001質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。
 他の態様では、上記含有割合は、0.001、0.005、0.01、0.05、0.1、0.5、1、5、10、15、20、25質量%以上である。他の態様では、上記含有割合は、30、25、20、15、10、5、1、0.5、0.1、0.05、0.01、0.005質量%以下である。
 上記上限値及び下限値は任意に組み合わせることができる。
 ある態様では、組成物の総質量に対する(6)表面修飾剤の含有割合は、通常0.0001~30質量%である。
 ある態様では、組成物の総質量に対する(6)表面修飾剤の含有割合は、0.001~1質量%であることが好ましく、0.01~0.1質量%であることがより好ましい。
 他の態様では、(6)表面修飾剤の含有割合は、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.5、1、5、10、15、20、25質量%以上である。他の態様では、(6)表面修飾剤の含有割合は、30、25、20、15、10、5、1、0.5、0.1、0.05、0.01、0.005質量%以下である。
 組成物の総質量に対する(6)表面修飾剤の含有割合が上記範囲内である組成物は、熱耐久性に優れる点で好ましい。
 ある態様では、本実施形態の組成物における、若干の不純物、(1)ペロブスカイト化合物を構成する元素からなるアモルファス構造を有する化合物、重合開始剤の合計含有割合は、組成物の総質量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
<各成分の配合比>
 本実施形態の組成物1及び2において、分散媒に対する(1)ペロブスカイト化合物の質量比[(1)ペロブスカイト化合物/分散媒]は、0.00001~10であってもよく、0.0001~5であってもよく、0.0005~3であってもよい。
 (1)ペロブスカイト化合物と、分散媒との配合比に係る範囲が上記範囲内である組成物は、(1)ペロブスカイト化合物の凝集が生じ難く、良好に発光する点で好ましい。
 本実施形態の組成物1において、(1)ペロブスカイト化合物と(2)表面保護剤との配合比は、(1)、(2)の種類等に応じて、適宜定めることができる。
 本実施形態の組成物1において、(1)ペロブスカイト化合物のB成分である金属イオンと、(2)表面保護剤のSi元素とのモル比[Si/B]は、0.001~200であってもよく、0.01~50であってもよい。
 本実施形態の組成物1において、(2)表面保護剤が、式(B1)又は(B2)で表されるシラザンの改質体である場合、(1)ペロブスカイト化合物のB成分である金属イオンと、(2-1)シラザンの改質体のSiとのモル比[Si/B]は、0.001~100であってもよく、0.001~50であってもよく、1~20であってもよい。
 本実施形態の組成物1において、(2)表面保護剤が、式(B3)で表される構成単位を有するポリシラザンである場合、(1)ペロブスカイト化合物のB成分である金属イオンと、(2-1)シラザンの改質体のSi元素とのモル比[Si/B]は、0.001~100であってもよく、0.01~100であってもよく、0.1~100であってもよく、1~50であってもよく、1~20であってもよい。
 (1)ペロブスカイト化合物と(2)表面保護剤との配合比に係る範囲が上記範囲内である組成物は、(2)表面保護剤による、水蒸気に対する耐久性向上の作用が、特に良好に発揮される点で好ましい。
 上記ペロブスカイト化合物のB成分である金属イオンと、(2)表面保護剤のSi元素とのモル比[Si/B]は、以下のような方法で求めることができる。
 ペロブスカイト化合物のB成分である金属イオンのモル数(B)は、誘導結合プラズマ質量分析(ICP-MS)によって、ペロブスカイト化合物に含まれるB成分である金属の質量を算出したのち、モルに換算することによって求める。また、(2)表面保護剤のSi元素のモル数(Si)は、用いた(2)表面保護剤の質量からモル換算することによって求める。
 このときの、(2)表面保護剤のSi元素のモル数(Si)とペロブスカイト化合物のB成分である金属イオンのモル数(B)の比が、[Si/B]である。
 ある態様では、本実施形態の組成物において、十分に量子収率を向上させる観点から、(1)ペロブスカイト化合物の質量に対して(2)表面保護剤の質量は、好ましくは1.1質量部以上であり、より好ましくは1.5質量部以上であり、さらに好ましくは1.8質量部以上である。また、他の態様では、(1)ペロブスカイト化合物の質量に対して(2)表面保護剤の質量は、好ましくは10質量部以下であり、より好ましくは4.9質量部以下であり、さらに好ましくは2.5質量部以下である。
 上記の上限値及び下限値は任意に組み合わせることができる。
 本実施形態の半導体化合物の製造方法によると、本実施形態の(1)ペロブスカイト化合物及びX線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満である金属元素Mを含む半導体化合物を製造することができる。
<半導体化合物の製造方法>
 本実施形態の半導体化合物の製造方法は、金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料と水とを混合する工程と、前記水の存在下で前記原料を反応させる工程と、を含む。また、前記原料に含まれる金属元素Mの質量Wに対する前記水の質量Wの比である(W/W)が0.05~100である。
 金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料を反応させ生成する半導体化合物の結晶化を行う工程において水が存在すると、生成した半導体化合物の結晶の一部が溶解し、その後半導体化合物の再結晶が進むことにより、半導体化合物の結晶性が向上する。
<金属元素M>
 本実施形態の半導体化合物の製造方法に含まれる金属元素Mとしては、周期表の第2族~14族の金属元素が例として挙げられる。周期表の第2~14族の金属元素としては特に限定されないが、例えば、Mg、Ca、Sr、Ba、Cu、Zn、Cd、Hg、Al、Ga、In、Sn、Pbが挙げられる。
 本実施形態の半導体化合物は、前記金属元素M以外に周期表の第13~17族の非金属元素を含んでいてもよい。周期表第13~17族の非金属元素としては特に限定されないが、例えば、B、C、N、P、As、Sb、Se、Te、F,Cl、Br、I、Sが挙げられる。
 本実施形態の製造方法よって製造される半導体化合物としては、本実施形態の(1)ペロブスカイト化合物、及び下記(i)~(vii)の半導体化合物を挙げることができる。
(i)II族-VI族化合物を含む半導体化合物
(ii)II族-V族化合物を含む半導体化合物
(iii)III族-V族化合物を含む半導体化合物
(iv)III族-IV族化合物を含む半導体化合物
(v)III族-VI族化合物を含む半導体化合物
(vi)IV族-VI族化合物を含む半導体化合物
(vii)遷移金属-p-ブロック化合物を含む半導体化合物
<(i)II族-VI族化合物を含む半導体化合物>
 II族-VI族化合物を含む半導体化合物としては、周期表の第2族元素と第16族元素とを含む化合物を含む半導体化合物と、周期表の第12族元素と第16族元素とを含む化合物を含む半導体化合物とを挙げることができるが、これらには限定されない。
 なお、本明細書において、「周期表」とは、長周期型周期表を意味する。
 以下の説明では、第2族元素と第16族元素とを含む化合物を含む半導体化合物を「半導体化合物(i-1)」、第12族元素と第16族元素とを含む化合物を含む半導体化合物を「半導体化合物(i-2)」と称することがある。
 ある態様では、半導体化合物(i-1)のうち、二元系の半導体化合物としては、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、又はBaTeが挙げられるが、これらには限定されない。
 また、ある態様では、半導体化合物(i-1)としては、
(i-1-1)第2族元素を1種類、第16族元素を2種類含む三元系の半導体化合物
(i-1-2)第2族元素を2種類、第16族元素を1種類含む三元系の半導体化合物
(i-1-3)第2族元素を2種類、第16族元素を2種類含む四元系の半導体化合物
であってもよい。
 ある態様では、半導体化合物(i-2)のうち、二元系の半導体化合物としては、例えば、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、又はHgTeが挙げられるが、これらには限定されない。
 また、ある態様では、半導体化合物(i-2)としては、
(i-2-1)第12族元素を1種類、第16族元素を2種類含む三元系の半導体化合物(i-2-2)第12族元素を2種類、第16族元素を1種類含む三元系の半導体化合物(i-2-3)第12族元素を2種類、第16族元素を2種類含む四元系の半導体化合物であってもよい。
 II族-VI族半導体化合物は、第2族元素、第12族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。
<(ii)II族-V族化合物を含む半導体化合物>
 II族-V族半導体化合物は、第12族元素と、第15族元素とを含む。
 II族-V族半導体化合物のうち、二元系の半導体化合物としては、例えば、Zn、ZnAs、Cd、CdAs、Cd、又はZnが挙げられるが、これらには限定されない。
 また、ある態様では、II族-V族半導体化合物としては、
(ii-1)第12族元素を1種類、第15族元素を2種類含む三元系の半導体化合物
(ii-2)第12族元素を2種類、第15族元素を1種類含む三元系の半導体化合物
(ii-3)第12族元素を2種類、第15族元素を2種類含む四元系の半導体化合物
であってもよい。
 II族-V族半導体化合物は、第12族元素、及び第15族元素以外の元素をドープ元素として含んでいてもよい。
<(iii)III族-V族化合物を含む半導体化合物>
 III族-V族半導体化合物は、第13族元素と、第15族元素とを含む。
 III族-V族半導体化合物のうち、二元系の半導体化合物としては、例えば、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、又はAlNが挙げられるが、これらには限定されない。
 また、ある態様では、III族-V族半導体化合物としては、
(iii-1)第13族元素を1種類、第15族元素を2種類含む三元系の半導体化合物(iii-2)第13族元素を2種類、第15族元素を1種類含む三元系の半導体化合物(iii-3)第13族元素を2種類、第15族元素を2種類含む四元系の半導体化合物であってもよい。
 III族-V族半導体化合物は、第13族元素、及び第15族元素以外の元素をドープ元素として含んでいてもよい。
<(iv)III族-IV族化合物を含む半導体化合物>
 III族-IV族半導体化合物は、第13族元素と、第14族元素とを含む。
 III族-IV族半導体化合物のうち、二元系の半導体化合物としては、例えば、Al、Gaが挙げられる。
 また、III族-IV族半導体化合物としては、
(iv-1)第13族元素を1種類、第14族元素を2種類含む三元系の半導体化合物
(iv-2)第13族元素を2種類、第14族元素を1種類含む三元系の半導体化合物
(iv-3)第13族元素を2種類、第14族元素を2種類含む四元系の半導体化合物
であってもよい。
 III族-IV族半導体化合物は、第13族元素、及び第14族元素以外の元素をドープ元素として含んでいてもよい。
<(v)III族-VI族化合物を含む半導体化合物>
 III族-VI族半導体化合物は、第13族元素と、第16族元素とを含む。
 III族-VI族半導体化合物のうち、二元系の半導体化合物としては、例えば、Al、AlSe、AlTe、Ga、GaSe、GaTe、GaTe、In、InSe、InTe、又はInTeが挙げられるが、これらには限定されない。
 また、ある態様では、III族-VI族半導体化合物としては、
(v-1)第13族元素を1種類、第16族元素を2種類含む三元系の半導体化合物
(v-2)第13族元素を2種類、第16族元素を1種類含む三元系の半導体化合物
(v-3)第13族元素を2種類、第16族元素を2種類含む四元系の半導体化合物
であってもよい。
 III族-VI族半導体化合物は、第13族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。
<(vi)IV族-VI族化合物を含む半導体化合物>
 IV族-VI族半導体化合物は、第14族元素と、第16族元素とを含む。
 IV族-VI族半導体化合物のうち、二元系の半導体化合物としては、例えば、PbS、PbSe、PbTe、SnS、SnSe、又はSnTeが挙げられるが、これらには限定されない。
 また、ある態様では、IV族-VI族半導体化合物としては、
(vi-1)第14族元素を1種類、第16族元素を2種類含む三元系の半導体化合物
(vi-2)第14族元素を2種類、第16族元素を1種類含む三元系の半導体化合物
(vi-3)第14族元素を2種類、第16族元素を2種類含む四元系の半導体化合物
であってもよい。
 IV族-VI族半導体化合物は、第14族元素、及び第16族元素以外の元素をドープ元素として含んでいてもよい。
<(vii)遷移金属-p-ブロック化合物を含む半導体化合物>
 遷移金属-p-ブロック半導体化合物は、遷移金属元素と、p-ブロック元素とを含む。「p-ブロック元素」とは、周期表の第13族から第18族に属する元素である。
 遷移金属-p-ブロック半導体化合物のうち、二元系の半導体化合物としては、例えば、NiS、CrSが挙げられるが、これらには限定されない。
 また、ある態様では、遷移金属-p-ブロック半導体化合物としては、
(vii-1)遷移金属元素を1種類、p-ブロック元素を2種類含む三元系の半導体化合物
(vii-2)遷移金属元素を2種類、p-ブロック元素を1種類含む三元系の半導体化合物
(vii-3)遷移金属元素を2種類、p-ブロック元素を2種類含む四元系の半導体化合物
であってもよい。
 遷移金属-p-ブロック半導体化合物は、遷移金属元素、及びp-ブロック元素以外の元素をドープ元素として含んでいてもよい。
 上述の三元系の半導体化合物や四元系の半導体化合物の具体例としては、ZnCdS、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、ZnCdSSe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、CuInS、又はInAlPAs等が挙げられるが、これらには限定されない。
 ある態様では、本実施形態の半導体化合物としては、本実施形態の(1)ペロブスカイト化合物、第12族元素であるCdを含む半導体化合物、及び第13族元素であるInを含む半導体化合物が好ましい。また、他の態様では、本実施形態の化合物としては、(1)ペロブスカイト化合物、CdとSeとを含む半導体化合物、及びInとPとを含む半導体化合物がより好ましい。
 ある態様では、CdとSeとを含む半導体化合物は、二元系の半導体化合物、三元系の半導体化合物、四元系の半導体化合物のいずれも好ましい。他の態様では、CdとSeとを含む半導体化合物の中でも、二元系の半導体化合物であるCdSeが特に好ましい。
 ある態様では、InとPとを含む半導体化合物は、二元系の半導体化合物、三元系の半導体化合物、四元系の半導体化合物のいずれも好ましい。他の態様では、InとPとを含む半導体化合物の中でも、二元系の半導体化合物であるInPが特に好ましい。
<本実施形態の半導体化合物の製造方法によって製造される半導体化合物の粒径>
 本実施形態の半導体化合物の製造方法によって製造される半導体化合物の好ましい平均粒径は、上述の(1)ペロブスカイト化合物の平均粒径と同様である。
 本明細書において、本実施形態の半導体化合物の製造方法によって製造される半導体化合物の平均粒径は、上述の(1)ペロブスカイト化合物の平均粒径の測定と同様の方法によって測定することができる。
 本実施形態の半導体化合物の製造には、金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料が使用される(以下、金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料を「金属元素Mを含む原料」ということがある。)。半導体化合物が非金属元素を含むときは、前記原料にさらに非金属元素を含む化合物を使用することが好ましい(以下、非金属元素を含む化合物を「非金属元素を含む原料化合物」ということがある。)。
<金属元素Mの単体>
 金属元素Mの単体としては特に制限はないが、上述の金属元素Mの単体等が挙げられる。
<金属元素Mを含む化合物>
 金属元素Mを含む化合物としては特に制限はないが、上述の金属元素Mを含む酸化物、酢酸塩、有機金属化合物、ハロゲン化物、硝酸塩等が挙げられる。
 本実施形態の半導体化合物の製造において、上述の金属元素Mの単体を1種のみ用いてもよく、2種以上を併用してもよい。
 本実施形態の半導体化合物の製造において、上述の金属元素Mを含む化合物を1種のみ用いてもよく、2種以上を併用してもよい。
<非金属元素を含む化合物>
 非金属元素を含む原料化合物としては、特に制限はないが、半導体化合物に含まれる非金属元素を含む化合物を使用することができる。本実施形態においては、上述の周期表第13~17族の非金属元素を含む化合物を制限なく使用することができる。
 本実施形態の半導体化合物の製造において、上述の非金属元素を含む原料化合物を1種のみ用いてもよく、2種以上を併用してもよい。
((i)~(vii)の半導体化合物の製造方法)
 (i)~(vii)の半導体化合物は、半導体化合物を構成する金属元素Mを含む原料と、脂溶性溶媒とを混合した混合液を加熱する方法で製造することができる。また、前記混合液には、必要に応じて、半導体化合物を構成する非金属元素を含む化合物を添加することが好ましい。
 脂溶性溶媒としては、例えば炭素原子数4~20の炭化水素基を有する含窒素化合物、炭素原子数4~20の炭化水素基を有する含酸素化合物などが挙げられる。
 炭素原子数4~20の炭化水素基としては、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基を挙げることができる。
 炭素原子数4~20の飽和脂肪族炭化水素基としては、n-ブチル基、イソブチル基、n-ペンチル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基などを挙げることができる。
 炭素原子数4~20の不飽和脂肪族炭化水素基としては、オレイル基を挙げることができる。
 炭素原子数4~20の脂環式炭化水素基としては、シクロペンチル基、シクロヘキシル基などを挙げることができる。
 炭素原子数4~20の芳香族炭化水素基としては、フェニル基、ベンジル基、ナフチル基、ナフチルメチル基などを挙げることができる。
 炭素原子数4~20の炭化水素基としては、飽和脂肪族炭化水素基、及び不飽和脂肪族炭化水素基が好ましい。
 含窒素化合物としては、アミン類やアミド類を挙げることができる。
 含酸素化合物としては、脂肪酸類を挙げることができる。
 このような脂溶性溶媒のうち、炭素原子数4~20の炭化水素基を有する含窒素化合物が好ましい。このような含窒素化合物としては、例えばn-ブチルアミン、イソブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミンなどのアルキルアミンや、オレイルアミンなどのアルケニルアミンが好ましい。
 こうした脂溶性溶媒は、合成により生じる半導体化合物の表面に結合可能である。脂溶性溶媒が半導体化合物の表面に結合する際の結合としては、例えば共有結合、イオン結合、配位結合、水素結合、ファンデルワールス結合等の化学結合が挙げられる。
 上記混合液の加熱温度は、使用する原料(単体や化合物)の種類によって適宜設定すればよい。混合液の温度は、通常、室温~300℃である。例えば、130~300℃が好ましく、240~300℃がより好ましい。加熱温度が上記下限値以上であると結晶構造が単一化しやすいため好ましい。加熱温度が上記上限値以下であると、生じる半導体化合物の結晶構造が崩壊しにくく、目的物が得られやすいため好ましい。
 ある態様では、加熱温度は、0、5、10、50、75、100、130、150、175、200、250℃以上である。他の態様では、加熱温度は、300、250、200、175、150、130、100、75、50、10、5℃以下である。
 混合液の加熱時間は、使用する原料(単体や化合物)の種類、加熱温度によって適宜設定すればよい。混合液の加熱時間は、例えば、数秒間~数時間が好ましく、1~60分間がより好ましい。
 上述の半導体化合物の製造方法においては、加熱後の混合液を冷却することにより、目的物である半導体化合物を含む沈殿物が得られる。沈殿物を分離して適宜洗浄することで、目的物である半導体化合物が得られる。
 沈殿物を分離した上澄み液については、合成した半導体化合物が不溶又は難溶な溶媒を添加し、上澄み液における半導体化合物の溶解度を低下させて沈殿物を生じさせ、上澄み液に含まれる半導体化合物を回収してもよい。「半導体化合物が不溶又は難溶な溶媒」としては、例えばメタノール、エタノール、アセトン、アセトニトリルなどを挙げることができる。
 上述の半導体化合物の製造方法においては、分離した沈殿物を有機溶媒(例えばクロロホルム、トルエン、ヘキサン、n-ブタノールなど)に入れて半導体化合物を含む溶液としてもよい。
 本実施形態の半導体化合物の製造方法は、金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料と水とを混合する工程を含む。当該工程は、水に上述の加熱前の溶液を添加してもよく、上述の加熱前の溶液及び加熱中の溶液のいずれか一方又は両方に水を添加してもよい。中でも、上述の加熱前の溶液及び加熱中の溶液のいずれか一方又は両方に水を添加することが好ましい。なお、加熱中の溶液に水を添加する場合、添加時の溶液の温度が155℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましい。
 添加する水分量は、金属元素Mを含む原料に含まれる金属元素Mの質量Wに対する、前記添加した水の質量Wの比である(W/W)が0.05~100となるようにする。金属元素Mは(1)ペロブスカイト化合物を構成するBの金属元素であってもよい。(W/W)は0.05~3.0であることが好ましく、0.50~3.0であることが好ましく、1.0~2.2であることが好ましく、1.1~2.0であることが好ましい。(W/W)が前記範囲内であれば、得られる半導体化合物のX線パターンにおける(hkl)=(001)のピークの半値幅を所定の範囲にすることが可能となる。
 金属元素Mを含む原料において、前記金属元素Mの単体、又は金属元素Mを含む化合物を複数使用する場合、前記Wは、使用した全ての前記金属元素Mの単体の質量の和と使用した全ての金属元素Mを含む化合物中の金属元素Mの質量の和を合計することで得ることができる。また、水を複数回に分けて添加する場合、前記Wは添加した全ての水の質量を採用することができる。
 本実施形態の他の態様において、金属元素Mが(1)ペロブスカイト化合物を構成するBの金属元素である場合、Wは、(1)ペロブスカイト化合物に含まれる、鉛、スズ、アンチモン、ビスマス、及びインジウムからなる群から選ばれる1種類以上の金属元素の合計質量であってもよい。
 本実施形態の他の態様において、前記(W/W)は、0.05、0.06、0.07、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8,0.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0以上であり、前記(W/W)は、3.0、2.9、2.8、2.7、2.6、2.5、2.4、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1.0、0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.1、0.09、0.08、0.07、0.06以下である。 
 有機溶媒中への水の溶解を促進する観点から、水を添加する溶液中にはイオン性の化合物を含むことが好ましい。イオン性の化合物としては、アンモニウム化合物、またはハロゲン化物が好ましい。
 溶媒中への水の溶解を促進する観点から、水を含む溶液の調製は室温で混合することが好ましい。
 反応後に不要になった水を除去して劣化を抑制する観点から、不活性ガスを流通させながら反応させることが好ましい。
 本明細書において、溶液中の水分量は、微量水分測定装置(AQ-2000、平沼産業社製、ケトン系電解液Hydranal-Coulomat AK)を用いて測定することができる。
<(1)ペロブスカイト化合物の製造方法>
 (1)ペロブスカイト化合物の製造方法は、既知文献(Nano Lett. 2015, 15, 3692-3696、ACSNano,2015,9,4533-4542)を参考に、以下に述べる方法によって製造することができる。
(第1の製造方法)
 ペロブスカイト化合物の製造方法としては、ペロブスカイト化合物を構成するB成分、X成分、及びA成分を高温の上述の(3)溶媒に溶解させ溶液を得る工程と、溶液を冷却する工程とを含む製造方法が挙げられる。
 以下、第1の製造方法を具体的に説明する。
 まず、B成分及びX成分を含む化合物と、A成分を含む化合物とを高温の(3)溶媒に溶解させ溶液を得る。「A成分を含む化合物」は、X成分を含んでいてもよい。
 本工程は、高温の(3)溶媒に各化合物を加えて溶解させ溶液を得ることとしてもよい。
 また、本工程は、(3)溶媒に各化合物を加えた後、昇温することで溶液を得ることとしてもよい。第1の製造方法においては、溶液は、(3)溶媒に各化合物を加えた後、昇温することで得ることが好ましい。
 (3)溶媒としては、原料であるB成分及びX成分を含む化合物と、A成分を含む化合物とを溶解することができる溶媒が好ましい。
 「高温」とは、各原料が溶解する温度の溶媒であればよい。例えば、高温の(3)溶媒の温度として、60~600℃であることが好ましく、80~400℃であることがより好ましい。
 (3)溶媒に各化合物を加えた後、昇温することで溶液を得る場合、昇温後の保持温度としては例えば、80~150℃であることが好ましく、120~140℃であることがより好ましい。
 第1の製造方法においては、前記昇温前又は昇温中の溶液に水を添加することが好ましい。
 前記昇温中の溶液に水を添加する場合、添加時の溶液の温度は155℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましい。
 添加する水分量は、金属元素Mを含む原料に含まれる金属元素Mの質量Wに対する、前記添加した水の質量Wの比である(W/W)が0.05~100となるようにする。(W/W)は0.05~3.0であることが好ましく、0.5~3.0であることが好ましく、1.0~2.2であることが好ましく、1.1~2.0であることが好ましい。(W/W)が前記範囲内であれば、得られる(1)ペロブスカイト化合物のX線パターンにおける(hkl)=(001)のピークの半値幅を所定の範囲にすることが可能となる。
 ある態様では、(W/W)は、0.5、0.75、1.0、1.1、1.5、2.0、2.2、2.5以上である。他の態様では、(W/W)は、3.0、2.5、2.2、2.0、1.5、1.1、1.0、0.75以下である。
 金属元素Mを含む原料において、金属元素Mの単体、又は金属元素Mを含む化合物を複数使用する場合、前記Wは、使用した全ての金属元素Mの単体の質量の和と使用した全ての金属元素Mを含む化合物中の金属元素Mの質量の和を合計することで得ることができる。また、水を複数回に分けて添加する場合、前記Wは添加した全ての水の質量を採用することができる。
 なお、本実施形態では、前記B成分が金属元素Mである。
 有機溶媒中への水の溶解を促進する観点から、水を添加する溶液中にはイオン性の化合物を含むことが好ましい。イオン性の化合物としては、アンモニウム化合物、またはハロゲン化物が好ましい。
 溶媒中への水の溶解を促進する観点から、水を含む溶液の調製は室温で混合することが好ましい。
 反応後に不要になった水を除去して劣化を抑制する観点から、不活性ガスを流通させながら反応させることが好ましい。
 次いで、得られた溶液を冷却する。
 ある態様では、冷却する温度としては、-20~50℃が好ましく、-10~30℃がより好ましい。
 ある態様では、冷却する温度は、-20、-15、-10、-5、0、5、10、15、20、25、30、35、40、45℃以上である。他の態様では、冷却する温度は、50、45、40、35、30、25、20、15、10、5、0、-5、-10、-15℃以下である。
 冷却速度としては、0.1~1500℃/分が好ましく、10~150℃/分がより好ましい。
 ある態様では、冷却速度は、0.1、0.5、1、5、10、25、50、75、100、150、250、500、750、1000、1250℃/min以上である。他の態様では、冷却速度は、1500、1250、1000、750、500、250、150、100、75、50、25、10、1、0.5℃/min以下である。
 高温の溶液を冷却することで、溶液の温度差に起因した溶解度の差により、ペロブスカイト化合物を析出させることができる。これにより、ペロブスカイト化合物を含む分散液が得られる。
 得られたペロブスカイト化合物を含む分散液について固液分離を行うことで、ペロブスカイト化合物を回収することができる。固液分離の方法としては、ろ過、溶媒の蒸発による濃縮などが挙げられる。固液分離を行うことで、ペロブスカイト化合物のみを回収することができる。
 なお、上述した製造方法においては、得られるペロブスカイト化合物の粒子が分散液中で安定して分散しやすいため、上述の(6)表面修飾剤を加える工程を含んでいることが好ましい。
 (6)表面修飾剤を加える工程は、冷却する工程の前に行うことが好ましい。具体的には、(6)表面修飾剤は、(3)溶媒に添加してもよく、B成分及びX成分を含む化合物と、A成分を含む化合物とを溶解した溶液に添加してもよい。
 また、上述した製造方法においては、冷却する工程のあと、遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいることが好ましい。除去する工程によって除去する粗大粒子のサイズは、好ましくは10μm超、より好ましくは1μm超、さらに好ましくは500nm超である。
(第2の製造方法)
 ペロブスカイト化合物の製造方法としては、ペロブスカイト化合物を構成するA成分、B成分を含む第1溶液を得る工程と、ペロブスカイト化合物を構成するX成分を含む第2溶液を得る工程と、第1溶液と第2溶液を混合して混合液を得る工程と、得られた混合液を冷却する工程とを含む製造方法が挙げられる。
 以下、第2の製造方法を具体的に説明する。
 まず、A成分を含む化合物と、B成分を含む化合物とを高温の第2溶媒に溶解させ第1溶液を得る。
 本工程は、高温の(3)溶媒に各化合物を加えて溶解させ第1溶液を得ることとしてもよい。
 また、本工程は、(3)溶媒に各化合物を加えた後、昇温することで第1溶液を得ることとしてもよい。第2の製造方法においては、第1溶液は、(3)溶媒に各化合物を加えた後、昇温することで得ることが好ましい。
 (3)溶媒としては、A成分を含む化合物と、B成分を含む化合物とを溶解することができる溶媒が好ましい。
 「高温」とは、A成分を含む化合物と、B成分を含む化合物とが溶解する温度であればよい。例えば、高温の(3)溶媒の温度として、60~600℃であることが好ましく、80~400℃であることがより好ましい。
 (3)溶媒に各化合物を加えた後、昇温することで第1溶液を得る場合、昇温後の保持温度としては例えば、80~150℃であることが好ましく、120~140℃であることがより好ましい。
 ある態様では、昇温後の保持温度は、80、90、100、110、120、130、140℃以上である。ある態様では、昇温後の保持温度は、150、140、130、120、110、100、90、80、70℃以下である。
 また、X成分を含む化合物を上述の(3)溶媒に溶解させ第2溶液を得る。X成分を含む化合物と、B成分を含む化合物とを(3)溶媒に溶解させ第2溶液を得てもよい。
 (3)溶媒としては、X成分を含む化合物を溶解することができる溶媒が挙げられる。
 次いで、得られた第1溶液と第2溶液を混合して混合液を得る。第1溶液と第2溶液とを混合する際には、一方を他方に滴下するとよい。また、撹拌しながら第1溶液と第2溶液とを混合するとよい。
 第2の製造方法においては、前記昇温前又は昇温中の前記第1溶液及び前記第2溶液のいずれか一方又は両方に水を添加してもよく、前記第1溶液と前記第2溶液との混合液に水を添加してもよいが、前記昇温前又は昇温中の前記第1溶液及び前記第2溶液のいずれか一方又は両方に水を添加することが好ましく、前記第2溶液に添加することがより好ましい。
 ある態様では、前記昇温中の第1溶液に水を添加する場合、添加時の溶液の温度は155℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましい。
 ある態様では、前記第2溶液に水を添加する場合、混合の際の前記第1溶液の温度は155℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましい。
 ある態様では、前記第1溶液と前記第2溶液との混合液に水を添加する場合、添加時の混合液の温度は155℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましい。
 1つの態様では、添加する水分量は、金属元素Mを含む原料に含まれる金属元素Mの質量Wに対する、前記添加した水の質量Wの比である(W/W)が0.05~100となるようにする。金属元素Mは(1)ペロブスカイト化合物を構成するBの金属元素であってもよい。(W/W)は0.05~3.0であることが好ましく、0.5~3.0であることが好ましく、1.0~2.2であることが好ましく、1.1~2.0であることが好ましい。(W/W)が前記範囲内であれば、得られる(1)ペロブスカイト化合物のX線パターンにおける(hkl)=(001)のピークの半値幅を所定の範囲にすることが可能となる。 
 他の態様では、金属元素Mを含む原料において、金属元素Mの単体、又は金属元素Mを含む化合物を複数使用する場合、前記Wは、使用した全ての金属元素Mの単体の質量の和と使用した全ての金属元素Mを含む化合物中の金属元素Mの質量の和を合計することで得ることができる。また、水を複数回に分けて添加する場合、前記Wは添加した全ての水の質量を採用することができる。
 本実施形態の他の態様において、前記Wは、(1)ペロブスカイト化合物に含まれる、鉛、スズ、アンチモン、ビスマス、及びインジウムからなる群から選ばれる1種類以上の金属元素の合計質量であってもよい。
 本実施形態の他の態様において、前記(W/W)は、0.05、0.06、0.07、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8,0.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0以上であり、前記(W/W)は、3.0、2.9、2.8、2.7、2.6、2.5、2.4、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1.0、0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.1、0.09、0.08、0.07、0.06以下である。
 有機溶媒中への水の溶解を促進する観点から、水を添加する溶液中にはイオン性の化合物を含むことが好ましい。ある態様では、イオン性の化合物としては、アンモニウム化合物、またはハロゲン化物が好ましい。
 溶媒中への水の溶解を促進する観点から、水を含む溶液の調製は室温で混合することが好ましい。
 反応後に不要になった水を除去して劣化を抑制する観点から、不活性ガスを流通させながら反応させることが好ましい。
 次いで、得られた混合液を冷却する。
 ある態様では、冷却する温度としては、-20~50℃が好ましく、-10~30℃がより好ましい。
 ある態様では、冷却する温度は、-20、-15、-10、-5、0、5、10、15、20、25℃以上である。他の態様では、冷却する温度は、30、25、20、15、10、5、0、-5、-10、-15℃以下である。
 ある態様では、冷却速度としては、0.1~1500℃/分が好ましく、10~150℃/分がより好ましい。
 1つの態様では、混合液を冷却することで、混合液の温度差に起因した溶解度の差により、ペロブスカイト化合物を析出させることができる。これにより、ペロブスカイト化合物を含む分散液が得られる。
 他の態様では、得られたペロブスカイト化合物を含む分散液については、固液分離を行うことで、ペロブスカイト化合物を回収することができる。固液分離の方法としては、第1の製造方法で示した方法が挙げられる。
 なお、他の態様では、上述した製造方法においては、得られるペロブスカイト化合物の粒子が分散液中で安定して分散しやすいため、上述の(6)表面修飾剤を加える工程を含んでいることが好ましい。
 ある態様では、(6)表面修飾剤を加える工程は、冷却する工程の前に行うことが好ましい。具体的には、(6)表面修飾剤は、(3)溶媒、第1溶液、第2溶液、混合液のいずれに添加してもよい。
 また、ある態様では、上述した製造方法においては、冷却する工程のあと、第1の製造方法で示した遠心分離、ろ過などの手法により粗大粒子を除去する工程を含んでいていることが好ましい。
<組成物1の製造方法1>
 以下、得られる組成物の性状を理解しやすくするため、組成物1の製造方法1で得られる組成物を「組成物1-1」と称する。組成物1-1は液状の組成物である。
 ある態様では、本実施形態の組成物1-1は、(1)ペロブスカイト化合物及び(2)表面保護剤に、さらに(3)溶媒及び(4)重合性化合物のいずれか一方又は両方と混合することで製造することができる。
 1つの態様では、(1)ペロブスカイト化合物及び(2)表面保護剤と、(3)溶媒及び(4)重合性化合物のいずれか一方又は両方と、を混合する際には、撹拌しながら行うことが好ましい。
 (1)ペロブスカイト化合物及び(2)表面保護剤と、(3)溶媒及び(4)重合性化合物のいずれか一方又は両方とを混合する際、混合時の温度には特に制限は無い。(1)ペロブスカイト化合物及び(2)表面保護剤が均一に混合しやすいため、混合時の温度は、0℃~100℃の範囲であることが好ましく、10℃~80℃の範囲であることがより好ましい。
 ある態様では、(1)ペロブスカイト化合物及び(2)表面保護剤と、(3)溶媒及び(4)重合性化合物のいずれか一方又は両方とを混合する際の温度は、0、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95℃以上である。他の態様では、(1)ペロブスカイト化合物及び(2)表面保護剤と、(3)溶媒及び(4)重合性化合物のいずれか一方又は両方とを混合する際の温度は、100、95、90、85、80、75、70、65、60、55、50、45、40、35、25、20、15、10、5℃以下である。
((3)溶媒を含む組成物1-1の製造方法)
 (1)ペロブスカイト化合物と、(2)表面保護剤と、(3)溶媒と、を含む組成物の製造方法としては、例えば、下記製造方法(a1)であってもよく、下記製造方法(a2)であってもよい。
 製造方法(a1):(1)ペロブスカイト化合物と、(3)溶媒と、を混合する工程と、得られた混合物と、(2)表面保護剤と、を混合する工程と、を含む組成物の製造方法。
 製造方法(a2):(1)ペロブスカイト化合物と、(2)表面保護剤と、を混合する工程と、得られた混合物と、(3)溶媒と、を混合する工程と、を含む組成物の製造方法。
 製造方法(a1)、(a2)で用いる(3)溶媒は、(1)ペロブスカイト化合物を溶解しにくいものが好ましい。このような(3)溶媒を用いると、製造方法(a1)で得られる混合物、及び製造方法(a1)、(a2)で得られる組成物は、分散液となる。
 本実施形態の組成物が(2)表面保護剤として、前記(2-1)シラザンの改質体及び前記(2-2)ケイ素化合物の改質体のいずれか一方又は両方を含む場合、組成物の製造方法としては、下記製造方法(a3)であってもよく、下記製造方法(a4)であってもよい。
 製造方法(a3):(1)ペロブスカイト化合物と、(3)溶媒と、を混合する工程と、得られた混合物と、前記(2-1)シラザン及び前記(2-2)ケイ素化合物のいずれか一方又は両方と、を混合する工程と、得られた混合物に改質処理を施す工程と、を含む組成物の製造方法。
 製造方法(a4):(1)ペロブスカイト化合物と、前記(2-1)シラザン及び前記(2-2)ケイ素化合物のいずれか一方又は両方と、を混合する工程と、得られた混合物と、(3)溶媒と、を混合する工程と、得られた混合物に改質処理を施す工程と、を含む組成物の製造方法。
 (3)溶媒には、(5)重合体が溶解又は分散していてもよい。
 ある態様では、上述の製造方法に含まれる混合する工程では、撹拌を行うことが分散性を高める観点から好ましい。
 上述の製造方法に含まれる混合する工程において、混合可能であれば温度には特に制限は無いが、均一に混合する観点から、0℃以上100℃以下の範囲であることが好ましく、10℃以上80℃以下の範囲であることがより好ましい。
 ある態様では、上述の製造方法に含まれる混合する工程の温度は、0、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95℃以上である。他の態様では、上述の製造方法に含まれる混合する工程の温度は、100、95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、5℃以下である。
 組成物の製造方法は、(1)ペロブスカイト化合物の分散性を向上させる観点から、製造方法(a1)、又は製造方法(a3)であることが好ましい。
(改質処理を施す方法)
 改質処理の方法は、前記(2-1)シラザン及び前記(2-2)ケイ素化合物に対し紫外線を照射する方法、及び前記(2-1)シラザン及び前記(2-2)ケイ素化合物と水蒸気とを反応させる方法等の公知の方法が挙げられる。以下の説明では、前記(2-1)シラザン及び前記(2-2)ケイ素化合物と水蒸気とを反応させる処理のことを、「加湿処理」と称することがある。
 ある態様では、紫外線を照射する方法で用いられる紫外線の波長は、通常10~400nmであり、10~350nmが好ましく、100~180nmがより好ましい。紫外線の発生させる光源としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UVレーザー光等が挙げられる。
 ある態様では、紫外線を照射する方法で用いられる紫外線の波長は、10、20、30、40、50、60、70、80、90、100、150、200、250、300、350nm以上である。他の態様では、紫外線を照射する方法で用いられる紫外線の波長は、400、390、380、370、360、350、340、330、320、310、300、290、280、270、260、250、240、230、220、210、200、190、180、150、100nm以下である。
 中でも、加湿処理を施すことが、(1)ペロブスカイト化合物の近傍により強固な保護領域を形成する観点から好ましい。
 加湿処理を施す場合、例えば、後述する温度、及び湿度条件下で一定の時間、組成物を静置してもよく、同条件下、一定の時間撹拌してもよい。
 加湿処理における温度は、十分に改質が進行する温度であればよい。加湿処理における温度は、例えば、5~150℃であることが好ましく、10~100℃であることがより好ましく、15~80℃であることがさらに好ましい。
 ある態様では、加湿処理における温度は、5、10、15、20、30、40、50、60、70、80、90、100、110、120、130、140℃以上である。他の態様では、加湿処理における温度は、150、140、130、120、110、100、90、80、70、60、50、40、30、20、15、10℃以下である。
 加湿処理における湿度は、組成物中の前記(2-1)及び前記(2-2)に十分に水分が供給される湿度であればよい。加湿処理における湿度は、例えば30%~100%であることが好ましく、40%~95%であることがより好ましく、60%~90%であることがさらに好ましい。
 加湿処理に要する時間は、十分に改質が進行する時間であればよい。加湿処理に要する時間は、例えば、10分間以上1週間以下であることが好ましく、1時間以上5日間以下であることがより好ましく、2時間以上3日間以下であることがさらに好ましい。
 組成物に含まれる前記(2-1)及び前記(2-2)の分散性を高める観点から、撹拌することが好ましい。
 加湿処理における水の供給は、水蒸気を含むガスを反応容器中に流通させることによってもよく、水蒸気を含む雰囲気中で撹拌することで、界面から水分を供給してもよい。
 ある態様では、水蒸気を含むガスを反応容器中に流通させる場合、得られる組成物の耐久性が向上するため、水蒸気を含むガス流量は、0.01L/分以上100L/分以下が好ましく、0.1L/分以上10L/分以下がより好ましく、0.15L/分以上5L/分以下がさらに好ましい。水蒸気を含むガスとしては、例えば飽和量の水蒸気を含む窒素を挙げることができる。
 ある態様では、水蒸気を含むガス流量は、0.01、0.5、1、5、10、20、30、40、50、60、70、80、90L/min以上である。他の態様では、水蒸気を含むガス流量は、100、90、80、70、60、50、40、30、20、10、5、1、0.5L/min以下である。
 本実施形態の組成物の製造方法において(2)表面保護剤、及び(3)溶媒は、上述した(1)ペロブスカイト化合物の製造方法に含まれるいずれかの工程で混合させてもよい。例えば、下記製造方法(a5)、(a6)であってもよい。
 製造方法(a5):ペロブスカイト化合物を構成するB成分を含む化合物と、X成分を含む化合物と、A成分を含む化合物と、(2)表面保護剤と、を高温の(3)溶媒に溶解させ溶液を得る工程と、溶液を冷却する工程と、を含む製造方法。
 製造方法(a6):ペロブスカイト化合物を構成するA成分を含む化合物と、B成分を含む化合物と、を高温の(3)溶媒に溶解させ第1溶液を得る工程と、ペロブスカイト化合物を構成するX成分を含む化合物を(3)溶媒に溶解させ第2溶液を得る工程と、第1溶液と、第2溶液と、を混合して混合液を得る工程と、得られた混合液を冷却する工程とを含む製造方法。
 製造方法(a6)において、(2)表面保護剤は、第1溶液及び第2溶液のいずれか一方又は両方に溶解させる。
 これらの製造方法に含まれる各工程の条件は、上述の(1)ペロブスカイト化合物の製造方法における第1の製造方法、及び第2の製造方法の条件と同様である。
((4)重合性化合物を含む組成物1-2の製造方法)
 (1)ペロブスカイト化合物、(2)表面保護剤、及び(4)重合性化合物を含む組成物の製造方法は、例えば、下記製造方法(c1)~(c3)が挙げられる。
 製造方法(c1):(4)重合性化合物に(1)ペロブスカイト化合物を分散させ分散体を得る工程と、得られた分散体と、(2)表面保護剤と、を混合する工程と、を含む製造方法。
 製造方法(c2):(4)重合性化合物に(2)表面保護剤を分散させ分散体を得る工程と、得られた分散体と、(1)ペロブスカイト化合物と、を混合する工程と、を含む製造方法。
 製造方法(c3):(4)重合性化合物に、(1)ペロブスカイト化合物と(2)表面保護剤との混合物を分散させる工程を含む製造方法。
 ある態様では、製造方法(c1)~(c3)において、(1)ペロブスカイト化合物の分散性を高める観点から製造方法(c1)であることが好ましい。
 製造方法(c1)~(c3)において、各分散体を得る工程では、(4)重合性化合物を、各材料に滴下してもよいし、各材料を(4)重合性化合物に滴下してよい。
 ある態様では、均一に分散しやすいため、(1)ペロブスカイト化合物、(2)表面保護剤の少なくとも一つを(4)重合性化合物に滴下することが好ましい。
 製造方法(c1)~(c3)において、各混合する工程では、分散体を各材料に滴下してもよいし、各材料を分散体に滴下してもよい。
 ある態様では、均一に分散しやすいため、(1)ペロブスカイト化合物、(2)表面保護剤の少なくとも一つを分散体に滴下することが好ましい。
 (4)重合性化合物には、(3)溶媒と(5)重合体との少なくともいずれか一方が溶解又は分散していてもよい。
 (5)重合体を溶解又は分散させる溶媒は、特に限定されない。ある態様では、溶媒としては、(1)ペロブスカイト化合物を溶解し難いものが好ましい。
 (5)重合体が溶解している溶媒としては、例えば、上述の(3)溶媒が挙げられる。
 ある態様では、(3)溶媒の中でも、ハロゲン化炭化水素、及び炭化水素がより好ましい。
 また、本実施形態の組成物の製造方法は、下記製造方法(c4)であってもよく、製造方法(c5)であってもよい。
 製造方法(c4):(1)ペロブスカイト化合物を(3)溶媒に分散させ分散液を得る工程と、得られた分散液に、(4)重合性化合物と、(5)重合体と、を混合して混合液を得る工程と、得られた混合液と、(2)表面保護剤と、を混合する工程とを有する、組成物の製造方法。
 製造方法(c5):(1)ペロブスカイト化合物を(3)溶媒に分散させ分散液を得る工程と、得られた分散液と、前記(2-1)シラザン及び前記(2-2)ケイ素化合物のいずれか一方又は両方と、を混合し、混合液を得る工程と、得られた混合液に改質処理を施し前記(2-1)シラザンの改質体及び前記(2-2)ケイ素化合物の改質体のいずれか一方又は両方を含む混合液を得る工程と、得られた混合液と、(3)溶媒と、を混合する工程とを有する、組成物の製造方法。
 組成物1の製造方法1において、(6)表面修飾剤を使用するときは、(2)表面保護剤とともに添加することができる。
<組成物1の製造方法2>
 本実施形態の組成物の製造方法としては、(1)ペロブスカイト化合物と、(2)表面保護剤と、(4)重合性化合物と、を混合する工程と、(4)重合性化合物を重合させる工程と、を含む製造方法を挙げることができる。
 組成物1の製造方法2で得られる組成物は、(1)ペロブスカイト化合物、(2)表面保護剤、(5)重合体の合計が組成物全体の90質量%以上であることが好ましい。
 また、本実施形態の組成物の製造方法としては、(1)ペロブスカイト化合物と、(2)表面保護剤と、(3)溶媒に溶解している(5)重合体とを混合する工程と、(3)溶媒を除去する工程と、を含む製造方法も挙げることができる。
 上述の製造方法に含まれる混合する工程には、上述の組成物1の製造方法1で示した方法と同様の混合方法を用いることができる。
 組成物の製造方法は、例えば、下記(d1)、(d2)の製造方法が挙げられる。
 製造方法(d1):(4)重合性化合物に、(1)ペロブスカイト化合物と、(2)表面保護剤と、を分散させる工程と、(4)重合性化合物を重合させる工程と、を含む製造方法。
 分散させる工程において、(4)重合性化合物に(1)ペロブスカイト化合物と、(2)表面保護剤と、を加える順番には制限がない。(1)ペロブスカイト化合物が先であってもよく、(2)表面保護剤が先であってもよく、(1)ペロブスカイト化合物と、(2)表面保護剤と、を同時に加えてもよい。
 製造方法(d2):(5)重合体を溶解させた(3)溶媒に、(1)ペロブスカイト化合物と、(2)表面保護剤と、を分散させる工程と、溶媒を除去する工程と、を含む製造方法。
 分散させる工程において、(5)重合体を溶解させた(3)溶媒に(1)ペロブスカイト化合物と、(2)表面保護剤と、を加える順番には制限がない。(1)ペロブスカイト化合物が先であってもよく、(2)表面保護剤が先であってもよく、(1)ペロブスカイト化合物と、(2)表面保護剤と、を同時に加えてもよい。
 製造方法(d2)に含まれる、(3)溶媒を除去する工程は、室温で静置し、自然乾燥させる工程であってもよいし、真空乾燥機を用いた減圧乾燥であってもよいし、加熱によって(3)溶媒を蒸発させる工程であってもよい。
 (3)溶媒を除去する工程では、例えば、0℃以上300℃以下で、1分間以上7日間以下乾燥させることで、(3)溶媒を除去することができる。
 製造方法(d1)に含まれる、(4)重合性化合物を重合させる工程は、ラジカル重合などの公知の重合反応を適宜用いることで行うことができる。
 例えばラジカル重合の場合は、(1)ペロブスカイト化合物と、(2)表面保護剤と、(4)重合性化合物との混合物に、ラジカル重合開始剤を添加し、ラジカルを発生させることで重合反応を進行させることができる。
 ラジカル重合開始剤は特に限定されるものではないが、例えば、光ラジカル重合開始剤等が挙げられる。
 上記光ラジカル重合開始剤としては、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等が挙げられる。
 組成物1の製造方法2において、(6)表面修飾剤を使用するときは、(2)表面保護剤とともに添加することができる。
<組成物1の製造方法3>
 また、本実施形態の組成物の製造方法は、下記(d3)~(d6)の製造方法も採用することができる。
 製造方法(d3):(1)ペロブスカイト化合物と、(2)表面保護剤と、(5)重合体と、を溶融混練する工程を含む製造方法。
 製造方法(d4):(1)ペロブスカイト化合物と、前記(2-1)シラザン及び前記(2-2)ケイ素化合物のいずれか一方又は両方と、(5)重合体と、を溶融混練する工程と、(5)重合体が溶融した状態で加湿処理を施す工程と、を含む製造方法。
 製造方法(d5):(1)ペロブスカイト化合物と、(2)表面保護剤と、を含む液状組成物を製造する工程と、得られた液状組成物から固形分を取り出す工程と、得られた固形分と、(5)重合体と、を溶融混練する工程と、を含む製造方法。
 製造方法(d6):(2)表面保護剤を含まず、(1)ペロブスカイト化合物を含む液状組成物を製造する工程と、得られた液状組成物から固形分を取り出す工程と、得られた固形分と、(2)表面保護剤と、(5)重合体と、を溶融混練する工程と、を含む製造方法。
 製造方法(d3)~(d6)において(5)重合体を溶融混練する方法としては、重合体の混練方法として公知の方法を採用することができる。例えば、単軸押出機、又は二軸押出機を用いた押出加工を採用することができる。
 製造方法(d4)の加湿処理を施す工程は、上述した方法を採用することができる。
 製造方法(d5)及び(d6)の液状組成物を製造する工程は、上述の製造方法(a1)又は(a2)を採用することができる。製造方法(d6)の液状組成物を製造する工程においては、上述の製造方法(a1)又は(a2)において(2)表面保護剤を添加しなければよい。
 製造方法(d5)の液状組成物を製造する工程は、例えば、上述の製造方法(a3)又は(a4)を採用することができる。
 製造方法(d5)、(d6)の固形分を取り出す工程は、例えば加熱、減圧、送風及びこれらの組み合わせにより、液状組成物から液状組成物を構成する(3)溶媒及び(4)重合性化合物を除去することで行う。
 ある態様では、組成物の製造方法3において、(6)表面修飾剤を使用するときは、(2)表面保護剤とともに添加することができる。
<組成物2の製造方法>
 ある態様では、本実施形態の組成物2は、(2)表面保護剤の添加、改質処理を行わない以外は、上述の組成物1の製造方法1~3と同様に製造することができる。
 1つの態様では、上述の組成物の製造方法において、改質処理を施した後の組成物にハロゲンイオンを含む溶液を添加すると、(1)ペロブスカイト化合物中のXと前記ハロゲンイオンとの交換反応が起き、(1)ペロブスカイト化合物の最大発光波長の値を調整することができる。
 他の態様では、(1)ペロブスカイト化合物の表面に前記(2)表面保護剤からなる表面保護層を形成した後に、さらにシロキサン結合を有する無機ケイ素化合物の層を形成してもよい。
 本明細書において、「シロキサン結合を有する無機ケイ素化合物」とは、有機基とケイ素元素を含み、前記有機基の全てが改質処理(加水分解)により脱離する有機基である化合物の改質体及び有機基を有さないケイ素元素を含む化合物の改質体を意味する。
 シロキサン結合を有する無機ケイ素化合物としては、例えば、前記式(B1)において、複数あるR15の全てが水素原子であるジシラザンの改質体、前記式(B2)において、複数あるR15の全てが水素原子である低分子シラザンの改質体、上記式(B3)において、複数あるR15の全てが水素原子である高分子シラザンの改質体、上述した式(B4)で表される構造を有するポリシラザンにおいて、複数あるR15の全てが水素原子である高分子シラザンの改質体、ケイ酸ナトリウム(NaSiO)の改質体が挙げられる。
<組成物に含まれる(1)ペロブスカイト化合物の含有量の測定>
 本実施形態の組成物に含まれる(1)ペロブスカイト化合物は乾燥質量法によって固形分濃度(質量%)を算出することができる。乾燥質量法の詳細については、実施例において説明する。
<発光スペクトルの半値幅、吸収率、発光波長の測定>
 本発明の(1)ペロブスカイト化合物の発光スペクトルの半値幅、吸収率、発光波長は、絶対PL量子収率測定装置(例えば、浜松ホトニクス株式会社製、C9920-02)を用いて、励起光450nm、室温、大気下で測定する。発光波長は最も発光強度の高い値の波長を用いる。
 1つの態様では、本実施形態の(1)ペロブスカイト化合物の励起光の吸収率は、0.2以上、1未満が好ましく、0.3以上、0.9未満がより好ましく、0.6以上、0.9未満がさらに好ましい。
 ある態様では、(1)ペロブスカイト化合物の励起光の吸収率は、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9以上である。他の態様では、(1)ペロブスカイト化合物の励起光の吸収率は、1、0.9、0.8、0.7、0.6、0.5、0.4、0.3以下である。
 <フィルム>
 本発明に係るフィルムは、本実施形態の(1)ペロブスカイト化合物を含む。
 本実施形態に係るフィルムは、上述の組成物を形成材料とする。例えば、本実施形態に係るフィルムは、(1)ペロブスカイト化合物及び(5)重合体を含み、(1)ペロブスカイト化合物及び(5)重合体の合計がフィルム全体の90質量%以上である。
 フィルム形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。本明細書において「バー状の形状」とは、例えば、一方向に延在する平面視帯状の形状を意味する。平面視帯状の形状としては、各辺の長さが異なる板状の形状が例示される。
 フィルムの厚みは、0.01μm~1000mmであってもよく、0.1μm~10mmであってもよく、1μm~1mmであってもよい。
 本明細書においてフィルムの厚みは、フィルムの縦、横、高さの中で最も値の小さい辺を「厚さ方向」としたときの、フィルムの厚さ方向のおもて面と裏面との間の距離を指す。具体的には、マイクロメータを用い、フィルムの任意の3点においてフィルムの厚みを測定し、3点の測定値の平均値を、フィルムの厚みとする。
 ある態様では、フィルムの厚みは、0.01μm、0.5μm、0.1μm、0.5μm、1μm、5μm、10μm、25μm、50μm、75μm、100μm、250μm、500μm、750μm、1mm、5mm、10mm、25mm、50mm、75mm、100mm、250mm、500mm、750mm以上である。他の態様では、フィルムの厚みは、1000mm、750mm、500mm、250mm、100mm、75mm、50mm、25mm、10mm、5mm、1mm、750μm、500μm、250μm、100μm、75μm、50μm、25μm、10μm、5μm、1μm、0.5μm、0.1μm、0.05μm以下である。
 フィルムは、単層であってもよく、複層であってもよい。複層の場合、各層は同一の種類の実施形態の組成物が用いられていてもよく、互いに異なる種類の実施形態の組成物が用いられていてもよい。
 フィルムは、例えば、後述の積層構造体の製造方法により、基板上に形成されたフィルムを得ることができる。また、フィルムは基板から剥がして得ることができる。
 <積層構造体>
 本実施形態に係る積層構造体は、複数の層を有し、少なくとも一層が、上述のフィルムである。
 積層構造体が有する複数の層のうち、上述のフィルム以外の層としては、基板、バリア層、光散乱層等の任意の層が挙げられる。
 積層されるフィルムの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。
(基板)
 基板は、特に制限はないが、フィルムであってもよい。基板は、光透過性を有するものが好ましい。光透過性を有する基板を有する積層構造体では、(1)ペロブスカイト化合物が発した光を取り出しやすいため好ましい。
 基板の形成材料としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラスなどの公知の材料を用いることができる。
 例えば、積層構造体において、上述のフィルムを、基板上に設けていてもよい。
 図1は、本実施形態の積層構造体の構成を模式的に示す断面図である。第1の積層構造体1aは、第1の基板20及び第2の基板21の間に、本実施形態のフィルム10が設けられている。フィルム10は、封止層22によって封止されている。
 本発明の一つの側面は、第1の基板20と、第2の基板21と、第1の基板20と第2の基板21との間に位置する本実施形態に係るフィルム10と、封止層22と、を有する積層構造体であって、封止層22が、フィルム10の第1の基板20、及び第2の基板21と接していない面上に配置されることを特徴とする積層構造体1aである。
(バリア層)
 本実施形態に係る積層構造体が有していてもよい層としては、特に制限は無いが、バリア層が挙げられる。外気の水蒸気、及び大気中の空気から前述の組成物を保護する観点から、バリア層を含んでいてもよい。
 バリア層は、特に制限は無いが、発光した光を取り出す観点から、透明なものが好ましい。バリア層としては、例えば、ポリエチレンテレフタレートなどのポリマーや、ガラス膜などの公知のバリア層を用いることができる。
(光散乱層)
 本実施形態に係る積層構造体が有していてもよい層としては、特に制限は無いが、光散乱層が挙げられる。入射した光を有効に利用する観点から、光散乱層を含んでいてもよい。
 光散乱層は、特に制限は無いが、発光した光を取り出す観点から、透明なものが好ましい。光散乱層としては、シリカ粒子などの光散乱粒子や、増幅拡散フィルムなどの公知の光散乱層を用いることができる。
<発光装置>
 本発明に係る発光装置は、本発明の実施形態の化合物、組成物又は前記積層構造体と、光源とを合せることで得ることができる。発光装置は、光源から発光した光を、後段に設置した化合物、組成物又は積層構造体に照射することで、化合物、組成物又は積層構造体を発光させ、光を取り出す装置である。前記発光装置における積層構造体が有する複数の層のうち、上述のフィルム、基板、バリア層、光散乱層以外の層としては、光反射部材、輝度強化部、プリズムシート、導光板、要素間の媒体材料層等の任意の層が挙げられる。
 本発明の一つの側面は、プリズムシート50と、導光板60と、前記第一の積層構造体1aと、光源30と、がこの順に積層された発光装置2である。
(光源)
 本発明に係る発光装置を構成する光源は、特に制限は無いが、前述の化合物、前述の組成物、又は積層構造体中の(1)ペロブスカイト化合物を発光させるという観点から、600nm以下の発光波長を有する光源が好ましい。光源としては、例えば、青色発光ダイオードなどの発光ダイオード(LED)、レーザー、エレクトロルミネッセント(EL)などの公知の光源を用いることができる。
(光反射部材)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、光反射部材が挙げられる。光源の光を前述の化合物、組成物、又は積層構造体に向かって照射する観点から、光反射部材を含んでいても良い。光反射部材は、特に制限は無いが、反射フィルムであっても良い。
 反射フィルムとしては、例えば、反射鏡、反射粒子のフィルム、反射金属フィルムや反射体などの公知の反射フィルムを用いることができる。
(輝度強化部)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、輝度強化部が挙げられる。光の一部分を、光が伝送された方向に向かって反射して戻す観点から、輝度強化部を含んでいても良い。
(プリズムシート)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、プリズムシートが挙げられる。プリズムシートは、代表的には、基材部とプリズム部とを有する。なお、基材部は、隣接する部材に応じて省略してもよい。プリズムシートは、任意の適切な接着層(例えば、接着剤層、粘着剤層)を介して隣接する部材に貼り合わせることができる。プリズムシートは、視認側とは反対側(背面側)に凸となる複数の単位プリズムが並列されて構成されている。プリズムシートの凸部を背面側に向けて配置することにより、プリズムシートを透過する光が集光されやすくなる。また、プリズムシートの凸部を背面側に向けて配置すれば、凸部を視認側に向けて配置する場合と比較して、プリズムシートに入射せずに反射する光が少なく、輝度の高いディスプレイを得ることができる。
(導光板)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、導光板が挙げられる。導光板としては、例えば、横方向からの光を厚さ方向に偏向可能となるよう、背面側にレンズパターンが形成された導光板、背面側及び/又は視認側にプリズム形状等が形成された導光板などの任意の適切な導光板が用いることができる。
(要素間の媒体材料層)
 本発明に係る発光装置を構成する積層構造体が有していてもよい層としては、特に制限は無いが、隣接する要素(層)間の光路上に1つ以上の媒体材料からなる層(要素間の媒体材料層)が挙げられる。
 要素間の媒体材料層に含まれる1つ以上の媒体には、特に制限は無いが、真空、空気、ガス、光学材料、接着剤、光学接着剤、ガラス、ポリマー、固体、液体、ゲル、硬化材料、光学結合材料、屈折率整合又は屈折率不整合材料、屈折率勾配材料、クラッディング又は抗クラッディング材料、スペーサー、シリカゲル、輝度強化材料、散乱又は拡散材料、反射又は抗反射材料、波長選択性材料、波長選択性抗反射材料、色フィルター、又は前記技術分野で既知の好適な媒体、が含まれる。
 本発明に係る発光装置の具体例としては、例えば、エレクトロルミネッセント(EL)ディスプレイや液晶ディスプレイ用の波長変換材料を備えたものが挙げられる。
 具体的には、
 (E1)本発明の組成物をガラスチューブ等の中に入れて封止し、これを導光板の端面(側面)に沿うように、光源である青色発光ダイオードと導光板の間に配置して、青色光を緑色光や赤色光に変換するバックライト(オンエッジ方式のバックライト)、
 (E2)本発明の組成物をシート化し、これを2枚のバリアーフィルムで挟んで封止したフィルムを、導光板の上に設置して、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換するバックライト(表面実装方式のバックライト)、
 (E3)本発明の組成物を、樹脂等に分散させて青色発光ダイオードの発光部近傍に設置し、照射される青色の光を緑色光や赤色光に変換するバックライト(オンチップ方式のバックライト)、及び
 (E4)本発明の組成物を、レジスト中に分散させて、カラーフィルター上に設置し、光源から照射される青色の光を緑色光や赤色光に変換するバックライト
が挙げられる。
 また、本発明に係る発光装置の具体例としては、本発明の実施形態の組成物を成形し、光源である青色発光ダイオードの後段に配置して、青色光を緑色光や赤色光に変換して白色光を発する照明が挙げられる。
<ディスプレイ>
 図2に示すように、本実施形態のディスプレイ3は、液晶パネル40と、前述の発光装置2とを視認側からこの順に備える。発光装置2は、第2の積層構造体1bと光源30とを備える。第2の積層構造体1bは、前述の第1の積層構造体1aが、プリズムシート50と、導光板60と、をさらに備えたものである。ディスプレイは、任意の適切なその他の部材をさらに備えていてもよい。
 本発明の一つの側面は、液晶パネル40と、プリズムシート50と、導光板60と、前記第一の積層構造体1aと、光源30と、がこの順に積層された液晶ディスプレイ3である。
(液晶パネル)
 1つの態様では、上記液晶パネルは、代表的には、液晶セルと、前記液晶セルの視認側に配置された視認側偏光板と、前記液晶セルの背面側に配置された背面側偏光板とを備える。視認側偏光板及び背面側偏光板は、それぞれの吸収軸が実質的に直交又は平行となるようにして配置され得る。
(液晶セル)
 1つの態様では、液晶セルは、一対の基板と、前記基板間に挟持された表示媒体としての液晶層とを有する。他の態様では、一般的な構成においては、一方の基板に、カラーフィルター及びブラックマトリクスが設けられており、他方の基板に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極及び対向電極とが設けられている。上記基板の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。
(偏光板)
 1つの態様では、偏光板は、代表的には、偏光子と、偏光子の両側に配置された保護層とを有する。偏光子は、代表的には、吸収型偏光子である。
 上記偏光子としては、任意の適切な偏光子が用いられる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く、特に好ましい。
 本実施形態の化合物又は組成物の用途としては、例えば、発光ダイオード(LED)用の波長変換材料が挙げられる。
<LED>
 本実施形態の化合物又は組成物は、例えば、LEDの発光層の材料として用いることができる。
 本実施形態の化合物又は組成物を含むLEDとしては、例えば、本実施形態の化合物又は組成物とZnSなどの導電性粒子を混合して膜状に積層し、片面にn型輸送層を積層し、もう片面にp型輸送層を積層した構造をしており、電流を流すことで、p型半導体の正孔と、n型半導体の電子が接合面の組成物に含まれる(1)ペロブスカイト化合物の粒子中で電荷を打ち消すことで発光する方式が挙げられる。
<太陽電池>
 本実施形態の化合物又は組成物は、太陽電池の活性層に含まれる電子輸送性材料として利用することができる。
 前記太陽電池としては、構成は特に限定されないが、例えば、フッ素ドープされた酸化スズ(FTO)基板、酸化チタン緻密層、多孔質酸化アルミニウム層、本実施形態の化合物又は組成物を含む活性層、2,2’,7,7’-tetrakis(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(Spiro-MeOTAD)などのホール輸送層、及び、銀(Ag)電極をこの順で有する太陽電池が挙げられる。
 酸化チタン緻密層は、電子輸送の機能、FTOのラフネスを抑える効果、及び、逆電子移動を抑制する機能を有する。
 多孔質酸化アルミニウム層は、光吸収効率を向上させる機能を有する。
 活性層に含まれる、本実施形態の化合物又は組成物は、電荷分離及び電子輸送の機能を有する。
<フィルムの製造方法>
 フィルムの製造方法は、例えば、下記(e1)~(e3)の製造方法が挙げられる。
 製造方法(e1):液状組成物を塗工して塗膜を得る工程と、塗膜から(3)溶媒を除去する工程と、を含むフィルムの製造方法。
 製造方法(e2):(4)重合性化合物を含む液状組成物を塗工して塗膜を得る工程と、得られた塗膜に含まれる(4)重合性化合物を重合させる工程と、を含むフィルムの製造方法。
 製造方法(e3):上述の製造方法(d1)、(d2)で得られた組成物を成形加工するフィルムの製造方法。
<積層構造体の製造方法>
 積層構造体の製造方法は、例えば、下記(f1)~(f3)の製造方法が挙げられる。
 製造方法(f1):液状組成物を製造する工程と、得られた液状組成物を基板上に塗工する工程と、得られた塗膜から(3)溶媒を除去する工程と、を含む積層構造体の製造方法。
 製造方法(f2):フィルムを基板に張り合わせる工程を含む積層構造体の製造方法。
 製造方法(f3):(4)重合性化合物を含む液状組成物を製造する工程と、得られた液状組成物を基板上に塗工する工程と、得られた塗膜に含まれる(4)重合性化合物を重合させる工程と、を含む製造方法。
 製造方法(f1)、(f3)における液状組成物を製造する工程は、上述の製造方法(c1)~(c4)を採用することができる。
 製造方法(f1)、(f3)における液状組成物を基板上に塗工する工程は、特に制限は無いが、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法などの、公知の塗布、塗工方法を用いることができる。
 製造方法(f1)における(3)溶媒を除去する工程は、上述した製造方法(d2)に含まれる(3)溶媒を除去する工程と同様の工程とすることができる。
 製造方法(f3)における(4)重合性化合物を重合させる工程は、上述した製造方法(d1)に含まれる(4)重合性化合物を重合させる工程と同様の工程とすることができる。
 製造方法(f2)におけるフィルムを基板に張り合わせる工程では、任意の接着剤を用いることができる。
 接着剤は、(1)ペロブスカイト化合物を溶解しないものであれば特に制限は無く、公知の接着剤を用いることができる。
 積層構造体の製造方法は、得られた積層構造体に、さらに任意のフィルムを張り合わせる工程を含んでいてもよい。
 張り合わせる任意のフィルムとしては、例えば、反射フィルム、拡散フィルムが挙げられる。
 フィルムを張り合わせる工程では、任意の接着剤を用いることができる。
 上述の接着剤は、本実施形態の化合物を溶解しないものであれば特に制限は無く、公知の接着剤を用いることができる。
<発光装置の製造方法>
 例えば、前述の光源と、光源から後段の光路上に前述の化合物、前述の組成物、又は積層構造体を設置する工程とを含む製造方法が挙げられる。
 なお、本発明の技術範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
<センサー>
 本実施形態の化合物又は組成物は、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(イメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する検出部、パルスオキシメーターなどの光学バイオセンサーの検出部に使用する含まれる光電変換素子(光検出素子)材料として利用することができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
((1)ペロブスカイト化合物の固形分濃度測定)
 実施例5で得られた組成物におけるペロブスカイト化合物の固形分濃度は、それぞれ、再分散させることで得られたペロブスカイト化合物及び溶媒を含む分散液を105℃で3時間乾燥させた後に、残存した質量を測定して下記式1に当てはめて算出した。
固形分濃度(質量%)=乾燥後の質量÷乾燥前の質量×100・・・式1 
(添加水の質量Mの測定)
 添加水の質量Mは、微量水分測定装置(AQ-2000、平沼産業社製、ケトン系電解液Hydranal-Coulomat AK)を用いて測定した。
(発光スペクトルの半値幅、吸収率、及び発光波長の測定)
 実施例1~5、及び比較例1で得られた化合物の発光スペクトルの半値幅、及び発光波長を、絶対PL量子収率測定装置(浜松ホトニクス株式会社製、C9920-02)を用いて、励起光450nm、室温、大気下で測定した。
((hkl)=(001)の半値幅測定)
 実施例1~5、及び比較例1で得られた化合物をX線構造回折(XRD、CuKα線=1.5458λ、X’pert PRO MPD、スペクトリス社製)によって測定したのち、(hkl)=(001)のピークの半値幅を測定した。(hkl)=(001)のピークの半値幅は、統合粉末X線解析ソフトウェア PDXL(リガク社製)を用いて算出した。
(平均粒径測定)
 実施例1~5、及び比較例1で得られた化合物を透過型電子顕微鏡(日本電子株式会社製、JEM-2200FS)で観察した。実施例1~5、及び比較例1で得られた化合物をそれぞれ含む組成物をTEM専用の支持膜付きグリッドにキャストし、自然乾燥させたものを、加速電圧を200kVとして観察を行った。また、観察した視野では、エネルギー分散型X線分析(日本電子株式会社製、JED-2300)も行い、元素マッピング像を得た。
 実施例1~5、及び比較例1で得られたペロブスカイト化合物の平均粒径は、画像解析ソフトImage Jを用いて算出した。各組成物のTEM像中の、実施例1~5、及び比較例1で得られた化合物それぞれを黒色とし、それ以外を白色として変換した二値化処理済み画像を得た。このとき、TEM-EDX測定で得られた元素マッピング像と比較し、実施例1~5、及び比較例1で得られたペロブスカイト化合物それぞれに由来する成分が検出されている位置を黒色に変換できていることを確認した。前記二値化処理済み画像について、ペロブスカイト化合物のサイズを測定した。
 平均粒径は無作為に選んだ300個のペロブスカイト化合物の立方体もしくは直方体をした粒子の最も長い辺の長さの平均から算出した。
[実施例1]
 オレイルアミン25mL、及びエタノール200mLを混合した後、氷冷しながら攪拌し、臭化水素酸溶液(48%)を17.12mL添加した後、減圧乾燥して沈殿を得た。
沈殿はジエチルエーテルを用いて洗浄した後、減圧乾燥して臭化オレイルアンモニウムを得た。
 臭化オレイルアンモニウム21gに対して、トルエン200mLを混合した後、後述の酢酸鉛・3水和物(金属元素Mとして鉛を含む原料)中の鉛の質量(g)に対し、水(g)/鉛(g)が、0.58となるように臭化オレイルアンモニウムを含む溶液に水を添加して、臭化オレイルアンモニウムを含む溶液53.4mLを調製した。
 酢酸鉛・3水和物1.52gと、ホルムアミジン酢酸塩1.56g、1-オクタデセンの溶媒160mLと、オレイン酸40mLとを混合した。攪拌して、窒素を流しながら130℃まで加熱した後、上述の臭化オレイルアンモニウム、及び水を含む溶液を53.4mL添加した。添加後溶液を室温まで降温し、(1)ペロブスカイト化合物を含む分散液1を得た。
 分散液1.50μLに対してトルエン3.95mLを混合した溶液の発光特性を評価すると、発光スペクトルの半値幅が20.93nmであり、励起光の吸収率は0.65であり、発光波長が541nmであった。
 200mLの上記分散液1に対してトルエン100mL、及びアセトニトリル50mLを混合した溶液をろ過で固液分離した。その後、ろ過上の固形分をトルエン100mL、及びアセトニトリル50mLの混合溶液を2回流して洗浄し、ろ過した。これにより、(1)ペロブスカイト化合物を得た。
 得られた(1)ペロブスカイト化合物をトルエン100mLで分散し、分散液2を得た。分散液2を50μL無反射板にキャスト・乾燥した後、XRD測定した所、XRDスペクトルは2θ=14~15°の位置に(hkl)=(001)由来のピークを有していた。測定した(hkl)=(001)の半値幅は0.272であった。測定結果より、回収した(1)ペロブスカイト化合物は、3次元のペロブスカイト型結晶構造を有する化合物であることを確認した。TEMによって測定した平均粒径は14.6nmであった。
[実施例2]
 ペロブスカイト化合物の製造工程における臭化オレイルアンモニウムを含む溶液の水分量を、酢酸鉛・3水和物(金属元素Mとして鉛を含む原料)中の鉛の質量(g)に対し、水(g)/鉛(g)を、1.13とした以外は、実施例1と同様の方法で分散液を得た。(hkl)=(001)の半値幅は、0.232であった。また、発光スペクトルの半値幅は、20.68nmであり、励起光の吸収率は0.72であり、発光波長が541nmであった。TEMによって測定した平均粒径は21.6nmであった。
[実施例3]
 ペロブスカイト化合物の製造工程における臭化オレイルアンモニウムを含む溶液の水分量を、酢酸鉛・3水和物(金属元素Mとして鉛を含む原料)中の鉛の質量(g)に対し、水(g)/鉛(g)がを1.69とした以外は、実施例1と同様の方法で分散液を得た。(hkl)=(001)の半値幅は、0.213であった。また、発光スペクトルの半値幅は、20.15nmであり、励起光の吸収率は0.65であり、発光波長が542nmであった。TEMによって測定した平均粒径は18.4nmであった。
[実施例4]
 ペロブスカイト化合物の製造工程における臭化オレイルアンモニウムを含む溶液の水分量を、酢酸鉛・3水和物(金属元素Mとして鉛を含む原料)中の鉛の質量(g)に対し、水(g)/鉛(g)を、2.25とした以外は、実施例1と同様の方法で分散液を得た。(hkl)=(001)の半値幅は、0.150であった。また、発光スペクトルの半値幅は、20.16nmであり、励起光の吸収率は0.29であり、発光波長が539nmであった。TEMによって測定した平均粒径は26.6nmであった。
[実施例5]
 オレイルアミン25mL、及びエタノール200mLを混合した後、氷冷しながら攪拌しながら臭化水素酸溶液(48%)を17.12mL添加した後、減圧乾燥して沈殿を得た。沈殿はジエチルエーテルを用いて洗浄した後、減圧乾燥して臭化オレイルアンモニウムを得た。
 臭化オレイルアンモニウム21gに対して、トルエン200mLを混合した後、後述の酢酸鉛・3水和物(金属元素Mとして鉛を含む原料)中の鉛の質量(g)に対し、水(g)/鉛(g)が、1.69となるように臭化オレイルアンモニウムを含む溶液に水を添加して、臭化オレイルアンモニウムを含む溶液を調製した。
 酢酸鉛・3水和物1.52gと、ホルムアミジン酢酸塩1.56g、1-オクタデセンの溶媒160mLと、オレイン酸40mLとを混合した。攪拌して、窒素を流しながら130℃まで加熱した後、上述の臭化オレイルアンモニウム及び水を含む溶液を53.4mL添加した。添加後溶液を室温まで降温し、(1)ペロブスカイト化合物を含む分散液3を得た。TEMによって測定した平均粒径は18.4nmであった。
 200mLの上記分散液3に対してトルエン100mL、及びアセトニトリル50mLを混合した溶液をろ過で固液分離した。その後、ろ過上の固形分をトルエン100mL、及びアセトニトリル50mLの混合溶液を2回流して洗浄し、ろ過した。これにより、(1)ペロブスカイト化合物を得た。
 得られた(1)ペロブスカイト化合物をトルエン100mLで分散し、分散液4を得た。分散液4を50μL無反射板にキャスト・乾燥した後、XRD測定した所、XRDスペクトルは2θ=14~15°の位置に(hkl)=(001)由来のピークを有していた。測定した(hkl)=(001)の半値幅は0.213であった。測定結果より、回収した(1)ペロブスカイト化合物は、3次元のペロブスカイト型結晶構造を有する化合物であることを確認した。
 前記ペロブスカイト化合物をキシレンと混合して、固形分濃度が0.9質量%となるように185mLの分散液5を調製した。ここに、オルガノポリシラザン(1500 Slow Cure、Durazane, メルクパフォーマンスマテリアルズ株式会社製)を、分散液5中の1質量部のペロブスカイト化合物に対し、2質量部加えた。上述の方法で発光スペクトルの半値幅を測定すると、20.60nmであり、発光波長は538nmであった。
[比較例1]
 ペロブスカイト化合物の製造工程における臭化オレイルアンモニウムを含む溶液の水分量を、酢酸鉛・3水和物(金属元素Mとして鉛を含む原料)中の鉛の質量(g)に対し、水(g)/鉛(g)を0.046とした以外は、実施例1と同様の方法で分散液を得た。なお、上述の水は、意図的に加えたものではなく、原料に含まれていた水分由来の水である。
 上述の方法で(hkl)=(001)の半値幅を算出すると0.600であった。上述の方法で発光スペクトルの半値幅を測定すると、24.30nmであり、励起光の吸収率は0.64であり、発光波長は535nmであった。TEMによって測定した平均粒径は13.1nmであった。
 実施例1~5、比較例1の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 上記の結果から、本発明を適用した実施例1~5のペロブスカイト化合物は、本発明を適用しない比較例1のペロブスカイト化合物と比べて、発光スペクトルの半値幅が狭いことが確認できた。
[参考例1]
 実施例1~5に記載の化合物、又は組成物を、ガラスチューブ等の中に入れて封止した後に、これを光源である青色発光ダイオードと導光板の間に配置することで、青色発光ダイオードの青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[参考例2]
 実施例1~5に記載の化合物、又は組成物をシート化する事で樹脂組成物を得ることができ、これを2枚のバリアーフィルムで挟んで封止したフィルムを導光板の上に設置することで、導光板の端面(側面)に置かれた青色発光ダイオードから導光板を通して前記シートに照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[参考例3]
 実施例1~5に記載の化合物、又は組成物を、青色発光ダイオードの発光部近傍に設置することで照射される青色の光を緑色光や赤色光に変換することができるバックライトを製造する。
[参考例4]
 実施例1~5に記載の化合物、又は組成物とレジストを混合した後に、溶媒を除去する事で波長変換材料を得ることができる。得られた波長変換材料を光源である青色発光ダイオードと導光板の間や、光源であるOLEDの後段に配置することで、光源の青色光を緑色光や赤色光に変換することができるバックライトを製造する。
[参考例5]
 実施例1~5に記載の化合物、又は組成物をZnSなどの導電性粒子を混合して成膜し、片面にn型輸送層を積層し、もう片面をp型輸送層で積層することでLEDを得る。電流を流すことによりp型半導体の正孔と、n型半導体の電子が接合面のペロブスカイト化合物中で電荷を打ち消されることで発光させることができる。
[参考例6]
 フッ素ドープされた酸化スズ(FTO)基板の表面上に、酸化チタン緻密層を積層させ、その上から多孔質酸化アルミニウム層を積層し、その上に実施例1~5に記載の化合物、又は組成物を積層し、溶媒を除去した後にその上から2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(Spiro-OMeTAD)などのホール輸送層を積層し、その上に銀(Ag)層を積層し、太陽電池を作製する。
[参考例7]
 実施例1~5に記載の化合物、又は組成物の、溶媒を除去して成形する事で本実施形態の組成物を得ることができ、これを青色発光ダイオードの後段に設置することで、青色発光ダイオードから組成物に照射される青色の光を緑色光や赤色光に変換して白色光を発するレーザーダイオード照明を製造する。
[参考例8]
 実施例1~5に記載の化合物、又は組成物の溶媒を除去して成形する事で本実施形態の組成物を得ることができる。得られた組成物を光電変換層の一部とすることで、光を検知する検出部に使用する含まれる光電変換素子(光検出素子)材料を製造する。光電変換素子材料は、X線撮像装置及びCMOSイメージセンサーなどの固体撮像装置用のイメージ検出部(イメージセンサー)、指紋検出部、顔検出部、静脈検出部及び虹彩検出部などの生体の一部分の所定の特徴を検出する検出部、パルスオキシメーターなどの光学バイオセンサーに用いられる。
 本発明によれば、発光スペクトルの半値幅が狭いペロブスカイト型結晶構造を有する化合物、前記化合物を含む組成物、前記組成物を形成材料とするフィルム、前記フィルムを含む積層構造体、前記積層構造体を備える発光装置及びディスプレイを提供することが可能となる。
 したがって、本発明のペロブスカイト型結晶構造を有する化合物、前記化合物を含む組成物、前記組成物を形成材料とするフィルム、前記フィルムを含む積層構造体、及び前記前記積層構造体を備える発光装置及びディスプレイは、発光用途において好適に使用することができる。
 本発明はまた、下記の[1]~[28]を包含する。
[1] X線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満であり、A、B、及びXを構成成分とするペロブスカイト型結晶構造を有する化合物が複数集まって構成されるペロブスカイト集合体。
(Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する6面体、及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。)
[2] 前記ミラー指数(001)のピークの半値幅が0.15以上、0.60未満である[1]に記載のペロブスカイト集合体。
[3] 前記ミラー指数(001)のピークの半値幅が0.15以上、0.28以下である[1]に記載のペロブスカイト集合体。
[4] 前記Bが2価の金属イオンである[1]~[3]のいずれか一項に記載のペロブスカイト集合体。
[5] 前記Bが鉛イオン、スズイオン、アンチモンイオン、ビスマスイオン、及びインジウムイオンからなる群より選ばれる金属イオンである[1]~[4]のいずれか一項に記載のペロブスカイト集合体。
[6] 鉛イオン、スズイオン、アンチモンイオン、ビスマスイオン、及びインジウムイオンからなる群より選ばれる1種以上の金属イオンで構成される[1]~[5]のいずれか一項に記載のペロブスカイト集合体。
[7] 前記Bが鉛イオンである[1]~[6]のいずれか一項に記載のペロブスカイト集合体。
[8] 前記化合物がセシウムイオン、有機アンモニウムイオン、及びアミジニウムイオンからなる群から選ばれる1種以上の一価の陽イオンで構成される[1]~[7]のいずれか一項に記載のペロブスカイト集合体。
[9] 前記Xが塩化物イオン、臭化物イオン、フッ化物イオン、及びヨウ化物イオンからなる群から選ばれる1種以上のハロゲン化物イオンである[1]~[8]のいずれか一項に記載のペロブスカイト集合体。
[10] 前記Xが1つ以上のチオシアン酸イオンである[1]~[8]のいずれか一項に記載のペロブスカイト集合体。
[11] 前記Xが臭化物イオンである[9]に記載のペロブスカイト集合体。
[12] [1]~[11]のいずれか一項に記載のペロブスカイト集合体と、下記(2-1)、下記(2-1)の改質体、下記(2-2)及び下記(2-2)の改質体からなる群より選ばれる少なくとも1つの化合物と、を含む組成物。
 (2-1)シラザン
 (2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物
[13] [1]~[11]のいずれか一項に記載のペロブスカイト集合体と、下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種と、を含む組成物。
 (3)溶媒
 (4)重合性化合物
 (5)重合体
[14] 更に、下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種を含む[12]に記載の組成物。
 (3)溶媒
 (4)重合性化合物
 (5)重合体
[15] [1]~[11]のいずれか一項に記載のペロブスカイト集合体を含むフィルム。
[16] [12]~[14]のいずれか一項に記載の組成物を形成材料とするフィルム。
[17] [15]又は[16]に記載のフィルムを含む積層構造体。
[18] [17]に記載の積層構造体を備える発光装置。
[19] [17]に記載の積層構造体を備えるディスプレイ。
[20] 金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料と水とを混合する工程と、前記水の存在下で前記原料を反応させる工程と、を含む半導体化合物の製造方法であって、前記原料に含まれる金属元素Mの質量Wに対する、前記水の質量Wの比である(W/W)が0.05~100である、X線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満である金属元素Mを含む半導体化合物が複数集まって構成される集合体の製造方法。
[21] 前記集合体が[1]~[11]のいずれか一項に記載のペロブスカイト集合体である[20]に記載の製造方法。
[22] 下記(2-1)、下記(2-1)の改質体、下記(2-2)及び下記(2-2)の改質体からなる群より選ばれる少なくとも1つの化合物を混合する工程を含む[20]又は[21]に記載の製造方法。
 (2-1)シラザン
 (2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物
[23] ポリシラザンを混合する工程を含む[20]又は[21]に記載の製造方法。
[24] 更に、下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種を混合する工程を含む[20]又は[24]に記載の製造方法。
 (3)溶媒
 (4)重合性化合物
 (5)重合体
[25] 前記集合体がフィルムの形成材料である[20]~[24]に記載の製造方法。
[26] 前記フィルムが積層構造体に含まれる[25]に記載の製造方法。
[27] 前記積層構造体が発光装置に用いられる[26]に記載の製造方法。
[28] 前記積層構造体がディスプレイに用いられる[26]に記載の製造方法。
1a…第1の積層構造体、1b…第2の積層構造体、10…フィルム、20…第1の基板、21…第2の基板、22…封止層、2…発光装置、3…ディスプレイ、30…光源、40…液晶パネル、50…プリズムシート、60…導光板

Claims (10)

  1.  X線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満であり、A、B、及びXを構成成分とするペロブスカイト型結晶構造を有する化合物。
    (Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
     Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分であって、ハロゲン化物イオン、及びチオシアン酸イオンからなる群より選ばれる少なくとも一種の陰イオンである。
     Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する6面体、及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。)
  2.  請求項1に記載の化合物と、下記(2-1)、下記(2-1)の改質体、下記(2-2)及び下記(2-2)の改質体からなる群より選ばれる少なくとも1つの化合物と、を含む組成物。
     (2-1)シラザン
     (2-2)アミノ基、アルコキシ基及びアルキルチオ基からなる群より選ばれる少なくとも1つの基を有するケイ素化合物
  3.  請求項1に記載の化合物と、下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種と、を含む組成物。
     (3)溶媒
     (4)重合性化合物
     (5)重合体
  4.  更に、下記(3)、下記(4)及び下記(5)からなる群から選ばれる少なくとも一種を含む請求項2に記載の組成物。
     (3)溶媒
     (4)重合性化合物
     (5)重合体
  5.  請求項1に記載の化合物を含むフィルム。
  6.  請求項2~4のいずれか一項に記載の組成物を形成材料とするフィルム。
  7.  請求項5又は6に記載のフィルムを含む積層構造体。
  8.  請求項7に記載の積層構造体を備える発光装置。
  9.  請求項7に記載の積層構造体を備えるディスプレイ。
  10.  金属元素Mの単体及び金属元素Mを含む化合物のいずれか一方又は両方を含有する原料と水とを混合する工程と、
     前記水の存在下で前記原料を反応させる工程と、を含む半導体化合物の製造方法であって、
     前記原料に含まれる金属元素Mの質量Wに対する、前記水の質量Wの比である(W/W)が0.05~100である、X線回折パターンにおいて、面のミラー指数(001)のピークの半値幅が0.10以上、0.60未満である金属元素Mを含む半導体化合物の製造方法。
PCT/JP2020/007706 2019-03-01 2020-02-26 化合物、組成物、フィルム、積層構造体、発光装置、ディスプレイ及び化合物の製造方法 WO2020179579A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080032179.2A CN113784925B (zh) 2019-03-01 2020-02-26 化合物、组合物、薄膜、层叠结构体、发光装置、显示器及化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019037920 2019-03-01
JP2019-037920 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179579A1 true WO2020179579A1 (ja) 2020-09-10

Family

ID=72338666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007706 WO2020179579A1 (ja) 2019-03-01 2020-02-26 化合物、組成物、フィルム、積層構造体、発光装置、ディスプレイ及び化合物の製造方法

Country Status (3)

Country Link
JP (1) JP7470532B2 (ja)
CN (1) CN113784925B (ja)
WO (1) WO2020179579A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388089B (zh) * 2014-11-04 2017-06-06 深圳Tcl新技术有限公司 一种杂化钙钛矿量子点材料的制备方法
CN104861958B (zh) * 2015-05-14 2017-02-15 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
JP6870432B2 (ja) * 2016-03-31 2021-05-12 三菱ケミカル株式会社 複合金属酸化物粒子、並びに、これを用いた分散液、ハイブリッド複合粒子、ハイブリッド複合材及び光学材料
CN107603614B (zh) * 2017-09-12 2019-05-21 华中科技大学 一种金属卤化物钙钛矿量子点的制备方法
CN107954902A (zh) * 2017-12-13 2018-04-24 合肥工业大学 一种宽光谱的有机-无机杂化钙钛矿量子点荧光材料及其制备方法
CN108258157A (zh) * 2018-01-22 2018-07-06 苏州大学 钙钛矿量子点及其合成方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHUN SUN ,YU ZHANG, CHENG RUAN, CHUNYANG YIN ,XIAOYONG WANG ,YIDING WANG ,WILLIAM W.YU: "Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots", ADVANCED MATERIALS, vol. 28, no. 45, 26 September 2016 (2016-09-26), pages 10088 - 10094, XP055736645, ISSN: 0935-9648, DOI: 10.1002/adma.201603081 *
LI YULU, DING TAO, LUO XIAO, TIAN YUYANG, LU XIN, WU KAIFENG: "Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr3 Perovskite Nanocrystals", CHEMISTRY OF MATERIALS, vol. 32, no. 1, 30 November 2019 (2019-11-30), pages 549 - 556, XP009523285, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.9b04297 *
LOREDANA PROTESESCU, YAKUNIN SERGII, BODNARCHUK MARYNA I., BERTOLOTTI FEDERICA, MASCIOCCHI NORBERTO, GUAGLIARDI ANTONIETTA, KOVALE: "Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 138, no. 43, 13 October 2016 (2016-10-13), pages 14202 - 14205, XP055736222, ISSN: 0002-7863, DOI: 10.1021/jacs.6b08900 *
NAOKI YARITA, TOMOKO AHAREN, HIROKAZU TAHARA, MASAKI SARUYAMA, TOKUHISA KAWAWAKI, RYOTA SATO, TOSHIHARU TERANISHI, AND YOSHIHIKO K: "Observation of positive and negative trions in organic-inorganic hybrid perovskite nanocrystals", PHYSICAL REVIEW MATERIALS, vol. 2, no. 11, 14 November 2018 (2018-11-14), pages 1 - 8, XP055736632, ISSN: 2475-9953, DOI: 10.1103/PhysRevMaterials.2.116003 *
RICHARD M. MACEICZYK , KIM DÜMBGEN, IOANNIS LIGNOS, LOREDANA PROTESESCU, MAKSYM V. KOVALENKO, ANDREW J. DEMELLO: "Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals", CHEMISTRY OF MATERIALS, vol. 29, no. 19, 8 September 2017 (2017-09-08), pages 8433 - 8439, XP055736108, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.7b02998 *
YARITA NAOKI, TAHARA HIROKAZU, SARUYAMA MASAKI, KAWAWAKI TOKUHISA, SATO RYOTA, TERANISHI TOSHIHARU, KANEMITSU YOSHIHIKO: "Impact of Postsynthetic Surface Modification on Photoluminescence Intermittency in Formamidinium Lead Bromide Perovskite Nanocrystals", THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 8, no. 24, 21 December 2017 (2017-12-21), United States, pages 6041 - 6047, XP009523306, ISSN: 1948-7185, DOI: 10.1021/asc.jpclett.7b02840 *

Also Published As

Publication number Publication date
JP7470532B2 (ja) 2024-04-18
TW202039792A (zh) 2020-11-01
CN113784925A (zh) 2021-12-10
JP2020142981A (ja) 2020-09-10
CN113784925B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
KR102569673B1 (ko) 페로브스카이트 화합물을 포함하는 혼합물
JPWO2018212268A1 (ja) フィルム、組成物の製造方法、硬化物の製造方法、及びフィルムの製造方法
WO2018117130A1 (ja) 組成物、フィルム、積層構造体、発光装置、ディスプレイ、及び組成物の製造方法
CN110114441B (zh) 组合物、膜、层叠结构体、发光装置及显示器
US20210395608A1 (en) Particle, Composition, Film, Laminated Structure, Light-Emitting Device and Display
TWI830795B (zh) 組合物、薄膜、積層結構體、發光裝置及顯示器
WO2020085364A1 (ja) 組成物、フィルム、積層構造体、発光装置及びディスプレイ
WO2020085363A1 (ja) 組成物、フィルム、積層構造体、発光装置及びディスプレイ
WO2020085516A1 (ja) 組成物、フィルム、積層構造体、発光装置及びディスプレイ
WO2018117132A1 (ja) 組成物、フィルム、積層構造体、発光装置、及びディスプレイ
JP7340373B2 (ja) 組成物、フィルム、積層構造体、発光装置及びディスプレイ
WO2020179579A1 (ja) 化合物、組成物、フィルム、積層構造体、発光装置、ディスプレイ及び化合物の製造方法
WO2020085514A1 (ja) 組成物、フィルム、積層構造体、発光装置及びディスプレイ
WO2020085361A1 (ja) 粒子、組成物、フィルム、積層構造体、発光装置及びディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766238

Country of ref document: EP

Kind code of ref document: A1