WO2020179327A1 - ハイブリッド車用制御装置 - Google Patents

ハイブリッド車用制御装置 Download PDF

Info

Publication number
WO2020179327A1
WO2020179327A1 PCT/JP2020/004245 JP2020004245W WO2020179327A1 WO 2020179327 A1 WO2020179327 A1 WO 2020179327A1 JP 2020004245 W JP2020004245 W JP 2020004245W WO 2020179327 A1 WO2020179327 A1 WO 2020179327A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
target
operating point
rotation speed
knock
Prior art date
Application number
PCT/JP2020/004245
Other languages
English (en)
French (fr)
Inventor
助川 義寛
猿渡 匡行
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112020000128.8T priority Critical patent/DE112020000128T5/de
Priority to CN202080006076.9A priority patent/CN113498451B/zh
Priority to US17/413,785 priority patent/US20220009479A1/en
Publication of WO2020179327A1 publication Critical patent/WO2020179327A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control device for a hybrid vehicle, and relates to a technique for controlling an engine in consideration of quietness.
  • a hybrid vehicle that drives the axle by supplying the electric power generated by the engine to the motor.
  • the engine can avoid operation at a low load and a low rotation speed with low thermal efficiency, and can improve the thermal efficiency of the entire system.
  • Patent Document 1 An example of such a hybrid system is disclosed in Patent Document 1, for example.
  • Patent Document 1 describes "means for detecting engine knocking and means for increasing and correcting the target value of the engine speed when knocking is detected". Further, Japanese Patent Laid-Open No. 2004-242242 discloses that "when the detected engine speed is lower than a predetermined control target range, the value is smaller, and when the detected engine speed is higher, the value is larger. , “Correct the field current of the generator”, "when the detected engine speed is within the predetermined control target range, the detected power generation amount of the generator is smaller than the predetermined control target range” If the engine load is higher, on the other hand, if it is on the larger side, the engine load is lower. By correcting the engine operating conditions, the engine speed and generator Both the amount of power generation is controlled within the control target range.”
  • Patent Document 1 discloses a technique of controlling the engine and the generator when a knock occurs to reduce the knock, but while suppressing the knock within an allowable limit for the purpose of reducing noise. However, it does not disclose any technique for reducing the engine speed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device for a hybrid vehicle that is excellent in noise reduction while suppressing knock within an allowable limit.
  • the control device for a hybrid vehicle includes a motor for driving wheels, a generator for supplying power to the motor, and an internal engine for driving the generator.
  • a hybrid vehicle control device for controlling a hybrid vehicle including an engine, and calculating a knock index value indicating a degree of knock of the engine at an engine operating point represented by a relationship between an engine speed and an engine torque.
  • a control unit that controls the engine rotation speed and the engine torque based on the knock index value is provided. This control unit sets the target engine rotation speed at the target power generation amount to be low and the target engine torque to be high as the knock index value becomes small within a range in which the knock index value does not exceed the knock allowable limit value.
  • a hybrid vehicle control device includes a motor that drives wheels, a generator that supplies electric power to the motor, and an engine that includes an internal combustion engine that drives the generator.
  • a hybrid vehicle control device for controlling a hybrid vehicle comprising: calculating a knock index value indicating a degree of knocking of the engine at an engine operating point represented by a relationship between an engine rotation speed and an engine torque; A control unit that controls the engine rotation speed and the engine torque based on the value. This control unit, in a range in which the knock index value does not exceed the knock allowable limit value, the target power generation amount according to the magnitude of the background sound generated from other than the engine or the magnitude of the physical quantity correlated with the background sound.
  • the target engine rotation speed and the target engine torque in are set.
  • a control device for a hybrid vehicle includes a motor that drives wheels, a generator that supplies electric power to the motor, and an engine configured by an internal combustion engine that drives the generator.
  • a hybrid vehicle control device for controlling a hybrid vehicle comprising: calculating a knock index value indicating a degree of knocking of the engine at an engine operating point represented by a relationship between an engine speed and an engine torque; A control unit that controls the engine rotation speed and the engine torque based on the index value. The control unit sets the target engine rotation speed and the target engine torque in the target power generation amount according to the selected operation mode within a range in which the knock index value does not exceed the knock allowable limit value.
  • FIG. 5 is a characteristic diagram showing an example of a relationship between a throttle opening and a filling rate taken into a combustion chamber. It is a characteristic view which shows the example of the relationship between a throttle opening and engine torque. It is explanatory drawing which shows the example of the detection result by a knock sensor.
  • FIG. 1 shows an example of a system configuration of a hybrid vehicle according to the first embodiment of the present invention. Also in each of the following embodiments, the system configuration of the hybrid vehicle shown in FIG. 1 will be described as an example.
  • the engine 1, the speed increasing gear 2, and the induction generator 3 are connected to the series.
  • the shaft output of the engine 1 is increased by the speed increasing gear 2 to a rotation speed suitable for the induction generator 3, and drives the induction generator 3.
  • the speed-up gear 2 is configured as a variable gear system, and its speed-up ratio can be changed.
  • the three-phase AC power generated by the induction generator 3 is converted into DC power by the rectifier 4 and then supplied to the inverter 6 and the battery 5.
  • the DC power is converted into three-phase AC power again by the inverter 6 and then supplied to the induction motor 7.
  • the induction motor 7 drives the left and right wheels 9 via the transaxle 8.
  • the controller 12 is an example of a hybrid vehicle control device that controls each component of the hybrid vehicle 50 and executes various data processing.
  • the controller 12 obtains a motor output required for driving the vehicle from information such as an accelerator, a brake, a vehicle speed, and a gear position, and controls the inverter 6 to supply a predetermined amount of electric power to the induction motor 7. .. Further, the controller 12 controls the output of the engine 1, the speed increasing ratio of the speed increasing gear 2, and the field current of the induction generator 3 to manage the entire power system of the vehicle.
  • An ECU Electric Control Unit
  • FIG. 2 shows an example of a cross section of the engine 1.
  • the engine 1 is an example of a spark ignition 4-cycle gasoline engine, and a combustion chamber is formed by an engine head, a cylinder 13, a piston 14, an intake valve 15, and an exhaust valve 16.
  • a fuel injection valve 18 is provided in the engine head, and the injection nozzle of the fuel injection valve 18 penetrates into the combustion chamber, thereby forming a so-called in-cylinder direct injection type internal combustion engine.
  • a spark plug 17 is also provided on the engine head. Combustion air is taken into the combustion chamber through the air cleaner 19, the throttle valve 20, and the intake port 21. Then, the burned gas (exhaust gas) discharged from the combustion chamber is discharged to the atmosphere through the exhaust port 24 and the catalytic converter 25.
  • the amount of air taken into the combustion chamber is measured by the air flow sensor 22 provided on the upstream side of the throttle valve 20. Further, the air-fuel ratio of the gas (exhaust) discharged from the combustion chamber is detected by the air-fuel ratio sensor 27 provided on the upstream side of the catalytic converter 25. Further, a knock sensor 10 is provided in a cylinder block (not shown) having a structure in which the cylinder 13 and the crankcase are integrated. The knock sensor 10 outputs a detection signal according to the knock state quantity in the combustion chamber.
  • a timing rotor 26 (signal rotor) is provided on the shaft portion of the crankshaft.
  • the crank angle sensor 11 arranged on the timing rotor 26 detects the rotation and phase of the crankshaft, that is, the engine rotation speed by detecting the signal of the timing rotor 26.
  • the detection signals of the knock sensor 10 and the crank angle sensor 11 are taken into the controller 12 and used by the controller 12 for detecting the state of the engine 1 and controlling the operation.
  • the controller 12 outputs the opening of the throttle valve 20 (hereinafter referred to as “throttle opening”), the timing of starting and ending the fuel injection by the fuel injection valve 18, the ignition timing by the ignition plug 17, etc. Control to a predetermined operating state.
  • the present invention is particularly suitable for application to an engine in which knocking may occur, such as a spark ignition engine, and it is possible to provide a hybrid vehicle with excellent quietness while suppressing knocking within an allowable limit.
  • an engine in which knocking may occur such as a spark ignition engine
  • the engine 1 according to the embodiment of the present invention may be a multi-cylinder engine including a plurality of cylinders. Good.
  • FIG. 3 is a block diagram showing a configuration example of the controller 12.
  • the controller 12 includes an input/output unit 121, a control unit 122, and a storage unit 123 that are electrically connected to each other via a system bus (not shown).
  • the input/output unit 121 includes an input port and an output port (not shown), and processes input and output for each device and each sensor in the vehicle. For example, the input / output unit 121 performs signal processing such as noise removal on the input signal, and sends the signal to the control unit 122. The input/output unit 121 also outputs a control signal to each device in accordance with a command from the control unit 122.
  • the control unit 122 controls the power system and electric system of the vehicle. For example, the control unit 122 controls the engine operating point according to the knock state of the engine 1 composed of the internal combustion engine.
  • the control unit 122 includes a knock index value calculation unit 122a, a target value determination unit 122b, and a drive control unit 122c.
  • the knock index value calculation unit 122a periodically calculates a knock index value indicating the degree of knock at the engine operating point of the engine 1, and outputs the calculated knock index value to the target value determination unit 122b.
  • the engine operating point is represented by the relationship between the engine speed and the engine torque, as will be described later (see FIG. 13).
  • the target value determination unit 122b determines the target engine rotation speed and the target engine torque of the engine 1 in the target power generation amount of the induction generator 3 based on the current knock index value calculated by the knock index value calculation unit 122a.
  • the drive control unit 122c controls the drive of the engine 1 and / or the induction generator 3 based on the target engine rotation speed and the target engine torque determined by the target value determination unit 122b.
  • the storage unit 123 is a volatile memory such as a RAM (Random Access Memory) or a non-volatile memory such as a ROM (Read Only Memory).
  • a control program executed by an arithmetic processing unit (not shown) included in the controller 12 is recorded in the storage unit 123.
  • the function of each block of the control unit 122 is realized by the arithmetic processing device reading out and executing the control program from the storage unit 123.
  • a CPU central processing unit
  • MPU microprocessing unit
  • the controller 12 may have a non-volatile auxiliary storage device such as a semiconductor memory, and the above control program may be stored in the auxiliary storage device.
  • the present invention is suitable for application to engine operating point control of a type of hybrid vehicle in which the engine is dedicated to power generation.
  • the invention can also be applied to a hybrid vehicle in which the engine is not exclusively used for power generation.
  • FIG. 4 is a characteristic diagram showing an example of the relationship between the throttle opening degree and the filling rate of the air sucked into the combustion chamber.
  • the horizontal axis of FIG. 4 represents the throttle opening (deg), and the vertical axis represents the filling rate (%). Since the throttle opening and the filling rate are uniquely determined as shown in FIG. 4, the relationship between the two can be obtained in advance by calibration (preliminary measurement), etc. The opening can be obtained.
  • FIG. 5 is a characteristic diagram showing an example of the relationship between the throttle opening and the engine torque.
  • the horizontal axis of FIG. 5 represents the throttle opening (deg) and the vertical axis represents the engine torque (Nm).
  • the air-fuel ratio is constant and the ignition timing is the optimum ignition timing (Minimum advance for the Best Torque: MBT).
  • the fuel injection amount from the fuel injection valve 18 per cycle is determined by feedback control so that the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 27 becomes the stoichiometric air-fuel ratio. .. Therefore, as shown in FIG. 5, the engine torque is uniquely determined by the throttle opening.
  • FIG. 6 shows an example of the detection result by the knock sensor 10.
  • the horizontal axis represents time and the vertical axis represents the knock sensor output value.
  • the knock sensor 10 is an acoustic sensor (microphone) that detects a vibration sound of the engine block. The vibration generated by knocking is detected by the knock sensor 10, and the time history thereof is taken into the controller 12.
  • the control unit 122 knock index value calculation unit 122a compares the amplitude of vibration with a predetermined knock determination threshold value, and if the amplitude is larger than the knock determination threshold value, determines that knock has occurred.
  • knocks have a permissible limit in frequency and strength, and if the permissible limit is exceeded, the engine may be damaged or the knocking noise may reduce the comfort of the vehicle. Therefore, it is necessary to determine the engine operating point so that the knock is below the allowable limit. For that purpose, it is desirable to apply an index value that can quantitatively show the degree of knocking to the engine control.
  • the number of knock occurrences within a predetermined time is counted and used as a knock index value.
  • the maximum amplitude Amax of vibration within a predetermined period or the average amplitude of vibration within a predetermined period is used as the knock index value. That is, the knock index value is a value indicating the degree of knock defined by the knock occurrence frequency or the knock strength.
  • FIG. 7 is a characteristic diagram showing an example of the relationship between the knock index value and the degree of knock.
  • the horizontal axis of FIG. 7 represents the knock index value, and the vertical axis represents the degree of knock. The higher the degree of knock, the larger the knock index value.
  • the engine operating point of the engine 1 is controlled so that the knock index value does not exceed the knock allowable limit value Li.
  • the knock index value may be obtained by providing a cylinder pressure sensor (not shown) in the engine 1 and detecting the frequency of knocking or the strength of knocking from the vibration of the cylinder pressure during combustion.
  • the frequency and strength of knocking may be estimated by a mathematical model created from the filling rate, the rotation speed, the air temperature, etc., or by referring to a map created by calibration or the like. ..
  • FIG. 8 shows an example of a cross section of the induction generator 3.
  • the induction generator 3 generates AC power by rotating the rotor 33 connected to the power load 35 within the magnetic field generated by the coil 32 wound around the stator 31.
  • the induction generator 3 can adjust the amount of power generation by the magnitude of the field current I flowing through the coil 32 of the stator 31 and the rotation speed of the rotor 33.
  • the drive control unit 122c of the controller 12 controls the voltage of the variable power supply 34 to control the magnitude of the field current I. For example, if the rotation speed of the rotor 33 is constant, the larger the field current I, the larger the amount of power generation.
  • generation load torque changes depending on the magnitude of the field current I.
  • FIG. 9 is a characteristic diagram showing an example of the relationship between the field current and the generated load torque.
  • the horizontal axis of FIG. 9 represents the field current, and the vertical axis represents the power generation load torque.
  • the larger the field current the higher the power generation load torque. Therefore, in the induction generator 3, by adjusting the magnitude of the field current with the controller 12, the power generation load torque and the power generation amount can be controlled.
  • the generator used in the hybrid vehicle 50 is not limited to the induction generator 3 shown in the present embodiment.
  • a permanent magnet synchronous generator may be used.
  • power generation load torque and power generation amount are controlled by current control of an inverter instead of field current.
  • the same control as the above-mentioned field current can be performed by the speed increasing ratio of the speed increasing gear 2. If the engine rotation speed is constant, the higher the speed increasing ratio of the speed increasing gear 2, the higher the rotation speed of the induction generator 3 and the larger the amount of power generation.
  • FIG. 10 is a characteristic diagram showing an example of the relationship between the speed increasing ratio of the speed increasing gear 2 and the power generation load torque when the field current is constant.
  • the horizontal axis of FIG. 10 represents the speed increasing ratio
  • the vertical axis represents the power generation load torque.
  • the power generation load torque and the power generation amount can be controlled by adjusting the speed increase ratio of the speed increase gear 2 with the controller 12.
  • FIG. 11 is a characteristic diagram showing an example of the relationship between the engine rotation speed that drives the induction generator 3 and the power generation amount with respect to the engine torque.
  • the horizontal axis of FIG. 11 represents the engine speed (r / min), and the vertical axis represents the engine torque (Nm).
  • the fuel injection amount per unit time is constant.
  • the power generation amount is proportional to the product of the engine torque and the engine rotation speed
  • the product of the engine torque and the engine rotation speed is constant along the equal power generation amount line shown in FIG. 11, that is, the power generation amount is constant. Therefore, by changing the engine rotation speed and the engine torque along the equal power generation line, it is possible to obtain a constant power generation amount at various engine operating points.
  • FIG. 12 shows an example of the transition of the engine operating point in the transient state in which the power generation amount increases from “P0” to “P1”.
  • the horizontal axis of FIG. 12 represents the engine rotation speed (r/min)
  • the vertical axis represents the engine torque (Nm)
  • the engine operating point A represents the current engine operating point at the power generation amount P0.
  • the engine operating point B1 and the engine operating point B2 are shown in FIG. 12 as the representative points.
  • the engine speed and engine torque at the engine operating point A are shown as (V0, T0)
  • the engine speed and engine torque at the engine operating point B1 are shown as (V1, T1).
  • the engine operating point B1 Comparing the engine operating point B1 and the engine operating point B2, the engine operating point B1 has a low engine speed and a high engine torque.
  • the engine noise is relatively low because the engine rotation speed is low.
  • the engine rotation speed is low and the engine torque is large, so that the knock degree is high.
  • the engine rotation speed is high and the engine torque is low. Therefore, at the engine operating point B2, the engine noise is relatively high and the knocking degree is low.
  • the two engine operating points B1 and the engine operating point B2 have a trade-off relationship with respect to noise and knock.
  • FIG. 13 shows an example of how to determine the target engine rotation speed and the target engine torque according to the first embodiment.
  • the horizontal axis of FIG. 13 represents a knock index value, and the vertical axis represents torque/rotational speed/margin.
  • the control unit 122 determines, at the engine operating point of the power generation amount P1 after the switching, in accordance with the knock index value “Na” at the engine operating point A of the power generation amount P0 before the switching.
  • the target engine speed “V1” and the target engine torque “T1” are determined. More specifically, when the knock index value at the engine operating point A is low, the target engine rotation speed is set low and the target engine torque is set high compared to when the knock index value at the engine operating point A is high. ..
  • the characteristic of the target engine speed with respect to the knock index value is represented by a straight line with a positive slope
  • the characteristic with respect to the knock index value of the target engine torque is represented by a straight line of a negative slope.
  • the knock degree of the engine operating point A When the knock degree of the engine operating point A is low, it is presumed that the margin for knocking (margin to the knock allowable limit value Li, degree of margin) is large in the power generation amount P1 after switching, so that the engine rotation speed is as much as possible. By setting low, it is possible to suppress the engine noise after the change of the changed engine operating point.
  • the knocking degree of the engine operating point A when the knocking degree of the engine operating point A is high, it is estimated that the margin with respect to the knocking is small in the changed power generation amount P1, so by setting the engine rotation speed high, the engine operating point after the changing is set. It is possible to prevent the knock index value of 1 from exceeding the knock allowable limit value Li.
  • knocking varies depending on the condition of deposits (so-called deposits) in the combustion chamber, changes over time in the engine such as air temperature, cooling water temperature, humidity, and fuel properties, and environmental conditions. For example, when there are many deposits in the combustion chamber, when the fuel has a low octane number, when the temperature is high, or when the humidity is low, knocking is likely to occur or the strength of the knocking is increased.
  • the knock index value is set to a high rotation speed and low torque engine operating point with respect to an engine operating point near the knock allowable limit value Li. Often.
  • the engine operating point after shifting to a different power generation amount is determined according to the degree of knock at the engine operating point A, so that the engine operating point after shifting is affected by changes in the engine over time and environmental conditions. It is reflected in.
  • the characteristics showing the relationship between the knock index value, the engine rotation speed, and the engine torque as shown in FIG. 13 are stored in the storage unit 123 for each power generation amount.
  • FIG. 14 shows an example of the transition of the engine operating point when the amount of power generation is increased during acceleration according to the first embodiment.
  • the horizontal axis of FIG. 14 represents the engine speed (r / min), and the vertical axis represents the engine torque (Nm).
  • the white circle symbol is an example of the transition of the engine operating point according to the prior art (A ⁇ A1 ⁇ A2 ⁇ A3)
  • the black circle symbol is the transition of the engine operating point according to the present embodiment (A ⁇ B ⁇ C). ⁇ This is an example of A3).
  • the storage unit (storage unit 123) of the present embodiment has an engine operating point (A1,) from the engine operating point (A) at the first target power generation amount to the engine operating point (A1, P2) at the second target power generation amount (P1, P2).
  • Default setting information (FIG. 14) in which the transition to A2) is set is stored in advance.
  • the control unit (control unit 122) is set to the default setting information when changing the engine operating point between the first target power generation amount and the second target power generation amount (P1, P2).
  • the engine rotation speed at the changed engine operating point (B, C) is determined to be higher than that at the engine operating point (A1, A2) at the target power generation amount (P1, P2) of 2, and the engine torque is set. It is configured to determine a small value.
  • the engine operating point when the engine operating point is changed in accordance with the switching of the power generation amount, the engine operating point becomes lower in rotation speed and higher in torque than the default engine operating point within the allowable range of knock. Thus, the engine operating point is determined. As a result, engine noise is reduced compared to the conventional case.
  • FIG. 15 shows a procedure example of processing by the controller 12.
  • FIG. 15 shows a control process of the engine 1 and the induction generator 3 performed by the controller 12 when changing the amount of power generation.
  • the knock index value calculation unit 122a of the control unit 122 first obtains the knock index value I of the current engine operating point based on the detected value of the knock sensor 10 (S1).
  • the target value determining unit 122b determines the target engine rotation speed Ne * and the target engine torque Te * based on the correlation characteristics between the knock index value shown in FIG. 13 and the engine rotation speed and engine torque based on the knock index value I. Is calculated (S2).
  • the target value determination unit 122b obtains the target filling rate ⁇ * based on the target fuel flow rate Q * and the target engine rotation speed Ne * (S4).
  • K2 is a proportional constant
  • AF is an air-fuel ratio
  • Vc is an engine displacement.
  • the target value determination unit 122b obtains the target throttle opening corresponding to the target filling rate ⁇ * from the correlation characteristic between the throttle opening and the filling rate shown in FIG. Then, the drive control unit 122c outputs a valve opening command to the throttle valve 20 so that the target throttle opening degree is achieved (S5).
  • the target value determination unit 122b obtains the target field current corresponding to the target engine torque Te * from the correlation characteristic between the field current and the generated load torque shown in FIG. Then, the drive control unit 122c outputs a field command to the induction generator 3 so that the target field current is obtained (S6).
  • the control unit 122 executes the processing of each step of the flowchart shown in FIG. 15 periodically or at a designated timing.
  • step S6 the acceleration ratio of the acceleration gear 2 may be variably controlled instead of the field current.
  • the target value determination unit 122b obtains the target speed increase ratio corresponding to the target engine torque Te * from the correlation characteristic between the speed increase ratio and the power generation load torque shown in FIG. Then, the drive control unit 122c outputs a shift command to the speed increasing gear 2 so as to have the target speed increasing ratio.
  • the engine rotation speed and the engine torque are determined by using the feedforward control is shown, but these may be determined by the feedback control.
  • the feedback control since the control is repeatedly performed so that the difference between the detection result such as the engine rotation speed and the air flow rate and the control target value becomes small, it is possible to set the engine operating point with higher accuracy.
  • the hybrid vehicle control device (controller 12) of the first embodiment includes the motor (induction motor 7) that drives the wheels, the generator (induction generator 3) that supplies electric power to the motor, and the power generation. It is a control device for a hybrid vehicle that controls an engine (engine 1) composed of an internal combustion engine that drives the machine and a hybrid vehicle (hybrid vehicle 50) having the engine, and is represented by the relationship between the engine rotation speed and the engine torque.
  • a control unit (control unit 122) that calculates a knock index value indicating the degree of engine knock at the engine operating point (A) and controls the engine speed and the engine torque based on the knock index value. It is a thing.
  • This control unit is configured to set the target engine rotation speed at the target power generation amount (P1) lower and the target engine torque higher as the knock index value becomes smaller.
  • the knock index value at the current engine operating point is acquired, and as the knock index value becomes smaller within the range in which the knock index value does not exceed the knock allowable limit value, the target power generation amount
  • the target engine rotation speed is set low and the target engine torque is set high.
  • control unit (control unit 122) of the present embodiment sets the target engine rotation speed and the target engine torque so that the product of the target engine rotation speed and the target engine torque becomes constant according to the target power generation amount (P1). (See FIG. 13). As a result, the engine operating point can be changed while keeping the target power generation amount constant.
  • the knock index value is a value obtained in the engine operating state (engine operating point A) before the target power generation amount is switched. ..
  • the engine operating state before switching the target power generation amount can be reflected in the engine operating point after the change.
  • control unit (control unit 122) of the present embodiment has an engine characteristic in which the target engine rotation speed has a positive correlation with the knock index value and the target engine torque has a negative correlation with the knock index value (for example, FIG. 13). ) Is stored in the storage unit (storage unit 123). Then, the control unit is configured to determine the target engine rotation speed and the target engine torque based on the engine characteristics stored in the storage unit.
  • control section can refer to the engine characteristics and change the engine operating point in the direction in which engine noise decreases.
  • Second Embodiment> In the first embodiment, the control of the engine 1 and the induction generator 3 for realizing noise reduction when changing the power generation amount has been shown. On the other hand, even when the power generation amount is constant, noise reduction can be achieved by the engine operating point control based on the knock index value.
  • the engine operating point control when the amount of power generation is constant will be described with reference to the drawings.
  • FIG. 16 shows an example of equal power generation lines on a plane composed of the engine rotation speed and the engine torque.
  • the horizontal axis of FIG. 16 represents the engine rotation speed (r/min), and the vertical axis represents the engine torque (Nm).
  • the engine when the current engine operating point A is moved to the engine operating point B on the low rotation speed, degree, and high torque side along the equal power generation line of the power generation amount P, the engine is generated while keeping the power generation amount P constant. Noise can be reduced below the engine operating point A.
  • the degree of knocking increases compared to the engine operating point A because the engine rotation speed is low and the engine torque is high. Therefore, how low the engine speed at the engine operating point B can be depends on the degree of knocking at the engine operating point A. Therefore, in the present embodiment, the engine rotation speed and the engine torque at the engine operating point B are determined based on the knock index value at the engine operating point A.
  • FIG. 17 shows an example of how to determine the target engine rotation speed and the target engine torque according to the second embodiment.
  • FIG. 17 shows the same characteristics as those shown in FIG. 13.
  • the horizontal axis of FIG. 17 represents a knock index value, and the vertical axis represents torque and rotation speed.
  • the engine operating point can always be kept in an optimum state against various environmental condition changes even in a steady operation state where the amount of power generation is constant. it can.
  • the engine operating point is set at engine operating point B (low rotation speed, Low torque).
  • control unit 122 of the second embodiment has the same target power generation amount (P) at the engine operating point before change (A) and the engine operating point after change, .
  • the target engine rotation speed and the target engine torque are determined based on the calculated knock index value with reference to the engine characteristics (FIG. 17).
  • the engine noise can be reduced while keeping the target power generation amount constant.
  • FIG. 18 shows an example in which the knock index value is detected in the process in which the engine operating point moves from the engine operating point A to the engine operating point B on the equal power generation amount line according to the third embodiment.
  • the horizontal axis of FIG. 18 represents the engine rotation speed (r/min), and the vertical axis represents the engine torque (Nm).
  • FIG. 19 shows an example of transitions of the knock index value, the engine rotation speed, and the engine torque in the process of shifting from the engine operating point A to the engine operating point B according to the third embodiment.
  • the horizontal axis of FIG. 19 represents time
  • the vertical axis represents engine rotation speed/engine torque (upper side of FIG. 19) and knock index value (lower side of FIG. 19).
  • the knock index value calculation unit 122a moves the engine operating point toward the low torque and high torque side along the equal power generation line of the electric energy P. , In the process, the knock index value is detected.
  • the time point at which the engine operating point A departs is set to time 0, and the knock index values are detected at the time points t1 to t3 (engine operating points b1 to b3), respectively.
  • the knock index value increases as the engine operating point moves, the engine rotation speed decreases and the engine torque increases.
  • the knock index value calculation unit 122a stops the movement of the engine operating point at time t3 (engine operating point b3) when the knock index value exceeds the knock allowable limit value Li. Then, the target value determination unit 122b sets the engine operating point before the engine operating point b3 that exceeds the knock allowable limit value Li to the engine operating point B (target engine operating point) of the transition destination.
  • an engine operating point whose engine speed is higher by a predetermined value than the time point (engine operating point b3) when it is determined that the knock index value is exceeded is designated as the engine operating point B.
  • the engine operating point b2 which is the sweep point immediately before the sweep point (engine operating point b3) where the knock index value exceeds the knock allowable limit value Li, may be set as the engine operating point B.
  • control unit (control unit 122) of the third embodiment lowers the rotation speed of the engine (engine 1) while referring to the knock index value on the one power generation amount line, and thereby the engine operating point (A) Is configured to be controlled to approach the engine operating point (B) of the knock tolerance limit (Li).
  • This engine operating point control method can be applied to the first embodiment and the second embodiment.
  • the knock index value has reached the knock allowable limit value while the engine rotation speed is being reduced (swept) at a constant speed, and transition is made based on the result of the determination. Determine the previous engine operating point.
  • the engine operating point is determined based on the knock state at the present time, so that the engine operating point after the transition approaches the allowable limit of knock and engine noise can be minimized.
  • the permissible limit value for engine noise is not constant and changes depending on environmental conditions. For example, when the noise generated from other than the engine such as the road noise and wind noise of the vehicle (hereinafter referred to as "background noise") is loud, the occupants of the vehicle are less likely to feel the engine noise, and the engine noise is more than the case where the background noise is low.
  • the allowable limit value becomes large.
  • the engine operating point may be changed according to the volume of the background sound (for example, the volume [dB]) or the physical quantity of the part correlated with the background sound.
  • FIG. 20 is a block diagram showing a configuration example of a controller according to the fourth embodiment.
  • the controller 12A of this embodiment includes an input/output unit 121, a control unit 122A, and a storage unit 123.
  • the control unit 122A includes a background sound calculation unit 122d with respect to the control unit 122 of the first embodiment (FIG. 3).
  • the control unit 122A will be described mainly focusing on the points different from the first embodiment.
  • the background sound calculation unit 122d calculates the magnitude (volume) of the background sound generated from other than the engine 1 or the magnitude of the physical quantity correlated with the background sound, and outputs the calculation result to the target value determination unit 122b.
  • the background sound calculation unit 122d calculates the magnitude of the background sound from the output signal of the acoustic sensor (not shown) arranged in the vehicle.
  • the physical quantity correlated with the background sound will be described later.
  • a physical quantity correlated with the background sound may be included.
  • the target value determination unit 122b determines the target engine rotation speed and the target engine torque according to the calculation result received from the background sound calculation unit 122d.
  • the target value determining unit 122b refers to the knock index value of the engine 1 calculated by the knock index value calculating unit 122a, and the knock index value does not exceed the knock allowable limit value Li (see FIGS. 13 and 17). In the range, the target engine speed and the target engine torque are determined in the target power generation amount.
  • FIG. 21 shows an example in which the engine operating point on the equal power generation amount line is changed according to the loudness of the background sound according to the fourth embodiment.
  • the horizontal axis of FIG. 21 represents the engine speed (r / min), and the vertical axis represents the engine torque (Nm).
  • the current engine operating point A when the current background sound is low, the current engine operating point A is changed to the engine operating point B1 where the engine speed is low and the engine torque is high.
  • the current background sound when the current background sound is loud, the current engine operating point A is changed to the engine operating point B2 having a high engine speed and a low engine torque.
  • the engine rotation speed is set in the direction of lowering the target power generation amount, so that the engine noise can be suppressed to a low level. it can.
  • the engine rotation speed is set in the direction of increasing the target power generation amount, so that the risk of knocking can be reduced.
  • the background noise is loud, the occupants of the vehicle are less likely to feel the engine noise, so that even if the engine speed increases, the comfort is not reduced by the engine noise.
  • the hybrid vehicle control device includes the motor (induction motor 7) that drives the wheels, the generator (induction generator 3) that supplies electric power to the motor, and the power generation.
  • It is a control device for a hybrid vehicle that controls an engine (engine 1) composed of an internal combustion engine that drives the machine and a hybrid vehicle (hybrid vehicle 50) having the engine, and is represented by the relationship between the engine rotation speed and the engine torque.
  • a knock index value indicating the degree of knocking of the engine at the engine operating point (A) is calculated, and a control unit (control unit 122A) for controlling the engine rotation speed and the engine torque is provided based on the knock index value. Is.
  • This control unit in a range in which the knock index value does not exceed the knock allowable limit value (Li), according to the magnitude of the background sound generated from other than the engine or the magnitude of the physical quantity correlated with the background sound, the target It is configured to set the target engine rotation speed and the target engine torque at the power generation amount (P).
  • control unit (control unit 122A) of the present embodiment lowers the target engine rotation speed at the target power generation amount (P) and reduces the target engine torque as the background sound or the physical quantity correlated with the background sound becomes smaller. It is configured to set high.
  • the engine operating point is changed accordingly.
  • the engine noise can be controlled in accordance with the allowable limit value with respect to the engine noise while suppressing the knock within the allowable limit, so that the reduction in comfort due to the engine noise can be suppressed.
  • ignition timing control As an engine control that increases or decreases the knock, for example, ignition timing control can be mentioned. When the ignition timing is delayed, the knock decreases, and when the ignition timing is advanced, the knock increases. Further, as the engine control in which the knock increases and decreases, for example, compression ratio control can be cited. Lowering the compression ratio reduces knock, and increasing the compression ratio increases knock.
  • Various other control methods such as control of cooling water temperature, control of EGR (Exhaust Gas Recirculation) amount, control of oil jet amount of piston, etc. are conceivable as engine control in which knock increases and decreases.
  • the thermal efficiency of the engine increases when the engine is controlled in the direction of increasing knocks. For example, when the ignition timing is advanced in the knock operation region, the ignition timing approaches MBT, so that the thermal efficiency becomes high. Further, when the compression ratio is increased, the exhaust loss is reduced and the thermal efficiency is increased. Furthermore, when the temperature of the cooling water is increased, the cooling loss is reduced and the thermal efficiency is increased.
  • the margin for knocking becomes small. Therefore, by executing the engine control for reducing the knock, it is possible to set the engine operating point where the tolerance for the knock is increased and the engine rotation speed is low. As a result, the engine noise can be further reduced under the environmental condition where the background noise in which the engine noise is relatively remarkable is small.
  • the physical quantity correlated with the background sound that is, the parameter that determines the loudness of the background sound includes, for example, vehicle speed (influences road noise and wind noise), air-conditioning air volume in the passenger compartment, volume of audio equipment, and vehicle window opening. is there.
  • FIG. 22 is a characteristic diagram showing an example of the correlation between the parameter determining the background sound and the background sound.
  • the horizontal axis of FIG. 22 represents each parameter that determines the background sound, and the vertical axis represents the loudness (dB) of the background sound.
  • dB loudness
  • the index value may be used to determine the engine operating point.
  • the vehicle speed is obtained based on the engine rotation speed, the speed increasing ratio of the speed increasing gear 2, the effective radius of the wheels, and the like.
  • the air conditioning air volume is obtained from the set air volume for the air conditioning equipment.
  • the volume (sound pressure level) of the audio device is obtained from the set volume for the audio device.
  • the opening degree of the vehicle window can be obtained from the information of the set opening degree input to the opening degree meter (not shown) or the operation panel.
  • control unit 122A in the modified example of the present embodiment decreases the engine rotation speed and increases the engine torque.
  • the engine operating point (A) is changed in the direction of turning on and the engine (1) is controlled to reduce knock.
  • the control unit changes the engine operating point (A) in a direction in which the engine rotation speed increases and a direction in which the engine torque decreases.
  • the engine (1) is controlled to increase the knock.
  • the engine operating point is controlled based on the loudness of the background sound (or the physical quantity correlated with the background sound), but instead of the loudness of the background sound, the operation mode set by the user is used. , The engine operating point may be determined. This control method will be described in detail as the fifth embodiment of the present invention.
  • FIG. 23 is a block diagram showing a configuration example of a controller according to the fifth embodiment.
  • the controller 12B of this embodiment includes an input/output unit 121, a control unit 122B, and a storage unit 123.
  • the control unit 122B includes a mode determination unit 122e with respect to the control unit 122 of the first embodiment (FIG. 3).
  • the control unit 122B will be described mainly focusing on the points different from the first embodiment.
  • the mode determination unit 122e determines the operation mode input by the occupant using an operation panel or an operation switch (not shown) installed in the vehicle, and outputs the determination result to the target value determination unit 122b.
  • the operation mode includes a mode that prioritizes quietness and a mode that prioritizes fuel efficiency, but the present invention is not limited to this example. In addition to the silent priority mode, there may be two or more operation modes.
  • the target value determination unit 122b determines the target engine rotation speed and the target engine torque according to the operation mode received from the mode determination unit 122e.
  • the target value determination unit 122b refers to the knock index value of the engine 1 calculated by the knock index value calculation unit 122a, and targets the target power generation amount within a range in which the knock index value does not exceed the knock tolerance limit Li. Determine engine speed and target engine torque.
  • FIG. 24 shows an example in which the engine operating point on the constant power generation amount line is changed according to the operation mode according to the fifth embodiment.
  • the horizontal axis of FIG. 24 represents the engine rotation speed (r/min), and the vertical axis represents the engine torque (Nm).
  • the user can select either the silent priority mode or the fuel consumption priority mode, and information indicating the selected status is input to the controller 12B.
  • the target value determination unit 122b changes the current engine operating point A to the engine operating point B1 where the engine rotation speed is low and the engine torque is high.
  • the target value determination unit 122b changes the current engine operating point A to the engine operating point B2 where the engine rotation speed is high and the engine torque is low when the fuel economy priority mode is selected.
  • the hybrid vehicle control device (controller 12) of the fifth embodiment includes a motor (induction motor 7) that drives wheels, a generator (induction generator 3) that supplies electric power to the motor, and a generator.
  • It is a control device for a hybrid vehicle that controls an engine (engine 1) composed of an internal combustion engine that drives the machine and a hybrid vehicle (hybrid vehicle 50) having the engine, and is represented by the relationship between the engine rotation speed and the engine torque.
  • a knock index value indicating the degree of knocking of the engine at the engine operating point (A) is calculated, and a control unit (control unit 122B) for controlling the engine rotation speed and engine torque is provided based on the knock index value. Is.
  • This control unit in a range in which the knock index value does not exceed the knock allowable limit value (Li), according to the selected operation mode (for example, the silent priority mode or the fuel consumption priority mode), the target engine amount in the target power generation amount (P) It is configured to set the rotation speed and the target engine torque.
  • the selected operation mode for example, the silent priority mode or the fuel consumption priority mode
  • the target engine amount in the target power generation amount (P) It is configured to set the rotation speed and the target engine torque.
  • the knock index value is set within the range in which the knock allowable limit value is not exceeded and the engine rotation speed becomes low at the target power generation amount. Therefore, the engine noise can be suppressed to a low level.
  • the fuel consumption priority mode when the fuel consumption priority mode is selected, the engine torque is set in the direction of lowering the target power generation amount within the range where the knock index value does not exceed the knock allowable limit value. , The required throttle opening becomes smaller (see FIG. 5), and the fuel efficiency is improved. Further, since the engine rotation speed is set to increase, the risk of knocking can be reduced.
  • the quietness and the fuel efficiency can be flexibly adjusted to the user's preference and situation at that time within the range where the knock index value does not exceed the knock allowable limit value, and thus the user's desire. It is possible to provide a good balance of comfort and economy according to the above.
  • control unit 122B in the modification of the present embodiment reduces the engine operating point (A) to the engine rotation speed when the silent priority mode is selected as the operation mode.
  • the engine torque is changed to increase, and the engine (1) is controlled to reduce knock.
  • this control unit changes the engine operating point (A) in the direction in which the engine rotation speed increases and the engine torque decreases, and the engine (A) It is configured to implement engine control in which knock is increased with respect to 1).
  • the effect of performing the knock increase / decrease control in the modified example of the present embodiment is the same as the effect of the modified example of the fourth embodiment.
  • the present embodiment may be applied when switching from the silent priority mode to the fuel efficiency priority mode or from the fuel efficiency priority mode to the silent priority mode.
  • the operation mode may be a standard mode in which quietness and fuel efficiency are well balanced.
  • the present embodiment is applied when switching from the standard mode to another operation mode (silent priority mode, fuel economy priority mode) or when switching from another operation mode to the standard mode.
  • the engine operating point control method according to the fourth embodiment described above can be applied not only when the target power generation amount is the same before and after the engine operating point is changed but also when the target power generation amount is different. That is, the method of changing the engine operating point according to the loudness of the background sound (or the physical quantity correlated with the background sound) according to the fourth embodiment (see FIG. 21) is the power generation amount according to the first embodiment. It may be applied to engine operating point control (see FIG. 12) at the time of switching. This control method will be described in detail as a sixth embodiment of the present invention.
  • FIG. 25 shows, as a sixth embodiment, a method of changing the engine operating point according to the volume of the background sound according to the fourth embodiment. It is explanatory drawing which shows the example applied to control.
  • the horizontal axis of FIG. 25 represents the engine rotation speed (r/min), and the vertical axis represents the engine torque (Nm).
  • the current engine operating point A when the current background sound at the power generation amount P0 is small, the current engine operating point A is set to have a low engine rotation speed and a high engine torque on the equal power generation amount line of the changed power generation amount P1. Change to the engine operating point B1.
  • the current engine operating point A is set to the engine operating point B2 where the engine rotation speed is high and the engine torque is low on the equal power generation amount line of the changed power generation amount P1. Change to.
  • the engine speed is set to be low after the power generation amount is switched, so that the engine noise can be suppressed to be low.
  • the engine rotation speed after the power generation amount is switched is set to be higher, so the risk of knocking can be reduced. Further, when the background sound is loud, the comfort of the engine is not significantly reduced even if the engine speed increases.
  • the engine operating point control method according to the fifth embodiment described above can be applied not only when the target power generation amount is the same before and after the engine operating point is changed but also when the target power generation amount is different. That is, the method of changing the engine operating point according to the operation mode according to the fifth embodiment (see FIG. 24) is applied to the engine operating point control (see FIG. 12) at the time of power generation switching according to the first embodiment. You may apply.
  • This control method will be described in detail as a seventh embodiment of the present invention.
  • the operation mode when the operation mode is the silent priority mode, the current engine operating point A at the power generation amount P0 has a low engine rotation speed on the constant power generation amount line of the changed power generation amount P1 and the engine torque is low. Is changed to a higher engine operating point B1.
  • the operation mode when the operation mode is the silent priority mode, the engine operating point A in which the current engine operating point A in the power generation amount P0 is high on the constant power generation line of the changed power generation amount P1 and the engine torque is low Change to point B2.
  • the engine rotation speed is set in the direction of lowering the engine rotation speed after the power generation amount is switched, so that the engine noise can be suppressed low.
  • the fuel efficiency priority mode when the fuel efficiency priority mode is selected, the engine torque after the power generation amount is switched is set in a direction in which it becomes lower, so the required throttle opening becomes smaller (see FIG. 5). ), Fuel efficiency is improved. Furthermore, since the engine speed is set in the direction of increasing speed, the risk of knocking can be reduced.
  • the above-described embodiment describes the configuration of the hybrid system in detail and concretely in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the components described. Further, it is possible to replace a part of the configuration of one embodiment with the constituent element of another embodiment. It is also possible to add the components of other embodiments to the configuration of one embodiment. It is also possible to add, delete, or replace other components with respect to a part of the configuration of each embodiment.
  • each configuration, function, processing unit, etc. of the controller 12 may be realized by hardware by designing a part or all of them by, for example, an integrated circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

ノックを許容限界内に抑えつつ静音性に優れたハイブリッド車用制御装置を提供する。このため、本発明の一態様のハイブリッド車用制御装置は、車輪を駆動するモータと、このモータに電力を供給する発電機と、この発電機を駆動する内燃機関で構成されるエンジンと、を備えるハイブリッド車を制御するハイブリッド車用制御装置であって、エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点におけるエンジンのノックの度合いを示すノック指標値を計算し、そのノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部、を備える。制御部は、ノック指標値が小さくなるにつれて、目標発電量における目標エンジン回転速度を低く、且つ目標エンジントルクを高く設定する。

Description

ハイブリッド車用制御装置
 本発明は、ハイブリッド車用制御装置に関し、特に静音性を考慮してエンジンを制御する技術に係る。
 近年、自動車等の車両においては、燃料消費量(燃費)や排気ガス有害成分に関する規制が強化され、このような規制は今後もますます強化される傾向にある。特に、燃費に関する規制は、燃料価格の高騰、地球温暖化への影響、エネルギー資源枯渇等の問題により、極めて関心の高い事項である。
 このような状況下において、エンジンによって発電した電力をモータに供給して車軸を駆動するハイブリッド車が知られている。ハイブリッドシステムにおいて、エンジンは熱効率が低い低負荷、低回転速度での運転を回避でき、システム全体の熱効率を高めることができる。このようなハイブリッドシステムの例が、例えば特許文献1に開示されている。
 特許文献1には、「エンジンのノッキングを検出する手段と、ノッキングが検出された場合にエンジンの回転数の目標値を増大補正する手段」が記載されている。また、特許文献1には、「検出されたエンジンの回転数が所定の制御目標範囲より低い側にある場合にはより小さな値へと、逆に高い側にある場合にはより大きな値へと、発電機の界磁電流を補正」すること、「検出されたエンジンの回転数が所定の制御目標範囲内にある場合に、検出された発電機の発電量が所定の制御目標範囲より小さい側にある場合にはエンジンの負荷がより高くなるよう、逆に大きい側にある場合にはエンジンの負荷がより低くなるよう、エンジンの運転条件を補正することにより、エンジンの回転数及び発電機の発電量を共に制御目標範囲内に制御する」ことが記載されている。
特開平7-253034号公報
 ところで、ハイブリッドシステムでは、エンジンと電動系パワートレインの双方を車両に搭載する必要があり、搭載スペースや重量の観点から、比較的排気量が小さな火花点火エンジンが用いられることが多い。このような小排気量エンジンでは、必要な発電量を得るためにエンジンを比較的高回転速度で運転することになり、これに伴う騒音(以下「エンジン騒音」)を低減することが課題である。
 エンジン騒音の低減にはエンジンの回転速度をできるだけ低くすることが有効である。
しかし、低い回転速度で高い回転速度の場合と同一の発電出力を得るにはエンジントルクが高くなること、また、火炎伝播に要する時間が長くなることなどから、ノックが発生しやすくなる。したがって、エンジン騒音の低減にはノックを許容限界内に抑えながら、エンジン回転速度を下げることが求められる。
 上記特許文献1に記載されたハイブリッドシステムにおいては、ノック発生時にエンジンと発電機を制御し、ノックを低減する技術については開示されているが、静音化を目的としてノックを許容限界内に抑えながら、エンジン回転速度を下げる技術については開示されていない。
 本発明は、上記の状況に鑑みてなされたものであり、本発明は、ノックを許容限界内に抑えつつ静音性に優れたハイブリッド車用制御装置を提供することを目的とする。
 上記課題を解決するために、本発明の一態様のハイブリッド車用制御装置は、車輪を駆動するモータと、このモータに電力を供給する発電機と、この発電機を駆動する内燃機関で構成されるエンジンと、を備えるハイブリッド車を制御するハイブリッド車用制御装置であって、エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点における上記エンジンのノックの度合いを示すノック指標値を計算し、そのノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部、を備える。この制御部は、ノック指標値がノック許容限界値を超えない範囲で、ノック指標値が小さくなるにつれて、目標発電量における目標エンジン回転速度を低く、且つ目標エンジントルクを高く設定する。
 また、本発明の他の態様のハイブリッド車用制御装置は、車輪を駆動するモータと、このモータに電力を供給する発電機と、この発電機を駆動する内燃機関で構成されるエンジンと、を備えるハイブリッド車を制御するハイブリッド車用制御装置であって、エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点における上記エンジンのノックの度合いを示すノック指標値を計算し、そのノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部、を備える。この制御部は、ノック指標値がノック許容限界値を超えない範囲で、上記エンジン以外から発生する背景音の大きさ、又は当該背景音と相関のある物理量の大きさに応じて、目標発電量における目標エンジン回転速度及び目標エンジントルクを設定する。
 また、本発明のさらに他の態様のハイブリッド車用制御装置は、車輪を駆動するモータと、このモータに電力を供給する発電機と、この発電機を駆動する内燃機関で構成されるエンジンと、を備えるハイブリッド車を制御するハイブリッド車用制御装置であって、エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点における上記エンジンのノックの度合いを示すノック指標値を計算し、そのノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部、を備える。この制御部は、ノック指標値がノック許容限界値を超えない範囲で、選択された運転モードに応じて、目標発電量における目標エンジン回転速度及び目標エンジントルクを設定する。
 本発明の少なくとも一態様によれば、ノックを許容限界内に抑えながらエンジン回転速度を下げることによって、静音性に優れたハイブリッド車用制御装置を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施形態に係るハイブリッド車のシステム構成の例を示す説明図である。 本発明の第1の実施形態に係るエンジンの断面の例を示す説明図である。 本発明の第1の実施形態に係るコントローラの構成例を示すブロック図である。 スロットル開度と燃焼室内に吸入される充填率との関係の例を示す特性図である。 スロットル開度とエンジントルクとの関係の例を示す特性図である。 ノックセンサによる検出結果の例を示す説明図である。 ノック指標値とノックの度合いとの関係の例を示す特性図である。 誘導発電機の断面の例を示す説明図である。 界磁電流と発電負荷トルクとの関係の例を示す特性図である。 界磁電流が一定の場合における、増速ギアの増速比と発電負荷トルクとの関係の例を示す特性図である。 誘導発電機を駆動するエンジン回転速度とエンジントルクに対する発電量との関係の例を示す特性図である。 発電量が増加する過渡状態に係るエンジン動作点の推移の例を示す説明図である。 本発明の第1の実施形態に係る目標エンジン回転速度と目標エンジントルクの決め方の例を示す説明図である。 本発明の第1の実施形態に係る加速時に発電量を増加する場合のエンジン動作点の推移の例を示す説明図である。 本発明の第1の実施形態に係るコントローラによる処理の手順例を示す説明図である。 エンジン回転速度とエンジントルクで構成される平面における等発電量線の例を示す説明図である。 本発明の第2の実施形態に係る目標エンジン回転速度と目標エンジントルクの決め方の例を示す説明図である。 本発明の第3の実施形態に係る等発電量線上でエンジン動作点が推移する過程でノック指標値を検出する例を示す説明図である。 本発明の第3の実施形態に係るエンジン動作点が推移する過程のノック指標値、エンジン回転速度、及びエンジントルクの推移の例を示す説明図である。 本発明の第4の実施形態に係るコントローラの構成例を示すブロック図である。 本発明の第4の実施形態に係る背景音の大きさに応じて等発電量線上のエンジン動作点を変更する例を示す説明図である。 背景音を決めるパラメータと背景音との相関の例を示す特性図である。 本発明の第5の実施形態に係るコントローラの構成例を示すブロック図である。 本発明の第5の実施形態に係る運転モードに応じて等発電量線上のエンジン動作点を変更する例を示す説明図である。 本発明の第6の実施形態として、第4の実施形態を第1の実施形態に適用した例を示す説明図である。
 以下、本発明を実施するための形態(以下、「実施形態」と記述する)の例について、添付図面を参照して説明する。本明細書及び添付図面において実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。
<1.第1の実施形態>[ハイブリッド車のシステム構成]
 まず、本発明が適用されるハイブリッド車のシステム構成の例を説明する。
 図1は、本発明の第1の実施形態に係るハイブリッド車のシステム構成の例を示す。以降の各実施形態においても、図1に示すハイブリッド車のシステム構成を例に説明する。
 図1に示すハイブリッド車において、エンジン1、増速ギア2、及び誘導発電機3がシリーズに接続されている。エンジン1の軸出力は、増速ギア2によって誘導発電機3に適した回転速度に増速され、誘導発電機3を駆動する。また、増速ギア2は、可変ギアシステムとして構成されており、その増速比を変更可能である。誘導発電機3によって発電された三相交流電力は、整流器4によって直流電力に変換された後、インバータ6とバッテリ5に供給される。直流電力はインバータ6で再度三相交流電力に変換された後、誘導モータ7に供給される。誘導モータ7は、トランスアクスル8を介して左右の車輪9を駆動する。
 コントローラ12は、ハイブリッド車50の各構成要素を制御したり、各種のデータ処理を実行したりするハイブリッド車用制御装置の一例である。例えばコントローラ12は、アクセル、ブレーキ、車速、及びギアポジションなどの情報から車両の駆動に必要なモータ出力を求め、インバータ6を制御して、誘導モータ7に所定の電力量を供給する制御を行う。また、コントローラ12は、エンジン1の出力、増速ギア2の増速比、誘導発電機3の界磁電流を制御し、車両の動力系全体をマネージメントする。コントローラ12には、一例としてECU(Electronic Control Unit)が用いられる。
[エンジン]
 図2は、エンジン1の断面の例を示す。エンジン1は、火花点火4サイクルガソリンエンジンの例であり、エンジンヘッドとシリンダ13、ピストン14、吸気弁15、及び排気弁16によって燃焼室が形成されている。エンジン1では、燃料噴射弁18がエンジンヘッドに設けられるとともに、燃料噴射弁18の噴射ノズルが燃焼室内に貫通していることにより、所謂、筒内直接噴射式の内燃機関を構成している。また、エンジンヘッドには点火プラグ17も併設されている。燃焼用の空気は、エアクリーナ19、スロットルバルブ20、及び吸気ポート21を通って、燃焼室内に取り込まれる。そして、燃焼室から排出される燃焼後のガス(排気ガス)は、排気ポート24、及び触媒コンバータ25を通って大気に排出される。
 燃焼室に取り込まれる空気の量は、スロットルバルブ20上流側に設けられたエアフローセンサ22によって計量される。また、燃焼室から排出されたガス(排気)の空燃比は、触媒コンバータ25の上流側に設けられた空燃比センサ27によって検出される。また、シリンダ13とクランクケースを一体化した構造のシリンダブロック(図示略)にはノックセンサ10が設けられている。ノックセンサ10は、燃焼室内のノック状態量に応じた検出信号を出力する。
 さらに、クランクシャフトの軸部には、タイミングロータ26(シグナルロータ)が設けられている。タイミングロータ26に配置されたクランク角センサ11は、タイミングロータ26の信号を検出することでクランクシャフトの回転と位相、即ちエンジン回転速度を検出する。ノックセンサ10及びクランク角センサ11の検出信号は、コントローラ12へ取り込まれ、コントローラ12においてエンジン1の状態検知や運転制御に利用される。
 コントローラ12は、スロットルバルブ20の開度(以下「スロットル開度」と表記する。)、燃料噴射弁18による燃料噴射開始と終了のタイミング、点火プラグ17による点火時期などを出力し、エンジン1を所定の運転状態に制御する。
 本発明は、特に火花点火機関などのノックが発生する可能性のある機関に適用して好適であり、ノックを許容限界内に抑えつつ静音性に優れたハイブリッド車を提供できる。なお、図2にはエンジン1の燃焼室の構成を示すため単一気筒のみを示したが、本発明の実施形態に係るエンジン1は、複数の気筒から構成される多気筒エンジンであってもよい。
[コントローラ]
 図3は、コントローラ12の構成例を示すブロック図である。コントローラ12は、不図示のシステムバスを介して相互に電気的に接続された入出力部121、制御部122、及び記憶部123を備える。
 入出力部121は、図示しない入力ポートや出力ポートを備え、車両内の各装置や各センサに対して入力及び出力の処理を行う。例えば、入出力部121は、入力された信号に対してノイズ除去等の信号処理を行い、当該信号を制御部122へ送る。また、入出力部121は、制御部122のコマンドに従い制御信号を各装置へ出力する。
 制御部122は、車両の動力系及び電気系を制御する。例えば制御部122は、内燃機関で構成されるエンジン1のノック状態に応じてエンジン動作点を制御する。制御部122は、ノック指標値算出部122aと、目標値決定部122bと、駆動制御部122cとを備える。
 ノック指標値算出部122aは、エンジン1のエンジン動作点におけるノックの度合いを示すノック指標値を周期的に算出し、算出したノック指標値を目標値決定部122bへ出力する。エンジン動作点は、後述するようにエンジン回転速度とエンジントルクとの関係で表される(図13参照)。
 目標値決定部122bは、ノック指標値算出部122aで算出された現在のノック指標値を元に、誘導発電機3の目標発電量におけるエンジン1の目標エンジン回転速度及び目標エンジントルクを決定する。
 駆動制御部122cは、目標値決定部122bで決定された目標エンジン回転速度及び目標エンジントルクに基づいて、エンジン1及び/又は誘導発電機3の駆動を制御する。
 記憶部123は、RAM(Random Access Memory)等の揮発性のメモリ、又はROM(Read Only Memory)等の不揮発性のメモリである。記憶部123には、コントローラ12が備える演算処理装置(図示略)により実行される制御プログラムが記録されている。演算処理装置が、記憶部123から制御プログラムを読み出して実行することにより、制御部122の各ブロックの機能が実現される。例えば演算処理装置として、CPU(central processing unit)やMPU(micro processing unit)を用いることができる。なお、コントローラ12が半導体メモリ等からなる不揮発性の補助記憶装置を有し、上記の制御プログラムが補助記憶装置に格納されていてもよい。
 なお、本発明は、エンジンを発電専用とするタイプのハイブリッド車のエンジン動作点制御に適用して好適である。但し、エンジンを発電専用としないタイプのハイブリッド車にも適用できることは勿論である。
[スロットル開度と充填率]
 図4は、スロットル開度と燃焼室内に吸入される空気の充填率との関係の例を示す特性図である。図4の横軸はスロットル開度(deg)、縦軸は充填率(%)を表す。スロットル開度と充填率は、図4に示されるように一意的に決定されるので、両者の関係を予めキャリブレーション(事前測定)等で求めておくことで、目標充填率から設定すべきスロットル開度を得ることができる。
[スロットル開度とエンジントルク]
 図5は、スロットル開度とエンジントルクとの関係の例を示す特性図である。図5の横軸はスロットル開度(deg)、縦軸はエンジントルク(Nm)を表す。図5の例では、空燃比が一定、且つ点火時期が最適点火時期(Minimum advance for the Best Torque:MBT)としている。本実施形態のエンジン1では、空燃比センサ27で検出された排気の空燃比が理論空燃比になるように、フィードバック制御によって、燃料噴射弁18からの1サイクルあたりの燃料噴射量が決定される。このため、図5に示すようにエンジントルクは、スロットル開度によって一意的に決定される。
[ノックセンサの検出結果]
 図6は、ノックセンサ10による検出結果の例を示す。図6の横軸は時間、縦軸はノックセンサ出力値を表す。ノックセンサ10は、エンジンブロックの振動音を検出する音響センサ(マイクロホン)である。ノックにより発生した振動がノックセンサ10で検出され、その時間履歴がコントローラ12に取り込まれる。コントローラ12において、制御部122(ノック指標値算出部122a)は、振動の振幅を予め定めたノック判定閾値と比較し、振幅がノック判定閾値より大きい場合にはノックが発生したと判定する。
 一般的に、ノックにはその頻度や強度に許容限界があり、この許容限界を超えるとエンジンが破損したり、ノック音によって車両の快適性が損なわれたりするおそれがある。したがって、ノックが許容限界以下になるようにエンジン動作点を決める必要がある。そのためには、ノックの度合いを定量的に示すことができる指標値を、エンジン制御に適用することが望ましい。
 そこで、本発明の各実施形態においては、所定時間内のノック発生回数をカウントし、それをノック指標値とする。あるいは、所定期間内での振動の最大振幅Amax、又は所定期間内での振動の平均振幅をノック指標値とする。すなわちノック指標値は、ノック発生頻度又はノック強さで定義されるノック度合いを示す値となる。
[ノック指標値とノックの度合い]
 図7は、ノック指標値とノックの度合いとの関係の例を示す特性図である。図7の横軸はノック指標値、縦軸はノックの度合いを表しており、ノックの度合いが高いほど、ノック指標値は大きな値を示す。エンジン1のエンジン動作点は、ノック指標値がノック許容限界値Liを超えないように制御される。
 ノック指標値は、上記の方法以外にも種々の決め方が考えられる。例えばエンジン1に不図示の筒内圧力センサを設け燃焼時の筒内圧力の振動からノックの頻度やノックの強さを検出することで、ノック指標値を求めてもよい。さらに、ノックの頻度や強さを、充填率、回転速度、及び空気温度などから作成された数学モデルによって推定したり、キャリブレーションなどで作成されたマップを参照して推定したりしてもよい。
[誘導電動機]
 図8は、誘導発電機3の断面の例を示す。誘導発電機3は、固定子31に巻かれたコイル32によって発生した磁界内で電力負荷35に接続された回転子33を回転させることで、交流電力を発生するものである。誘導発電機3は、固定子31のコイル32に流す界磁電流Iの大きさ、及び回転子33の回転速度によって発電量を調整することができる。
コントローラ12の駆動制御部122cが、可変電源34の電圧制御を行うことで界磁電流Iの大きさを制御する。例えば、回転子33の回転速度が一定であれば、界磁電流Iが大きいほど発電量は大きくなる。また、界磁電流Iが一定であれば、回転子33の回転速度が速いほど発電量は大きくなる。またエンジン1から見た誘導発電機3の負荷トルク(以下「発電負荷トルク」と表記する。)は、界磁電流Iの大きさによって変わる。
[界磁電流と発電負荷トルク]
 図9は、界磁電流と発電負荷トルクとの関係の例を示す特性図である。図9の横軸は界磁電流、縦軸は発電負荷トルクを表す。図9に示されるように、界磁電流が大きくなるほど発電負荷トルクは高くなる。したがって、誘導発電機3では、界磁電流の大きさをコントローラ12で調整することで、発電負荷トルクと発電量を制御することができる。
 なお、ハイブリッド車50に用いられる発電機は、本実施形態で示された誘導発電機3に限定されるものではない。例えば永久磁石同期発電機であっても構わない。永久磁石同期発電機の場合には、界磁電流の代わりにインバータの電流制御によって発電負荷トルクと発電量の制御が行われる。
 また、増速ギア2の増速比によっても、上記の界磁電流と同様の制御が可能である。エンジン回転速度が一定であれば、増速ギア2の増速比が高いほど誘導発電機3の回転速度が高くなり発電量は大きくなる。
[増速比と発電負荷トルク]
 図10は、界磁電流が一定の場合における、増速ギア2の増速比と発電負荷トルクとの関係の例を示す特性図である。図10の横軸は増速比、縦軸は発電負荷トルクを表す。図10に示されるように、界磁電流が一定であれば、増速比が大きくなるほど発電負荷トルクは高くなる。つまり、エンジン1から見れば、負荷が増加したように見える。したがって、増速ギア2の増速比をコントローラ12で調整することで、発電負荷トルクと発電量を制御することができる。
[エンジン回転速度とエンジントルク]
 図11は、誘導発電機3を駆動するエンジン回転速度とエンジントルクに対する発電量との関係の例を示す特性図である。図11の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表す。図11では、単位時間あたりの燃料噴射量を一定としている。
 発電量は、エンジントルクとエンジン回転速度との積に比例するため、図11に示される等発電量線に沿ってエンジントルクとエンジン回転速度との積が一定、すなわち発電量が一定となる。したがって、等発電量線上に沿ってエンジン回転速度とエンジントルクを変えることで、種々のエンジン動作点において一定の発電量を得ることができる。
[エンジン動作点の変更方法]
 次に、ハイブリッド車50において誘導発電機3による発電量を変更する場合を想定し、本実施形態によるエンジン動作点の変更方法について説明する。
 図12は、発電量が“P0”から“P1”へ増加する過渡状態におけるエンジン動作点の推移の例を示す。図12の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表し、エンジン動作点Aは、発電量P0における現在のエンジン動作点を示す。発電量P0のエンジン動作点Aから発電量P1に移行する場合には、発電量P1の等発電量線上の任意のエンジン動作点が選択できる。その中の代表点としてエンジン動作点B1及びエンジン動作点B2が図12に示されている。一例として、エンジン動作点Aのエンジン回転速度とエンジントルクが(V0,T0)、エンジン動作点B1のエンジン回転速度とエンジントルクが(V1,T1)と示されている。
 エンジン動作点B1とエンジン動作点B2を比較すると、エンジン動作点B1はエンジン回転速度が低く、エンジントルクは高い。エンジン動作点B1ではエンジン回転速度が低いためエンジン騒音は比較的小さくなる。また、エンジン動作点B1ではエンジン回転速度が低くエンジントルクが大きいので、ノック度合いが高くなる。一方、エンジン動作点B2ではエンジン回転速度が高く、エンジントルクは低い。したがって、エンジン動作点B2ではエンジン騒音は比較的高く、ノック度合いは低くなる。このように、2つのエンジン動作点B1とエンジン動作点B2は、騒音とノックに対してトレードオフの関係にある。
 騒音低減の観点からは、発電量P1の等発電量線上のできるだけエンジン回転速度の低いエンジン動作点を選択するのが望ましい。しかし、エンジン回転速度をどこまで低くできるかは、エンジン動作点Aにおけるノックの度合いに依存する。既述したように、低い回転速度で高い回転速度の場合と同一の発電出力を得るのにはエンジントルクが高くなり、また、火炎伝播に要する時間が長くなることなどから、ノックが発生しやすくなる。
[目標回転速度と目標エンジントルクの決め方]
 図13は、第1の実施形態に係る目標エンジン回転速度と目標エンジントルクの決め方の例を示す。図13の横軸はノック指標値、縦軸はトルク/回転速度/マージンを表す。
 図13に示されるように本実施形態では、制御部122は、切替え前の発電量P0のエンジン動作点Aにおけるノック指標値“Na”に応じて、切替え後の発電量P1のエンジン動作点における目標エンジン回転速度“V1”と目標エンジントルク“T1”を決める。より詳細には、エンジン動作点Aにおけるノック指標値が低い場合には、エンジン動作点Aにおけるノック指標値が高い場合に比べて、目標エンジン回転速度が低く、且つ目標エンジントルクが高く設定される。このとき、目標エンジン回転速度と目標エンジントルクとの積が一定、すなわち発電量が一定(=P1)となるように、目標エンジン回転速度と目標エンジントルクの組み合わせを決定する。例えば図13では、目標エンジン回転速度のノック指標値に対する特性は、正の傾きの直線で表され、目標エンジントルクのノック指標値に対する特性は、負の傾きの直線で表されている。
 このように、目標エンジン回転速度と目標エンジントルクを決定することで、次に示す効果を得ることができる。エンジン動作点Aのノック度合いが低い場合には、切替え後の発電量P1においてノックに対する裕度(ノック許容限界値Liまでのマージン、余裕の度合い)が大きいと推測されるので、極力エンジン回転速度を低く設定することで、変更後のエンジン動作点を変更後のエンジン騒音を抑えることができる。一方、エンジン動作点Aのノック度合いが高い場合には、変更後の発電量P1においてノックに対する裕度が小さいと推測されるので、エンジン回転速度を高く設定することで、変更後のエンジン動作点のノック指標値がノック許容限界値Liを超えることを防止できる。
 なお、ノックは燃焼室内のデポジッド(いわゆる堆積物)の状況や、気温、冷却水温、湿度、燃料性状などエンジンの経時変化や環境条件によって、その発生のしやすさや強度が変わる。例えば、燃焼室内のデポジッドが多い場合、燃料のオクタン価が低い場合、温度が高い場合、又は湿度が低い場合には、ノックが発生しやすくなったり、ノックの強度が強くなったりする。
 したがって、エンジン動作点は、エンジンの経時変化や環境条件変化によってノックが許容限界を超えないように、所定のマージンを持って設定するのが一般的である。より具体的には、エンジンの経時変化や環境変化を考慮して、例えばノック指標値がノック許容限界値Li付近にあるエンジン動作点に対して高回転速度、低トルクのエンジン動作点に設定されることが多い。
 これに対して、本実施形態では、エンジン動作点Aにおけるノック度合いによって、異なる発電量へ移行後のエンジン動作点を決定するので、エンジンの経時変化や環境条件の影響が移行後のエンジン動作点に反映される。本実施形態では、図13に示すようなノック指標値とエンジン回転速度及びエンジントルクとの関係を示す特性を、発電量別に記憶部123に記憶しておく。
[エンジン動作点の推移]
 次に、発電量を切り替える場合におけるエンジン動作点の推移の例について説明する。
図14は、第1の実施形態に係る加速時に発電量を増加する場合のエンジン動作点の推移の例を示す。図14の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表す。図14において、白抜きの丸記号が従来技術によるエンジン動作点の推移(A→A1→A2→A3)の例であり、黒丸記号が本実施形態によるエンジン動作点の推移(A→B→C→A3)の例である。加速に伴い、充電モードにおけるエンジン動作点Aから、高速モードにおけるエンジン動作点A1,A2,A3又はエンジン動作点B,C,A3に移行している。
 以上のとおり、本実施形態の記憶部(記憶部123)には、第1の目標発電量におけるエンジン動作点(A)から第2の目標発電量(P1,P2)におけるエンジン動作点(A1,A2)への推移が設定されたデフォルト設定情報(図14)が予め記憶されている。
そして、制御部(制御部122)は、第1の目標発電量と第2の目標発電量(P1,P2)との間でエンジン動作点を変更する際に、デフォルト設定情報に設定された第2の目標発電量(P1,P2)におけるエンジン動作点(A1,A2)の場合よりも、変更後のエンジン動作点(B,C)のエンジン回転速度を高い値に決定し、且つエンジントルクを小さい値に決定するように構成されている。
 このように、本実施形態では、発電量の切替えに伴いエンジン動作点を変更する際に、ノックの許容限界の範囲内でデフォルト設定のエンジン動作点よりも、低回転速度、且つ高トルクになるようにエンジン動作点が決定される。これにより、エンジン騒音が従来に比べて低減される。
[コントローラによる処理の手順]
 図15は、コントローラ12による処理の手順例を示す。図15には、発電量を変更する場合に、コントローラ12によって実施されるエンジン1及び誘導発電機3の制御処理が示されている。
 発電量切替え時においては、まず制御部122のノック指標値算出部122aは、ノックセンサ10の検出値などを元に、現在のエンジン動作点のノック指標値Iを求める(S1)。
 次に、目標値決定部122bは、ノック指標値Iに基づいて図13に示したノック指標値とエンジン回転速度及びエンジントルクとの相関特性により、目標エンジン回転速度Neと目標エンジントルクTeを求める(S2)。
 次に、目標値決定部122bは、発電量切替え後の目標発電量Pより、目標燃料流量Qを求める(S3)。発電量と燃料流量には比例関係がありP=K1×Qで表されることから、比例定数K1を予め定めておくことで、Q=P/K1より目標燃料流量Qを算出することができる。
 その後、目標値決定部122bは、目標燃料流量Q及び目標エンジン回転速度Neに基づいて、目標充填率ηを求める(S4)。目標充填率は、η=K2×AF×Q/(Ne×Vc)から算出することができる。ここに、K2は比例定数、AFは空燃比、Vcはエンジン排気量である。
 次に、目標値決定部122bは、図4に示したスロットル開度と充填率との相関特性より、目標充填率ηに相当する目標スロットル開度を求める。そして、駆動制御部122cは、その目標スロットル開度になるようにスロットルバルブ20に対して開弁指令を出力する(S5)。
 さらに、目標値決定部122bは、図9に示した界磁電流と発電負荷トルクとの相関特性より、目標エンジントルクTeに相当する目標界磁電流を求める。そして、駆動制御部122cは、目標界磁電流になるように誘導発電機3に界磁指令を出力する(S6)。
制御部122は、図15に示したフローチャートの各ステップの処理を周期的に、又は指定されたタイミングで実行する。
 なお、ステップS6において、界磁電流の代わりに増速ギア2の増速比を可変制御してもよい。この場合には、目標値決定部122bは、図10に示した増速比と発電負荷トルクとの相関特性より、目標エンジントルクTeに相当する目標増速比を求める。そして、駆動制御部122cは、その目標増速比になるように増速ギア2に変速指令を出力する。
 なお、ここではエンジン回転速度及びエンジントルクを、フィードフォワード制御を用いて決定する例を示したが、これらをフィードバック制御によって決定してもよい。フィードバック制御を利用した場合には、エンジン回転速度や空気流量などの検出結果と制御目標値との差分が小さくなるように繰り返し制御されるので、より精度の高いエンジン動作点設定が可能となる。
 以上のとおり、第1の実施形態のハイブリッド車用制御装置(コントローラ12)は、車輪を駆動するモータ(誘導モータ7)と、モータに電力を供給する発電機(誘導発電機3)と、発電機を駆動する内燃機関で構成されるエンジン(エンジン1)と、を有するハイブリッド車(ハイブリッド車50)を制御するハイブリッド車用制御装置であって、エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点(A)におけるエンジンのノックの度合いを示すノック指標値を計算し、このノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部(制御部122)、を備えたものである。この制御部は、ノック指標値が小さくなるにつれて、目標発電量(P1)における目標エンジン回転速度を低く、且つ目標エンジントルクを高く設定するように構成されている。
 上述した第1の実施形態によれば、現在のエンジン動作点におけるノック指標値を取得し、ノック指標値がノック許容限界値を超えない範囲で、ノック指標値が小さくなるにつれて、目標発電量における目標エンジン回転速度が低く、且つ目標エンジントルクが高くなるように設定する。これにより、ノックを許容限界内に抑えながら目標発電量におけるエンジン回転速度を下げることによって、静音性に優れたハイブリッド車用制御装置を提供することができる。
 また、本実施形態の制御部(制御部122)は、目標エンジン回転速度と目標エンジントルクとの積が目標発電量(P1)に応じて一定となるように、目標エンジン回転速度と目標エンジントルクを決定するように構成されている(図13参照)。これにより、目標発電量を一定に保ちつつエンジン動作点を変更することができる。
 なお、本実施形態では、目標発電量(P0からP1へ)の切り替えが行われる場合、ノック指標値は、目標発電量を切り替える前のエンジン動作状態(エンジン動作点A)で得られる値である。これにより、目標発電量を切り替える前のエンジン動作状態を、変更後のエンジン動作点に反映することができる。
 また、本実施形態の制御部(制御部122)は、目標エンジン回転速度がノック指標値と正の相関を有し、目標エンジントルクがノック指標値と負の相関を有するエンジン特性(例えば図13)を記憶する記憶部(記憶部123)、を備えたものである。そして、制御部は、上記記憶部に記憶されている上記エンジン特性に基づいて、目標エンジン回転速度及び目標エンジントルクを決定するように構成されている。
 このように、記憶部に上記エンジン特性を記憶しておくことで、制御部はこのエンジン特性を参照して、エンジン騒音が低下する方向にエンジン動作点を変更することできる。
<2.第2の実施形態>
 第1の実施形態では、発電量を変更する場合において騒音低減を実現するためのエンジン1と誘導発電機3の制御について示した。一方、発電量が一定の場合においても、ノック指標値に基づいたエンジン動作点制御によって、低騒音化を図ることができる。以下では、発電量が一定の場合におけるエンジン動作点制御について図面を用いて説明する。
 図16は、エンジン回転速度とエンジントルクで構成される平面における等発電量線の例を示す。図16の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表す。図16において、現在のエンジン動作点Aを、発電量Pの等発電量線に沿って低回転速、度且つ高トルク側のエンジン動作点Bに移動すると、発電量Pを一定に保ちながらエンジン騒音をエンジン動作点Aよりも低減できる。
 一方、エンジン動作点Bは、エンジン回転速度が低くエンジントルクが高いため、エンジン動作点Aに比べてノックの度合いが増加する。したがって、エンジン動作点Bのエンジン回転速度をどの程度低くできるかは、エンジン動作点Aにおけるノックの度合いに依存する。そこで、本実施形態では、エンジン動作点Bのエンジン回転速度とエンジントルクを、エンジン動作点Aのノック指標値に基づいて決定する。
 図17は、第2の実施形態に係る目標エンジン回転速度と目標エンジントルクの決め方の例を示す。図17は図13に示した特性と同様のものであり、図17の横軸はノック指標値、縦軸はトルク及び回転速度を表す。
 図17に示されるように本実施形態では、目標値決定部122bは、発電量Pのエンジン動作点Aにおけるノック指標値に応じて、同じ発電量Pのエンジン動作点Bにおける目標エンジン回転速度と目標エンジントルクを決める。より詳細には、エンジン動作点Aにおけるノック指標値が低い場合には、エンジン動作点Aにおけるノック指標値が高い場合に比べて、目標エンジン回転速度を低く、且つ目標エンジントルクを高く設定する。このとき、目標エンジン回転速度と目標エンジントルクとの積が一定、すなわち発電量が一定(=P)となるように、目標エンジン回転速度と目標エンジントルクの組み合わせを決定する。
 エンジン動作点Bにおける目標エンジン回転速度と目標エンジントルクをこのように決定すると、ノックを許容限界以下に保ちながら、現在のエンジン動作点Aに比べてエンジン騒音を低くすることができる。
 また、このようなエンジン動作点制御を定期的に行うことで、発電量が一定の定常運転状態であっても、種々の環境条件変化に対して、エンジン動作点を常に最適状態に保つことができる。一例として、エンジン動作点Aで運転中に吸気温上昇によりノックが発生した場合、すなわちノックの許容限界を超えた場合に、エンジン動作点を等発電量線上のエンジン動作点B(低回転速度、低トルク)に変更するといったことが挙げられる。
 以上のとおり、第2の実施形態の制御部(制御部122)は、変更前のエンジン動作点(A)と変更後のエンジン動作点とで目標発電量(P)が同じである場合には、エンジン特性(図17)を参照して、計算したノック指標値を元に目標エンジン回転速度及び目標エンジントルクを決定するように構成されている。
 上述した第2の実施形態によれば、目標発電量を一定に保ったままエンジン騒音を低下させることができる。
<3.第3の実施形態>
 また、等発電量線に沿ってエンジン動作点Aからエンジン動作点Bへ推移する途中過程におけるノック指標値を検出し、そのノック指標値に基づいてエンジン動作点Bのエンジン回転速度とエンジントルクを決めてもよい。この制御方法を本発明の第3の実施形態として、その詳細について説明する。
 図18は、第3の実施形態に係る等発電量線上でエンジン動作点がエンジン動作点Aからエンジン動作点Bへ移る過程でノック指標値を検出する例を示す。図18の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表す。また、図19は、第3の実施形態に係るエンジン動作点Aからエンジン動作点Bへ移る過程のノック指標値、エンジン回転速度、及びエンジントルクの推移の例を示す。図19の横軸は時間、縦軸はエンジン回転速度/エンジントルク(図19上側)、及びノック指標値(図19下側)を表す。
 図18に示されるように第3の実施形態では、ノック指標値算出部122aは、エンジン動作点を電力量Pの等発電量線に沿って低回転速度、且つ高トルク側へ向かって動かしながら、その過程でノック指標値を検出する。図18及び図19の例では、エンジン動作点Aを出発した時点を時間0とし、時点t1~t3(エンジン動作点b1~b3)においてそれぞれノック指標値を検出した。図19の上側及び下側に示すように、エンジン動作点の移動に伴いノック指標値が大きくなると、エンジン回転速度が低下し、且つエンジントルクが上昇する。
 そして、ノック指標値算出部122aは、ノック指標値がノック許容限界値Liを超えた時点t3(エンジン動作点b3)で、エンジン動作点の移動を停止する。そして、目標値決定部122bは、ノック許容限界値Liを超えたエンジン動作点b3の手前のエンジン動作点を、移行先のエンジン動作点B(目標エンジン動作点)に設定する。
 ここで、ノック指標値がノック許容限界値Liを超えた場合に、超えたと判定された時点(エンジン動作点b3)よりもエンジン回転速度が所定値だけ大きいエンジン動作点を、エンジン動作点Bに設定したが、この例に限らない。例えば、ノック指標値がノック許容限界値Liを超えたスイープ点(エンジン動作点b3)の一つ前のスイープ点であるエンジン動作点b2を、エンジン動作点Bに設定してもよい。
 以上のとおり、第3の実施形態の制御部(制御部122)は、一発電量線上でノック指標値を参照しながらエンジン(エンジン1)の回転速度を下げることで、エンジン動作点(A)をノックの許容限界(Li)のエンジン動作点(B)に近づける制御を行うように構成されている。このエンジン動作点の制御方法は、第1の実施形態及び第2の実施形態に適用することができる。
 上述した第3の実施形態によれば、エンジン回転速度を一定の速度で低下(スイープ)させながら、ノック指標値がノック許容限界値に達しているかどうかを判定し、判定の結果に基づいて移行先のエンジン動作点を決定する。このような構成とした場合、現時点でのノック状態に基づいてエンジン動作点が決定されるため、移行後のエンジン動作点がノックの許容限界に近づき、エンジン騒音を最小化することができる。
<4.第4の実施形態>
 エンジン騒音に対する許容限界値は一定ではなく、環境条件によって変化する。例えば、車両のロードノイズや風切り音などエンジン以外から発生する騒音(以下「背景音」)が大きい場合には、車両の乗員はエンジン音を感じ難くなり、背景音が小さい場合に比べエンジン騒音に対する許容限界値は大きくなる。特に、エンジンを発電専用とするタイプのハイブリッド車の場合、運転者の指示や走行状態とは関係なくエンジンが駆動するため、運転車や乗員にとってエンジン音は一般的なガソリンエンジン車よりも気になる。したがって、背景音の大きさ(例えば音量[dB])や、当該背景音と相関のある部物理量に応じてエンジン動作点を変更してもよい。この制御方法を本発明の第4の実施形態として、その詳細について説明する。
 図20は、第4の実施形態に係るコントローラの構成例を示すブロック図である。図20に示すように、本実施形態のコントローラ12Aは、入出力部121、制御部122A、及び記憶部123を備える。制御部122Aは、第1の実施形態(図3)の制御部122に対して背景音演算部122dを備える。制御部122Aについて、主に第1の実施形態と異なる点に着目して説明する。
 背景音演算部122dは、エンジン1以外から発生する背景音の大きさ(音量)、又は当該背景音と相関のある物理量の大きさを計算し、計算結果を目標値決定部122bへ出力する。例えば背景音演算部122dは、車内に配置された音響センサ(図示略)の出力信号から背景音の大きさを計算する。背景音と相関のある物理量については後述する。以下、「背景音」と記載した場合には、背景音と相関のある物理量も含まれうる。
 目標値決定部122bは、背景音演算部122dから受信した計算結果に応じて、目標エンジン回転速度及び目標エンジントルクを決定する。ここで、目標値決定部122bは、ノック指標値算出部122aで算出されるエンジン1のノック指標値を参照しながら、ノック指標値がノック許容限界値Li(図13,17参照)を超えない範囲で、目標発電量において目標エンジン回転速度及び目標エンジントルクを決定する。
 図21は、第4の実施形態に係る背景音の大きさに応じて等発電量線上のエンジン動作点を変更する例を示す。図21の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表す。
 本実施形態においては、現在の背景音が小さい場合には現在のエンジン動作点Aを、エンジン回転速度が低く、且つエンジントルクが高いエンジン動作点B1に変更する。一方、現在の背景音が大きい場合には現在のエンジン動作点Aを、エンジン回転速度が高く、且つエンジントルクが低いエンジン動作点B2に変更する。このとき、目標エンジン回転速度と目標エンジントルクとの積が一定、すなわち発電量が一定(=P)となるように、目標エンジン回転速度と目標エンジントルクの組み合わせを決定する。
 背景音が小さい場合には、車両の乗員はエンジン音を感じやすいが、本実施形態によれば、目標発電量においてエンジン回転速度が低くなる方向で設定されるので、エンジン騒音を低く抑えることができる。一方、本実施形態によれば、背景音が大きい場合には、目標発電量においてエンジン回転速度が高くなる方向で設定されるので、ノックに対するリスクを低減できる。さらに、背景音が大きい場合には、車両の乗員はエンジン音を感じ難くなるので、エンジン回転速度が上昇してもエンジン騒音による快適性の低下は少ない。
 以上のとおり、第4の実施形態のハイブリッド車用制御装置(コントローラ12)は、車輪を駆動するモータ(誘導モータ7)と、モータに電力を供給する発電機(誘導発電機3)と、発電機を駆動する内燃機関で構成されるエンジン(エンジン1)と、を有するハイブリッド車(ハイブリッド車50)を制御するハイブリッド車用制御装置であって、エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点(A)におけるエンジンのノックの度合いを示すノック指標値を計算し、このノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部(制御部122A)を備えたものである。この制御部は、ノック指標値がノック許容限界値(Li)を超えない範囲で、エンジン以外から発生する背景音の大きさ、又は当該背景音と相関のある物理量の大きさに応じて、目標発電量(P)における目標エンジン回転速度及び目標エンジントルクを設定するように構成されている。
 また、本実施形態の制御部(制御部122A)は、背景音又は当該背景音と相関のある物理量が小さくなるにつれて、目標発電量(P)における目標エンジン回転速度を低く、且つ目標エンジントルクを高く設定するように構成されている。
 上述した第4の実施形態によれば、エンジンのノック指標値がノック許容限界値を超えない範囲で、エンジン以外から発生する背景音の大きさ、又は当該背景音と相関のある物理量の大きさに応じて、エンジン動作点が変更される。このような構成とした場合、ノックを許容限界内に抑えながら、エンジン騒音に対する許容限界値に合わせてエンジン騒音を制御することができるため、エンジン騒音による快適性の低下が抑えられる。
[変形例]
 また、本実施形態において背景音が小さい場合に、現在のエンジン動作点Aをエンジン回転速度が低く、且つエンジントルクが高いエンジン動作点B1に変更するのに加えて、ノックを低減するエンジン制御を実施してもよい。一方、背景音が大きい場合に、現在のエンジン動作点Aをエンジン回転速度が高く、且つエンジントルクが低いエンジン動作点B2に変更するのに加えて、ノックを増加するエンジン制御を実施してもよい。
 ノックを増減するエンジン制御としては、例えば点火時期制御が挙げられる。点火時期を遅角化するとノックは減少し、点火時期を進角化するとノックが増加する。また、ノックが増減するエンジン制御としては、例えば圧縮比制御が挙げられる。圧縮比を下げるとノックは減少し、圧縮比を上げるとノックが増加する。その他ノックが増減するエンジン制御として、冷却水温の制御、EGR(Exhaust Gas Recirculation)量の制御、及びピストンのオイルジェット量の制御など、種々の制御が考えられる。
 これらノックが増減するエンジン制御では、ノックを増加する方向にエンジンを制御するとエンジンの熱効率が高くなるのが一般的である。例えばノック運転領域において点火時期を進角化すると、点火時期がMBTに近づくため熱効率が高くなる。また、圧縮比を上げると、排気損失が減少するため熱効率が高くなる。さらに、冷却水温を高くすると、冷却損失が減少するため熱効率が高くなる。
 背景音が小さい場合に、現在のエンジン動作点Aをエンジン回転速度が低く、且つエンジントルクが高いエンジン動作点B1に変更すると、ノックに対する裕度が小さくなる。
そこで、ノックを低減するエンジン制御を実施することで、ノックに対する裕度が拡大し、さらにエンジン回転速度の低いエンジン動作点に設定することができる。これによって、エンジン音が相対的に顕著となる背景音が小さな環境条件において、さらにエンジン騒音を低減することができる。
 一方、背景音が大きい場合に、現在のエンジン動作点Aをエンジン回転速度が高く、且つエンジントルクが低いエンジン動作点B2に変更すると、ノックに対する裕度が大きくなる。そこで、ノックを増加するエンジン制御を実施することで、ノック許容限界値Liを超えることなくエンジンの熱効率を高めることが可能となり、二酸化炭素の排出量と燃料コストを低減することができる。
 背景音と相関のある物理量、すなわち背景音の大きさを決めるパラメータとしては、例えば車速(ロードノイズ、風切り音に影響)、車室内の空調風量、音響機器の音量、及び車窓の開度などがある。
 図22は、背景音を決めるパラメータと背景音との相関の例を示す特性図である。図22の横軸は背景音を決める各パラメータ、縦軸は背景音の大きさ(dB)を表す。図22に示される相関から、少なくとも車速、空調風量、音響機器の音量、及び車窓の開度のいずれか一つ、若しくはこれらのパラメータのうち2以上のパラメータの組み合わせを、背景音の大きさを表す指標値として、エンジン動作点の決定に使用してもよい。背景音との相関を示すパラメータとして2以上のパラメータを組み合わせて用いることで、より精度の高いエンジン動作点制御を実施できる。
 例えば車速は、エンジン回転速度、増速ギア2の増速比及び車輪の有効半径などを元に求められる。また、空調風量は、空調機器に対する設定風量から得られる。また、音響機器の音量(音圧レベル)は、音響機器に対する設定音量から得られる。また、車窓の開度は、不図示の開度計や操作パネルに入力した設定開度の情報から得られる。
 以上のとおり、本実施形態の変形例における制御部(制御部122A)は、背景音又は当該背景音と相関のある物理量が小さい場合には、エンジン回転速度が低下する方向、且つエンジントルクが上昇する方向にエンジン動作点(A)を変更すると共に、エンジン(1)に対してノックが低減する制御を実施するように構成されている。また、この制御部は、背景音又は当該背景音と相関のある物理量が大きい場合には、エンジン回転速度が上昇する方向、且つエンジントルクが低下する方向にエンジン動作点(A)を変更すると共に、エンジン(1)に対してノックが増加する制御を実施するように構成されている。
<5.第5の実施形態>
 第4の実施形態では背景音の大きさ(若しくは背景音と相関のある物理量)を元にエンジン動作点を制御したが、背景音の大きさ等の代わりにユーザーが設定した運転モードに基づいて、エンジン動作点を決定してもよい。この制御方法を本発明の第5の実施形態として、その詳細について説明する。
 図23は、第5の実施形態に係るコントローラの構成例を示すブロック図である。図23に示すように、本実施形態のコントローラ12Bは、入出力部121、制御部122B、及び記憶部123を備える。制御部122Bは、第1の実施形態(図3)の制御部122に対してモード判定部122eを備える。制御部122Bについて、主に第1の実施形態と異なる点に着目して説明する。
 モード判定部122eは、乗員が車内に設置された図示しない操作パネル又は操作スイッチにより入力した運転モードを判定し、判定結果を目標値決定部122bへ出力する。
本実施形態では運転モードとして、静音を優先するモードと、燃費を優先するモードがあるが、この例に限らない。また、静音優先モードの他に、2以上の運転モードがあってもよい。
 目標値決定部122bは、モード判定部122eから受信した運転モードに応じて、目標エンジン回転速度及び目標エンジントルクを決定する。ここで、目標値決定部122bは、ノック指標値算出部122aで算出されるエンジン1のノック指標値を参照しながら、ノック指標値がノック許容限界Liを超えない範囲で、目標発電量において目標エンジン回転速度及び目標エンジントルクを決定する。
 図24は、第5の実施形態に係る運転モードに応じて等発電量線上のエンジン動作点を変更する例を示す。図24の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表す。
 本実施形態においては、静音優先モードと燃費優先モードのいずれかを、ユーザーが選択できるように構成されており、その選択状態を示す情報がコントローラ12Bへ入力される。目標値決定部122bは、静音優先モードが選択されている場合には現在のエンジン動作点Aを、エンジン回転速度が低く、且つエンジントルクが高いエンジン動作点B1に変更する。
 一方、目標値決定部122bは、燃費優先モードが選択されている場合には現在のエンジン動作点Aを、エンジン回転速度が高く、且つエンジントルクが低いエンジン動作点B2に変更する。このとき、目標エンジン回転速度と目標エンジントルクとの積が一定、すなわち発電量が一定(=P)となるように、目標エンジン回転速度と目標エンジントルクの組み合わせを決定する。
 以上のとおり、第5の実施形態のハイブリッド車用制御装置(コントローラ12)は、車輪を駆動するモータ(誘導モータ7)と、モータに電力を供給する発電機(誘導発電機3)と、発電機を駆動する内燃機関で構成されるエンジン(エンジン1)と、を有するハイブリッド車(ハイブリッド車50)を制御するハイブリッド車用制御装置であって、エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点(A)におけるエンジンのノックの度合いを示すノック指標値を計算し、このノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部(制御部122B)を備えたものである。この制御部は、ノック指標値がノック許容限界値(Li)を超えない範囲で、選択された運転モード(例えば静音優先モード又は燃費優先モード)に応じて、目標発電量(P)における目標エンジン回転速度及び目標エンジントルクを設定するように構成されている。
 上述した第5の実施形態によれば、静音優先モードが選択されている場合には、ノック指標値がノック許容限界値を超えない範囲で、目標発電量においてエンジン回転速度が低くなる方向で設定されるので、エンジン騒音を低く抑えることができる。一方、本実施形態によれば、燃費優先モードが選択されている場合には、ノック指標値がノック許容限界値を超えない範囲で、目標発電量においてエンジントルクが低くなる方向で設定されるので、必要なスロットル開度が小さくなり(図5参照)、燃費が向上する。さらに、エンジン回転速度が高くなる方向で設定されるので、ノックに対するリスクを低減できる。
 このように、本実施形態は、ノック指標値がノック許容限界値を超えない範囲で、その時々のユーザーの嗜好や状況に、静音性と燃費性能を柔軟に合わせることができるので、ユーザーの希望に合わせて快適性と経済性をバランス良く提供することができる。
[変形例]
 また、本実施形態においても第4の実施形態と同様に、静音優先モードの場合に、現在のエンジン動作点Aをエンジン回転速度が低く、且つエンジントルクが高いエンジン動作点B1に変更するのに加えて、ノックを低減するエンジン制御を実施してもよい。一方、燃費優先モードの場合に、現在のエンジン動作点Aをエンジン回転速度が高く、且つエンジントルクが低いエンジン動作点B2に変更するのに加えて、ノックを増加するエンジン制御を実施してもよい。
 以上のとおり、本実施形態の変形例においける制御部(制御部122B)は、運転モードとして静音優先モードが選択されている場合には、エンジン動作点(A)をエンジン回転速度が低下し、且つエンジントルクが上昇する方向に変更すると共に、エンジン(1)に対してノックが低減する制御を実施するように構成されている。また、この制御部は、運転モードとして燃費優先モードが選択されている場合には、エンジン動作点(A)をエンジン回転速度が上昇し、且つエンジントルクが低下する方向に変更すると共に、エンジン(1)に対してノックが増加するエンジン制御を実施するように構成されている。
 上記本実施形態の変形例におけるノック増減制御を実施することによる効果は、第4の実施形態の変形例の効果と同じである。
 なお、図24では、静音優先モード又は燃費優先モードが選択されている場合に、同一の運転モードにおいてエンジン動作点を変更する例を説明したが、この例に限らない。例えば、静音優先モードから燃費優先モードへ、又は燃費優先モードから静音優先モードへ切替える場合に、本実施形態を適用してもよい。あるいは、運転モードとして、静音性と燃費性能のバランスがとれた標準モードがあってもよい。この場合、標準モードから他の運転モード(静音優先モード、燃費優先モード)へ、又は他の運転モードから標準モードへ切替える際に、本実施形態が適用される。
<6.第6の実施形態>
 上述した第4の実施形態に係るエンジン動作点の制御方法は、エンジン動作点の変更前後で目標発電量が同一の場合のみならず、目標発電量が異なる場合にも適用可能である。
つまり、第4の実施形態に係る背景音の大きさ(若しくは背景音と相関のある物理量)に応じてエンジン動作点を変更する方法(図21参照)を、第1の実施形態に係る発電量切替え時のエンジン動作点制御(図12参照)に適用してもよい。この制御方法を本発明の第6の実施形態として、その詳細について説明する。
 図25は、第6の実施形態として、第4の実施形態に係る背景音の大きさに応じてエンジン動作点を変更する方法を、第1の実施形態に係る発電量切替え時のエンジン動作点制御に適用した例を示す説明図である。図25の横軸はエンジン回転速度(r/min)、縦軸はエンジントルク(Nm)を表す。
 本実施形態においては、発電量P0における現在の背景音が小さい場合には現在のエンジン動作点Aを、変更後の発電量P1の等発電量線上におけるエンジン回転速度が低く、且つエンジントルクが高いエンジン動作点B1に変更する。一方、発電量P0における現在の背景音が大きい場合には現在のエンジン動作点Aを、変更後の発電量P1の等発電量線上におけるエンジン回転速度が高く、且つエンジントルクが低いエンジン動作点B2に変更する。このとき、ノック指標値がノック許容限界値(Li)を超えない範囲で、目標エンジン回転速度と目標エンジントルクとの積が一定、すなわち発電量が一定(=P1)となるように、目標エンジン回転速度と目標エンジントルクの組み合わせを決定する。
 上述した第6の実施形態によれば、背景音が小さい場合には、発電量切替え後のエンジン回転速度が低くなる方向で設定されるので、エンジン騒音を低く抑えることができる。
一方、本実施形態によれば、背景音が大きい場合には、発電量切替え後のエンジン回転速度が高くなる方向で設定されるので、ノックに対するリスクを低減できる。さらに、背景音が大きい場合には、エンジン回転速度が上昇してもエンジン騒音による快適性の低下は少ない。
<7.第7の実施形態>
 上述した第5の実施形態に係るエンジン動作点の制御方法は、エンジン動作点の変更前後で目標発電量が同一の場合のみならず、目標発電量が異なる場合にも適用可能である。
つまり、第5の実施形態に係る運転モードに応じてエンジン動作点を変更する方法(図24参照)を、第1の実施形態に係る発電量切替え時のエンジン動作点制御(図12参照)に適用してもよい。この制御方法を本発明の第7の実施形態として、その詳細について説明する。
 本実施形態においては、運転モードが静音優先モードである場合には発電量P0における現在のエンジン動作点Aを、変更後の発電量P1の等発電量線上におけるエンジン回転速度が低く、且つエンジントルクが高いエンジン動作点B1に変更する。一方、運転モードが静音優先モードである場合には発電量P0における現在のエンジン動作点Aを、変更後の発電量P1の等発電量線上におけるエンジン回転速度が高く、且つエンジントルクが低いエンジン動作点B2に変更する。このとき、ノック指標値がノック許容限界値Liを超えない範囲で、目標エンジン回転速度と目標エンジントルクとの積が一定、すなわち発電量が一定(=P1)となるように、目標エンジン回転速度と目標エンジントルクの組み合わせを決定する。
 上述した第7の実施形態によれば、静音優先モードが選択されている場合には、発電量切替え後のエンジン回転速度が低くなる方向で設定されるのでエンジン騒音を低く抑えることができる。一方、本実施形態によれば、燃費優先モードが選択されている場合には、発電量切替え後のエンジントルクが低くなる方向で設定されるので、必要なスロットル開度が小さくなり(図5参照)、燃費が向上する。さらに、エンジン回転速度が高くなる方向で設定されるので、ノックに対するリスクを低減できる。
 さらに、本発明は上述した各実施形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。
 例えば、上述した実施形態は本発明を分かりやすく説明するためにハイブリッドシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成要素を備えるものに限定されない。また、ある実施形態の構成の一部を他の実施形態の構成要素に置き換えることは可能である。また、ある実施形態の構成に他の実施形態の構成要素を加えることも可能である。また、各実施形態の構成の一部について、他の構成要素の追加、削除、置換をすることも可能である。
 また、上記のコントローラ12の各構成、機能、処理部等は、それらの一部又は全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。
 1…エンジン、 3…誘導発電機、 5…バッテリ、 7…誘導モータ、 10…ノックセンサ、 11…クランク角センサ、 12,12A,12B…コントローラ、 17…点火プラグ、 122,122A,122B…制御部、 121…入出力部、 122a…ノック評価値算出部、 122b…目標値決定部、 122c…駆動制御部、 122d…背景音演算部、 122e…モード判定部、 123…記憶部 
 

Claims (14)

  1.  車輪を駆動するモータと、前記モータに電力を供給する発電機と、前記発電機を駆動する内燃機関で構成されるエンジンと、を備えるハイブリッド車を制御するハイブリッド車用制御装置であって、
     エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点における前記エンジンのノックの度合いを示すノック指標値を計算し、前記ノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部、を備え、
     前記制御部は、前記ノック指標値がノック許容限界値を超えない範囲で、前記ノック指標値が小さくなるにつれて、目標発電量における目標エンジン回転速度を低く、且つ目標エンジントルクを高く設定する
     ハイブリッド車用制御装置。
  2.  前記制御部は、
     前記目標エンジン回転速度と前記目標エンジントルクとの積が前記目標発電量に応じて一定となるように、前記目標エンジン回転速度と前記目標エンジントルクを決定する
     請求項1に記載のハイブリッド車用制御装置。
  3.  前記目標エンジン回転速度が前記ノック指標値と正の相関を有し、前記目標エンジントルクが前記ノック指標値と負の相関を有するエンジン特性を記憶する記憶部、を備え、
     前記制御部は、前記記憶部に記憶されている前記エンジン特性に基づいて、前記目標エンジン回転速度及び前記目標エンジントルクを決定する
     請求項2に記載のハイブリッド車用制御装置。
  4.  前記記憶部は、第1の目標発電量におけるエンジン動作点から第2の目標発電量におけるエンジン動作点への推移が設定されたデフォルト設定情報を予め記憶しており、
     前記制御部は、前記第1の目標発電量と前記第2の目標発電量との間で前記エンジン動作点を変更する際に、前記デフォルト設定情報に設定された前記第2の目標発電量における前記エンジン動作点の場合よりも、変更後の前記エンジン動作点の前記エンジン回転速度を高い値に決定し、且つ前記エンジントルクを小さい値に決定する
     請求項3に記載のハイブリッド車用制御装置。
  5.  前記目標発電量の切り替えが行われる場合、前記ノック指標値は、前記目標発電量を切り替える前のエンジン動作状態で得られる値である
     請求項2に記載のハイブリッド車用制御装置。
  6.  前記制御部は、
     変更前の前記エンジン動作点と変更後のエンジン動作点とで前記目標発電量が同じである場合には、前記エンジン特性を参照して、前記ノック指標値を元に前記目標エンジン回転速度及び前記目標エンジントルクを決定する
     請求項3に記載のハイブリッド車用制御装置。
  7.  前記制御部は、
     同一発電量線上で前記ノック指標値を参照しながら前記エンジンの回転速度を下げることで、前記エンジン動作点をノックの許容限界のエンジン動作点に近づける
     請求項1に記載のハイブリッド車用制御装置。
  8.  車輪を駆動するモータと、前記モータに電力を供給する発電機と、前記発電機を駆動する内燃機関で構成されるエンジンと、を備えるハイブリッド車を制御するハイブリッド車用制御装置であって、
     エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点における前記エンジンのノックの度合いを示すノック指標値を計算し、前記ノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部、を備え、
     前記制御部は、前記ノック指標値がノック許容限界値を超えない範囲で、前記エンジン以外から発生する背景音の大きさ、又は当該背景音と相関のある物理量の大きさに応じて、目標発電量における目標エンジン回転速度及び目標エンジントルクを設定する
     ハイブリッド車用制御装置。
  9.  前記制御部は、
     前記背景音又は当該背景音と相関のある物理量が小さくなるにつれて、目標発電量における目標エンジン回転速度を低く、且つ目標エンジントルクを高く設定する
     請求項8に記載のハイブリッド車用制御装置。
  10.  前記制御部は、
     前記背景音又は当該背景音と相関のある物理量が小さい場合には、前記エンジン回転速度が低下する方向、且つ前記エンジントルクが上昇する方向に前記エンジン動作点を変更すると共に、前記エンジンに対してノックが低減する制御を行い、
     前記背景音又は当該背景音と相関のある物理量が大きい場合には、前記エンジン回転速度が上昇する方向、且つ前記エンジントルクが低下する方向に前記エンジン動作点を変更すると共に、前記エンジンに対してノックが増加する制御を行う
     請求項8に記載のハイブリッド車用制御装置。
  11.  前記背景音と相関のある物理量は、少なくとも前記ハイブリッド車の車速、空調の風量、音響機器の音量、及び車窓の開度のいずれか一つ、若しくはこれらの物理量のうち2以上の物理量の組み合わせである
     請求項8乃至10のいずれか一項に記載のハイブリッド車用制御装置。
  12.  車輪を駆動するモータと、前記モータに電力を供給する発電機と、前記発電機を駆動する内燃機関で構成されるエンジンと、を備えるハイブリッド車を制御するハイブリッド車用制御装置であって、
     エンジン回転速度とエンジントルクとの関係で表されるエンジン動作点における前記エンジンのノックの度合いを示すノック指標値を計算し、前記ノック指標値に基づいて、エンジン回転速度及びエンジントルクを制御する制御部、を備え、
     前記制御部は、前記ノック指標値がノック許容限界値を超えない範囲で、選択された運転モードに応じて、目標発電量における目標エンジン回転速度及び目標エンジントルクを設定する
     ハイブリッド車用制御装置。
  13.  前記制御部は、
     前記運転モードとして静音優先モードが選択されている場合には、前記エンジン回転速度が低下し、且つ前記エンジントルクが上昇する方向にエンジン動作点を変更すると共に、前記エンジンに対してノックが低減する制御を行い、
     前記運転モードとして燃費優先モードが選択されている場合には、前記エンジン回転速度が上昇し、且つ前記エンジントルクが低下する方向にエンジン動作点を変更すると共に、前記エンジンに対してノックが増加する制御を行う
     請求項12に記載のハイブリッド車用制御装置。
  14.  前記内燃機関は火花点火機関である
     請求項1、8、又は12のいずれか一項に記載のハイブリッド車用制御装置。
PCT/JP2020/004245 2019-03-04 2020-02-05 ハイブリッド車用制御装置 WO2020179327A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020000128.8T DE112020000128T5 (de) 2019-03-04 2020-02-05 Steuervorrichtung für hybridfahrzeuge
CN202080006076.9A CN113498451B (zh) 2019-03-04 2020-02-05 混合动力车用控制装置
US17/413,785 US20220009479A1 (en) 2019-03-04 2020-02-05 Hybrid Vehicle Control Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038217 2019-03-04
JP2019038217A JP7198118B2 (ja) 2019-03-04 2019-03-04 ハイブリッド車用制御装置

Publications (1)

Publication Number Publication Date
WO2020179327A1 true WO2020179327A1 (ja) 2020-09-10

Family

ID=72337553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004245 WO2020179327A1 (ja) 2019-03-04 2020-02-05 ハイブリッド車用制御装置

Country Status (5)

Country Link
US (1) US20220009479A1 (ja)
JP (1) JP7198118B2 (ja)
CN (1) CN113498451B (ja)
DE (1) DE112020000128T5 (ja)
WO (1) WO2020179327A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230313748A1 (en) * 2022-04-05 2023-10-05 Ford Global Technologies, Llc Methods and systems of controlling a vehicle to support electrical loads external to the vehicle
CN116025479A (zh) * 2023-02-02 2023-04-28 重庆赛力斯新能源汽车设计院有限公司 一种增程式发动机早燃控制方法、系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022296A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2008022671A (ja) * 2006-07-14 2008-01-31 Toyota Motor Corp インバータの制御装置、インバータの制御方法および車両
JP2009257232A (ja) * 2008-04-17 2009-11-05 Toyota Motor Corp 車両の制御装置および制御方法
JP2009262753A (ja) * 2008-04-24 2009-11-12 Toyota Motor Corp ハイブリッド自動車およびその制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094777B2 (ja) * 1994-03-15 2000-10-03 トヨタ自動車株式会社 ハイブリッド車用発電制御装置
JP4168638B2 (ja) 2002-02-15 2008-10-22 トヨタ自動車株式会社 ノック指標に基づいて冷却程度が制御される内燃機関
KR100507203B1 (ko) * 2003-07-10 2005-08-10 현대자동차주식회사 가솔린 엔진의 노킹 제어 장치 및 방법
JP2007113496A (ja) * 2005-10-20 2007-05-10 Toyota Motor Corp 内燃機関の燃焼制御装置
US7347184B2 (en) * 2005-11-01 2008-03-25 Denso Corporation Controller and controlling method for internal combustion engine
JP2009162141A (ja) * 2008-01-08 2009-07-23 Toyota Motor Corp 燃料性状推定装置
JP2013160051A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp ハイブリッド車両の制御装置
US9670865B2 (en) * 2012-03-16 2017-06-06 Nissan Motor Co., Ltd. Driving control device and driving control method in hybrid electric vehicle
JP5943097B2 (ja) * 2013-01-24 2016-06-29 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6303892B2 (ja) * 2014-07-25 2018-04-04 日産自動車株式会社 ハイブリッド車両の制御装置
JP6252495B2 (ja) * 2015-01-07 2017-12-27 トヨタ自動車株式会社 車両の制御装置
US9944276B2 (en) * 2016-05-04 2018-04-17 Ford Global Technologies, Llc Method and system for engine control
JP6549551B2 (ja) 2016-12-26 2019-07-24 本田技研工業株式会社 内燃機関の制御装置
US11702059B2 (en) * 2020-07-22 2023-07-18 Cummins Inc. Systems and methods for online power management for hybrid powertrains

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022296A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2008022671A (ja) * 2006-07-14 2008-01-31 Toyota Motor Corp インバータの制御装置、インバータの制御方法および車両
JP2009257232A (ja) * 2008-04-17 2009-11-05 Toyota Motor Corp 車両の制御装置および制御方法
JP2009262753A (ja) * 2008-04-24 2009-11-12 Toyota Motor Corp ハイブリッド自動車およびその制御方法

Also Published As

Publication number Publication date
CN113498451A (zh) 2021-10-12
DE112020000128T5 (de) 2021-08-12
JP2020143578A (ja) 2020-09-10
JP7198118B2 (ja) 2022-12-28
CN113498451B (zh) 2023-09-22
US20220009479A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP4872789B2 (ja) 車両駆動ユニットの制御装置
JP5310940B1 (ja) ハイブリッドシステムの制御装置
JP3286517B2 (ja) リーンバーンエンジンを搭載した車両の制御装置
WO2020179327A1 (ja) ハイブリッド車用制御装置
CN110312648B (zh) 混合动力车辆的动力控制方法及动力控制装置
WO2018155625A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
CN110325420B (zh) 混合动力车辆的动力控制方法及动力控制装置
WO2018155616A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
KR102382334B1 (ko) 차량의 과도 전이 단계에서 배기가스 배출량 저감 방법
US9441554B2 (en) Control system for internal combustion engine
JP2009257232A (ja) 車両の制御装置および制御方法
CN110962855A (zh) 一种增程式汽车发动机扭矩控制系统及其方法
JP2013151892A (ja) 内燃機関の制御装置
JP4859731B2 (ja) 内燃機関の制御装置
JP2001207885A (ja) ハイブリッド車両の内燃機関停止制御装置
JP6489509B2 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
WO2018155617A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
KR102644617B1 (ko) 엔진 부분부하 토크 제어장치 및 제어 방법
JP6489510B2 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP2006046297A (ja) ハイブリッド車の制御装置
JP7485026B2 (ja) 内燃機関の制御方法および制御装置
JP6519958B2 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JPH06245318A (ja) 電気自動車用エンジン駆動発電機の制御装置
JP2021076040A (ja) エンジン制御装置
KR100877867B1 (ko) 하이브리드 차량의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765582

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20765582

Country of ref document: EP

Kind code of ref document: A1