WO2020179107A1 - タービン - Google Patents

タービン Download PDF

Info

Publication number
WO2020179107A1
WO2020179107A1 PCT/JP2019/034397 JP2019034397W WO2020179107A1 WO 2020179107 A1 WO2020179107 A1 WO 2020179107A1 JP 2019034397 W JP2019034397 W JP 2019034397W WO 2020179107 A1 WO2020179107 A1 WO 2020179107A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
exhaust
diameter side
area
passage
Prior art date
Application number
PCT/JP2019/034397
Other languages
English (en)
French (fr)
Inventor
森田 功
渉 佐藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201980093778.2A priority Critical patent/CN113544369B/zh
Priority to JP2021503390A priority patent/JP7151866B2/ja
Priority to DE112019006976.4T priority patent/DE112019006976T5/de
Publication of WO2020179107A1 publication Critical patent/WO2020179107A1/ja
Priority to US17/404,490 priority patent/US11492916B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the supercharger is equipped with a turbine.
  • Two exhaust passages are formed in the turbine of Patent Document 1.
  • the two exhaust passages are arranged side by side in the radial direction of the turbine impeller.
  • the two exhaust passages communicate with the housing portion that houses the turbine impeller at different positions in the circumferential direction of the turbine impeller.
  • Two exhaust passages are usually provided with two bypass passages.
  • the two bypass channels have substantially the same channel cross-sectional area.
  • the two exhaust passages may have different passage cross-sectional areas due to layout restrictions. When the flow passage cross-sectional areas of the two exhaust flow passages are different from each other, if exhaust is performed with the two bypass flow passages open, the engine back pressure varies.
  • An object of the present disclosure is to provide a turbine capable of reducing variations in engine back pressure.
  • the turbine of the present disclosure is formed in a housing in which an accommodating portion for accommodating a turbine impeller is formed, a first exhaust flow path formed in the housing and communicating with the accommodating portion, and a housing.
  • the storage portion communicates with the storage portion at different positions in the circumferential direction of the turbine impeller, and has a flow passage cross-sectional area smaller than the flow passage cross-sectional area of the first exhaust flow passage.
  • the second exhaust flow path may have a longer flow path length than the first exhaust flow path.
  • the first exhaust flow path may have a longer flow path length than the second exhaust flow path.
  • the first exhaust minimum area having the smallest flow passage cross-sectional area in the portion of the flow passage facing the second tongue portion, and the flow passage cross-sectional area of the second exhaust flow passage is the same as that of the second exhaust flow passage.
  • the second exhaust minimum area where the flow passage cross-sectional area is the smallest in the portion facing the first tongue portion, and the flow passage cross-sectional area of the first bypass flow passage is the flow passage cross-sectional area of the first bypass flow passage.
  • the minimum first bypass area and the flow path cross-sectional area of the second bypass flow path is the second bypass minimum area of the second bypass flow path having the minimum flow path cross-sectional area.
  • the first minimum exhaust area is Aa
  • the second minimum exhaust area is Ab
  • the total throat area of the turbine impeller is Ai
  • the throat area of the portion of the turbine impeller facing the first exhaust flow path is Aia
  • the turbine impeller is the first. 2
  • the throat area of the facing portion facing the exhaust flow path is Aib
  • the central angle of the facing portion facing the first exhaust flow path of the turbine impeller is ⁇ a
  • the facing portion of the turbine impeller facing the second exhaust flow path is
  • the first effective area is Aaf
  • the second effective area is Abf
  • the first effective area Aaf is derived by the equations (1) and (1a)
  • the second effective area Abf. May be derived by equations (2) and (2a). ...(1) ...(1a) ...(2) ...(2a)
  • FIG. 1 is a schematic sectional view of a supercharger.
  • FIG. 2 is a cross-sectional view taken along the line AA of the turbine housing shown in FIG.
  • FIG. 3 is a schematic perspective view of the turbine housing as viewed from the wastegate port side.
  • FIG. 4 is a sectional view taken along the line AA of the turbine housing in the comparative example.
  • FIG. 5 is a diagram for explaining the total throat area of the turbine impeller.
  • FIG. 6 is a diagram for explaining an inner diameter side throat area and an outer diameter side throat area of the turbine impeller.
  • FIG. 7 is a cross-sectional view taken along the line AA of the turbine housing in the modified example.
  • the supercharger TC includes a supercharger main body 1.
  • the turbocharger main body 1 includes a bearing housing 3, a turbine housing (housing) 5, and a compressor housing 7.
  • the turbine housing 5 is connected to the left side of the bearing housing 3 by a fastening mechanism 9.
  • the compressor housing 7 is connected to the right side of the bearing housing 3 by a fastening bolt 11.
  • the turbine T includes a bearing housing 3 and a turbine housing 5.
  • the centrifugal compressor C includes a bearing housing 3 and a compressor housing 7.
  • a protrusion 3a is provided on the outer peripheral surface of the bearing housing 3.
  • the protrusion 3a is provided on the turbine housing 5 side.
  • the protrusion 3 a projects in the radial direction of the bearing housing 3.
  • a protrusion 5 a is provided on the outer peripheral surface of the turbine housing 5.
  • the protrusion 5a is provided on the bearing housing 3 side.
  • the protrusion 5 a projects in the radial direction of the turbine housing 5.
  • the bearing housing 3 and the turbine housing 5 are band-fastened by the fastening mechanism 9.
  • the fastening mechanism 9 is composed of, for example, a G coupling.
  • the fastening mechanism 9 holds the protrusions 3a and 5a.
  • a bearing hole 3b is formed in the bearing housing 3.
  • the bearing hole 3b penetrates in the left-right direction of the supercharger TC.
  • the bearing hole 3b rotatably supports the shaft 13 via a slide bearing.
  • a turbine impeller 15 is provided at the left end of the shaft 13.
  • the turbine impeller 15 is arranged in the turbine housing 5.
  • the turbine impeller 15 is rotatably housed in the turbine housing 5.
  • a compressor impeller 17 is provided at the right end of the shaft 13.
  • the compressor impeller 17 is arranged in the compressor housing 7.
  • the compressor impeller 17 is rotatably housed in the compressor housing 7.
  • An intake port 19 is formed in the compressor housing 7.
  • the intake port 19 opens on the right side of the supercharger TC.
  • the intake port 19 is connected to an air cleaner (not shown).
  • a diffuser flow path 21 is formed by the facing surfaces of the bearing housing 3 and the compressor housing 7.
  • the diffuser flow path 21 pressurizes the air.
  • the diffuser flow path 21 is formed in an annular shape.
  • the diffuser flow passage 21 communicates with the intake port 19 via the compressor impeller 17 inside the shaft 13 in the radial direction.
  • a compressor scroll passage 23 is formed in the compressor housing 7.
  • the compressor scroll flow path 23 is formed in an annular shape.
  • the compressor scroll flow path 23 is located, for example, radially outside the shaft 13 with respect to the diffuser flow path 21.
  • the compressor scroll flow path 23 communicates with the intake port of an engine (not shown) and the diffuser flow path 21.
  • the intake air is pressurized and accelerated in the process of flowing between the blades of the compressor impeller 17.
  • the pressurized and accelerated air is pressurized in the diffuser flow passage 21 and the compressor scroll flow passage 23.
  • the pressurized air is guided to the intake port of the engine.
  • the exhaust flow path 25, the accommodating portion 27, and the exhaust flow path 29 are formed in the turbine housing 5.
  • the discharge flow path 25 opens on the left side of the supercharger TC.
  • the exhaust flow path 25 is connected to an exhaust gas purification device (not shown).
  • the discharge flow path 25 communicates with the housing portion 27.
  • the discharge flow path 25 is continuous with the accommodating portion 27 in the rotation axis direction of the turbine impeller 15.
  • the housing portion 27 houses the turbine impeller 15.
  • the exhaust flow path 29 is arranged on the radial outside of the accommodating portion 27 (turbine impeller 15).
  • the exhaust flow path 29 communicates with the housing portion 27.
  • the exhaust passage 29 is continuous with the housing portion 27 in the radial direction of the turbine impeller 15.
  • FIG. 2 is a sectional view of the turbine housing 5 shown in FIG. 1 taken along the line AA. In FIG. 2, only the outer circumference of the turbine impeller 15 is shown by a circle. As shown in FIG. 2, an exhaust passage 29 is formed radially outside the housing portion 27 (turbine impeller 15 ). The exhaust passage 29 includes a communication portion 31, a turbine scroll passage 33, an exhaust introduction port 35, and an exhaust introduction passage 37.
  • the communication part 31 is formed in an annular shape around the entire circumference of the accommodation part 27.
  • the turbine scroll flow path 33 is located, for example, radially outside the turbine impeller 15 with respect to the communication portion 31.
  • the turbine scroll flow path 33 is formed in an annular shape over the entire circumference of the communication portion 31 (accommodation portion 27).
  • the communication section 31 communicates the accommodating section 27 with the turbine scroll flow path 33.
  • the exhaust introduction port 35 opens outside the turbine housing 5. Exhaust gas discharged from an engine exhaust manifold (not shown) is introduced into the exhaust introduction port 35.
  • An exhaust introduction passage 37 is formed between the exhaust introduction port 35 and the turbine scroll passage 33.
  • the exhaust introduction path 37 connects the exhaust introduction port 35 and the turbine scroll flow path 33.
  • the exhaust gas introduction path 37 is formed in a straight line, for example.
  • the exhaust introduction path 37 guides the exhaust gas introduced from the exhaust introduction port 35 to the turbine scroll flow path 33.
  • the turbine scroll passage 33 guides the exhaust gas introduced from the exhaust introduction passage 37 to the housing portion 27 via the communication portion 31.
  • the exhaust passage 29 includes the exhaust introduction port 35, the exhaust introduction passage 37, the turbine scroll passage 33, and the communication portion 31.
  • the exhaust flow path 29 extends from the exhaust introduction port 35 to the communication portion 31.
  • a bypass passage 39 is formed in the turbine housing 5.
  • the inlet end OP opens in the exhaust flow path 29, and the outlet end (wastegate port WP described later) opens in the exhaust flow path 25 (see FIG. 1). More specifically, in the bypass flow passage 39, the inlet end OP is opened to the exhaust introduction passage 37, and the outlet end is opened to the discharge flow passage 25.
  • the bypass flow passage 39 connects (connects) the exhaust introduction passage 37 and the discharge passage 25.
  • a wastegate port WP (see FIG. 1) is formed at the outlet end of the bypass flow path 39.
  • a wastegate valve WV (see FIG. 1) capable of opening and closing the wastegate port WP is arranged at the outlet end of the bypass flow path 39.
  • the waste gate valve WV is arranged in the discharge flow path 25.
  • the bypass flow path 39 bypasses a part of the exhaust gas flowing through the exhaust introduction path 37 and bypasses the accommodating portion 27 (turbine impeller 15) to discharge the exhaust flow path 25. Leak to.
  • a partition plate 41 is formed on the turbine housing 5.
  • the partition plate 41 is arranged in the exhaust passage 29. More specifically, the partition plate 41 is arranged in the exhaust gas introducing port 35, the exhaust gas introducing passage 37, and the turbine scroll passage 33.
  • the partition plate 41 is connected to the exhaust introduction port 35, the exhaust introduction path 37, and the inner surface of the turbine scroll flow path 33 in the rotation axis direction of the turbine impeller 15 (hereinafter, also referred to as the lateral direction of the partition plate 41). Will be done.
  • the partition plate 41 extends in a direction away from the exhaust gas introduction port 35.
  • the partition plate 41 extends along the exhaust passage 29.
  • the partition plate 41 extends along the exhaust flow direction in which the exhaust gas flows (hereinafter, also referred to as the longitudinal direction of the partition plate 41).
  • the upstream side in the exhaust flow direction is simply referred to as an upstream side
  • the downstream side in the exhaust flow direction is simply referred to as a downstream side.
  • the partition plate 41 has an upstream end arranged at the exhaust introduction port 35 and a downstream end arranged at a position (boundary) between the turbine scroll passage 33 and the communication portion 31.
  • the partition plate 41 partitions (divides) the exhaust flow path 29 in the radial direction of the turbine impeller 15 (hereinafter, simply referred to as the radial direction).
  • the exhaust flow path 29 is divided into an inner diameter side exhaust flow path (first exhaust flow path) 29a and an outer diameter side exhaust flow path (second exhaust flow path) 29b by a partition plate 41.
  • the inner diameter side exhaust flow path 29a is located radially inside the turbine impeller 15 with respect to the outer diameter side exhaust flow path 29b.
  • the inner diameter side exhaust flow path 29a is formed so as to be radially aligned with the outer diameter side exhaust flow path 29b.
  • the outer diameter side exhaust flow path 29b has a longer flow path length than the inner diameter side exhaust flow path 29a.
  • the partition plate 41 divides the exhaust introduction port 35 in the radial direction.
  • the exhaust gas introducing port 35 is divided by a partition plate 41 into an inner diameter side exhaust gas introducing port 35a and an outer diameter side exhaust gas introducing port 35b.
  • the inner diameter side exhaust introduction port 35a is located radially inside the turbine impeller 15 with respect to the outer diameter side exhaust introduction port 35b.
  • the inner diameter side exhaust introduction port 35a is formed so as to be radially aligned with the outer diameter side exhaust introduction port 35b.
  • the exhaust manifold (not shown) includes two (plural) divided passages.
  • the two dividing paths are connected to the inner diameter side exhaust introduction port 35a and the outer diameter side exhaust introduction port 35b, respectively.
  • Exhaust gas discharged from an engine (not shown) passes through two dividing paths of the exhaust manifold and is introduced into the inner diameter side exhaust introduction port 35a and the outer diameter side exhaust introduction port 35b. Of the exhaust gas flowing through the two dividing paths, one is introduced into the inner diameter side exhaust introduction port 35a, and the other is introduced into the outer diameter side exhaust introduction port 35b.
  • the partition plate 41 divides the exhaust introduction path 37 in the radial direction.
  • the exhaust gas introduction path 37 is divided by a partition plate 41 into an inner diameter side exhaust gas introduction path 37a and an outer diameter side exhaust gas introduction path 37b.
  • the inner diameter side exhaust introduction passage 37a is located radially inside the turbine impeller 15 with respect to the outer diameter side exhaust introduction passage 37b.
  • the inner diameter side exhaust introduction passage 37a is formed side by side with the outer diameter side exhaust introduction passage 37b in the radial direction of the turbine impeller 15.
  • the inner diameter side exhaust introduction path 37a communicates with the inner diameter side exhaust introduction port 35a.
  • the outer diameter side exhaust introduction path 37b communicates with the outer diameter side exhaust introduction port 35b.
  • FIG. 3 is a schematic perspective view of the turbine housing 5 as viewed from the wastegate port WP side.
  • the waste gate valve WV is not shown.
  • a partition wall 43 is formed in the bypass channel 39.
  • One end of the partition wall 43 is located at the inlet end OP (see FIG. 2) of the bypass flow path 39, and the other end is located at the outlet end (wastegate port WP) of the bypass flow path 39.
  • the partition wall 43 extends along the exhaust flow direction in which the exhaust gas flows through the bypass flow path 39 (hereinafter, also referred to as the longitudinal direction of the partition wall 43).
  • the partition wall 43 is connected to the inner surface of the bypass flow path 39 in the lateral direction D orthogonal to the longitudinal direction of the partition wall 43.
  • the partition wall 43 divides the bypass channel 39.
  • the bypass flow path 39 is divided into an inner diameter side bypass flow path (first bypass flow path) 39a and an outer diameter side bypass flow path (second bypass flow path) 39b by the partition wall 43.
  • the inner diameter side bypass flow path 39a communicates with the inner diameter side exhaust introduction path 37a.
  • the inner diameter side bypass flow passage 39a connects the inner diameter side exhaust introduction passage 37a and the discharge flow passage 25 (see FIGS. 1 and 3).
  • the inner diameter side bypass flow path 39a guides a part of the exhaust gas flowing through the inner diameter side exhaust introduction path 37a to the wastegate port WP (see FIGS. 1 and 3).
  • the outer diameter side bypass flow passage 39b communicates with the outer diameter side exhaust introduction passage 37b.
  • the outer diameter side bypass flow path 39b connects the outer diameter side exhaust introduction path 37b and the discharge flow path 25.
  • the outer diameter side bypass flow passage 39b guides a part of the exhaust gas flowing through the outer diameter side bypass flow passage 39b to the waste gate port WP.
  • the partition plate 41 divides the turbine scroll passage 33 in the radial direction.
  • the turbine scroll passage 33 is divided by the partition plate 41 into an inner diameter side turbine scroll passage 33a and an outer diameter side turbine scroll passage 33b.
  • the inner diameter side turbine scroll flow path 33a is located radially inside the outer diameter side turbine scroll flow path 33b.
  • the inner diameter side turbine scroll flow path 33a is formed so as to be radially aligned with the outer diameter side turbine scroll flow path 33b.
  • the inner diameter side turbine scroll passage 33a communicates with the inner diameter side exhaust introduction passage 37a.
  • the outer diameter side turbine scroll passage 33b communicates with the outer diameter side exhaust introduction passage 37b.
  • the inner diameter side turbine scroll passage 33a becomes smaller in width in the radial direction as it goes away from the inner diameter side exhaust introduction passage 37a. That is, the inner diameter side turbine scroll flow path 33a becomes smaller in the radial direction from the upstream side to the downstream side.
  • the outer diameter side turbine scroll passage 33b becomes smaller in width in the radial direction as it goes away from the outer diameter side exhaust introduction passage 37b. That is, the width of the outer diameter side turbine scroll flow path 33b in the radial direction decreases from the upstream side to the downstream side.
  • the communication part 31 communicates with the inner diameter side turbine scroll passage 33a on the left half circumference in FIG.
  • a portion of the communication portion 31 that communicates with the inner diameter side turbine scroll passage 33a is referred to as a first communication portion 31a.
  • the communication portion 31 communicates with the outer diameter side turbine scroll passage 33b on the right half circumference in FIG.
  • a portion of the communication portion 31 that communicates with the outer diameter side turbine scroll passage 33b is referred to as a second communication portion 31b.
  • the accommodating portion 27 communicates with the first communicating portion 31a on the left half circumference in FIG.
  • the first communication portion 31a is located between the inner diameter side turbine scroll flow path 33a and the accommodating portion 27.
  • the accommodating portion 27 communicates with the second communicating portion 31b in the right half circumference in FIG.
  • the second communication portion 31b is located between the outer diameter side turbine scroll flow path 33b and the accommodating portion 27.
  • the housing portion 27 communicates with the inner diameter side exhaust flow path 29a on the left half circumference in FIG.
  • the accommodating portion 27 communicates with the outer diameter side exhaust flow path 29b on the right half circumference in FIG.
  • the position of the accommodating portion 27 communicating with the inner diameter side exhaust flow path 29a differs from the position communicating with the outer diameter side exhaust flow path 29b in the circumferential direction of the turbine impeller 15.
  • the position where the accommodating portion 27 communicates with the inner diameter side turbine scroll flow path 33a via the first communication portion 31a communicates with the outer diameter side turbine scroll flow path 33b via the second communication portion 31b. And in the circumferential direction of the turbine impeller 15.
  • the turbine housing 5 is formed with a first tongue portion 45a and a second tongue portion 45b.
  • the first tongue portion 45a is formed at an end portion on the downstream side of the partition plate 41 (that is, an end portion on the side separated from the exhaust introduction port 35).
  • the first tongue portion 45a is provided at a position facing the downstream end portion (downstream end) of the inner diameter side turbine scroll passage 33a.
  • the first tongue portion 45a partitions the inner diameter side turbine scroll flow path 33a and the outer diameter side turbine scroll flow path 33b.
  • the second tongue portion 45b is provided at a position facing the downstream end (downstream end) of the outer diameter side turbine scroll flow path 33b.
  • the second tongue portion 45b partitions the outer diameter side turbine scroll flow path 33b and the inner diameter side turbine scroll flow path 33a.
  • the phase of the first tongue portion 45a in the rotation direction of the turbine impeller 15 is approximately 180 degrees out of phase with respect to the second tongue portion 45b. That is, the first tongue portion 45a and the second tongue portion 45b are arranged at equal intervals in the rotation direction of the turbine impeller 15. However, the first tongue portion 45a may have a phase (position) different from that of the second tongue portion 45b in the rotation direction of the turbine impeller 15. The phase shift of the first tongue portion 45a with respect to the second tongue portion 45b does not have to be approximately 180 degrees. That is, the first tongue portion 45a and the second tongue portion 45b may be arranged at irregular intervals in the rotation direction of the turbine impeller 15. The first tongue portion 45a and the second tongue portion 45b are radially opposed to the turbine impeller 15.
  • the exhaust gas discharged from the exhaust manifold of the engine (not shown) is guided to the exhaust flow path 25 via the exhaust flow path 29 and the accommodating portion 27.
  • the exhaust gas guided to the discharge flow path 25 rotates the turbine impeller 15 in the distribution process.
  • the rotational force of the turbine impeller 15 is transmitted to the compressor impeller 17 via the shaft 13.
  • the air pressure is increased as described above. In this way, air is guided to the intake port of the engine.
  • the inner diameter side exhaust passage 29a and the outer diameter side exhaust passage 29b may have different passage cross-sectional areas due to layout restrictions.
  • the flow passage cross-sectional areas of the inner diameter side exhaust flow passage 29a and the outer diameter side exhaust flow passage 29b are the same as those of the inner diameter side turbine scroll flow passage 33a and the outer diameter side turbine scroll flow passage 33b. When compared at positions where the distances from the end (tongue) are the same, they are different from each other.
  • the flow passage cross-sectional area of the inner diameter side exhaust flow passage 29a is the outer diameter side when compared at a position where the distances from the end portions (tongues) of the inner diameter side turbine scroll flow passage 33a and the outer diameter side turbine scroll flow passage 33b are equal. It is larger than the flow passage cross-sectional area of the exhaust flow passage 29b.
  • the flow passage cross-sectional area that is the smallest in the portion of the inner diameter side exhaust flow passage (first exhaust flow passage) 29a facing the second tongue portion 45b is defined as the first exhaust minimum area Aa.
  • a flow passage cross-sectional area that is the smallest in the portion of the outer diameter side exhaust flow passage (second exhaust flow passage) 29b facing the first tongue portion 45a is defined as a second exhaust minimum area Ab.
  • the first exhaust minimum area Aa is larger than the second exhaust minimum area Ab.
  • the second minimum exhaust area Ab is smaller than the first minimum exhaust area Aa.
  • the present invention is not limited to this.
  • the cross-sectional position where the flow passage cross-sectional area is the smallest (first exhaust minimum area Aa) in the portion of the inner diameter side exhaust flow passage 29a facing the second tongue portion 45b is the first cross-sectional position.
  • the cross-sectional position where the flow passage cross-sectional area is the smallest (second exhaust minimum area Ab) in the portion of the outer diameter side exhaust flow passage 29b facing the first tongue portion 45a is referred to as the second cross-sectional position.
  • the inner diameter side exhaust flow path 29a and the outer diameter side exhaust flow path 29a are located at a cross section position deviated by a predetermined distance toward the communication portion 31 side (or the exhaust introduction port 35 side).
  • the flow passage cross-sectional areas of 29b may be different from each other.
  • FIG. 4 is a sectional view taken along line AA of the turbine housing 105 in the comparative example.
  • the turbine housing 105 includes a bypass passage 139.
  • the turbine housing 105 in the comparative example has the same configuration as the turbine housing 5 in the present embodiment except for the bypass passage 139.
  • the bypass flow path 139 includes an inner diameter side bypass flow path 139a and an outer diameter side bypass flow path 139b.
  • the flow path cross-sectional areas of the inner diameter side bypass flow path 139a and the outer diameter side bypass flow path 139b are substantially the same.
  • the turbine housing 105 has a first minimum exhaust area Aa and a second minimum exhaust area Ab different from each other.
  • the wastegate valve WV (see FIG. 1) is closed, the exhaust gas flows through the exhaust flow path 29 without flowing through the bypass flow path 139. At this time, the exhaust gas flows through the exhaust flow path 29 at a flow rate corresponding to the flow path cross-sectional area of the inner diameter side exhaust flow path 29a and the outer diameter side exhaust flow path 29b. Therefore, the flow rate of the exhaust gas flowing through the inner diameter side exhaust flow channel 29a (hereinafter, also simply referred to as the inner diameter side flow rate) and the flow rate of the exhaust gas flowing through the outer diameter side exhaust flow channel 29b (hereinafter, simply referred to as the outer diameter side flow rate). There is a flow rate difference.
  • the exhaust gas flows through the exhaust flow path 29 and the bypass flow path 139.
  • the exhaust gas has a flow rate corresponding to the flow passage cross-sectional areas of the inner diameter side exhaust flow passage 29a, the outer diameter side exhaust flow passage 29b, the inner diameter side bypass flow passage 139a, and the outer diameter side bypass flow passage 139b. It flows through the passage 29 and the bypass passage 139.
  • the flow passage cross-sectional areas of the inner diameter side bypass flow passage 139a and the outer diameter side bypass flow passage 139b are substantially the same.
  • the flow rate of the exhaust gas flowing through the inner diameter side exhaust flow path 29a and the inner diameter side bypass flow path 139a (hereinafter, also simply referred to as the inner diameter side flow rate) and the outer diameter side exhaust flow path 29b and the outer diameter side bypass flow path 139b
  • the flow rate difference between the flow rate of the circulated exhaust gas (hereinafter, also simply referred to as the outer diameter side flow rate).
  • the flow rate difference between the inner diameter side flow rate and the outer diameter side flow rate when the wastegate valve WV (see FIG. 1) is opened is the inner diameter side flow rate and the outer diameter side flow rate when the wastegate valve WV is closed. Is roughly equal to the flow rate difference of.
  • the engine back pressure may vary when the wastegate valve WV is open, which may reduce the supercharging performance of the turbocharger TC.
  • the flow passage cross-sectional areas of the inner diameter side bypass flow passage 39a and the outer diameter side bypass flow passage 39b are different from each other.
  • the flow passage cross-sectional areas of the inner diameter side bypass flow passage 39a and the outer diameter side bypass flow passage 39b are such that the inner diameter side bypass flow passage 39a and the outer diameter side bypass flow passage 39b have the same distance from the waste gate port WP. Compared with each other, they are different from each other.
  • the flow passage cross-sectional area of the inner diameter side bypass flow passage 39a is the outer diameter.
  • the flow passage cross-sectional area of the outer diameter side bypass flow passage 39b is larger than the flow passage cross sectional area of the inner diameter side bypass flow passage 39a. More specifically, the opening area of the inlet end OP of the inner diameter side bypass flow path 39a is smaller than the opening area of the inlet end OP of the outer diameter side bypass flow path 39b.
  • the inner diameter side bypass minimum area (first bypass minimum area) Ba having the smallest flow path cross-sectional area of the inner diameter side bypass flow path 39a is the flow path disconnection of the outer diameter side bypass flow path 39b. It is smaller than the outer diameter side bypass minimum area (second bypass minimum area) Bb that minimizes the area.
  • the inner diameter side bypass minimum area Ba is, for example, the opening area of the waste gate port WP of the inner diameter side bypass flow passage 39a.
  • the outer diameter side bypass minimum area Bb is, for example, the opening area of the waste gate port WP of the outer diameter side bypass flow passage 39b. That is, the opening area of the wastegate port WP of the inner diameter side bypass flow path 39a is smaller than the opening area of the wastegate port WP of the outer diameter side bypass flow path 39b.
  • the flow passage cross-sectional areas of the inner diameter side exhaust flow passage 29a and the outer diameter side exhaust flow passage 29b are different from each other.
  • the flow passage cross-sectional area of the inner diameter side exhaust flow passage 29a (first exhaust minimum area Aa) is larger than the flow passage cross sectional area of the outer diameter side exhaust flow passage 29b (second exhaust minimum area Ab).
  • the flow passage cross-sectional area of the outer diameter side exhaust flow passage 29b (second exhaust minimum area Ab) is smaller than the flow passage cross-sectional area of the inner diameter side exhaust flow passage 29a (first exhaust minimum area Aa).
  • the flow passage cross-sectional area of the inner diameter side bypass flow passage 39a (minimum inner diameter side bypass area Ba) is equal to the flow passage cross sectional area of the outer diameter side bypass flow passage 39b (outer diameter side It is smaller than the minimum bypass area Bb).
  • the inner diameter side exhaust flow path 29a (first exhaust minimum area Aa) is larger than the outer diameter side exhaust flow path 29b (second exhaust minimum area Ab). That is, the inner diameter side bypass flow path 39a whose flow path cross-sectional area is smaller than the outer diameter side bypass flow path 39b is connected to the inner diameter side exhaust flow path 29a whose flow path cross-sectional area is larger than the outer diameter side exhaust flow path 29b. ..
  • the wastegate valve WV (see FIG. 1) is closed, the exhaust gas flows through the exhaust flow path 29 without flowing through the bypass flow path 39. At this time, the exhaust gas flows through the exhaust flow path 29 at a flow rate corresponding to the flow path cross-sectional area of the inner diameter side exhaust flow path 29a and the outer diameter side exhaust flow path 29b. Therefore, when the waste gate valve WV is closed, a flow rate difference occurs between the inner diameter side flow rate and the outer diameter side flow rate.
  • the exhaust gas flows through the exhaust flow path 29 and the bypass flow path 39.
  • the exhaust gas has a flow rate corresponding to the flow passage cross-sectional areas of the inner diameter side exhaust flow passage 29a, the outer diameter side exhaust flow passage 29b, the inner diameter side bypass flow passage 39a, and the outer diameter side bypass flow passage 39b. It flows through the passage 29 and the bypass passage 39.
  • an inner diameter side bypass flow passage 39a having a flow passage cross sectional area smaller than the outer diameter side bypass flow passage 39b is connected to the inner diameter side exhaust flow passage 29a having a flow passage cross sectional area larger than the outer diameter side exhaust flow passage 29b.
  • the flow rate difference between the inner diameter side flow rate and the outer diameter side flow rate when the wastegate valve WV is open is the flow rate difference between the inner diameter side flow rate and the outer diameter side flow rate when the wastegate valve WV is closed. It becomes smaller. Therefore, the turbine housing 5 of the present embodiment can reduce variations in engine back pressure when the waste gate valve WV is open, and can suppress deterioration of supercharging performance of the supercharger TC.
  • valve closed inner diameter side flow rate the flow rate of the exhaust gas flowing through the inner diameter side exhaust passage 29a when the waste gate valve WV (see FIG. 1) is closed.
  • valve open inner diameter side flow rate the flow rate of the exhaust gas flowing through the inner diameter side exhaust passage 29a and the inner diameter side bypass passage 39a when the waste gate valve WV is in the open state.
  • the flow rate of the exhaust gas flowing through the outer diameter side exhaust flow path 29b when the waste gate valve WV (see FIG. 1) is closed is called the outer diameter side flow rate when the valve is closed.
  • the flow rate of the exhaust gas flowing through the outer diameter side exhaust flow path 29b and the outer diameter side bypass flow path 39b when the waste gate valve WV is closed is referred to as the valve open outer diameter side flow rate.
  • the difference between the flow rate when the valve is open and the flow rate when the valve is open is called the flow rate difference when the valve is open.
  • the flow rate difference between the inner diameter side flow rate when the valve is closed and the outer diameter side flow rate when the valve is closed is called the flow rate difference when the valve is closed.
  • the flow path cross-sectional area of the inner diameter side exhaust flow path 29a is relatively large as compared with the flow path cross-sectional area of the outer diameter side exhaust flow path 29b.
  • the flow path cross-sectional area of the inner diameter side bypass flow path 39a is relatively small as compared with the flow path cross-sectional area of the outer diameter side bypass flow path 39b. Therefore, the flow rate difference when the valve is open can be made smaller than the flow rate difference when the valve is closed. Therefore, the turbine housing 5 of the present embodiment can reduce variations in engine back pressure when the waste gate valve WV is open, and can suppress deterioration of supercharging performance of the supercharger TC.
  • the effective area when the exhaust gas passes through the turbine impeller 15 via the inner diameter side exhaust flow path 29a is defined as the inner diameter side effective area Aaf.
  • the effective area when the exhaust gas passes through the turbine impeller 15 via the outer diameter side exhaust flow path 29b is defined as the outer diameter side effective area Abf. Details of the inner diameter side effective area Aaf and the outer diameter side effective area Abf will be described later.
  • the flow passage cross-sectional area of the inner diameter side exhaust flow passage 29a is Aa (in the present embodiment, the first exhaust minimum area Aa).
  • the flow passage cross-sectional area of the outer diameter side exhaust flow passage 29b is set to Ab (the second minimum exhaust area Ab in the present embodiment).
  • the flow passage cross-sectional area of the inner diameter side bypass flow passage 39a is Ba (in the present embodiment, the inner diameter side bypass minimum area Ba).
  • the flow passage cross-sectional area of the outer diameter side bypass flow passage 39b is set to Bb (in the present embodiment, the outer diameter side bypass minimum area Bb).
  • the total throat area of the turbine impeller 15 is Ai.
  • the throat area (hereinafter, referred to as the inner diameter side throat area) of the portion of the turbine impeller 15 facing the inner diameter side exhaust flow path 29a is referred to as Aia.
  • the throat area (hereinafter, referred to as the outer diameter side throat area) of the portion of the turbine impeller 15 facing the outer diameter side exhaust flow path 29b is defined as Aib. Details of the total throat area Ai, the inner diameter side throat area Aia, and the outer diameter side throat area Aib will be described later.
  • ⁇ a be the central angle of the facing portion (inner diameter side throat area Aia) facing the inner diameter side exhaust flow path 29a of the turbine impeller 15.
  • ⁇ b be the central angle of the facing portion (outer diameter side throat area Aib) facing the outer diameter side exhaust flow path 29b of the turbine impeller 15. Details of the central angles ⁇ a and ⁇ b will be described later.
  • the inner diameter side effective area Aaf is derived by the following equation (1). ...(1)
  • the inner diameter side throat area Aia is derived by the following formula (1a). ...(1a)
  • the total throat area Ai of the turbine impeller 15 is approximately derived by the following formula (1b). ...(1b)
  • FIG. 5 is a diagram for explaining the total throat area Ai of the turbine impeller 15.
  • the turbine impeller 15 has a hub 15a and blades 15b.
  • the hub 15a is provided on the shaft 13 (see FIG. 1).
  • the hub 15a has a shape in which the diameter is smaller toward the left side in FIG. 5 and the diameter is larger toward the right side in FIG.
  • the blade 15b is provided on the outer peripheral surface of the hub 15a.
  • a plurality of blades 15b are provided so as to be separated in the circumferential direction of the hub 15a.
  • the outlet shroud diameter of the turbine impeller 15 is "D4s", and the outlet hub diameter of the turbine impeller 15 is "D4h”. Further, the blade angle on the outlet shroud side of the turbine impeller 15 is set to " ⁇ 4s".
  • the total throat area Ai of the turbine impeller 15 is derived by the above equation (1b).
  • FIG. 6 is a diagram for explaining the inner diameter side throat area Aia and the outer diameter side throat area Aib of the turbine impeller 15.
  • the turbine impeller 15 includes a facing portion FS1 that faces the inner diameter side exhaust passage 29a.
  • the inner diameter side throat area Aia is the throat area of the facing portion FS1 of the turbine impeller 15.
  • the central angle ⁇ a is the central angle of the facing portion FS1 (inner diameter side throat area Aia) of the turbine impeller 15.
  • the central angle ⁇ a is approximately equal to the phase shift between the first tongue portion 45a and the second tongue portion 45b on the inner diameter side exhaust flow path 29a side.
  • the turbine impeller 15 includes an opposing portion FS2 facing the outer diameter side exhaust flow path 29b.
  • the outer diameter side throat area Aib is the throat area of the facing portion FS2 of the turbine impeller 15.
  • the central angle ⁇ b is the central angle of the facing portion FS2 (outer diameter side throat area Aib) of the turbine impeller 15.
  • the central angle ⁇ b is approximately equal to the phase shift between the first tongue portion 45a and the second tongue portion 45b on the outer diameter side exhaust flow path 29b side.
  • the central angle ⁇ a is approximately equal to the central angle ⁇ b.
  • the outer diameter side effective area Abf is derived by the following equation (2). ...(2)
  • the inner diameter side effective area (first effective area) Aaf is the flow path cross-sectional area (first exhaust minimum area Aa) of the inner diameter side exhaust flow path 29a and the throat area of the turbine impeller 15. It is an area derived from the inner diameter side throat area Aia).
  • the outer diameter side effective area (second effective area) Abf is the flow path cross-sectional area (second exhaust minimum area Ab) of the outer diameter side exhaust flow path 29b and the throat of the turbine impeller 15. It is an area derived from the area (outer diameter side throat area Aib).
  • the difference between the inner diameter side effective area Aaf and the outer diameter side effective area Abf is the sum of the inner diameter side effective area Aaf and the inner diameter side bypass minimum area Ba, and the outer diameter side effective area Abf and the outer diameter side bypass minimum. It is larger than the difference from the total area Bb. That is, compared with the difference between the inner diameter side effective area Aaf and the outer diameter side effective area Abf, the total of the inner diameter side effective area Aaf and the inner diameter side bypass minimum area Ba, and the outer diameter side effective area Abf and the outer diameter side bypass minimum area Bb. The difference from the sum of is smaller.
  • the difference between the inner diameter side effective area Aaf and the outer diameter side effective area Abf satisfies the condition of the following expression (3). ...(3)
  • the flow rate of the exhaust gas flowing through the inner diameter side exhaust flow path 29a is derived by the inner diameter side effective area Aaf.
  • the flow rate of the exhaust gas flowing through the inner diameter side exhaust flow path 29a and the inner diameter side bypass flow path 39a is the inner diameter side effective area Aaf and the inner diameter side bypass. Derived by the minimum area Ba.
  • the flow rate of the exhaust gas flowing through the outer diameter side exhaust flow path 29b is the outer diameter side effective area Abf. Derived by.
  • the flow rate of the exhaust gas flowing through the outer diameter side exhaust flow path 29b and the outer diameter side bypass flow path 39b is the outer diameter side effective area Abf.
  • the outer diameter side bypass minimum area Bb is the outer diameter side bypass minimum area Bb.
  • the left side of the above equation (3) represents a value according to the flow rate difference between the inner diameter side flow rate when the valve is open and the outer diameter side flow rate when the valve is open (flow rate difference when the valve is open).
  • the right side of the above equation (3) represents a value according to the flow rate difference between the valve-closed inner diameter side flow rate and the valve-closed outer diameter side flow rate (valve-closed flow rate difference). Therefore, the above equation (3) shows a condition that the flow rate difference when the valve is open is smaller than the flow rate difference when the valve is closed.
  • the flow passage cross-sectional areas of the inner diameter side bypass flow passage 139a (see FIG. 4) and the outer diameter side bypass flow passage 139b (see FIG. 4) of the comparative example are substantially the same. That is, the inner diameter side bypass minimum area Ba is substantially the same as the outer diameter side bypass minimum area Bb. At this time, the left side of the above equation (3) becomes equal to the right side. Therefore, the flow rate difference when the valve is open is substantially the same as the flow rate difference when the valve is closed. As described above, since the turbine housing 105 of the comparative example does not satisfy the condition of the above expression (3), it is difficult to reduce the variation in the engine back pressure when the waste gate valve WV is open.
  • the inner diameter side bypass minimum area Ba of this embodiment is smaller than the outer diameter side bypass minimum area Bb.
  • the first exhaust minimum area Aa is larger than the second exhaust minimum area Ab.
  • the inner diameter side throat area Aia and the outer diameter side throat area Aib are approximately equal. Therefore, the inner diameter side effective area Aaf is larger than the outer diameter side effective area Abf.
  • the left side of the above equation (3) is smaller than the right side. Therefore, the flow rate difference when the valve is open is smaller than the flow rate difference when the valve is closed.
  • the turbine housing 5 of the present embodiment satisfies the condition of the above expression (3), so that it is possible to reduce variations in the engine back pressure when the waste gate valve WV is open.
  • the left side of the above equation (3) may become larger than the right side.
  • the flow rate difference when the valve is open becomes larger than the flow rate difference when the valve is closed.
  • the waste gate valve WV is changed from the closed state to the open state, there is a possibility that variations in engine back pressure increase. Therefore, in the turbine housing 5 of the present embodiment, it is preferable to set each flow passage cross-sectional area so as to satisfy the condition of the above expression (3).
  • the turbine T is incorporated in the turbocharger TC.
  • the present invention is not limited to this, and the turbine T may be incorporated in a device other than the supercharger TC or may be a single unit.
  • first exhaust minimum area Aa is larger than the second exhaust minimum area Ab.
  • present invention is not limited to this, and the first exhaust minimum area Aa may be smaller than the second exhaust minimum area Ab.
  • FIG. 7 is a sectional view taken along line AA of the turbine housing 205 in the modified example.
  • the turbine housing 205 includes an exhaust flow path 129 and a bypass flow path 239.
  • the exhaust flow path 129 includes an inner diameter side exhaust flow path 129a and an outer diameter side exhaust flow path 129b.
  • the inner diameter side exhaust flow path 129a has an inner diameter side turbine scroll flow path 133a.
  • the outer diameter side exhaust passage 129b has an outer diameter side turbine scroll passage 133b.
  • the turbine housing 205 in the modified example is the same as the turbine housing 5 in the above-described embodiment except for the configuration other than the inner diameter side turbine scroll passage 133a, the outer diameter side turbine scroll passage 133b, and the bypass passage 239.
  • the outer diameter side turbine scroll flow passage 133b has a longer flow passage length than the inner diameter side turbine scroll flow passage 133a. That is, the outer diameter side exhaust flow path 129b has a longer flow path length than the inner diameter side exhaust flow path 129a. In this case, the outer diameter side exhaust flow path 129b has a larger pressure loss than the inner diameter side exhaust flow path 129a. Therefore, it is preferable that the outer diameter side exhaust passage 129b has a larger passage sectional area than the inner diameter side exhaust passage 129a.
  • the flow passage cross-sectional area of the outer diameter side exhaust flow passage (first exhaust flow passage) 129b is calculated from the flow passage cross sectional area of the inner diameter side exhaust flow passage (second exhaust flow passage) 129a. It's getting bigger. That is, the second minimum exhaust area Ab is larger than the first minimum exhaust area Aa.
  • the flow passage cross-sectional area of the inner diameter side exhaust flow passage 129a and the outer diameter side exhaust flow passage 129b which has the longer flow passage length, is equal to that of the inner diameter side exhaust flow passage 129a and the outer diameter side exhaust flow passage 129b. It may be larger than the flow path cross-sectional area of the shorter path. As a result, the pressure loss of the inner diameter side exhaust flow path 129a and the outer diameter side exhaust flow path 129b, whichever has the longer flow path length, can be reduced.
  • the modified bypass flow path 239 has an inner diameter side bypass flow path 239a and an outer diameter side bypass flow path 239b.
  • the flow passage cross-sectional area of the inner diameter side bypass flow passage (second bypass flow passage) 239a is larger than the flow passage cross sectional area of the outer diameter side bypass flow passage (first bypass flow passage) 239b.
  • the inner diameter side bypass minimum area Ba of the inner diameter side bypass flow passage 239a having the smallest flow passage cross-sectional area is the outer diameter side bypass minimum area of the outer diameter side bypass flow passage 239b having the smallest flow passage cross sectional area. It is larger than the area Bb.
  • the flow passage cross-sectional area of the outer diameter side exhaust flow passage 129b is relatively larger than the flow passage cross sectional area of the inner diameter side exhaust flow passage 129a.
  • the flow passage cross-sectional area of the outer diameter side bypass flow passage 239b is relatively smaller than the flow passage cross sectional area of the inner diameter side bypass flow passage 239a.
  • the cross-sectional area of each of the exhaust flow path 129 and the bypass flow path 239 may be set so as to satisfy the condition of the above formula (3). As a result, the turbine housing 205 of the modified example can obtain the same effect as that of the above embodiment.
  • the present disclosure can be used for turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Abstract

タービンは、内径側排気流路29aと、内径側排気流路29aの流路断面積よりも小さい流路断面積を有する外径側排気流路29bと、内径側排気流路29aと排出流路とを接続する内径側バイパス流路39aと、外径側排気流路29bと排出流路とを接続し、内径側バイパス流路39aの流路断面積よりも大きい流路断面積を有する外径側バイパス流路39bと、を備える。

Description

タービン
 本開示は、タービンに関する。本出願は2019年3月6日に提出された日本特許出願第2019-040384号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
 過給機は、タービンを備える。特許文献1のタービンには、2つの排気流路が形成される。2つの排気流路は、タービンインペラの径方向に並んで配される。2つの排気流路は、タービンインペラの周方向の異なる位置で、タービンインペラを収容する収容部と連通する。
特開2017-180286号公報
 2つの排気流路には、通常、2つのバイパス流路が設けられる。2つのバイパス流路は、流路断面積が実質的に同じである。2つの排気流路は、レイアウト上の制約により、流路断面積が互いに異なる場合がある。2つの排気流路の流路断面積が互いに異なる場合、2つのバイパス流路を開いた状態で排気を行うと、エンジン背圧にばらつきが生じる。
 本開示の目的は、エンジン背圧のばらつきを低減することが可能なタービンを提供することである。
 上記課題を解決するために、本開示のタービンは、タービンインペラを収容する収容部が形成されたハウジングと、ハウジングに形成され、収容部と連通する第1排気流路と、ハウジングに形成され、収容部と第1排気流路が連通する位置に対し、タービンインペラの周方向の異なる位置で収容部と連通し、第1排気流路の流路断面積よりも小さい流路断面積を有する第2排気流路と、ハウジングに形成され、タービンインペラの軸方向において収容部と連通する排出流路と、第1排気流路と排出流路とを接続する第1バイパス流路と、第2排気流路と排出流路とを接続し、第1バイパス流路の流路断面積よりも大きい流路断面積を有する第2バイパス流路と、を備える。
 第2排気流路は、第1排気流路よりも流路長が長くてもよい。
 第1排気流路は、第2排気流路よりも流路長が長くてもよい。
 ハウジングのうち、第1排気流路の下流端に面する位置に設けられ、第1排気流路と第2排気流路とを区画する第1舌部と、ハウジングのうち、第2排気流路の下流端に面する位置に設けられ、第2排気流路と第1排気流路とを区画する第2舌部と、を備え、第1排気流路の流路断面積は、第1排気流路のうち第2舌部に面する部位の中で流路断面積が最小となる第1排気最小面積であり、第2排気流路の流路断面積は、第2排気流路のうち第1舌部に面する部位の中で流路断面積が最小となる第2排気最小面積であり、第1バイパス流路の流路断面積は、第1バイパス流路のうち流路断面積が最小となる第1バイパス最小面積であり、第2バイパス流路の流路断面積は、第2バイパス流路のうち流路断面積が最小となる第2バイパス最小面積であり、第1排気最小面積とタービンインペラのスロート面積により導出される第1有効面積と、第2排気最小面積とタービンインペラのスロート面積により導出される第2有効面積との差に比べ、第1有効面積および第1バイパス最小面積の合計と、第2有効面積および第2バイパス最小面積の合計との差の方が小さくてもよい。
 第1排気最小面積をAa、第2排気最小面積をAb、タービンインペラの総スロート面積をAi、タービンインペラのうち第1排気流路と対向する対向部位のスロート面積をAia、タービンインペラのうち第2排気流路と対向する対向部位のスロート面積をAib、タービンインペラのうち第1排気流路と対向する対向部位の中心角をθa、タービンインペラのうち第2排気流路と対向する対向部位の中心角をθb、第1有効面積をAaf、および、第2有効面積をAbfとした場合に、第1有効面積Aafは式(1)および式(1a)にて導出され、第2有効面積Abfは式(2)および式(2a)にて導出されてもよい。
Figure JPOXMLDOC01-appb-M000005
…(1)
Figure JPOXMLDOC01-appb-M000006
…(1a)
Figure JPOXMLDOC01-appb-M000007
…(2)
Figure JPOXMLDOC01-appb-M000008
…(2a)
 本開示によれば、エンジン背圧のばらつきを低減することが可能となる。
図1は、過給機の概略断面図である。 図2は、図1に示すタービンハウジングのA-A線断面図である。 図3は、タービンハウジングをウェイストゲートポート側から見た概略斜視図である。 図4は、比較例におけるタービンハウジングのA-A線断面図である。 図5は、タービンインペラの総スロート面積を説明するための図である。 図6は、タービンインペラの内径側スロート面積、および、外径側スロート面積を説明するための図である。 図7は、変形例におけるタービンハウジングのA-A線断面図である。
 以下に添付図面を参照しながら、本開示の一実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。
 図1は、過給機TCの概略断面図である。図1に示す矢印L方向を過給機TCの左側として説明する。図1に示す矢印R方向を過給機TCの右側として説明する。図1に示すように、過給機TCは、過給機本体1を備える。過給機本体1は、ベアリングハウジング3と、タービンハウジング(ハウジング)5と、コンプレッサハウジング7とを備える。タービンハウジング5は、ベアリングハウジング3の左側に締結機構9によって連結される。コンプレッサハウジング7は、ベアリングハウジング3の右側に締結ボルト11によって連結される。タービンTは、ベアリングハウジング3およびタービンハウジング5を含んで構成される。遠心圧縮機Cは、ベアリングハウジング3およびコンプレッサハウジング7を含んで構成される。
 ベアリングハウジング3の外周面には、突起3aが設けられている。突起3aは、タービンハウジング5側に設けられる。突起3aは、ベアリングハウジング3の径方向に突出する。タービンハウジング5の外周面には、突起5aが設けられている。突起5aは、ベアリングハウジング3側に設けられる。突起5aは、タービンハウジング5の径方向に突出する。ベアリングハウジング3とタービンハウジング5は、締結機構9によってバンド締結される。締結機構9は、例えば、Gカップリングで構成される。締結機構9は、突起3a、5aを挟持する。
 ベアリングハウジング3には、軸受孔3bが形成される。軸受孔3bは、過給機TCの左右方向に貫通する。軸受孔3bは、すべり軸受を介してシャフト13を回転自在に軸支する。シャフト13の左端部には、タービンインペラ15が設けられる。タービンインペラ15は、タービンハウジング5内に配される。タービンインペラ15は、タービンハウジング5に回転自在に収容されている。シャフト13の右端部にはコンプレッサインペラ17が設けられる。コンプレッサインペラ17は、コンプレッサハウジング7内に配される。コンプレッサインペラ17は、コンプレッサハウジング7に回転自在に収容されている。
 コンプレッサハウジング7には、吸気口19が形成される。吸気口19は、過給機TCの右側に開口する。吸気口19は、不図示のエアクリーナに接続される。ベアリングハウジング3とコンプレッサハウジング7の対向面によって、ディフューザ流路21が形成される。ディフューザ流路21は、空気を昇圧する。ディフューザ流路21は、環状に形成される。ディフューザ流路21は、シャフト13の径方向内側において、コンプレッサインペラ17を介して吸気口19に連通している。
 コンプレッサハウジング7には、コンプレッサスクロール流路23が形成される。コンプレッサスクロール流路23は、環状に形成される。コンプレッサスクロール流路23は、例えば、ディフューザ流路21よりもシャフト13の径方向外側に位置する。コンプレッサスクロール流路23は、不図示のエンジンの吸気口と、ディフューザ流路21とに連通している。コンプレッサインペラ17が回転すると、吸気口19からコンプレッサハウジング7内に空気が吸気される。吸気された空気は、コンプレッサインペラ17の翼間を流通する過程において加圧加速される。加圧加速された空気は、ディフューザ流路21およびコンプレッサスクロール流路23で昇圧される。昇圧された空気は、エンジンの吸気口に導かれる。
 タービンハウジング5には、排出流路25と、収容部27と、排気流路29とが形成される。排出流路25は、過給機TCの左側に開口する。排出流路25は、不図示の排気ガス浄化装置に接続される。排出流路25は、収容部27と連通する。排出流路25は、収容部27に対して、タービンインペラ15の回転軸方向に連続する。収容部27は、タービンインペラ15を収容する。排気流路29は、収容部27(タービンインペラ15)の径方向外側に配される。排気流路29は、収容部27と連通する。排気流路29は、収容部27に対して、タービンインペラ15の径方向に連続する。
 図2は、図1に示すタービンハウジング5のA-A線断面図である。図2では、タービンインペラ15について、外周のみを円で示す。図2に示すように、収容部27(タービンインペラ15)の径方向外側には、排気流路29が形成される。排気流路29は、連通部31と、タービンスクロール流路33と、排気導入口35と、排気導入路37とを備える。
 連通部31は、収容部27の全周に亘って環状に形成される。タービンスクロール流路33は、例えば、連通部31よりもタービンインペラ15の径方向外側に位置する。タービンスクロール流路33は、連通部31(収容部27)の全周に亘って環状に形成される。連通部31は、収容部27とタービンスクロール流路33とを連通させる。
 排気導入口35は、タービンハウジング5の外部に開口する。排気導入口35には、不図示のエンジンの排気マニホールドから排出される排気ガスが導入される。排気導入口35とタービンスクロール流路33との間には、排気導入路37が形成される。排気導入路37は、排気導入口35とタービンスクロール流路33とを接続する。排気導入路37は、例えば、直線状に形成される。排気導入路37は、排気導入口35から導入された排気ガスをタービンスクロール流路33に導く。タービンスクロール流路33は、排気導入路37から導入された排気ガスを、連通部31を介して収容部27に導く。このように、排気流路29は、排気導入口35、排気導入路37、タービンスクロール流路33および連通部31を含む。排気流路29は、排気導入口35から連通部31まで延在している。
 タービンハウジング5には、バイパス流路39が形成される。バイパス流路39は、排気流路29に入口端OPが開口し、排出流路25(図1参照)に出口端(後述するウェイストゲートポートWP)が開口する。より具体的に、バイパス流路39は、排気導入路37に入口端OPが開口し、排出流路25に出口端が開口する。バイパス流路39は、排気導入路37と排出流路25とを連通(接続)させる。
 バイパス流路39の出口端には、ウェイストゲートポートWP(図1参照)が形成される。バイパス流路39の出口端には、ウェイストゲートポートWPを開閉可能なウェイストゲートバルブWV(図1参照)が配される。ウェイストゲートバルブWVは、排出流路25内に配される。ウェイストゲートバルブWVがウェイストゲートポートWPを開いたとき、バイパス流路39は、排気導入路37を流通する排気ガスの一部を、収容部27(タービンインペラ15)を迂回して排出流路25に流出させる。
 タービンハウジング5には、仕切板41が形成される。仕切板41は、排気流路29内に配される。より具体的に、仕切板41は、排気導入口35、排気導入路37、および、タービンスクロール流路33内に配される。仕切板41は、排気導入口35、排気導入路37、および、タービンスクロール流路33の内面に対して、タービンインペラ15の回転軸方向(以下、仕切板41の短手方向ともいう)に接続される。仕切板41は、排気導入口35から離隔する方向に向かって延在する。仕切板41は、排気流路29に沿って延在する。つまり、仕切板41は、排気ガスが流れる排気流動方向(以下、仕切板41の長手方向ともいう)に沿って延在する。以下、排気流動方向の上流側を単に上流側といい、排気流動方向の下流側を単に下流側という。仕切板41は、上流側の端部が排気導入口35に配され、下流側の端部がタービンスクロール流路33と連通部31との間の位置(境界)に配される。
 仕切板41は、排気流路29をタービンインペラ15の径方向(以下、単に径方向という)に仕切る(分割する)。排気流路29は、仕切板41により内径側排気流路(第1排気流路)29aと外径側排気流路(第2排気流路)29bとに分割される。内径側排気流路29aは、外径側排気流路29bよりもタービンインペラ15の径方向内側に位置する。内径側排気流路29aは、外径側排気流路29bと径方向に並んで形成される。外径側排気流路29bは、内径側排気流路29aに比べて流路長が長い。
 仕切板41は、排気導入口35を径方向に分割する。排気導入口35は、仕切板41により内径側排気導入口35aと外径側排気導入口35bとに分割される。内径側排気導入口35aは、外径側排気導入口35bよりもタービンインペラ15の径方向内側に位置する。内径側排気導入口35aは、外径側排気導入口35bと径方向に並んで形成される。
 ここで、不図示の排気マニホールドは、2つ(複数)の分割路を備える。2つの分割路は、内径側排気導入口35aおよび外径側排気導入口35bにそれぞれ接続される。不図示のエンジンから排出される排気ガスは、排気マニホールドの2つの分割路を流通し、内径側排気導入口35aおよび外径側排気導入口35bに導入される。2つの分割路を流通する排気ガスのうち、一方は内径側排気導入口35aに導入され、他方は外径側排気導入口35bに導入される。
 仕切板41は、排気導入路37を径方向に分割する。排気導入路37は、仕切板41により内径側排気導入路37aと、外径側排気導入路37bとに分割される。内径側排気導入路37aは、外径側排気導入路37bよりもタービンインペラ15の径方向内側に位置する。内径側排気導入路37aは、外径側排気導入路37bとタービンインペラ15の径方向に並んで形成される。内径側排気導入路37aは、内径側排気導入口35aと連通する。外径側排気導入路37bは、外径側排気導入口35bと連通する。
 図3は、タービンハウジング5をウェイストゲートポートWP側から見た概略斜視図である。図3では、ウェイストゲートバルブWVの図示を省略している。図3に示すように、バイパス流路39内には、隔壁43が形成される。隔壁43は、一端がバイパス流路39の入口端OP(図2参照)に位置し、他端がバイパス流路39の出口端(ウェイストゲートポートWP)に位置する。
 隔壁43は、排気ガスがバイパス流路39を流れる排気流動方向(以下、隔壁43の長手方向ともいう)に沿って延在する。隔壁43は、隔壁43の長手方向と直交する短手方向Dにおいて、バイパス流路39の内面に接続される。隔壁43は、バイパス流路39を分割する。バイパス流路39は、隔壁43により内径側バイパス流路(第1バイパス流路)39aと、外径側バイパス流路(第2バイパス流路)39bとに分割される。
 図2に戻り、内径側バイパス流路39aは、内径側排気導入路37aと連通している。内径側バイパス流路39aは、内径側排気導入路37aと排出流路25(図1および図3参照)とを接続させる。内径側バイパス流路39aは、内径側排気導入路37aを流通する排気ガスの一部をウェイストゲートポートWP(図1および図3参照)に導く。外径側バイパス流路39bは、外径側排気導入路37bと連通している。外径側バイパス流路39bは、外径側排気導入路37bと排出流路25とを接続させる。外径側バイパス流路39bは、外径側バイパス流路39bを流通する排気ガスの一部をウェイストゲートポートWPに導く。
 仕切板41は、タービンスクロール流路33を径方向に分割する。タービンスクロール流路33は、仕切板41により内径側タービンスクロール流路33aと、外径側タービンスクロール流路33bとに分割される。内径側タービンスクロール流路33aは、外径側タービンスクロール流路33bよりも径方向内側に位置する。内径側タービンスクロール流路33aは、外径側タービンスクロール流路33bと径方向に並んで形成される。内径側タービンスクロール流路33aは、内径側排気導入路37aと連通する。外径側タービンスクロール流路33bは、外径側排気導入路37bと連通する。
 内径側タービンスクロール流路33aは、内径側排気導入路37aから遠ざかるにつれて径方向の幅が小さくなる。つまり、内径側タービンスクロール流路33aは、上流側から下流側に向かって径方向の幅が小さくなる。
 外径側タービンスクロール流路33bは、外径側排気導入路37bから遠ざかるにつれて径方向の幅が小さくなる。つまり、外径側タービンスクロール流路33bは、上流側から下流側に向かって径方向の幅が小さくなる。
 連通部31は、図2中、左側の半周において、内径側タービンスクロール流路33aと連通する。以下、連通部31のうち内径側タービンスクロール流路33aと連通する部分を、第1連通部31aという。連通部31は、図2中、右側の半周において、外径側タービンスクロール流路33bと連通する。以下、連通部31のうち外径側タービンスクロール流路33bと連通する部分を、第2連通部31bという。
 収容部27は、図2中、左側の半周において、第1連通部31aと連通する。第1連通部31aは、内径側タービンスクロール流路33aと収容部27との間に位置する。収容部27は、図2中、右側の半周において、第2連通部31bと連通する。第2連通部31bは、外径側タービンスクロール流路33bと収容部27との間に位置する。
 このように、収容部27は、図2中、左側の半周において、内径側排気流路29aと連通する。収容部27は、図2中、右側の半周において、外径側排気流路29bと連通する。収容部27は、内径側排気流路29aと連通する位置が、外径側排気流路29bと連通する位置とタービンインペラ15の周方向において異なる。換言すれば、収容部27は、第1連通部31aを介して内径側タービンスクロール流路33aと連通する位置が、第2連通部31bを介して外径側タービンスクロール流路33bと連通する位置とタービンインペラ15の周方向において異なる。
 タービンハウジング5には、第1舌部45aと、第2舌部45bとが形成される。第1舌部45aは、仕切板41の下流側の端部(すなわち、排気導入口35から離隔する側の端部)に形成される。第1舌部45aは、内径側タービンスクロール流路33aの下流側の端部(下流端)に面する位置に設けられる。第1舌部45aは、内径側タービンスクロール流路33aと外径側タービンスクロール流路33bとを区画する。
 第2舌部45bは、外径側タービンスクロール流路33bの下流側の端部(下流端)に面する位置に設けられる。第2舌部45bは、外径側タービンスクロール流路33bと内径側タービンスクロール流路33aとを区画する。
 第1舌部45aは、第2舌部45bに対して、タービンインペラ15の回転方向の位相が大凡180度ずれている。つまり、第1舌部45aおよび第2舌部45bは、タービンインペラ15の回転方向に等間隔で配されている。ただし、第1舌部45aは、第2舌部45bに対して、タービンインペラ15の回転方向の位相(位置)が異なればよい。第1舌部45aは、第2舌部45bに対して、位相のずれが大凡180度でなくてもよい。すなわち、第1舌部45aおよび第2舌部45bは、タービンインペラ15の回転方向に不等間隔に配されてもよい。第1舌部45aおよび第2舌部45bは、タービンインペラ15に対して径方向に対向する。
 図1に戻り、不図示のエンジンの排気マニホールドから排出された排気ガスは、排気流路29および収容部27を介して排出流路25に導かれる。排出流路25に導かれる排気ガスは、流通過程においてタービンインペラ15を回転させる。
 タービンインペラ15の回転力は、シャフト13を介してコンプレッサインペラ17に伝達される。コンプレッサインペラ17が回転すると、上記のとおりに空気が昇圧される。こうして、空気がエンジンの吸気口に導かれる。
 ところで、内径側排気流路29aおよび外径側排気流路29bは、レイアウト上の制約により、流路断面積が互いに異なる場合がある。本実施形態では、図2に示すように、内径側排気流路29aおよび外径側排気流路29bの流路断面積は、内径側タービンスクロール流路33aおよび外径側タービンスクロール流路33bの終端部(舌部)からの距離が等しい位置で比較した場合、互いに異なっている。内径側排気流路29aの流路断面積は、内径側タービンスクロール流路33aおよび外径側タービンスクロール流路33bの終端部(舌部)からの距離が等しい位置で比較した場合、外径側排気流路29bの流路断面積より大きい。例えば、内径側排気流路(第1排気流路)29aのうち第2舌部45bに面する部位の中で最小となる流路断面積を、第1排気最小面積Aaとする。外径側排気流路(第2排気流路)29bのうち第1舌部45aに面する部位の中で最小となる流路断面積を、第2排気最小面積Abとする。このとき、第1排気最小面積Aaは、第2排気最小面積Abより大きい。換言すれば、第2排気最小面積Abは、第1排気最小面積Aaよりも小さい。
 なお、本実施形態では、第1排気最小面積Aaが第2排気最小面積Abと異なる大きさを有する例について説明するが、これに限定されない。例えば、内径側排気流路29aのうち第2舌部45bに面する部位の中で流路断面積が最小(第1排気最小面積Aa)となる断面位置を、第1断面位置とする。外径側排気流路29bのうち第1舌部45aに面する部位の中で流路断面積が最小(第2排気最小面積Ab)となる断面位置を、第2断面位置とする。このとき、第1断面位置および第2断面位置を基準として、連通部31側(あるいは排気導入口35側)に所定距離ずれた断面位置において、内径側排気流路29aおよび外径側排気流路29bの流路断面積は、互いに異なってもよい。
 図4は、比較例におけるタービンハウジング105のA-A線断面図である。図4に示すように、タービンハウジング105は、バイパス流路139を備える。比較例におけるタービンハウジング105は、バイパス流路139以外の構成が、本実施形態におけるタービンハウジング5と同じである。バイパス流路139は、内径側バイパス流路139aと、外径側バイパス流路139bとを備える。内径側バイパス流路139aおよび外径側バイパス流路139bの流路断面積は、実質的に同じである。タービンハウジング105は、第1排気最小面積Aaおよび第2排気最小面積Abが互いに異なる。
 ここで、ウェイストゲートバルブWV(図1参照)を閉状態にすると、排気ガスは、バイパス流路139を流通せずに、排気流路29を流通する。このとき、排気ガスは、内径側排気流路29aおよび外径側排気流路29bの流路断面積に応じた流量で排気流路29を流通する。したがって、内径側排気流路29aを流通する排気ガスの流量(以下、単に内径側流量ともいう)と、外径側排気流路29bを流通する排気ガスの流量(以下、単に外径側流量ともいう)との間には、流量差が生じる。
 一方、ウェイストゲートバルブWV(図1参照)を開状態にすると、排気ガスは、排気流路29およびバイパス流路139を流通する。このとき、排気ガスは、内径側排気流路29a、外径側排気流路29b、内径側バイパス流路139a、および、外径側バイパス流路139bの流路断面積に応じた流量で排気流路29およびバイパス流路139を流通する。ここで、内径側バイパス流路139aおよび外径側バイパス流路139bの流路断面積は、実質的に同じである。
 したがって、内径側排気流路29aおよび内径側バイパス流路139aを流通する排気ガスの流量(以下、単に内径側流量ともいう)と、外径側排気流路29bおよび外径側バイパス流路139bを流通する排気ガスの流量(以下、単に外径側流量ともいう)との間には、流量差が生じる。ウェイストゲートバルブWV(図1参照)を開状態としたときの内径側流量と外径側流量との流量差は、ウェイストゲートバルブWVを閉状態としたときの内径側流量と外径側流量との流量差と大凡等しい。つまり、比較例のタービンハウジング105では、ウェイストゲートバルブWVを開いたとき、内径側流量と外径側流量との流量差が低減され難い。よって、比較例のタービンハウジング105は、ウェイストゲートバルブWVの開状態でエンジン背圧にばらつきが生じ、過給機TCの過給性能を低下させるおそれがある。
 そこで、図2に示すように、本実施形態のタービンハウジング5は、内径側バイパス流路39aおよび外径側バイパス流路39bの流路断面積を互いに異ならせている。具体的に、内径側バイパス流路39aおよび外径側バイパス流路39bの流路断面積は、内径側バイパス流路39aおよび外径側バイパス流路39bのウェイストゲートポートWPからの距離が等しい位置で比較した場合、互いに異なっている。本実施形態では、内径側バイパス流路39aおよび外径側バイパス流路39bのウェイストゲートポートWPからの距離が等しい位置で比較した場合、内径側バイパス流路39aの流路断面積は、外径側バイパス流路39bの流路断面積より小さい。換言すれば、外径側バイパス流路39bの流路断面積は、内径側バイパス流路39aの流路断面積より大きい。より具体的に、内径側バイパス流路39aの入口端OPの開口面積は、外径側バイパス流路39bの入口端OPの開口面積より小さい。
 図3に示すように、内径側バイパス流路39aのうち流路断面積が最小となる内径側バイパス最小面積(第1バイパス最小面積)Baは、外径側バイパス流路39bのうち流路断面積が最小となる外径側バイパス最小面積(第2バイパス最小面積)Bbより小さい。内径側バイパス最小面積Baは、例えば、内径側バイパス流路39aのウェイストゲートポートWPの開口面積である。外径側バイパス最小面積Bbは、例えば、外径側バイパス流路39bのウェイストゲートポートWPの開口面積である。つまり、内径側バイパス流路39aのウェイストゲートポートWPの開口面積は、外径側バイパス流路39bのウェイストゲートポートWPの開口面積より小さい。
 図2に示すように、内径側排気流路29aおよび外径側排気流路29bの流路断面積は、互いに異なる。本実施形態では、内径側排気流路29aの流路断面積(第1排気最小面積Aa)は、外径側排気流路29bの流路断面積(第2排気最小面積Ab)より大きい。換言すれば、外径側排気流路29bの流路断面積(第2排気最小面積Ab)は、内径側排気流路29aの流路断面積(第1排気最小面積Aa)よりも小さい。これにより、外径側排気流路29bの流路断面積(第2排気最小面積Ab)が内径側排気流路29aの流路断面積(第1排気最小面積Aa)と等しい場合に比べて、タービンスクロール流路33、ひいては、タービンハウジング5を小型化することができる。その結果、タービンハウジング5(過給機TC)のコストを低減することができる。
 このように、本実施形態におけるタービンハウジング5は、内径側バイパス流路39aの流路断面積(内径側バイパス最小面積Ba)が、外径側バイパス流路39bの流路断面積(外径側バイパス最小面積Bb)より小さい。タービンハウジング5は、内径側排気流路29a(第1排気最小面積Aa)が、外径側排気流路29b(第2排気最小面積Ab)より大きい。つまり、流路断面積が外径側排気流路29bより大きい内径側排気流路29aには、流路断面積が外径側バイパス流路39bより小さい内径側バイパス流路39aが接続されている。
 ここで、ウェイストゲートバルブWV(図1参照)を閉状態にすると、排気ガスは、バイパス流路39を流通せずに、排気流路29を流通する。このとき、排気ガスは、内径側排気流路29aおよび外径側排気流路29bの流路断面積に応じた流量で排気流路29を流通する。したがって、ウェイストゲートバルブWVが閉じた状態では、内径側流量と外径側流量との間に流量差が生じる。
 一方、ウェイストゲートバルブWV(図1参照)を開状態にすると、排気ガスは、排気流路29およびバイパス流路39を流通する。このとき、排気ガスは、内径側排気流路29a、外径側排気流路29b、内径側バイパス流路39a、および、外径側バイパス流路39bの流路断面積に応じた流量で排気流路29およびバイパス流路39を流通する。ここで、流路断面積が外径側排気流路29bより大きい内径側排気流路29aには、流路断面積が外径側バイパス流路39bより小さい内径側バイパス流路39aが接続されている。
 したがって、ウェイストゲートバルブWVが開いた状態における内径側流量と外径側流量との間の流量差は、ウェイストゲートバルブWVが閉じた状態における内径側流量と外径側流量との間の流量差より小さくなる。よって、本実施形態のタービンハウジング5は、ウェイストゲートバルブWVを開いた状態でのエンジン背圧のばらつきを低減させ、過給機TCの過給性能の低下を抑制することができる。
 ここで、ウェイストゲートバルブWV(図1参照)が閉状態であるときの、内径側排気流路29aを流通する排気ガスの流量を、バルブ閉時内径側流量という。ウェイストゲートバルブWVが開状態であるときの、内径側排気流路29aおよび内径側バイパス流路39aを流通する排気ガスの流量を、バルブ開時内径側流量という。
 同様に、ウェイストゲートバルブWV(図1参照)が閉状態であるときの、外径側排気流路29bを流通する排気ガスの流量を、バルブ閉時外径側流量という。ウェイストゲートバルブWVが閉状態であるときの、外径側排気流路29bおよび外径側バイパス流路39bを流通する排気ガスの流量を、バルブ開時外径側流量という。
 また、バルブ開時内径側流量とバルブ開時外径側流量との流量差を、バルブ開時流量差という。バルブ閉時内径側流量とバルブ閉時外径側流量との流量差を、バルブ閉時流量差という。
 本実施形態によれば、タービンハウジング5は、内径側排気流路29aの流路断面積が外径側排気流路29bの流路断面積と比べて相対的に大きい。タービンハウジング5は、内径側バイパス流路39aの流路断面積が外径側バイパス流路39bの流路断面積と比べて相対的に小さい。そのため、バルブ開時流量差を、バルブ閉時流量差より小さくすることができる。したがって、本実施形態のタービンハウジング5は、ウェイストゲートバルブWVを開いた状態でのエンジン背圧のばらつきを低減させ、過給機TCの過給性能の低下を抑制することができる。
 上記では、第1排気最小面積Aaおよび第2排気最小面積Abと、内径側バイパス最小面積Baおよび外径側バイパス最小面積Bbとの関係について説明した。以下では、排気ガスが内径側排気流路29aおよび外径側排気流路29bを介してタービンインペラ15を通過する際の有効面積と、内径側バイパス最小面積Baおよび外径側バイパス最小面積Bbとの関係について、詳細に説明する。
 ここで、排気ガスが内径側排気流路29aを介してタービンインペラ15を通過する際の有効面積を、内径側有効面積Aafとする。排気ガスが外径側排気流路29bを介してタービンインペラ15を通過する際の有効面積を、外径側有効面積Abfとする。内径側有効面積Aafおよび外径側有効面積Abfの詳細については、後述する。
 内径側排気流路29aの流路断面積をAa(本実施形態では、第1排気最小面積Aa)とする。外径側排気流路29bの流路断面積をAb(本実施形態では、第2排気最小面積Ab)とする。内径側バイパス流路39aの流路断面積をBa(本実施形態では、内径側バイパス最小面積Ba)とする。外径側バイパス流路39bの流路断面積をBb(本実施形態では、外径側バイパス最小面積Bb)とする。
 タービンインペラ15の総スロート面積をAiとする。タービンインペラ15のうち内径側排気流路29aと対向する対向部位のスロート面積(以下、内径側スロート面積という)をAiaとする。タービンインペラ15のうち外径側排気流路29bと対向する対向部位のスロート面積(以下、外径側スロート面積という)をAibとする。総スロート面積Ai、内径側スロート面積Aia、および、外径側スロート面積Aibの詳細については、後述する。
 タービンインペラ15のうち内径側排気流路29aと対向する対向部位(内径側スロート面積Aia)の中心角をθaとする。タービンインペラ15のうち外径側排気流路29bと対向する対向部位(外径側スロート面積Aib)の中心角をθbとする。中心角θa、θbの詳細については、後述する。
 このとき、内径側有効面積Aafは、以下の式(1)により導出される。
Figure JPOXMLDOC01-appb-M000009
…(1)
 式(1)において、内径側スロート面積Aiaは、以下の式(1a)により導出される。
Figure JPOXMLDOC01-appb-M000010
…(1a)
 式(1a)において、タービンインペラ15の総スロート面積Aiは、以下の式(1b)により近似的に導出される。
Figure JPOXMLDOC01-appb-M000011
…(1b)
 図5は、タービンインペラ15の総スロート面積Aiを説明するための図である。図5に示すように、タービンインペラ15は、ハブ15aおよび羽根15bを有する。ハブ15aは、シャフト13(図1参照)に設けられる。ハブ15aは、図5中左側ほど径が小さく、図5中右側ほど径が大きくなる形状である。羽根15bは、ハブ15aの外周面に設けられる。羽根15bは、ハブ15aの周方向に離隔して複数設けられる。タービンインペラ15の出口シュラウド径を「D4s」とし、タービンインペラ15の出口ハブ径を「D4h」とする。また、タービンインペラ15の出口シュラウド側の羽根角を「β4s」とする。このとき、タービンインペラ15の総スロート面積Aiは、上記式(1b)により導出される。
 図6は、タービンインペラ15の内径側スロート面積Aia、および、外径側スロート面積Aibを説明するための図である。図6に示すように、タービンインペラ15は、内径側排気流路29aと対向する対向部位FS1を備える。内径側スロート面積Aiaは、タービンインペラ15のうち対向部位FS1のスロート面積である。中心角θaは、タービンインペラ15のうち対向部位FS1(内径側スロート面積Aia)の中心角である。なお、中心角θaは、第1舌部45aと第2舌部45bとの内径側排気流路29a側における位相のずれと大凡等しい。
 タービンインペラ15は、外径側排気流路29bと対向する対向部位FS2を備える。外径側スロート面積Aibは、タービンインペラ15のうち対向部位FS2のスロート面積である。中心角θbは、タービンインペラ15のうち対向部位FS2(外径側スロート面積Aib)の中心角である。なお、中心角θbは、第1舌部45aと第2舌部45bとの外径側排気流路29b側における位相のずれと大凡等しい。本実施形態では、中心角θaは、中心角θbと大凡等しい。
 外径側有効面積Abfは、以下の式(2)により導出される。
Figure JPOXMLDOC01-appb-M000012
…(2)
 式(2)において、外径側スロート面積Aibは、以下の式(2a)により導出される。
Figure JPOXMLDOC01-appb-M000013
…(2a)
 上記式(1)に示すように、内径側有効面積(第1有効面積)Aafは、内径側排気流路29aの流路断面積(第1排気最小面積Aa)とタービンインペラ15のスロート面積(内径側スロート面積Aia)とにより導出される面積である。上記式(2)に示すように、外径側有効面積(第2有効面積)Abfは、外径側排気流路29bの流路断面積(第2排気最小面積Ab)とタービンインペラ15のスロート面積(外径側スロート面積Aib)とにより導出される面積である。
 本実施形態では、内径側有効面積Aafと外径側有効面積Abfとの差は、内径側有効面積Aafおよび内径側バイパス最小面積Baの合計と、外径側有効面積Abfおよび外径側バイパス最小面積Bbの合計との差より大きい。つまり、内径側有効面積Aafと外径側有効面積Abfとの差に比べ、内径側有効面積Aafおよび内径側バイパス最小面積Baの合計と、外径側有効面積Abfおよび外径側バイパス最小面積Bbの合計との差の方が小さい。内径側有効面積Aafと外径側有効面積Abfとの差は、以下の式(3)の条件を満たす。
Figure JPOXMLDOC01-appb-M000014
…(3)
 ここで、ウェイストゲートバルブWV(図1参照)が閉状態であるとき、内径側排気流路29aを流通する排気ガスの流量(バルブ閉時内径側流量)は、内径側有効面積Aafによって導出される。ウェイストゲートバルブWVが開状態であるとき、内径側排気流路29aおよび内径側バイパス流路39aを流通する排気ガスの流量(バルブ開時内径側流量)は、内径側有効面積Aafおよび内径側バイパス最小面積Baによって導出される。
 同様に、ウェイストゲートバルブWV(図1参照)が閉状態であるとき、外径側排気流路29bを流通する排気ガスの流量(バルブ閉時外径側流量)は、外径側有効面積Abfによって導出される。ウェイストゲートバルブWVが開状態であるとき、外径側排気流路29bおよび外径側バイパス流路39bを流通する排気ガスの流量(バルブ開時外径側流量)は、外径側有効面積Abfおよび外径側バイパス最小面積Bbによって導出される。
 したがって、上記式(3)の左辺は、バルブ開時内径側流量とバルブ開時外径側流量との流量差(バルブ開時流量差)に応じた値を表しているといえる。上記式(3)の右辺は、バルブ閉時内径側流量とバルブ閉時外径側流量との流量差(バルブ閉時流量差)に応じた値を表しているといえる。よって、上記式(3)は、バルブ開時流量差が、バルブ閉時流量差よりも小さくなる条件を示している。
 例えば、比較例の内径側バイパス流路139a(図4参照)および外径側バイパス流路139b(図4参照)の流路断面積は、実質的に同じである。つまり、内径側バイパス最小面積Baは、外径側バイパス最小面積Bbと実質的に同じである。このとき、上記式(3)の左辺は、右辺と等しくなる。したがって、バルブ開時流量差は、バルブ閉時流量差と実質的に変わらない。このように、比較例のタービンハウジング105は、上記式(3)の条件を満たしていないため、ウェイストゲートバルブWVを開いた状態でのエンジン背圧のばらつきを低減させることが困難である。
 一方、本実施形態の内径側バイパス最小面積Baは、外径側バイパス最小面積Bbより小さい。ここで、第1排気最小面積Aaは、第2排気最小面積Abより大きい。内径側スロート面積Aiaおよび外径側スロート面積Aibは、大凡等しい。そのため、内径側有効面積Aafは、外径側有効面積Abfより大きくなる。このとき、上記式(3)の左辺は、右辺より小さくなる。したがって、バルブ開時流量差は、バルブ閉時流量差より小さくなる。このように、本実施形態のタービンハウジング5は、上記式(3)の条件を満たしているため、ウェイストゲートバルブWVを開いた状態でのエンジン背圧のばらつきを低減させることができる。
 なお、内径側バイパス最小面積Baを外径側バイパス最小面積Bbより小さくすると、上記式(3)の左辺が右辺より大きくなる場合がある。その場合、バルブ開時流量差は、バルブ閉時流量差より大きくなる。そうすると、ウェイストゲートバルブWVを閉状態から開状態にした際に、エンジン背圧のばらつきが増加するおそれがある。したがって、本実施形態のタービンハウジング5は、上記式(3)の条件を満たすように、各流路断面積を設定することが好ましい。
 このように、本実施形態のタービンハウジング5は、上記式(3)の条件を満たすことで、ウェイストゲートバルブWVを開いた状態でのエンジン背圧のばらつきをより確実に低減させることができる。
 以上、添付図面を参照しながら本開示の一実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、タービンTが過給機TCに組み込まれる例について説明した。しかし、これに限定されず、タービンTは、過給機TC以外の装置に組み込まれてもよいし、単体であってもよい。
 上記実施形態では、第1排気最小面積Aaが、第2排気最小面積Abよりも大きい例について説明した。しかし、これに限定されず、第1排気最小面積Aaは、第2排気最小面積Abよりも小さくてもよい。
 図7は、変形例におけるタービンハウジング205のA-A線断面図である。図7に示すように、タービンハウジング205は、排気流路129およびバイパス流路239を備える。排気流路129は、内径側排気流路129aおよび外径側排気流路129bを備える。内径側排気流路129aは、内径側タービンスクロール流路133aを有する。外径側排気流路129bは、外径側タービンスクロール流路133bを有する。変形例におけるタービンハウジング205は、内径側タービンスクロール流路133a、外径側タービンスクロール流路133b、バイパス流路239以外の構成が、上記実施形態におけるタービンハウジング5と同じである。
 ここで、外径側タービンスクロール流路133bは、内径側タービンスクロール流路133aに比べて流路長が長い。つまり、外径側排気流路129bは、内径側排気流路129aに比べて流路長が長い。この場合、外径側排気流路129bは、内径側排気流路129aに比べて圧力損失が大きくなる。したがって、外径側排気流路129bは、内径側排気流路129aに比べて大きい流路断面積を備えることが好ましい。
 そこで、変形例のタービンハウジング205は、外径側排気流路(第1排気流路)129bの流路断面積を、内径側排気流路(第2排気流路)129aの流路断面積より大きくしている。つまり、第2排気最小面積Abは、第1排気最小面積Aaよりも大きい。このように、内径側排気流路129aおよび外径側排気流路129bのうち流路長が長い方の流路断面積は、内径側排気流路129aおよび外径側排気流路129bのうち流路長が短い方の流路断面積より大きくてもよい。これにより、内径側排気流路129aおよび外径側排気流路129bのうち流路長が長い方の圧力損失を低減させることができる。
 変形例のバイパス流路239は、内径側バイパス流路239aおよび外径側バイパス流路239bを有する。内径側バイパス流路(第2バイパス流路)239aの流路断面積は、外径側バイパス流路(第1バイパス流路)239bの流路断面積よりも大きい。具体的に、内径側バイパス流路239aのうち流路断面積が最小となる内径側バイパス最小面積Baは、外径側バイパス流路239bのうち流路断面積が最小となる外径側バイパス最小面積Bbよりも大きい。つまり、タービンハウジング205は、外径側排気流路129bの流路断面積が内径側排気流路129aの流路断面積と比べて相対的に大きい。タービンハウジング205は、外径側バイパス流路239bの流路断面積が内径側バイパス流路239aの流路断面積と比べて相対的に小さい。なお、排気流路129およびバイパス流路239の各流路断面積は、上記式(3)の条件を満たすように設定されてもよい。これにより、変形例のタービンハウジング205は、上記実施形態と同様の作用効果を得ることができる。
 本開示は、タービンに利用することができる。
5:タービンハウジング(ハウジング) 15:タービンインペラ 25:排出流路 27:収容部 29a:内径側排気流路(第1排気流路) 29b:外径側排気流路(第2排気流路) 39a:内径側バイパス流路(第1バイパス流路) 39b:外径側バイパス流路(第2バイパス流路) 45a:第1舌部 45b:第2舌部 129a:内径側排気流路(第2排気流路) 129b:外径側排気流路(第1排気流路) 239a:内径側バイパス流路(第2バイパス流路) 239b:外径側バイパス流路(第1バイパス流路) Aa:第1排気最小面積 Ab:第2排気最小面積 Aaf:内径側有効面積(第1有効面積) Abf:外径側有効面積(第2有効面積) Ai:総スロート面積 Aia:内径側スロート面積 Aib:外径側スロート面積 Ba:内径側バイパス最小面積(第1バイパス最小面積) Bb:外径側バイパス最小面積(第2バイパス最小面積) T:タービン

Claims (5)

  1.  タービンインペラを収容する収容部が形成されたハウジングと、
     前記ハウジングに形成され、前記収容部と連通する第1排気流路と、
     前記ハウジングに形成され、前記収容部と前記第1排気流路が連通する位置に対し、前記タービンインペラの周方向の異なる位置で前記収容部と連通し、前記第1排気流路の流路断面積よりも小さい流路断面積を有する第2排気流路と、
     前記ハウジングに形成され、前記タービンインペラの軸方向において前記収容部と連通する排出流路と、
     前記第1排気流路と前記排出流路とを接続する第1バイパス流路と、
     前記第2排気流路と前記排出流路とを接続し、前記第1バイパス流路の流路断面積よりも大きい流路断面積を有する第2バイパス流路と、
    を備えるタービン。
  2.  前記第2排気流路は、前記第1排気流路よりも流路長が長い請求項1に記載のタービン。
  3.  前記第1排気流路は、前記第2排気流路よりも流路長が長い請求項1に記載のタービン。
  4.  前記ハウジングのうち、前記第1排気流路の下流端に面する位置に設けられ、前記第1排気流路と前記第2排気流路とを区画する第1舌部と、
     前記ハウジングのうち、前記第2排気流路の下流端に面する位置に設けられ、前記第2排気流路と前記第1排気流路とを区画する第2舌部と、
    を備え、
     前記第1排気流路の前記流路断面積は、前記第1排気流路のうち前記第2舌部に面する部位の中で流路断面積が最小となる第1排気最小面積であり、
     前記第2排気流路の前記流路断面積は、前記第2排気流路のうち前記第1舌部に面する部位の中で流路断面積が最小となる第2排気最小面積であり、
     前記第1バイパス流路の前記流路断面積は、前記第1バイパス流路のうち流路断面積が最小となる第1バイパス最小面積であり、
     前記第2バイパス流路の前記流路断面積は、前記第2バイパス流路のうち流路断面積が最小となる第2バイパス最小面積であり、
     前記第1排気最小面積と前記タービンインペラのスロート面積により導出される第1有効面積と、前記第2排気最小面積と前記タービンインペラのスロート面積により導出される第2有効面積との差に比べ、前記第1有効面積および前記第1バイパス最小面積の合計と、前記第2有効面積および前記第2バイパス最小面積の合計との差の方が小さい請求項1~3のいずれか1項に記載のタービン。
  5.  前記第1排気最小面積をAa、前記第2排気最小面積をAb、前記タービンインペラの総スロート面積をAi、前記タービンインペラのうち前記第1排気流路と対向する対向部位のスロート面積をAia、前記タービンインペラのうち前記第2排気流路と対向する対向部位のスロート面積をAib、前記タービンインペラのうち前記第1排気流路と対向する対向部位の中心角をθa、前記タービンインペラのうち前記第2排気流路と対向する対向部位の中心角をθb、前記第1有効面積をAaf、および、前記第2有効面積をAbfとした場合に、前記第1有効面積Aafは式(1)および式(1a)にて導出され、前記第2有効面積Abfは式(2)および式(2a)にて導出される請求項4記載のタービン。
    Figure JPOXMLDOC01-appb-M000001
    …(1)
    Figure JPOXMLDOC01-appb-M000002
    …(1a)
    Figure JPOXMLDOC01-appb-M000003
    …(2)
    Figure JPOXMLDOC01-appb-M000004
    …(2a)
PCT/JP2019/034397 2019-03-06 2019-09-02 タービン WO2020179107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980093778.2A CN113544369B (zh) 2019-03-06 2019-09-02 涡轮机
JP2021503390A JP7151866B2 (ja) 2019-03-06 2019-09-02 タービン
DE112019006976.4T DE112019006976T5 (de) 2019-03-06 2019-09-02 Turbine
US17/404,490 US11492916B2 (en) 2019-03-06 2021-08-17 Turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040384 2019-03-06
JP2019040384 2019-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/404,490 Continuation US11492916B2 (en) 2019-03-06 2021-08-17 Turbine

Publications (1)

Publication Number Publication Date
WO2020179107A1 true WO2020179107A1 (ja) 2020-09-10

Family

ID=72337802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034397 WO2020179107A1 (ja) 2019-03-06 2019-09-02 タービン

Country Status (5)

Country Link
US (1) US11492916B2 (ja)
JP (1) JP7151866B2 (ja)
CN (1) CN113544369B (ja)
DE (1) DE112019006976T5 (ja)
WO (1) WO2020179107A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151040U (ja) * 1985-03-13 1986-09-18
JPS61178034U (ja) * 1985-04-26 1986-11-06
JPH0196428A (ja) * 1987-10-09 1989-04-14 Hitachi Ltd 過給機の排気バイパス
US20180238226A1 (en) * 2015-02-25 2018-08-23 Kangyue Technology Co., Ltd. Variable geometry wastegate turbine meeting the requirements of egr circulation
JP2018172989A (ja) * 2017-03-31 2018-11-08 株式会社Ihi 過給機

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137619A (en) 1981-02-18 1982-08-25 Hitachi Ltd Exhaust bypass device of turbocharger for multi- cylinder engine
JPS59203821A (ja) 1983-05-02 1984-11-19 Honda Motor Co Ltd タ−ボチヤ−ジヤ装置
JPS618421A (ja) * 1984-06-22 1986-01-16 Toyota Motor Corp タ−ボチヤ−ジヤの排気バイパス装置
JPH065022B2 (ja) 1985-07-18 1994-01-19 マツダ株式会社 排気タ−ボ過給機付エンジン
JPS62279233A (ja) 1986-05-28 1987-12-04 Hitachi Ltd 可変容量タ−ボチヤ−ジヤ
US5046317A (en) * 1989-06-09 1991-09-10 Allied-Signal Inc. Wastegate valve for turbocharger
DE102004030703A1 (de) * 2004-06-25 2006-03-09 Daimlerchrysler Ag Abgasturbolader für eine Hubkolben-Brennkraftmaschine und Hubkolben-Brennkraftmaschine
DE102004034070A1 (de) * 2004-07-15 2006-02-09 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader
JP4548237B2 (ja) 2005-06-17 2010-09-22 トヨタ自動車株式会社 ターボチャージャのツインスクロールタービンハウジング
GB0610691D0 (en) * 2006-05-31 2006-07-12 Cummins Turbo Technologies Turbocharger with dual wastegate
JP2009287434A (ja) 2008-05-28 2009-12-10 Toyota Motor Corp 内燃機関の排気還流装置
JP5665486B2 (ja) 2010-11-04 2015-02-04 三菱重工業株式会社 ツインスクロール型ターボチャージャのタービンハウジング
JP5589934B2 (ja) * 2011-04-05 2014-09-17 株式会社デンソー タービン及びターボチャージャ
CN102383877A (zh) * 2011-10-08 2012-03-21 康跃科技股份有限公司 可变几何的脉冲进气涡轮机的蜗壳装置
US10227889B2 (en) * 2015-02-05 2019-03-12 Garrett Transportation I Inc. Variable geometry nozzle for partitioned volute
KR20170067960A (ko) * 2015-12-08 2017-06-19 현대자동차주식회사 차량의 터보차져 구조
JP6754596B2 (ja) 2016-03-30 2020-09-16 三菱重工業株式会社 2ステージターボシステムおよび2ステージターボシステムの制御方法
DE102017202211B4 (de) * 2017-02-13 2021-01-21 Volkswagen Aktiengesellschaft Brennkraftmaschine
WO2018151267A1 (ja) * 2017-02-16 2018-08-23 株式会社Ihi 過給機
JP6861126B2 (ja) 2017-08-25 2021-04-21 ニッタン株式会社 情報発信アダプタ
CN113661314A (zh) * 2019-04-10 2021-11-16 株式会社Ihi 涡轮以及增压器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151040U (ja) * 1985-03-13 1986-09-18
JPS61178034U (ja) * 1985-04-26 1986-11-06
JPH0196428A (ja) * 1987-10-09 1989-04-14 Hitachi Ltd 過給機の排気バイパス
US20180238226A1 (en) * 2015-02-25 2018-08-23 Kangyue Technology Co., Ltd. Variable geometry wastegate turbine meeting the requirements of egr circulation
JP2018172989A (ja) * 2017-03-31 2018-11-08 株式会社Ihi 過給機

Also Published As

Publication number Publication date
CN113544369B (zh) 2023-04-04
CN113544369A (zh) 2021-10-22
US11492916B2 (en) 2022-11-08
DE112019006976T5 (de) 2021-11-18
JP7151866B2 (ja) 2022-10-12
JPWO2020179107A1 (ja) 2021-12-09
US20210372318A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP5369723B2 (ja) 遠心圧縮機
JP6413980B2 (ja) ターボチャージャの排気タービン
WO2016035329A1 (ja) ターボチャージャの排気タービン
JP6780714B2 (ja) 過給機
JP7364082B2 (ja) タービンおよび過給機
JP2007023894A (ja) ターボ過給機
JP2007023893A (ja) ターボ過給機
JP6922339B2 (ja) 過給機
WO2020179107A1 (ja) タービン
WO2020209146A1 (ja) タービンおよび過給機
US20190078507A1 (en) Turbocharger
JP7424540B2 (ja) タービンおよび過給機
WO2020003649A1 (ja) タービンおよび過給機
WO2020105474A1 (ja) 排気タービン装置
WO2020050051A1 (ja) タービンおよび過給機
WO2024053148A1 (ja) タービン
JP7491151B2 (ja) タービンおよび過給機
JP7566881B2 (ja) タービン
JP7232352B2 (ja) コンプレッサおよび該コンプレッサを備えるターボチャージャ
WO2022196234A1 (ja) タービンおよび過給機
WO2020050052A1 (ja) 斜流タービンおよび過給機
US20230272738A1 (en) Turbine and turbocharger
JP2023131315A (ja) 過給機
JP5392285B2 (ja) タービン、及びこれを備えたターボチャージャ
JP2023148347A (ja) タービンおよび過給機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503390

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19917669

Country of ref document: EP

Kind code of ref document: A1