WO2020179051A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2020179051A1
WO2020179051A1 PCT/JP2019/009040 JP2019009040W WO2020179051A1 WO 2020179051 A1 WO2020179051 A1 WO 2020179051A1 JP 2019009040 W JP2019009040 W JP 2019009040W WO 2020179051 A1 WO2020179051 A1 WO 2020179051A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
tooth
spiral
groove
orbiting scroll
Prior art date
Application number
PCT/JP2019/009040
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 木本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/009040 priority Critical patent/WO2020179051A1/en
Priority to JP2019539875A priority patent/JP6608101B1/en
Publication of WO2020179051A1 publication Critical patent/WO2020179051A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor including a fixed scroll and an orbiting scroll.
  • the scroll compressor includes a fixed scroll having spiral spiral teeth formed so as to project on a fixed base plate, and an orbiting scroll having spiral spiral teeth formed so as to protrude on a rocking base plate. It is prepared so that the spiral teeth of each other mesh with each other.
  • the plurality of compression chambers formed by the fixed scroll and the orbiting scroll are gradually reduced from the outer side toward the inner side. It is for compression.
  • the present invention is to solve the above problems, and an object of the present invention is to provide a scroll compressor capable of suppressing a decrease in compression efficiency due to refrigerant gas leakage while preventing seizure of the tips of spiral teeth.
  • a scroll compressor includes a fixed scroll having spiral spiral teeth formed on a fixed base plate, and a swing having spiral spiral teeth formed on a swing base plate.
  • a scroll and so that the spiral teeth of each other mesh with each other, orbitally revolving the orbiting scroll with respect to the fixed scroll, a plurality of compression chambers configured by the fixed scroll and the orbiting scroll,
  • a scroll compressor that compresses by gradually reducing from the outer side to the inner side, wherein at least one of the fixed scroll or the orbiting scroll has spiral teeth on a side surface from a root side to a tip side.
  • a plurality of groove portions for allowing the lubricating oil to flow therethrough each groove portion being provided to be inclined with respect to the central axis direction of the fixed scroll or the orbiting scroll, and the end on the tooth tip side.
  • the non-stacked portion is provided with a constant interval between the groove portions adjacent to each other in the rotation direction of the orbiting scroll in the rotation direction in each of the groove portions so as not to overlap each other in the rotation direction. It has been formed.
  • the groove portion provided on the side surface of at least one spiral tooth of the fixed scroll or the orbiting scroll allows the lubricating oil collected at the tooth bottom by the pressure difference between the adjacent compression chambers to be tooth bottom. Side to tip side.
  • the non-stacked portions are formed between the groove portions adjacent to each other in the rotation direction of the orbiting scroll, the non-stacked portions having a constant interval that does not overlap each other in the rotation direction are formed. It is possible to prevent the refrigerant gas from leaking.
  • the scroll compressor of the present invention it is possible to prevent seizure of the tips of the spiral teeth while suppressing a decrease in compression efficiency due to refrigerant gas leakage.
  • FIG. 7 is a vertical cross-sectional view showing a compression mechanism portion of a scroll compressor according to a modified example of the first embodiment of the present invention. It is a side view which shows the swing scroll which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a vertical sectional view showing a scroll compressor 1 according to Embodiment 1 of the present invention.
  • the scroll compressor 1 includes a compression mechanism unit 10 and an electric motor unit 20 for driving the compression mechanism unit 10 inside the closed container 2.
  • the compression mechanism unit 10 includes a fixed scroll 11 and an orbiting scroll 12.
  • the electric motor unit 20 includes a rotor 21 and a stator 22, and drives the compression mechanism unit 10 via the main shaft 30.
  • the main shaft 30 drives the compression mechanism unit 10 when the rotor 21 of the electric motor unit 20 is fixed by shrink fitting or the like and rotates as the rotor 21 rotates. Further, the refrigerating machine oil 51 is stored in the oil sump 50 located at the lower part of the scroll compressor 1, and the refrigerating machine oil 51 is sucked up by the oil supply mechanism 31 provided at the lower end of the main shaft 30 and is sucked up in each sliding portion. Supplied. The refrigerating machine oil 51 sucked up to the tip of the main shaft 30 is carried to the compression chamber 14 via the installation space of the old dam ring 13, moves to the center of the spiral with the compression of the refrigerant gas, and is returned to the closed container 2 again.
  • FIG. 2 is a perspective view showing the orbiting scroll 12 in the scroll compressor 1 of FIG.
  • FIG. 3 is a cross-sectional view showing the compression mechanism section 10 of the scroll compressor 1 of FIG. 1 as viewed from below.
  • FIG. 4 is a schematic view showing a side surface of the compression mechanism portion 10 of FIG. 3 when viewed from the direction A.
  • FIG. 5 is a schematic diagram showing a state of the orbiting scroll 12 of FIG. 4 during operation.
  • the compression mechanism portion 10 of the scroll compressor 1 meshes the spiral spiral teeth 111 of the fixed scroll 11 and the spiral spiral teeth 121 of the orbiting scroll 12 with each other.
  • the fixed scroll 11 includes spiral teeth 111 provided in a spiral shape on the fixed base plate.
  • a suction pipe 61 for sucking the refrigerant gas and a suction port 41 for taking in the low-temperature refrigerant gas sucked from the suction pipe 61 are provided on the side of the fixed scroll 11.
  • a discharge port 42 for discharging a compressed gas as a heating medium is provided in the central portion of the fixed scroll 11.
  • a suction pipe 61 is press-fitted into the fixed scroll 11.
  • the outer peripheral portion of the fixed scroll 11 is fastened to the guide frame 19 with a bolt (not shown).
  • the orbiting scroll 12 has spiral teeth 121 provided in a spiral shape on the orbiting base plate 12a.
  • the fixed scroll 11 and the orbiting scroll 12 are installed so that the respective spiral teeth 111 and 121 are meshed with each other, thereby forming the compression chamber 14.
  • the orbiting scroll 12 is provided with an orbiting bearing 3 and is rotatably supported by the orbiting shaft portion 30a at the upper end of the main shaft 30. Further, the swing scroll 12 is engaged with the oldham mechanism 4 so as to be reciprocally slidable.
  • the orbiting scroll 12 is capable of eccentric orbital motion without rotating about the fixed scroll 11.
  • a space 5 is provided below the guide frame 19, and a discharge pipe 62 communicating with the outside of the scroll compressor 1 is connected to the space 5.
  • a discharge gas space 6 is provided in the upper part of the closed container 2 as a space in which the compressed gas sucked into the compression chamber 14 from the outside is compressed and discharged as a heating medium of high temperature and high pressure.
  • the spiral tooth 121 of the swing scroll 12 has a plurality of groove portions 15 on the outward side surface for flowing the refrigerating machine oil 51 as lubricating oil from the tooth bottom 123 side to the tooth tip 122 side.
  • These groove portions 15 are provided so as to be inclined with respect to the central axis direction of the orbiting scroll 12 in the direction opposite to the rotation direction X of the orbiting scroll 12. That is, each groove 15 is inclined in the direction opposite to the rotation direction X of the orbiting scroll 12 from the end portion 15a serving as the starting point on the tooth bottom 123 side toward the end portion 15b on the tooth tip 122 side. Further, these groove portions 15 are formed so that the end portions 15b on the tooth tip 122 side are opened. Further, between the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12 in the groove portions 15, there is formed a non-stacked portion L1 provided with a constant interval that does not overlap each other in the rotation direction X. There is.
  • the compression mechanism unit 10 takes in the low-temperature refrigerant gas sucked from the suction pipe 61 from the suction port 41, and fills the compression chamber 14 formed by the spiral teeth 111 and 121 of the fixed scroll 11 and the swing scroll 12 with the refrigerant gas.
  • the orbiting scroll 12 eccentrically orbits with respect to the fixed scroll 11 as the main shaft 30 rotates, and the volume of the compression chamber 14 is sequentially reduced to compress the refrigerant gas, and the refrigerant gas is discharged from the discharge port 42 into the closed container 2. ..
  • the refrigerating machine oil 51 sucked from the oil sump 50 also flows into the compression chamber 14 and is carried to the center of the spiral together with the refrigerant gas.
  • the discharge gas discharged as the heating medium is filled in the discharge gas space 6 in the closed container 2, passes through the space 5 under the guide frame 19, and is discharged from the discharge pipe 62 to the outside of the scroll compressor 1. Is exhaled.
  • the refrigerating machine oil 51 taken in together with the refrigerant gas collects on the bottom of the compression chamber 14 and lubricates the sliding parts of the fixed scroll 11 and the orbiting scroll 12.
  • the pressure in the plurality of compression chambers 14 is higher toward the center of the spiral, and for example, in the compression chambers 14H and 14L, 14H has a higher pressure.
  • the tooth tip 122 side of each groove 15 is inclined in a direction opposite to the rotation direction X of the orbiting scroll 12. Therefore, when paying attention to one groove portion 15, the refrigerating machine oil 51 moves from the bottom 123 side of the compression chamber 14L side where the refrigerating machine oil 51 is accumulated to the adjacent compression chamber 14H side.
  • the pressure on the tooth bottom 123 side of the groove 15 is higher than that on the tooth tip 122 side. Therefore, the refrigerating machine oil 51 is pushed up along the groove 15 by this pressure difference, moves to the tooth tip 122 side of the orbiting scroll 12, and the tooth tip 122 side can be lubricated.
  • the groove portion 15 When the groove portion 15 is provided on the side surface of the spiral tooth 121, the groove portion 15 functions as a communication path between the compression chambers 14, and the refrigerant gas may leak from the high pressure side to the low pressure side, which may cause a decrease in efficiency. .. Therefore, in the scroll compressor 1 according to the first embodiment, a non-product is provided between the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12 with a certain interval that does not overlap each other in the rotation direction X. The overlapping portion L1 is formed. Therefore, there is always one groove 15 for each partition of the compression chamber 14, the amount of refrigerant gas leakage is very small, and the refrigerator oil 51 is guided to the tooth tip 122 side while suppressing a decrease in compression efficiency.
  • the refrigerating machine oil 51 guided to the tooth tip 122 side has flowed into the compression chamber 14 and is not supplied from the high temperature back pressure chamber or the like. Therefore, loss such as the refrigerant gas being heated by the high-temperature refrigerating machine oil 51 can be suppressed, and the compressor efficiency can be improved.
  • the rotation direction of the swing scroll 12 is on the side surface of the spiral teeth 121 of the swing scroll 12 with respect to the central axis direction of the swing scroll 12.
  • a plurality of groove portions 15 inclined in the direction opposite to X are provided. Therefore, these groove portions 15 can guide the refrigerating machine oil 51 accumulated on the tooth bottom 123 side due to the pressure difference between the adjacent compression chambers 14 from the tooth bottom 123 side to the tooth tip 122 side.
  • non-stacked portions L1 provided with a constant interval so as not to overlap each other in the rotation direction X are formed.
  • the scroll compressor 1 of the first embodiment it is possible to prevent a seizure of the tooth tip 122 of the spiral tooth 121 and suppress a decrease in compression efficiency due to a refrigerant gas leak.
  • the groove 15 is provided on the side surface of the spiral tooth 121 of the orbiting scroll 12
  • the present invention is not limited to this.
  • the groove portion 15 may be similarly formed on the side surface of the spiral tooth 111 of the fixed scroll 11, or, as described later, the side surface of the spiral tooth 111 of the fixed scroll 11 and the spiral tooth 121 of the orbiting scroll 12. It may be formed on both sides.
  • the inclination direction of the groove portion 15 may be the same direction as the rotation direction X of the orbiting scroll 12 as described later.
  • FIG. 6 is a vertical cross-sectional view showing the compression mechanism section 10 of the scroll compressor 1 according to the modified example of the first embodiment of the present invention.
  • the groove portion 15 can be formed not only on the outer surface of the orbiting scroll 12 but also on the inner surface on the opposite side. That is, the groove portion 15 may be provided on both the outward surface and the inward surface of the side surface of the spiral tooth 121. In this way, when the groove portion 15 is provided on both the outward surface and the inward surface of the side surface of the spiral tooth 121, it is desirable to install the groove portion 15 so that the end portion 15b on the tooth tip 122 side does not overlap. Further, the groove portion may be formed not only on the outer surface of the orbiting scroll 12 but on the inner surface on the opposite side.
  • the same effect as that of the first embodiment can be obtained, but when the groove portion 15 is provided on both the outward surface and the inward surface of the side surface of the spiral tooth 121, the effect on the outward surface side and the effect on the inward surface side are obtained. A synergistic effect due to both the effect and the effect can be obtained.
  • FIG. 7 is a side view showing the orbiting scroll 12 according to the second embodiment of the present invention. The description of the same components as those in the first embodiment will be omitted.
  • the position of the end portion 15a which is the starting point of the groove portion 15 on the side surface of the spiral tooth 121 of the swing scroll 12 on the tooth bottom 123 side, is higher toward the spiral center side. is set up.
  • the position of the end portion 15a as a starting point arranged on the tooth bottom 123 side of the groove portion 15 is arranged at a position closer to the tooth tip 122 side toward the spiral center of the spiral tooth 121.
  • the groove portion 15 has its entire length shortened toward the spiral center side of the spiral tooth 121.
  • a non-stacked portion L2 provided at a constant interval so as not to overlap each other in the rotation direction X.
  • the compression chamber 14 (see FIG. 1) of the scroll compressor 1 compresses the refrigerant gas toward the center of the spiral while reducing the volume thereof as the orbiting scroll 12 rotates.
  • the refrigerating machine oil 51 is also conveyed to the center of the spiral, but since the refrigerating machine oil 51 is a liquid, the compressibility is small and the amount of change in volume is small. Therefore, the ratio of the volume of the refrigerator oil 51 to the volume of the compression chamber 14 increases toward the center of the spiral, and the height of the refrigerator oil 51 accumulated in the compression chamber 14 increases.
  • the refrigerating machine oil 51 reaches the tooth tip 122 even if the position of the end portion 15a of the groove portion 15 on the tooth bottom 123 side is raised toward the center of the spiral. Can be derived.
  • the groove 15 provided on the side surface of the spiral tooth 121 of the orbiting scroll 12 serves as a refrigerant gas leakage path as described above, and therefore the groove 15 is preferably short. Therefore, as in the second embodiment, the length of the groove portion 15 can be shortened by increasing the arrangement of the end portion 15a of the groove portion 15 on the tooth bottom 123 side toward the center of the spiral. Therefore, the refrigerator oil 51 can be appropriately guided to the tooth tip 122 while suppressing the leakage amount of the refrigerant gas, and seizure of the tooth tip 122 can be prevented.
  • the volume of the compression chamber 14 becomes smaller toward the center of the spiral. Therefore, even if the position of the end portion 15a arranged on the tooth bottom 123 side of the groove portion 15 becomes higher toward the tooth tip 122 side, the refrigerating machine oil can be guided to the tooth tip 122 side, and the groove portion 15 can be guided. By shortening the length of the, the amount of refrigerant gas leakage on the side surface of the spiral tooth 121 can be reduced.
  • FIG. 8 is a plan view showing the orbiting scroll 12 according to Embodiment 3 of the present invention. The description of the same components as those in the first embodiment will be omitted.
  • the tip of the groove portion 15 provided on the side surface of the spiral tooth 121 on the tip 122 side.
  • a recess 16 is provided around the portion 15b.
  • the size of the recess 16 is smaller than the thickness of the spiral tooth 121, and the installation position of the recess 16 is on the side opposite to the rotation direction X of the orbiting scroll 12 with respect to the end 15b of the groove 15 on the tip 122 side. desirable.
  • the refrigerating machine oil 51 guided from the tooth bottom 123 side to the tooth tip 122 side along the groove portion 15 is provided in the concave portion 16. Be stored.
  • the refrigerating machine oil 51 stored in the recess 16 spreads at the tooth tips 122 as the orbiting scroll 12 rotates due to the viscosity of the refrigerating machine oil 51 or the frictional force with the tooth bottom 113 side of the fixed scroll 11 (see FIG. 6 ).
  • the entire surface on the tip 122 side is lubricated. As a result, the lubricity of the tooth tip 122 is improved, and the seizure resistance can be further improved.
  • the recess 16 is provided around the end portion 15b of the groove portion 15 on the tooth tip 122 side, so that the tooth is formed along the groove portion 15 from the tooth bottom 123 side.
  • Refrigerating machine oil 51 led to the tip 122 side is stored in the recess 16.
  • the refrigerating machine oil 51 is dragged from the recess 16 as the orbiting scroll 12 rotates, and can lubricate the entire tip 122 side.
  • the lubricity of the tooth tip 122 is improved, and the seizure resistance can be further improved.
  • FIG. 9 is a plan view showing the orbiting scroll 12 according to Embodiment 4 of the present invention. The description of the same components as those in the first embodiment will be omitted.
  • the tip of the groove portion 15 provided on the side surface of the spiral tooth 121 on the tip 122 side.
  • An addendum groove 17 is provided that connects the portion 15b and the addendum 122 surface.
  • the addendum groove 17 extends in the direction opposite to the rotation direction X of the orbiting scroll 12 and is provided for each groove portion 15. Then, the tooth crests 17 are installed so as not to communicate with each other.
  • the addendum groove 17 extends from the end part 15 b on the addendum 122 side of the groove part 15 on the side surface of the spiral tooth 121. Therefore, the refrigerating machine oil 51 guided from the tooth bottom 123 side flows into the tooth tip groove 17 and is stored in the tooth tip groove 17 as the orbiting scroll 12 rotates.
  • the refrigerating machine oil 51 stored in the addendum groove 17 can not only lubricate the section where the addendum groove 17 is provided, but also lubricate the entire surface of the addendum 122 as in the third embodiment. Further, the addendum groove 17 has a certain area with respect to the total area of the addendum 122, and the refrigerating machine oil 51 having a pressure is poured therein.
  • the refrigerating machine oil 51 stored in the tooth tip groove 17 not only lubricates the section in which the tooth tip groove 17 is provided, but also implements the practice.
  • the entire surface of the tooth tip 122 can be lubricated as in the case of the third embodiment.
  • the pressure of the inflowing refrigerating machine oil 51 causes a pressure in a direction separating the spiral tooth 121 and the spiral tooth 111, and the spiral tooth 121 and the spiral tooth 121.
  • the pressing load on the teeth 111 can be reduced to prevent seizure.
  • FIG. 10 is a vertical cross-sectional view showing the compression mechanism section 10 of the scroll compressor 1 according to the fifth embodiment of the present invention. The description of the same components as those in the first embodiment will be omitted.
  • a groove 18 similar to the groove 15 of the above-described first embodiment is provided on the side surface of the spiral tooth 111 of the fixed scroll 11.
  • the end portion of the fixed scroll 11 on the tooth tip 112 side, not shown is inclined in the same direction as the rotation direction X of the orbiting scroll 12.
  • the groove portions 18 adjacent to each other in the rotation direction X of the orbiting scroll 12 have a section in which they do not overlap in the central axis direction, and the tooth bottom 113 side end portion (not shown). Is provided with a groove 18 up to the surface of the tooth bottom 113.
  • the movement route of the refrigerating machine oil 51 is the same as that of the first embodiment.
  • the groove portion 18 of the spiral tooth 111 moves from the tooth tip 112 side of the fixed scroll 11 to the high-pressure compression chamber 14. Therefore, the refrigerating machine oil 51 accumulated in the tooth bottom 123 of the swing scroll 12 around the tooth tip 112 side end of the fixed scroll 11 is placed along the groove 18 of the spiral tooth 111 of the fixed scroll 11 by a pressure difference. It is guided to the bottom 113.
  • the refrigerating machine oil 51 which is guided to the tooth bottom 113 which is the upper part of the compression chamber 14 and lifted, is dragged toward the tooth tip 122 side of the swing scroll 12 as the rocking scroll 12 rotates, and lubricates the tooth tip 122.
  • the end portion of the groove portion 18 of the spiral tooth 111 on the tooth bottom 113 side is up to the surface of the tooth bottom 113, but it may be communicated with the groove portion 18 and provided with a recessed portion on the tooth bottom 113.
  • the groove portion 18 is provided only on the inward surface on the side surface of the spiral tooth 111, but it may be provided only on the outward surface or on both the inward surface and the outward surface.
  • FIG. 11 is a side view showing an orbiting scroll 12 according to a modification of the fifth embodiment of the present invention.
  • the scroll compression in the first embodiment is different except that the groove portion 15 is inclined in the rotation direction X of the orbiting scroll 12. It has the same configuration as the machine 1.
  • the compression ratio may be small and the pressure difference between the adjacent compression chambers 14 may be small. In that case, it may be more effective to push up the refrigerating machine oil 51 by the wedge effect of the refrigerating machine oil 51 rather than carrying the refrigerating machine oil 51 due to the pressure difference.
  • the contact between the spiral teeth 111 and 121 has a large gap before and after the sliding point unlike bearings and the like, so that the influence of the wedge effect is small and the refrigerating machine oil 51 is difficult to rise due to the influence of the pressure difference.
  • the groove portion 15 is inclined in the same direction as the rotation direction of the orbiting scroll 12, it is desirable to install the groove portion 15 in a range in which the gap between the spiral teeth 111 and 121 is small by, for example, making the inclination closer to the vertical direction. Thereby, the influence of the pressure difference between the adjacent compression chambers 14 can be reduced and the wedge effect can be easily generated.
  • a groove portion 18 similar to the above is provided. Therefore, the refrigerating machine oil 51 collected at the tooth bottom 123 of the orbiting scroll 12 around the tip 112 side end of the fixed scroll 11 has a pressure difference along the groove portion 18 of the spiral tooth 111 of the fixed scroll 11. It is guided to the tooth bottom 113.
  • the refrigerating machine oil 51 guided to the tooth bottom 113, which is the upper part of the compression chamber 14, is dragged toward the tooth tip 122 side of the swing scroll 12 as the rocking scroll 12 rotates, and lubricates the tooth tip 122.
  • the refrigerating machine oil 51 can be guided to the tooth tip 112 side by the wedge effect instead of the pressure difference. In particular, it is effective when the pressure difference between the adjacent compression chambers 14 is small.
  • FIG. 12 is a side view showing a fixed scroll and an orbiting scroll according to another embodiment of the present invention.
  • a groove portion 15 and a groove portion 18 may be provided on both surfaces on which the spiral teeth 121 of the swing scroll 12 and the spiral teeth 111 of the fixed scroll overlap each other.
  • the respective groove portions 15 and 18 are installed so as to have a section that does not overlap in the axial direction.
  • the groove portions 15 and the groove portions 18, the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12, and the groove portions 18 are provided with a constant interval that does not overlap each other in the rotation direction X.
  • the stacking portion L4 is formed. As described above, the adjacent groove portions 15 and 18, the groove portions 15 and the groove portions 15 are prevented from overlapping with each other in the central axis direction, so that the leakage of the refrigerant gas is suppressed and the lubricity of the tooth tip 122 side is improved. Can be improved.

Abstract

This scroll compressor is provided with a fixed scroll and an orbiting scroll having spiral teeth that mesh with each other, and which performs compression by causing the orbiting scroll to orbit around the fixed scroll, wherein the spiral teeth of the fixed scroll and/or the orbiting scroll comprise multiple grooves formed in the lateral surface to circulate a lubricant oil from the tooth base side towards the tooth tip side, each groove is disposed inclined with respect to the center axis direction of the fixed scroll or the orbiting scroll, the end on the tooth tip side is opened, and, between grooves mutually adjacent in the rotation direction of the orbiting scroll in the grooves, non-overlapping sections are formed comprising prescribed intervals where there is no overlap in the rotation direction. By this means, it is possible to suppress reductions in the compression efficiency due to coolant gas leaks, while preventing the tips of the spiral teeth from seizing.

Description

スクロール圧縮機Scroll compressor
 本発明は、固定スクロールと揺動スクロールとを備えるスクロール圧縮機に関するものである。 The present invention relates to a scroll compressor including a fixed scroll and an orbiting scroll.
 スクロール圧縮機は、固定台板上に突出して形成された螺旋形状の渦巻歯を有する固定スクロールと、揺動台板上に突出して形成された螺旋形状の渦巻歯を有する揺動スクロールと、を互いの渦巻歯が噛み合うように備えている。そして、固定スクロールに対して揺動スクロールを公転運動させることで、これら固定スクロールと揺動スクロールとにより構成される複数の圧縮室を、外方側から内方側に向かって次第に縮小させることによって圧縮を行うものである。 The scroll compressor includes a fixed scroll having spiral spiral teeth formed so as to project on a fixed base plate, and an orbiting scroll having spiral spiral teeth formed so as to protrude on a rocking base plate. It is prepared so that the spiral teeth of each other mesh with each other. By orbiting the orbiting scroll with respect to the fixed scroll, the plurality of compression chambers formed by the fixed scroll and the orbiting scroll are gradually reduced from the outer side toward the inner side. It is for compression.
 このようなスクロール圧縮機では、圧縮した冷媒ガスが隣接する圧縮室へ漏れないように、固定スクロールおよび揺動スクロールの各渦巻歯の歯先が、対向する揺動台板および固定台板に押し付けられて配置される。このとき、押し付けによる摺動性悪化を防止する目的で圧縮室には潤滑油としての冷凍機油が供給されるが、圧縮室の上方側に位置する揺動スクロール側の歯先には冷凍機油が供給され難く、焼付きが生じる要因となっていた。そのため、渦巻歯へ冷凍機油を供給するべく、渦巻歯の側面に歯底側から歯先側に向かって当該歯先側を揺動スクロールの回転方向に傾斜させてなる溝部を設けたスクロール圧縮機が提案されている(例えば、特許文献1参照)。 In such a scroll compressor, the tip of each spiral tooth of the fixed scroll and the orbiting scroll is pressed against the opposing rocking base plate and fixed base plate so that the compressed refrigerant gas does not leak to the adjacent compression chamber. Placed. At this time, refrigerating machine oil is supplied to the compression chamber as a lubricating oil for the purpose of preventing slidability deterioration due to pressing, but refrigerating machine oil is supplied to the tip of the orbiting scroll side located above the compression chamber. It was difficult to be supplied, and it was a factor causing seizure. Therefore, in order to supply the refrigerating machine oil to the spiral teeth, a scroll compressor provided with groove portions formed on the side surfaces of the spiral teeth by inclining the tooth top side from the tooth bottom side to the tooth tip side in the rotation direction of the orbiting scroll. Has been proposed (for example, see Patent Document 1).
特開昭55-40261号公報JP-A-55-40261
 ここで、渦巻歯の側面に軸方向に平行な溝を設ける場合、圧縮した冷媒ガスが溝部を通じて隣接する圧縮室の高圧側から低圧側へ漏れ、圧縮効率の低下を引き起こす要因となる。また、特許文献1のように、渦巻歯の側面に軸方向に傾斜した溝を設けたとしても、渦巻歯の軸方向において隣り合う溝部同士が重なる場合、渦巻歯の側面における隙間の合計面積が大きくなり、冷媒ガス漏れによる圧縮効率の低下を招く虞があった。 When a groove parallel to the axial direction is provided on the side surface of the spiral tooth, the compressed refrigerant gas leaks from the high pressure side to the low pressure side of the adjacent compression chamber through the groove, which causes a reduction in compression efficiency. Further, even if a groove inclined in the axial direction is provided on the side surface of the spiral tooth as in Patent Document 1, when the adjacent groove portions overlap in the axial direction of the spiral tooth, the total area of the gap on the side surface of the spiral tooth is increased. There is a risk that the size will increase and the compression efficiency will decrease due to refrigerant gas leakage.
 しかも、渦巻歯の側面同士はほぼ線状に摺動するため、摺動点前後での隙間は軸受のように一定ではなく急激に大きくなる傾向にあり、所謂くさび効果が得られ難い。したがって、圧縮室間の圧力差が大きい場合においては、溝部の歯先側を揺動スクロールの回転方向に傾斜させたとしても高圧側からの冷媒ガス圧力がくさび効果による油膜圧力を上回るため、冷凍機油が溝部に沿って上昇せずに歯先の潤滑が不足となる虞があった。 Moreover, since the side surfaces of the spiral teeth slide almost linearly, the gap before and after the sliding point tends to increase rapidly rather than being constant like a bearing, and it is difficult to obtain the so-called wedge effect. Therefore, when the pressure difference between the compression chambers is large, the refrigerant gas pressure from the high pressure side exceeds the oil film pressure due to the wedge effect even if the tooth tip side of the groove is inclined in the rotation direction of the orbiting scroll, so There was a risk that the machine oil would not rise along the groove and lubrication of the tooth tip would be insufficient.
 そこで、本発明は、上記課題を解決するためのものであり、渦巻歯の歯先の焼付きを防止しつつ、冷媒ガス漏れによる圧縮効率の低下を抑制できるスクロール圧縮機を提供することを目的とする。 Therefore, the present invention is to solve the above problems, and an object of the present invention is to provide a scroll compressor capable of suppressing a decrease in compression efficiency due to refrigerant gas leakage while preventing seizure of the tips of spiral teeth. And
 本発明に係るスクロール圧縮機は、固定台板上に突出して形成された螺旋形状の渦巻歯を有する固定スクロールと、揺動台板上に突出して形成された螺旋形状の渦巻歯を有する揺動スクロールと、を互いの前記渦巻歯が噛み合うように備え、前記固定スクロールに対して前記揺動スクロールを公転運動させて、前記固定スクロールと前記揺動スクロールとにより構成される複数の圧縮室を、外方側から内方側に向かって次第に縮小させて圧縮を行うスクロール圧縮機であって、前記固定スクロールまたは前記揺動スクロールの少なくとも一方の前記渦巻歯は、側面に歯底側から歯先側に向けて潤滑油を流通させる複数の溝部が形成されており、各前記溝部は、前記固定スクロールまたは前記揺動スクロールの中心軸方向に対して傾斜して設けられると共に、前記歯先側の端部が開放されてなり、各前記溝部における前記揺動スクロールの回転方向に隣り合う前記溝部同士の間には、前記回転方向において互いが重なり合うことのない一定の間隔を設けた非積重部が形成されているものである。 A scroll compressor according to the present invention includes a fixed scroll having spiral spiral teeth formed on a fixed base plate, and a swing having spiral spiral teeth formed on a swing base plate. A scroll, and so that the spiral teeth of each other mesh with each other, orbitally revolving the orbiting scroll with respect to the fixed scroll, a plurality of compression chambers configured by the fixed scroll and the orbiting scroll, A scroll compressor that compresses by gradually reducing from the outer side to the inner side, wherein at least one of the fixed scroll or the orbiting scroll has spiral teeth on a side surface from a root side to a tip side. A plurality of groove portions for allowing the lubricating oil to flow therethrough, each groove portion being provided to be inclined with respect to the central axis direction of the fixed scroll or the orbiting scroll, and the end on the tooth tip side. The non-stacked portion is provided with a constant interval between the groove portions adjacent to each other in the rotation direction of the orbiting scroll in the rotation direction in each of the groove portions so as not to overlap each other in the rotation direction. It has been formed.
 本発明に係るスクロール圧縮機によれば、固定スクロールまたは揺動スクロールの少なくとも一方の渦巻歯の側面に設けられた溝部により、隣り合う圧縮室の圧力差によって歯底に溜まった潤滑油を歯底側から歯先側へと導くことができる。このとき、揺動スクロールの回転方向に隣り合う溝部同士の間には、当該回転方向において互いが重なり合うことのない一定の間隔を設けた非積重部が形成されているため、渦巻歯の側面における冷媒ガス漏れを抑制できる。かくして、本発明に係るスクロール圧縮機によれば、渦巻歯の歯先の焼付きを防止しつつ、冷媒ガス漏れによる圧縮効率の低下を抑制できる。 According to the scroll compressor of the present invention, the groove portion provided on the side surface of at least one spiral tooth of the fixed scroll or the orbiting scroll allows the lubricating oil collected at the tooth bottom by the pressure difference between the adjacent compression chambers to be tooth bottom. Side to tip side. At this time, since the non-stacked portions are formed between the groove portions adjacent to each other in the rotation direction of the orbiting scroll, the non-stacked portions having a constant interval that does not overlap each other in the rotation direction are formed. It is possible to prevent the refrigerant gas from leaking. Thus, according to the scroll compressor of the present invention, it is possible to prevent seizure of the tips of the spiral teeth while suppressing a decrease in compression efficiency due to refrigerant gas leakage.
本発明の実施の形態1に係るスクロール圧縮機を示す縦断面図である。It is a vertical sectional view which shows the scroll compressor which concerns on Embodiment 1 of this invention. 図1のスクロール圧縮機における揺動スクロールを示す斜視図である。It is a perspective view which shows the swing scroll in the scroll compressor of FIG. 図1のスクロール圧縮機における圧縮機構部を下部から見て示す断面図である。It is sectional drawing which shows the compression mechanism part in the scroll compressor of FIG. 1 as seen from the lower part. 図3の圧縮機構部の側面をA方向から見て示す概略図である。It is the schematic which shows the side surface of the compression mechanism part of FIG. 3 seen from the A direction. 図4の揺動スクロールにおける運転中の様子を示す概略図である。It is the schematic which shows the state during operation in the swing scroll of FIG. 本発明の実施の形態1の変形例に係るスクロール圧縮機の圧縮機構部を示す縦断面図である。FIG. 7 is a vertical cross-sectional view showing a compression mechanism portion of a scroll compressor according to a modified example of the first embodiment of the present invention. 本発明の実施の形態2に係る揺動スクロールを示す側面図である。It is a side view which shows the swing scroll which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る揺動スクロールを示す平面図である。It is a top view which shows the rocking scroll which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る揺動スクロールを示す平面図である。It is a top view which shows the swing scroll which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係るスクロール圧縮機の圧縮機構部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the compression mechanism part of the scroll compressor which concerns on Embodiment 5 of this invention. 本発明の実施の形態5の変形例に係る揺動スクロールを示す側面図である。It is a side view which shows the orbiting scroll which concerns on the modification of Embodiment 5 of this invention. 本発明の他の実施の形態に係る固定スクロールと揺動スクロールとを示す側面図である。It is a side view which shows the fixed scroll and orbiting scroll which concern on other embodiment of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。すなわち、本発明は、請求の範囲および明細書全体から読み取ることのできる発明の要旨又は思想に反しない範囲で適宜変更可能である。また、そのような変更を伴うスクロール圧縮機も本発明の技術思想に含まれる。さらに、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the forms of the components shown in the entire specification are merely examples and are not limited to these descriptions. That is, the present invention can be appropriately modified without departing from the scope or spirit of the invention that can be read from the claims and the entire specification. Further, a scroll compressor accompanied by such changes is also included in the technical idea of the present invention. Further, in each of the drawings, the components denoted by the same reference numerals are the same or correspond to the same, and this is common to all the texts of the specification.
実施の形態1.
<スクロール圧縮機1の構成>
 図1を参照しながら、本発明の実施の形態1に係るスクロール圧縮機1について説明する。図1は、本発明の実施の形態1に係るスクロール圧縮機1示す縦断面図である。図1に示すように、スクロール圧縮機1は、密閉容器2の内部に、圧縮機構部10と、当該圧縮機構部10を駆動する電動機部20とを備えている。圧縮機構部10は、固定スクロール11と揺動スクロール12とを有して構成されている。電動機部20は、回転子21と固定子22とを有して構成されており、主軸30を介して圧縮機構部10を駆動する。
Embodiment 1.
<Structure of scroll compressor 1>
A scroll compressor 1 according to Embodiment 1 of the present invention will be described with reference to FIG. 1. FIG. 1 is a vertical sectional view showing a scroll compressor 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, the scroll compressor 1 includes a compression mechanism unit 10 and an electric motor unit 20 for driving the compression mechanism unit 10 inside the closed container 2. The compression mechanism unit 10 includes a fixed scroll 11 and an orbiting scroll 12. The electric motor unit 20 includes a rotor 21 and a stator 22, and drives the compression mechanism unit 10 via the main shaft 30.
 主軸30は、電動機部20の回転子21が焼き嵌め等の手法によって固定され、回転子21が回転することに伴って回転することで、圧縮機構部10を駆動させる。また、スクロール圧縮機1の下部に位置する油溜り部50には冷凍機油51が貯油されており、主軸30の下端に設けられた給油機構31によって、冷凍機油51を吸い上げ、各摺動部に供給される。主軸30の先端まで吸い上げられた冷凍機油51は、オルダムリング13の設置空間を経由して圧縮室14へ運ばれ、冷媒ガスの圧縮と共に渦巻中心まで移動し、密閉容器2内に再び戻される。 The main shaft 30 drives the compression mechanism unit 10 when the rotor 21 of the electric motor unit 20 is fixed by shrink fitting or the like and rotates as the rotor 21 rotates. Further, the refrigerating machine oil 51 is stored in the oil sump 50 located at the lower part of the scroll compressor 1, and the refrigerating machine oil 51 is sucked up by the oil supply mechanism 31 provided at the lower end of the main shaft 30 and is sucked up in each sliding portion. Supplied. The refrigerating machine oil 51 sucked up to the tip of the main shaft 30 is carried to the compression chamber 14 via the installation space of the old dam ring 13, moves to the center of the spiral with the compression of the refrigerant gas, and is returned to the closed container 2 again.
<圧縮機構部10>
 次に、図1~図5を参照しながら、本実施の形態1に係るスクロール圧縮機1の圧縮機構部10について説明する。図2は、図1のスクロール圧縮機1における揺動スクロール12を示す斜視図である。図3は、図1のスクロール圧縮機1における圧縮機構部10を下部から見て示す断面図である。図4は、図3の圧縮機構部10の側面をA方向から見て示す概略図である。図5は、図4の揺動スクロール12における運転中の様子を示す概略図である。
<Compression mechanism 10>
Next, the compression mechanism unit 10 of the scroll compressor 1 according to the first embodiment will be described with reference to FIGS. 1 to 5. FIG. 2 is a perspective view showing the orbiting scroll 12 in the scroll compressor 1 of FIG. FIG. 3 is a cross-sectional view showing the compression mechanism section 10 of the scroll compressor 1 of FIG. 1 as viewed from below. FIG. 4 is a schematic view showing a side surface of the compression mechanism portion 10 of FIG. 3 when viewed from the direction A. FIG. 5 is a schematic diagram showing a state of the orbiting scroll 12 of FIG. 4 during operation.
 図1~図5に示すように、スクロール圧縮機1の圧縮機構部10は、固定スクロール11の螺旋状の渦巻歯111と、揺動スクロール12の螺旋状の渦巻歯121と、を互いに噛み合わせて構成される。具体的に、固定スクロール11は、固定台板上に螺旋形状に設けられた渦巻歯111を備えている。また、固定スクロール11の側部には、冷媒ガスを吸入する吸入管61と、当該吸入管61から吸入した低温の冷媒ガスを取り込む吸入口41と、が設けられている。さらに、固定スクロール11の中央部には、圧縮された加熱媒体としてのガスを吐出する吐出口42が設けられている。さらに、固定スクロール11には、吸入管61が圧入されている。また、固定スクロール11の外周部は、不図示のボルトにてガイドフレーム19に締結されている。 As shown in FIGS. 1 to 5, the compression mechanism portion 10 of the scroll compressor 1 meshes the spiral spiral teeth 111 of the fixed scroll 11 and the spiral spiral teeth 121 of the orbiting scroll 12 with each other. Consists of Specifically, the fixed scroll 11 includes spiral teeth 111 provided in a spiral shape on the fixed base plate. Further, a suction pipe 61 for sucking the refrigerant gas and a suction port 41 for taking in the low-temperature refrigerant gas sucked from the suction pipe 61 are provided on the side of the fixed scroll 11. Further, in the central portion of the fixed scroll 11, a discharge port 42 for discharging a compressed gas as a heating medium is provided. Further, a suction pipe 61 is press-fitted into the fixed scroll 11. Further, the outer peripheral portion of the fixed scroll 11 is fastened to the guide frame 19 with a bolt (not shown).
 揺動スクロール12は、固定スクロール11と同様に揺動台板12a上に螺旋形状に設けられた渦巻歯121を備えている。そして、固定スクロール11と揺動スクロール12とが、それぞれの渦巻歯111と渦巻歯121とを互いに噛み合うように設置されることで、圧縮室14を構成している。 Like the fixed scroll 11, the orbiting scroll 12 has spiral teeth 121 provided in a spiral shape on the orbiting base plate 12a. The fixed scroll 11 and the orbiting scroll 12 are installed so that the respective spiral teeth 111 and 121 are meshed with each other, thereby forming the compression chamber 14.
 また、揺動スクロール12は揺動軸受3を備えており、主軸30の上端の揺動軸部30aに対して回転自在に支持されている。さらに、揺動スクロール12は、オルダム機構4が往復摺動自在に係合されている。揺動スクロール12は、固定スクロール11に対して自転することなく、偏心旋回運動が可能となっている。ガイドフレーム19の下部には空間5があり、当該空間5にはスクロール圧縮機1の外部へと連通する吐出管62が接続されている。さらに、密閉容器2内の上部には、圧縮室14に外部から吸入された被圧縮ガスが圧縮され、高温高圧の加熱媒体として吐出される空間としての吐出ガス空間6が設けられている。 The orbiting scroll 12 is provided with an orbiting bearing 3 and is rotatably supported by the orbiting shaft portion 30a at the upper end of the main shaft 30. Further, the swing scroll 12 is engaged with the oldham mechanism 4 so as to be reciprocally slidable. The orbiting scroll 12 is capable of eccentric orbital motion without rotating about the fixed scroll 11. A space 5 is provided below the guide frame 19, and a discharge pipe 62 communicating with the outside of the scroll compressor 1 is connected to the space 5. Further, a discharge gas space 6 is provided in the upper part of the closed container 2 as a space in which the compressed gas sucked into the compression chamber 14 from the outside is compressed and discharged as a heating medium of high temperature and high pressure.
 本実施の形態1の場合、揺動スクロール12の渦巻歯121は、外向側の側面に歯底123側から歯先122側に向けて潤滑油としての冷凍機油51を流通させる複数の溝部15が形成されている。これら溝部15は、揺動スクロール12の中心軸方向に対して、揺動スクロール12の回転方向Xとは反対方向に向けて傾斜して設けられている。つまり、各溝部15は、歯底123側の始点となる端部15aから歯先122側の端部15bに向けて揺動スクロール12の回転方向Xとは反対方向に向けて傾斜している。また、これら溝部15は、歯先122側の端部15bが開放されてなる。さらに、これら溝部15における揺動スクロール12の回転方向Xに隣り合う溝部15同士の間には、回転方向Xにおいて互いが重なり合うことのない一定の間隔を設けた非積重部L1が形成されている。 In the case of the first embodiment, the spiral tooth 121 of the swing scroll 12 has a plurality of groove portions 15 on the outward side surface for flowing the refrigerating machine oil 51 as lubricating oil from the tooth bottom 123 side to the tooth tip 122 side. Has been formed. These groove portions 15 are provided so as to be inclined with respect to the central axis direction of the orbiting scroll 12 in the direction opposite to the rotation direction X of the orbiting scroll 12. That is, each groove 15 is inclined in the direction opposite to the rotation direction X of the orbiting scroll 12 from the end portion 15a serving as the starting point on the tooth bottom 123 side toward the end portion 15b on the tooth tip 122 side. Further, these groove portions 15 are formed so that the end portions 15b on the tooth tip 122 side are opened. Further, between the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12 in the groove portions 15, there is formed a non-stacked portion L1 provided with a constant interval that does not overlap each other in the rotation direction X. There is.
<スクロール圧縮機1の動作>
 次に、スクロール圧縮機1の動作について説明する。圧縮機構部10は吸入管61から吸入した低温の冷媒ガスを吸入口41から取り込み、固定スクロール11と揺動スクロール12の渦巻歯111および121で形成された圧縮室14に冷媒ガスが満たされる。
<Operation of scroll compressor 1>
Next, the operation of the scroll compressor 1 will be described. The compression mechanism unit 10 takes in the low-temperature refrigerant gas sucked from the suction pipe 61 from the suction port 41, and fills the compression chamber 14 formed by the spiral teeth 111 and 121 of the fixed scroll 11 and the swing scroll 12 with the refrigerant gas.
 揺動スクロール12は主軸30の回転に伴い、固定スクロール11に対して偏心旋回運動し、圧縮室14の容積を順次縮小して冷媒ガスを圧縮し、吐出口42から密閉容器2内に吐出する。このとき、油溜り部50から吸い上げた冷凍機油51も圧縮室14に流れ込み、冷媒ガスと共に渦巻中心へ運ばれる。このように、加熱媒体として吐出された吐出ガスは密閉容器2内の吐出ガス空間6に満たされ、ガイドフレーム19の下部にある空間5を通過して吐出管62から、スクロール圧縮機1の外部へと吐き出される。 The orbiting scroll 12 eccentrically orbits with respect to the fixed scroll 11 as the main shaft 30 rotates, and the volume of the compression chamber 14 is sequentially reduced to compress the refrigerant gas, and the refrigerant gas is discharged from the discharge port 42 into the closed container 2. .. At this time, the refrigerating machine oil 51 sucked from the oil sump 50 also flows into the compression chamber 14 and is carried to the center of the spiral together with the refrigerant gas. In this way, the discharge gas discharged as the heating medium is filled in the discharge gas space 6 in the closed container 2, passes through the space 5 under the guide frame 19, and is discharged from the discharge pipe 62 to the outside of the scroll compressor 1. Is exhaled.
 図5に示すように、冷媒ガスと共に取り込まれた冷凍機油51は圧縮室14の底部に溜まりながら、固定スクロール11および揺動スクロール12の摺動部を潤滑する。圧縮過程において、複数の圧縮室14は渦巻中心側ほど圧力が高く、例えば、圧縮室14Hと14Lでは14Hの方が高圧となる。本実施の形態1において、各溝部15は、歯先122側が揺動スクロール12の回転方向Xとは反対方向に傾斜している。このため、一つの溝部15に注目したとき、冷凍機油51は当該冷凍機油51が溜まっている圧縮室14L側の歯底123側から隣の圧縮室14H側へと移行する。 As shown in FIG. 5, the refrigerating machine oil 51 taken in together with the refrigerant gas collects on the bottom of the compression chamber 14 and lubricates the sliding parts of the fixed scroll 11 and the orbiting scroll 12. In the compression process, the pressure in the plurality of compression chambers 14 is higher toward the center of the spiral, and for example, in the compression chambers 14H and 14L, 14H has a higher pressure. In the first embodiment, the tooth tip 122 side of each groove 15 is inclined in a direction opposite to the rotation direction X of the orbiting scroll 12. Therefore, when paying attention to one groove portion 15, the refrigerating machine oil 51 moves from the bottom 123 side of the compression chamber 14L side where the refrigerating machine oil 51 is accumulated to the adjacent compression chamber 14H side.
 したがって、溝部15が圧縮室14Lと圧縮室14Hとに跨る場合、溝部15の歯底123側の方が歯先122側よりも圧力が高くなる。よって、この圧力差により冷凍機油51が溝部15に沿って押し上げられ、揺動スクロール12の歯先122側まで移動し、歯先122側を潤滑させることができる。 Therefore, when the groove 15 extends over the compression chamber 14L and the compression chamber 14H, the pressure on the tooth bottom 123 side of the groove 15 is higher than that on the tooth tip 122 side. Therefore, the refrigerating machine oil 51 is pushed up along the groove 15 by this pressure difference, moves to the tooth tip 122 side of the orbiting scroll 12, and the tooth tip 122 side can be lubricated.
 なお、渦巻歯121の側面に溝部15を設けた場合、溝部15が圧縮室14間の連通路として機能し、冷媒ガスが高圧側から低圧側へ漏れて効率低下の要因となる虞があった。そこで、本実施の形態1のスクロール圧縮機1では、揺動スクロール12の回転方向Xに隣り合う溝部15同士の間に、回転方向Xにおいて互いが重なり合うことのない一定の間隔を設けた非積重部L1が形成されている。このため、圧縮室14の各区切りにかかる溝部15は常に一つであり、冷媒ガスの漏れ量は非常に小さく、圧縮効率の低下を抑制しながら、歯先122側へ冷凍機油51を導くことができる。また、本実施の形態1において、歯先122側へ導く冷凍機油51は圧縮室14に流入したものであり、高温の背圧室等から給油されるわけではない。したがって、冷媒ガスが高温の冷凍機油51によって加熱される等の損失も抑え、圧縮機効率を向上させることができる。 When the groove portion 15 is provided on the side surface of the spiral tooth 121, the groove portion 15 functions as a communication path between the compression chambers 14, and the refrigerant gas may leak from the high pressure side to the low pressure side, which may cause a decrease in efficiency. .. Therefore, in the scroll compressor 1 according to the first embodiment, a non-product is provided between the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12 with a certain interval that does not overlap each other in the rotation direction X. The overlapping portion L1 is formed. Therefore, there is always one groove 15 for each partition of the compression chamber 14, the amount of refrigerant gas leakage is very small, and the refrigerator oil 51 is guided to the tooth tip 122 side while suppressing a decrease in compression efficiency. You can Further, in the first embodiment, the refrigerating machine oil 51 guided to the tooth tip 122 side has flowed into the compression chamber 14 and is not supplied from the high temperature back pressure chamber or the like. Therefore, loss such as the refrigerant gas being heated by the high-temperature refrigerating machine oil 51 can be suppressed, and the compressor efficiency can be improved.
<実施の形態1における効果>
 以上、説明したように、本実施の形態1のスクロール圧縮機1では、揺動スクロール12の渦巻歯121の側面に、揺動スクロール12の中心軸方向に対して、揺動スクロール12の回転方向Xとは反対方向に向けて傾斜した複数の溝部15を設けるようにした。このため、これら溝部15により、隣り合う圧縮室14の圧力差によって歯底123側に溜まった冷凍機油51を歯底123側から歯先122側へと導くことができる。このとき、揺動スクロール12の回転方向Xに隣り合う溝部15同士の間には、当該回転方向Xにおいて互いが重なり合うことのない一定の間隔を設けた非積重部L1が形成されているため、渦巻歯121の側面における冷媒ガス漏れを抑制できる。かくして、本実施の形態1のスクロール圧縮機1によれば、渦巻歯121の歯先122の焼付きを防止しつつ、冷媒ガス漏れによる圧縮効率の低下を抑制できる。
<Effect in Embodiment 1>
As described above, in the scroll compressor 1 of the first embodiment, the rotation direction of the swing scroll 12 is on the side surface of the spiral teeth 121 of the swing scroll 12 with respect to the central axis direction of the swing scroll 12. A plurality of groove portions 15 inclined in the direction opposite to X are provided. Therefore, these groove portions 15 can guide the refrigerating machine oil 51 accumulated on the tooth bottom 123 side due to the pressure difference between the adjacent compression chambers 14 from the tooth bottom 123 side to the tooth tip 122 side. At this time, between the groove portions 15 adjacent to each other in the rotation direction X of the swing scroll 12, non-stacked portions L1 provided with a constant interval so as not to overlap each other in the rotation direction X are formed. Thus, the refrigerant gas leakage on the side surface of the spiral tooth 121 can be suppressed. Thus, according to the scroll compressor 1 of the first embodiment, it is possible to prevent a seizure of the tooth tip 122 of the spiral tooth 121 and suppress a decrease in compression efficiency due to a refrigerant gas leak.
 なお、本実施の形態1のスクロール圧縮機1では、溝部15を揺動スクロール12の渦巻歯121の側面に設ける場合について述べたが、本発明はこれに限ることはない。例えば、溝部15は、固定スクロール11における渦巻歯111の側面に同様に形成されてもよいし、後述するように、固定スクロール11における渦巻歯111の側面と、揺動スクロール12の渦巻歯121の側面との双方に形成されてもよい。また、溝部15の傾斜方向も、後述するように揺動スクロール12の回転方向Xと同一方向であってもよい。 In the scroll compressor 1 according to the first embodiment, the case where the groove 15 is provided on the side surface of the spiral tooth 121 of the orbiting scroll 12 has been described, but the present invention is not limited to this. For example, the groove portion 15 may be similarly formed on the side surface of the spiral tooth 111 of the fixed scroll 11, or, as described later, the side surface of the spiral tooth 111 of the fixed scroll 11 and the spiral tooth 121 of the orbiting scroll 12. It may be formed on both sides. Further, the inclination direction of the groove portion 15 may be the same direction as the rotation direction X of the orbiting scroll 12 as described later.
 また、本実施の形態1のスクロール圧縮機1では、溝部15を揺動スクロール12の渦巻歯121における外向側の側面にのみ設ける場合について述べたが、本発明はこれに限ることはない。 Further, in the scroll compressor 1 of the first embodiment, the case where the groove portion 15 is provided only on the outward side surface of the spiral tooth 121 of the swing scroll 12 has been described, but the present invention is not limited to this.
 ここで、図6を用いて、本実施の形態1の変形例におけるスクロール圧縮機1の圧縮機構部10について説明する。図6は、本発明の実施の形態1の変形例に係るスクロール圧縮機1の圧縮機構部10を示す縦断面図である。 Here, the compression mechanism unit 10 of the scroll compressor 1 in the modification of the first embodiment will be described with reference to FIG. FIG. 6 is a vertical cross-sectional view showing the compression mechanism section 10 of the scroll compressor 1 according to the modified example of the first embodiment of the present invention.
 図6に示すように、溝部15は揺動スクロール12の外向面のみならず、これとは反対側の内向面にも形成することができる。つまり、溝部15を渦巻歯121の側面の外向面と内向面との双方に備えていてもよい。このように、渦巻歯121の側面の外向面と内向面の双方に溝部15を設ける場合、溝部15の歯先122側の端部15bが重ならないように設置するのが望ましい。また、溝部は、揺動スクロール12の外向面ではなく、これとは反対側の内向面にのみ形成することもできる。いずれの場合も、本実施の形態1と同様の効果を得られるが、溝部15を渦巻歯121の側面の外向面と内向面の双方に設けた場合、外向面側における効果と内向面側における効果との双方による相乗効果を得ることができる。 As shown in FIG. 6, the groove portion 15 can be formed not only on the outer surface of the orbiting scroll 12 but also on the inner surface on the opposite side. That is, the groove portion 15 may be provided on both the outward surface and the inward surface of the side surface of the spiral tooth 121. In this way, when the groove portion 15 is provided on both the outward surface and the inward surface of the side surface of the spiral tooth 121, it is desirable to install the groove portion 15 so that the end portion 15b on the tooth tip 122 side does not overlap. Further, the groove portion may be formed not only on the outer surface of the orbiting scroll 12 but on the inner surface on the opposite side. In either case, the same effect as that of the first embodiment can be obtained, but when the groove portion 15 is provided on both the outward surface and the inward surface of the side surface of the spiral tooth 121, the effect on the outward surface side and the effect on the inward surface side are obtained. A synergistic effect due to both the effect and the effect can be obtained.
実施の形態2.
 次に、図7を参照しながら、本発明の実施の形態2に係るスクロール圧縮機1について説明する。図7は、本発明の実施の形態2に係る揺動スクロール12を示す側面図である。なお、前述した実施の形態1と同様の構成部分に関しては説明を割愛する。
Embodiment 2.
Next, the scroll compressor 1 according to the second embodiment of the present invention will be described with reference to FIG. 7. FIG. 7 is a side view showing the orbiting scroll 12 according to the second embodiment of the present invention. The description of the same components as those in the first embodiment will be omitted.
 図7に示すとおり、本実施の形態2では、揺動スクロール12の渦巻歯121の側面における溝部15の歯底123側の始点となる端部15aの位置が、渦巻中心側ほど高くなるように設置されている。換言すれば、溝部15の歯底123側に配置される始点としての端部15aの位置が、渦巻歯121の渦巻中心に向かうにつれ歯先122側に近づく位置に配置されている。これにより、溝部15は、その全長が渦巻歯121の渦巻中心側に向かうにつれ短くなっている。なお、揺動スクロール12の回転方向Xに隣り合う溝部15同士の間には、回転方向Xにおいて互いが重なり合うことのない一定の間隔を設けた非積重部L2が形成されている。 As shown in FIG. 7, in the second embodiment, the position of the end portion 15a, which is the starting point of the groove portion 15 on the side surface of the spiral tooth 121 of the swing scroll 12 on the tooth bottom 123 side, is higher toward the spiral center side. is set up. In other words, the position of the end portion 15a as a starting point arranged on the tooth bottom 123 side of the groove portion 15 is arranged at a position closer to the tooth tip 122 side toward the spiral center of the spiral tooth 121. As a result, the groove portion 15 has its entire length shortened toward the spiral center side of the spiral tooth 121. In addition, between the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12, there is formed a non-stacked portion L2 provided at a constant interval so as not to overlap each other in the rotation direction X.
 スクロール圧縮機1の圧縮室14(図1参照)は、揺動スクロール12の回転に伴い、容積を縮小させながら渦巻中心に向かうにつれ冷媒ガスを圧縮している。このとき、冷凍機油51も同様に渦巻中心へ運ばれるが、冷凍機油51は液体であるため、圧縮率は小さく体積の変化量は小さい。そのため、圧縮室14の容積に対して、冷凍機油51の体積が占める比率は渦巻中心に進むほど大きくなり、圧縮室14に溜まる冷凍機油51の高さが高くなる。したがって、冷凍機油51の歯底123からの高さが高くなるため、渦巻中心に向かうにつれ、溝部15の歯底123側の端部15aの位置を高くしても、歯先122へ冷凍機油51を導くことができる。 The compression chamber 14 (see FIG. 1) of the scroll compressor 1 compresses the refrigerant gas toward the center of the spiral while reducing the volume thereof as the orbiting scroll 12 rotates. At this time, the refrigerating machine oil 51 is also conveyed to the center of the spiral, but since the refrigerating machine oil 51 is a liquid, the compressibility is small and the amount of change in volume is small. Therefore, the ratio of the volume of the refrigerator oil 51 to the volume of the compression chamber 14 increases toward the center of the spiral, and the height of the refrigerator oil 51 accumulated in the compression chamber 14 increases. Therefore, since the height of the refrigerating machine oil 51 from the tooth bottom 123 becomes higher, the refrigerating machine oil 51 reaches the tooth tip 122 even if the position of the end portion 15a of the groove portion 15 on the tooth bottom 123 side is raised toward the center of the spiral. Can be derived.
 ここで、揺動スクロール12の渦巻歯121の側面に設けた溝部15は、上述のとおり、冷媒ガスの漏れ経路となるため、溝部15の長さは短いほうが望ましい。そこで、本実施の形態2のように、溝部15の歯底123側の端部15aの配置を、渦巻中心に向かうにつれ高くすることで、溝部15の長さを短くすることができる。よって、冷媒ガスの漏れ量を抑制しながら、適切に歯先122へと冷凍機油51を導くことができ、歯先122の焼付きを防止することができる。 Here, the groove 15 provided on the side surface of the spiral tooth 121 of the orbiting scroll 12 serves as a refrigerant gas leakage path as described above, and therefore the groove 15 is preferably short. Therefore, as in the second embodiment, the length of the groove portion 15 can be shortened by increasing the arrangement of the end portion 15a of the groove portion 15 on the tooth bottom 123 side toward the center of the spiral. Therefore, the refrigerator oil 51 can be appropriately guided to the tooth tip 122 while suppressing the leakage amount of the refrigerant gas, and seizure of the tooth tip 122 can be prevented.
<実施の形態2における効果>
 以上、説明したように、本実施の形態2のスクロール圧縮機1では、渦巻中心に向かうにつれ圧縮室14の容積が小さくなる。このため、溝部15の歯底123側に配置される端部15aの位置が歯先122側に寄って高くなっても、歯先122側へと冷凍機油を導くことが可能であり、溝部15の長さを短くすることで渦巻歯121の側面の冷媒ガス漏れ量を低減できる。
<Effect in Embodiment 2>
As described above, in the scroll compressor 1 according to the second embodiment, the volume of the compression chamber 14 becomes smaller toward the center of the spiral. Therefore, even if the position of the end portion 15a arranged on the tooth bottom 123 side of the groove portion 15 becomes higher toward the tooth tip 122 side, the refrigerating machine oil can be guided to the tooth tip 122 side, and the groove portion 15 can be guided. By shortening the length of the, the amount of refrigerant gas leakage on the side surface of the spiral tooth 121 can be reduced.
実施の形態3.
 次に、図8を参照しながら、本発明の実施の形態3に係るスクロール圧縮機1について説明する。図8は、本発明の実施の形態3に係る揺動スクロール12を示す平面図である。なお、前述した実施の形態1と同様の構成部分に関しては説明を割愛する。
Embodiment 3.
Next, a scroll compressor 1 according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 8 is a plan view showing the orbiting scroll 12 according to Embodiment 3 of the present invention. The description of the same components as those in the first embodiment will be omitted.
 図8に示すように、本実施の形態3では、実施の形態1におけるスクロール圧縮機1と同様の揺動スクロール12において、渦巻歯121の側面に設けられた溝部15の歯先122側の端部15b周辺に凹部16を設けている。この凹部16の大きさは渦巻歯121の厚みよりも小さくし、凹部16の設置位置は溝部15の歯先122側の端部15bに対して、揺動スクロール12の回転方向Xとは反対側が望ましい。 As shown in FIG. 8, in the third embodiment, in the orbiting scroll 12 similar to the scroll compressor 1 in the first embodiment, the tip of the groove portion 15 provided on the side surface of the spiral tooth 121 on the tip 122 side. A recess 16 is provided around the portion 15b. The size of the recess 16 is smaller than the thickness of the spiral tooth 121, and the installation position of the recess 16 is on the side opposite to the rotation direction X of the orbiting scroll 12 with respect to the end 15b of the groove 15 on the tip 122 side. desirable.
 このように、溝部15の歯先122側の端部15b周辺に凹部16を設けることで、歯底123側から溝部15に沿って歯先122側まで導かれた冷凍機油51が、凹部16に貯留される。凹部16に貯留された冷凍機油51は、冷凍機油51の粘性または固定スクロール11の歯底113側(図6参照)との摩擦力によって、揺動スクロール12の回転と共に歯先122で広がり、歯先122側の面全体が潤滑される。これにより、歯先122の潤滑性が向上し、さらに焼付き耐力を向上させることができる。 In this way, by providing the concave portion 16 around the end portion 15b of the groove portion 15 on the tooth tip 122 side, the refrigerating machine oil 51 guided from the tooth bottom 123 side to the tooth tip 122 side along the groove portion 15 is provided in the concave portion 16. Be stored. The refrigerating machine oil 51 stored in the recess 16 spreads at the tooth tips 122 as the orbiting scroll 12 rotates due to the viscosity of the refrigerating machine oil 51 or the frictional force with the tooth bottom 113 side of the fixed scroll 11 (see FIG. 6 ). The entire surface on the tip 122 side is lubricated. As a result, the lubricity of the tooth tip 122 is improved, and the seizure resistance can be further improved.
<実施の形態3における効果>
 以上、説明したように、本実施の形態3のスクロール圧縮機1では、溝部15の歯先122側の端部15b周辺に凹部16を設けることで、歯底123側から溝部15に沿って歯先122側へと導かれた冷凍機油51が、凹部16に貯留する。そして、この冷凍機油51は、揺動スクロール12の回転と共に凹部16から引きずられ、歯先122側全体を潤滑することができる。これにより、歯先122の潤滑性が向上し、さらに焼付き耐力を向上させることができる。
<Effect in Embodiment 3>
As described above, in the scroll compressor 1 according to the third embodiment, the recess 16 is provided around the end portion 15b of the groove portion 15 on the tooth tip 122 side, so that the tooth is formed along the groove portion 15 from the tooth bottom 123 side. Refrigerating machine oil 51 led to the tip 122 side is stored in the recess 16. The refrigerating machine oil 51 is dragged from the recess 16 as the orbiting scroll 12 rotates, and can lubricate the entire tip 122 side. As a result, the lubricity of the tooth tip 122 is improved, and the seizure resistance can be further improved.
実施の形態4.
 次に、図9を参照しながら、本発明の実施の形態4に係るスクロール圧縮機1について説明する。図9は、本発明の実施の形態4に係る揺動スクロール12を示す平面図である。なお、前述した実施の形態1と同様の構成部分に関しては説明を割愛する。
Fourth Embodiment
Next, a scroll compressor 1 according to Embodiment 4 of the present invention will be described with reference to FIG. 9. FIG. 9 is a plan view showing the orbiting scroll 12 according to Embodiment 4 of the present invention. The description of the same components as those in the first embodiment will be omitted.
 図9に示すように、本実施の形態4では、実施の形態1におけるスクロール圧縮機1と同様の揺動スクロール12において、渦巻歯121の側面に設けられた溝部15の歯先122側の端部15bと、歯先122面との間を連通する歯先溝17が設けられている。この歯先溝17は、揺動スクロール12の回転方向Xとは反対方向に延在し、溝部15毎に設けられている。そして、各歯先溝17は、それぞれが連通しないように設置されている。 As shown in FIG. 9, in the fourth embodiment, in the orbiting scroll 12 similar to the scroll compressor 1 in the first embodiment, the tip of the groove portion 15 provided on the side surface of the spiral tooth 121 on the tip 122 side. An addendum groove 17 is provided that connects the portion 15b and the addendum 122 surface. The addendum groove 17 extends in the direction opposite to the rotation direction X of the orbiting scroll 12 and is provided for each groove portion 15. Then, the tooth crests 17 are installed so as not to communicate with each other.
 歯先溝17は、渦巻歯121の側面の溝部15における歯先122側の端部15bから延在している。このため、歯底123側から導かれた冷凍機油51は、歯先溝17に流れ込み、揺動スクロール12の回転に伴い歯先溝17に貯留される。歯先溝17に貯留された冷凍機油51は、歯先溝17が設けられた区間を潤滑するだけでなく、実施の形態3と同様に歯先122の面全体を潤滑することができる。さらに、歯先溝17は歯先122の総面積に対してある一定の面積を有し、圧力をもった冷凍機油51を流し込む。このため、揺動スクロール12の歯先122と固定スクロール11の歯底113(図6参照)を引き離す方向に圧力が生じ、歯先122の過度な押付け荷重を低減することができる。これにより、揺動スクロール12の歯先122の焼付き耐力を更に向上させることができる。 The addendum groove 17 extends from the end part 15 b on the addendum 122 side of the groove part 15 on the side surface of the spiral tooth 121. Therefore, the refrigerating machine oil 51 guided from the tooth bottom 123 side flows into the tooth tip groove 17 and is stored in the tooth tip groove 17 as the orbiting scroll 12 rotates. The refrigerating machine oil 51 stored in the addendum groove 17 can not only lubricate the section where the addendum groove 17 is provided, but also lubricate the entire surface of the addendum 122 as in the third embodiment. Further, the addendum groove 17 has a certain area with respect to the total area of the addendum 122, and the refrigerating machine oil 51 having a pressure is poured therein. Therefore, pressure is generated in the direction in which the tooth tip 122 of the orbiting scroll 12 and the tooth bottom 113 (see FIG. 6) of the fixed scroll 11 are separated from each other, and an excessive pressing load on the tooth tip 122 can be reduced. As a result, the seizure resistance of the addendum 122 of the orbiting scroll 12 can be further improved.
<実施の形態4における効果>
 以上、説明したように、本実施の形態4のスクロール圧縮機1では、歯先溝17に貯留された冷凍機油51は、歯先溝17が設けられた区間を潤滑するだけでなく、実施の形態3と同様に歯先122の面全体を潤滑することができる。また、歯先122の総面積に対する歯先溝17の面積が大きくなるため、流入する冷凍機油51の圧力によって、渦巻歯121と渦巻歯111とを引き離す方向に圧力が生じ、渦巻歯121と渦巻歯111との押付け荷重を低減して焼付きを防止できる。
<Effect in Embodiment 4>
As described above, in the scroll compressor 1 of the fourth embodiment, the refrigerating machine oil 51 stored in the tooth tip groove 17 not only lubricates the section in which the tooth tip groove 17 is provided, but also implements the practice. The entire surface of the tooth tip 122 can be lubricated as in the case of the third embodiment. Further, since the area of the tip groove 17 is larger than the total area of the tip 122, the pressure of the inflowing refrigerating machine oil 51 causes a pressure in a direction separating the spiral tooth 121 and the spiral tooth 111, and the spiral tooth 121 and the spiral tooth 121. The pressing load on the teeth 111 can be reduced to prevent seizure.
実施の形態5.
 次に、図10を参照しながら、本発明の実施の形態5に係るスクロール圧縮機1について説明する。図10は、本発明の実施の形態5に係るスクロール圧縮機1の圧縮機構部10を示す縦断面図である。なお、前述した実施の形態1と同様の構成部分に関しては説明を割愛する。
Embodiment 5.
Next, a scroll compressor 1 according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a vertical cross-sectional view showing the compression mechanism section 10 of the scroll compressor 1 according to the fifth embodiment of the present invention. The description of the same components as those in the first embodiment will be omitted.
 図10に示すとおり、本実施の形態5では、固定スクロール11の渦巻歯111の側面に、前述した実施の形態1の溝部15と同様の溝部18を設けている。ただし、実施の形態5における溝部18は固定スクロール11の歯先112側の図示省略する端部が、揺動スクロール12の回転方向Xと同方向に傾斜している。また、固定スクロール11の渦巻歯111の側面において、揺動スクロール12の回転方向Xに隣り合う溝部18同士は中心軸方向に重なり合わない区間を有し、歯底113側の図示省略する端部は歯底113の面まで溝部18が設けられている。冷凍機油51の移動経路は、実施の形態1と同様である。渦巻歯111の溝部18は、固定スクロール11の歯先112側から高圧の圧縮室14に移行する。このため、固定スクロール11の歯先112側端部周辺である、揺動スクロール12の歯底123に溜まった冷凍機油51が固定スクロール11の渦巻歯111の溝部18に沿って、圧力差で歯底113まで導かれる。圧縮室14の上部である歯底113まで導かれ、持ち上げられた冷凍機油51は、揺動スクロール12の回転と共に、揺動スクロール12の歯先122側に引きずられて歯先122を潤滑する。このとき、渦巻歯111の溝部18における歯底113側の端部は、歯底113の面までとしたが、溝部18と連通し、歯底113にかかる凹部を設けてもよい。また、図10では、渦巻歯111の側面における内向面のみに溝部18を設けているが、外向面のみ、または内向面と外向面との双方に設けてもよい。 As shown in FIG. 10, in the fifth embodiment, a groove 18 similar to the groove 15 of the above-described first embodiment is provided on the side surface of the spiral tooth 111 of the fixed scroll 11. However, in the groove portion 18 in the fifth embodiment, the end portion of the fixed scroll 11 on the tooth tip 112 side, not shown, is inclined in the same direction as the rotation direction X of the orbiting scroll 12. Further, on the side surface of the spiral tooth 111 of the fixed scroll 11, the groove portions 18 adjacent to each other in the rotation direction X of the orbiting scroll 12 have a section in which they do not overlap in the central axis direction, and the tooth bottom 113 side end portion (not shown). Is provided with a groove 18 up to the surface of the tooth bottom 113. The movement route of the refrigerating machine oil 51 is the same as that of the first embodiment. The groove portion 18 of the spiral tooth 111 moves from the tooth tip 112 side of the fixed scroll 11 to the high-pressure compression chamber 14. Therefore, the refrigerating machine oil 51 accumulated in the tooth bottom 123 of the swing scroll 12 around the tooth tip 112 side end of the fixed scroll 11 is placed along the groove 18 of the spiral tooth 111 of the fixed scroll 11 by a pressure difference. It is guided to the bottom 113. The refrigerating machine oil 51, which is guided to the tooth bottom 113 which is the upper part of the compression chamber 14 and lifted, is dragged toward the tooth tip 122 side of the swing scroll 12 as the rocking scroll 12 rotates, and lubricates the tooth tip 122. At this time, the end portion of the groove portion 18 of the spiral tooth 111 on the tooth bottom 113 side is up to the surface of the tooth bottom 113, but it may be communicated with the groove portion 18 and provided with a recessed portion on the tooth bottom 113. Further, in FIG. 10, the groove portion 18 is provided only on the inward surface on the side surface of the spiral tooth 111, but it may be provided only on the outward surface or on both the inward surface and the outward surface.
 なお、本実施の形態5では、固定スクロール11の渦巻歯111の側面に、揺動スクロール12の回転方向Xに傾斜している溝部18を設ける場合について述べたが、本発明はこれに限ることはない。例えば、揺動スクロール12の渦巻歯121の側面に、揺動スクロール12の回転方向Xに傾斜している溝部15を設けるようにしてもよい。図11は、本発明の実施の形態5の変形例に係る揺動スクロール12を示す側面図である。この場合、図11に示すように、スクロール圧縮機1の揺動スクロール12において、溝部15が、揺動スクロール12の回転方向Xに傾斜している点を除いて、実施の形態1におけるスクロール圧縮機1と同様に構成されている。この場合、揺動スクロール12の回転方向Xに隣り合う溝部15同士の間には、回転方向Xにおいて互いが重なり合うことのない一定の間隔を設けた非積重部L3が形成されている。なお、スクロール圧縮機1の運転条件または仕様によっては圧縮比が小さく、隣り合う圧縮室14の圧力差が小さい場合がある。その場合においては、圧力差によって冷凍機油51を運ぶよりも冷凍機油51のくさび効果等によって押し上げる方が効果的な場合がある。 Although the fifth embodiment has described the case where the groove portion 18 inclined in the rotation direction X of the orbiting scroll 12 is provided on the side surface of the spiral tooth 111 of the fixed scroll 11, the present invention is not limited to this. There is no. For example, the groove portion 15 inclined in the rotation direction X of the orbiting scroll 12 may be provided on the side surface of the spiral tooth 121 of the orbiting scroll 12. FIG. 11 is a side view showing an orbiting scroll 12 according to a modification of the fifth embodiment of the present invention. In this case, as shown in FIG. 11, in the orbiting scroll 12 of the scroll compressor 1, the scroll compression in the first embodiment is different except that the groove portion 15 is inclined in the rotation direction X of the orbiting scroll 12. It has the same configuration as the machine 1. In this case, between the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12, there is formed a non-stacked portion L3 provided with a constant interval that does not overlap each other in the rotation direction X. Depending on the operating conditions or specifications of the scroll compressor 1, the compression ratio may be small and the pressure difference between the adjacent compression chambers 14 may be small. In that case, it may be more effective to push up the refrigerating machine oil 51 by the wedge effect of the refrigerating machine oil 51 rather than carrying the refrigerating machine oil 51 due to the pressure difference.
 ただし、前述の通り渦巻歯111および121同士の接触は、軸受等と異なり摺動点前後での隙間が大きいため、くさび効果の影響が小さくなり、圧力差の影響によって冷凍機油51は上昇し難くなる。したがって、溝部15を揺動スクロール12の回転方向と同方向に傾斜させる場合は、傾斜を垂直に近づける等して渦巻歯111および121同士の隙間が小さい範囲で溝部15を設置することが望ましい。これにより、隣り合う圧縮室14間の圧力差の影響を小さくできると共に、くさび効果を生じ易くすることができる。 However, as described above, the contact between the spiral teeth 111 and 121 has a large gap before and after the sliding point unlike bearings and the like, so that the influence of the wedge effect is small and the refrigerating machine oil 51 is difficult to rise due to the influence of the pressure difference. Become. Therefore, when the groove portion 15 is inclined in the same direction as the rotation direction of the orbiting scroll 12, it is desirable to install the groove portion 15 in a range in which the gap between the spiral teeth 111 and 121 is small by, for example, making the inclination closer to the vertical direction. Thereby, the influence of the pressure difference between the adjacent compression chambers 14 can be reduced and the wedge effect can be easily generated.
<実施の形態5における効果>
 以上、説明したように、本実施の形態5のスクロール圧縮機1では、固定スクロール11の渦巻歯111の側面に、前述した実施の形態1の揺動スクロール12の渦巻歯121の側面における溝部15と同様の溝部18を設けるようにした。このため、固定スクロール11の歯先112側端部周辺である、揺動スクロール12の歯底123に溜まった冷凍機油51は、固定スクロール11の渦巻歯111の溝部18に沿って、圧力差で歯底113まで導かれる。そして、圧縮室14の上部である歯底113まで導かれた冷凍機油51は、揺動スクロール12の回転と共に、揺動スクロール12の歯先122側に引きずられて歯先122を潤滑する。このように、本実施の形態5のスクロール圧縮機1では、前述した実施の形態1とは異なり、圧力差ではなく、くさび効果によって歯先112側へ冷凍機油51を導くことができる。特に、隣り合う圧縮室14間の圧力差が小さい場合に効果的である。
<Effect in Embodiment 5>
As described above, in the scroll compressor 1 according to the fifth embodiment, the groove portion 15 on the side surface of the spiral tooth 111 of the fixed scroll 11 on the side surface of the spiral tooth 121 of the orbiting scroll 12 of the first embodiment described above. A groove portion 18 similar to the above is provided. Therefore, the refrigerating machine oil 51 collected at the tooth bottom 123 of the orbiting scroll 12 around the tip 112 side end of the fixed scroll 11 has a pressure difference along the groove portion 18 of the spiral tooth 111 of the fixed scroll 11. It is guided to the tooth bottom 113. Then, the refrigerating machine oil 51 guided to the tooth bottom 113, which is the upper part of the compression chamber 14, is dragged toward the tooth tip 122 side of the swing scroll 12 as the rocking scroll 12 rotates, and lubricates the tooth tip 122. As described above, in the scroll compressor 1 of the fifth embodiment, unlike the first embodiment described above, the refrigerating machine oil 51 can be guided to the tooth tip 112 side by the wedge effect instead of the pressure difference. In particular, it is effective when the pressure difference between the adjacent compression chambers 14 is small.
<変形例>
 なお、前述した実施の形態1~5の構成は一例であり、それぞれを組み合わせてもよい。図12は、本発明の他の実施の形態に係る固定スクロールと揺動スクロールとを示す側面図である。例えば、図12に示すように、揺動スクロール12の渦巻歯121および固定スクロールの渦巻歯111が重なり合う双方の面に、それぞれ溝部15と溝部18とを設けてもよい。ただし、それぞれの溝部15と溝部18とは、軸方向で重なり合わない区間を有するように設置する。すなわち、揺動スクロール12の回転方向Xに隣り合う溝部15および溝部18、溝部15同士、並びに、溝部18同士の間には、回転方向Xにおいて互いが重なり合うことのない一定の間隔を設けた非積重部L4が形成されている。このように、隣り合う溝部15および溝部18、溝部15同士、並びに、溝部18同士で中心軸方向に重ならないようにすることで、冷媒ガスの漏れを抑えながら、歯先122側の潤滑性を向上させることができる。
<Modification>
Note that the configurations of the first to fifth embodiments described above are examples, and the configurations may be combined. FIG. 12 is a side view showing a fixed scroll and an orbiting scroll according to another embodiment of the present invention. For example, as shown in FIG. 12, a groove portion 15 and a groove portion 18 may be provided on both surfaces on which the spiral teeth 121 of the swing scroll 12 and the spiral teeth 111 of the fixed scroll overlap each other. However, the respective groove portions 15 and 18 are installed so as to have a section that does not overlap in the axial direction. That is, the groove portions 15 and the groove portions 18, the groove portions 15 adjacent to each other in the rotation direction X of the orbiting scroll 12, and the groove portions 18 are provided with a constant interval that does not overlap each other in the rotation direction X. The stacking portion L4 is formed. As described above, the adjacent groove portions 15 and 18, the groove portions 15 and the groove portions 15 are prevented from overlapping with each other in the central axis direction, so that the leakage of the refrigerant gas is suppressed and the lubricity of the tooth tip 122 side is improved. Can be improved.
 1 スクロール圧縮機、2 密閉容器、3 揺動軸受、4 オルダム機構、5 空間、6 吐出ガス空間、10 圧縮機構部、11 固定スクロール、12 揺動スクロール、12a 揺動台板、13 オルダムリング、14 圧縮室、14H 圧縮室、14L 圧縮室、15 溝部、15a 端部、15b 端部、16 凹部、17 歯先溝、18 溝部、19 ガイドフレーム、20 電動機部、21 回転子、22 固定子、30 主軸、30a 揺動軸部、31 給油機構、41 吸入口、42 吐出口、50 油溜り部、51 冷凍機油、61 吸入管、62 吐出管、111 渦巻歯、112 歯先、113 歯底、121 渦巻歯、122 歯先、123 歯底、L1~L4 非積重部、X 回転方向。 1 scroll compressor, 2 closed container, 3 rocking bearing, 4 old dam mechanism, 5 space, 6 discharge gas space, 10 compression mechanism, 11 fixed scroll, 12 rocking scroll, 12a rocking base plate, 13 oldam ring, 14 compression chamber, 14H compression chamber, 14L compression chamber, 15 groove, 15a end, 15b end, 16 recess, 17 tooth tip groove, 18 groove, 19 guide frame, 20 motor part, 21 rotor, 22 stator, 30 spindle, 30a swing shaft, 31 refueling mechanism, 41 suction port, 42 discharge port, 50 oil reservoir, 51 refrigerating machine oil, 61 suction pipe, 62 discharge pipe, 111 spiral tooth, 112 tooth tip, 113 tooth bottom, 121 spiral tooth, 122 tooth tip, 123 tooth bottom, L1 to L4 non-stacked portion, X rotation direction.

Claims (6)

  1.  固定台板上に突出して形成された螺旋形状の渦巻歯を有する固定スクロールと、揺動台板上に突出して形成された螺旋形状の渦巻歯を有する揺動スクロールと、を互いの前記渦巻歯が噛み合うように備え、前記固定スクロールに対して前記揺動スクロールを公転運動させて、前記固定スクロールと前記揺動スクロールとにより構成される複数の圧縮室を、外方側から内方側に向かって次第に縮小させて圧縮を行うスクロール圧縮機であって、
     前記固定スクロールまたは前記揺動スクロールの少なくとも一方の前記渦巻歯は、
     側面に歯底側から歯先側に向けて潤滑油を流通させる複数の溝部が形成されており、
     各前記溝部は、
     前記固定スクロールまたは前記揺動スクロールの中心軸方向に対して傾斜して設けられると共に、前記歯先側の端部が開放されてなり、
     各前記溝部における前記揺動スクロールの回転方向に隣り合う前記溝部同士の間には、
     前記回転方向において互いが重なり合うことのない一定の間隔を設けた非積重部が形成されている、スクロール圧縮機。
    The fixed scroll having spiral spiral teeth formed to project on the fixed base plate and the orbiting scroll having spiral spiral teeth formed to project on the rocking base plate are provided with the spiral teeth. The rocking scroll is revolved with respect to the fixed scroll so that a plurality of compression chambers composed of the fixed scroll and the swing scroll are directed from the outer side to the inner side. It is a scroll compressor that gradually shrinks and compresses.
    The spiral teeth of at least one of the fixed scroll or the orbiting scroll,
    A plurality of groove portions are formed on the side surface to allow the lubricating oil to flow from the tooth bottom side to the tooth tip side,
    Each said groove
    The fixed scroll or the orbiting scroll is provided so as to be inclined with respect to the central axis direction, and the end on the tooth tip side is opened,
    Between the groove portions adjacent to each other in the rotation direction of the orbiting scroll in each groove portion,
    A scroll compressor in which non-stacked portions are formed at regular intervals so as not to overlap each other in the rotation direction.
  2.  前記溝部の前記歯底側に配置される始点の位置が、前記渦巻歯の渦巻中心に向かうにつれ前記歯先に近づけた位置に配置される、請求項1に記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the position of the start point arranged on the tooth bottom side of the groove portion is arranged at a position closer to the tooth tip toward the spiral center of the spiral tooth.
  3.  前記固定スクロールまたは前記揺動スクロールの少なくとも一方の前記渦巻歯における前記歯先側の端面に位置する前記溝部の開放された端部の周辺に、前記渦巻歯の厚みよりも小さい凹部が形成されている、請求項1または2に記載のスクロール圧縮機。 A recess smaller than the thickness of the spiral tooth is formed around the open end of the groove located on the tooth tip side end surface of at least one of the fixed scroll or the swing scroll. The scroll compressor according to claim 1 or 2.
  4.  前記固定スクロールまたは前記揺動スクロールの少なくとも一方の前記渦巻歯における前記歯先側の端面に、前記溝部の前記端部と連通する歯先溝がそれぞれ形成され、
     各前記歯先溝は、
     前記揺動スクロールの前記回転方向とは反対方向に延在し、各々連通しない位置に設置されている、請求項1~3のいずれか一項に記載のスクロール圧縮機。
    A tooth tip groove communicating with the end portion of the groove portion is formed on the tooth tip side end surface of at least one of the fixed scroll or the swing scroll tooth.
    Each of the tooth tip grooves
    The scroll compressor according to any one of claims 1 to 3, which extends in a direction opposite to the rotation direction of the swing scroll and is installed at a position where they do not communicate with each other.
  5.  前記溝部は、
     前記固定スクロールまたは前記揺動スクロールの少なくとも一方の前記渦巻歯における内向側または外向側の少なくとも一方の側面に設けられ、
     前記溝部の前記歯先側が前記揺動スクロールの回転方向とは反対方向に傾斜している、請求項1~4のいずれか一項に記載のスクロール圧縮機。
    The groove is
    The fixed scroll or the orbiting scroll is provided on at least one side surface on the inward side or the outward side in at least one of the spiral teeth,
    The scroll compressor according to any one of claims 1 to 4, wherein the tooth tip side of the groove portion is inclined in a direction opposite to the rotation direction of the swing scroll.
  6.  前記溝部は、
     前記固定スクロールまたは前記揺動スクロールの少なくとも一方の前記渦巻歯における内向側または外向側の少なくとも一方の側面に設けられ、
     前記溝部の前記歯先側が前記揺動スクロールの回転方向に傾斜している、請求項1~4のいずれか一項に記載のスクロール圧縮機。
    The groove is
    The fixed scroll or the orbiting scroll is provided on at least one side surface on the inward side or the outward side in at least one of the spiral teeth,
    The scroll compressor according to any one of claims 1 to 4, wherein the tooth tip side of the groove portion is inclined in the rotation direction of the orbiting scroll.
PCT/JP2019/009040 2019-03-07 2019-03-07 Scroll compressor WO2020179051A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/009040 WO2020179051A1 (en) 2019-03-07 2019-03-07 Scroll compressor
JP2019539875A JP6608101B1 (en) 2019-03-07 2019-03-07 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009040 WO2020179051A1 (en) 2019-03-07 2019-03-07 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2020179051A1 true WO2020179051A1 (en) 2020-09-10

Family

ID=68613376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009040 WO2020179051A1 (en) 2019-03-07 2019-03-07 Scroll compressor

Country Status (2)

Country Link
JP (1) JP6608101B1 (en)
WO (1) WO2020179051A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540261A (en) * 1978-09-18 1980-03-21 Hitachi Ltd Scroll type fluid machine
JPS56156490A (en) * 1980-05-06 1981-12-03 Hitachi Ltd Enclosed scroll compressor
JPH05332272A (en) * 1992-06-04 1993-12-14 Hitachi Ltd Scroll compressor
JP2008232048A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Scroll compressor
JP2008267150A (en) * 2007-04-16 2008-11-06 Sanden Corp Fluid machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540261A (en) * 1978-09-18 1980-03-21 Hitachi Ltd Scroll type fluid machine
JPS56156490A (en) * 1980-05-06 1981-12-03 Hitachi Ltd Enclosed scroll compressor
JPH05332272A (en) * 1992-06-04 1993-12-14 Hitachi Ltd Scroll compressor
JP2008232048A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Scroll compressor
JP2008267150A (en) * 2007-04-16 2008-11-06 Sanden Corp Fluid machine

Also Published As

Publication number Publication date
JPWO2020179051A1 (en) 2021-03-11
JP6608101B1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
KR101480464B1 (en) Scoroll compressor and refrigerator having the same
US9617996B2 (en) Compressor
JP3731068B2 (en) Rotary compressor
US4878820A (en) Screw compressor
JP6664879B2 (en) Open type compressor
JP2012077627A (en) Scroll compressor
JP2008303844A (en) Scroll fluid machine
JP2006316677A (en) Scroll type compressor
KR101587171B1 (en) Scoroll compressor and refrigerator having the same
KR101553953B1 (en) Scoroll compressor and refrigerator having the same
JP4189713B2 (en) Refrigerant compressor
WO2020179051A1 (en) Scroll compressor
JP2017025789A (en) Rotary compressor
JP3584533B2 (en) Scroll compressor
JP7263554B2 (en) scroll compressor
JPH08326671A (en) Scroll type compressor
JP2016156297A (en) Scroll compressor
JP2006241993A (en) Scroll compressor
JP4188142B2 (en) Scroll compressor
CN113167278A (en) Screw compressor
JP2012036833A (en) Scroll type fluid machine
JP4394380B2 (en) Scroll fluid machinery
JPH0783185A (en) Horizontal rotary compressor
JP2012052494A (en) Hermetically sealed compressor
JP6972391B2 (en) Scroll compressor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019539875

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917975

Country of ref document: EP

Kind code of ref document: A1