WO2020177590A1 - 线栅结构及其制作方法、投影屏幕 - Google Patents

线栅结构及其制作方法、投影屏幕 Download PDF

Info

Publication number
WO2020177590A1
WO2020177590A1 PCT/CN2020/076765 CN2020076765W WO2020177590A1 WO 2020177590 A1 WO2020177590 A1 WO 2020177590A1 CN 2020076765 W CN2020076765 W CN 2020076765W WO 2020177590 A1 WO2020177590 A1 WO 2020177590A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire grid
grid structure
precursor
manufacturing
stretching
Prior art date
Application number
PCT/CN2020/076765
Other languages
English (en)
French (fr)
Inventor
王杰
张红秀
孙微
王霖
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/436,457 priority Critical patent/US20220155667A1/en
Publication of WO2020177590A1 publication Critical patent/WO2020177590A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/461Rollers the rollers having specific surface features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/003Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/737Articles provided with holes, e.g. grids, sieves

Definitions

  • the invention relates to the field of projection technology, in particular to a wire grid structure, a manufacturing method thereof, and a projection screen.
  • the projection screen includes a wire grid structure.
  • the wire grid structure includes a wire grid body, and the height of the wire grid body is small.
  • the cast sheet is usually patterned to form the required wire grid structure, and since the height of the wire grid body in the wire grid structure is small, the cast sheet of the wire grid structure is made The height is also small, the cast sheet may be crushed and damaged during the patterning process, the yield rate of the cast sheet patterning process is low, and the yield rate of the wire grid structure is low.
  • the purpose of the present invention is to provide a wire grid structure, a manufacturing method thereof, and a projection screen, so as to solve the problem that due to the small height of the cast sheet made of the wire grid structure, the cast sheet may be crushed and damaged during the patterning process. , The yield rate of the cast patterning process is low, and the yield rate of the wire grid structure is low.
  • the present invention provides a wire grid structure comprising a wire grid structure body and a reflective particle additive, the reflective particle additive being arranged on the surface of the grid structure body and/or arranged inside the wire grid structure body.
  • the inside of the wire grid structure is formed with pores located on opposite sides of the reflective particle additive.
  • the number of the pores is at least twice that of the reflective particle additive.
  • micro grooves located on opposite sides of the reflective particle additive are formed on the surface of the wire grid structure.
  • the number of the microgrooves is at least twice that of the reflective particle additives.
  • the reflective particle additive includes at least one of barium sulfate, titanium dioxide, or calcium carbonate;
  • the material of the wire grid structure body includes polyethylene terephthalate, isophthalic acid, cyclohexane dimethanol And at least one of polyethylene glycol.
  • the present invention provides a projection screen, including a reflective layer, an absorbing layer, and the above-mentioned wire grid structure.
  • the wire grid structure body includes a body surface and a projection surface and a non-projection surface that are alternately arranged opposite to the body surface.
  • the projection surface is used to reflect projection light
  • the absorption layer is provided on the non-projection surface
  • the reflection layer is provided on the surface of the body.
  • the present invention provides a method for manufacturing a wire grid structure, including:
  • the embossing roller patterns the cast sheet to form a precursor with a predetermined wire grid structure pattern, wherein the precursor is wound on the embossing roller, and the precursor has a first height direction size;
  • the first set of stretching rolls and the second set of stretching rolls with a preset pitch stretch the precursor in two opposite directions in a direction perpendicular to the height direction to form the wire grid structure, wherein the wire
  • the gate structure has a second dimension in the height direction, and the first dimension is larger than the second dimension.
  • the step of patterning the cast sheet by the embossing roller to form a precursor having a predetermined wire grid structure pattern includes:
  • the slab roll conveys the slab to the gap between the slab roll and the embossing roller, and the embossing roller emboss the slab in the gap to obtain a predetermined wire grid
  • the precursor of the structural pattern is a predetermined wire grid
  • the step of stretching the precursor in two opposite directions in a direction perpendicular to the height direction in the first group of stretching rollers and the second group of stretching rollers having a preset pitch to form the wire grid structure include:
  • the first set of stretching rollers rotate at a first rotation speed to stretch the precursor
  • the second set of stretching rollers rotate at a second rotation speed to stretch the precursor.
  • the first size is 1-6 times the second size; the first rotation speed is 1-6 times the second rotation speed.
  • the step of patterning the cast sheet by the embossing roller to form a precursor having a predetermined wire grid structure pattern includes:
  • the cast sheet is patterned by using an embossing roller larger than the preset hardness value.
  • the present application uses patterning of a cast sheet with a larger height dimension to produce a precursor with a larger height direction size, so as to reduce the difficulty of patterning the cast sheet and improve the patterning yield of the cast sheet.
  • the yield of the wire grid structure is improved.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a wire grid structure provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the manufacturing device of the wire grid structure in FIG. 1.
  • Fig. 3 is a schematic diagram of the structure of the cast sheet produced in step S1 in Fig. 1.
  • FIG. 4 is a schematic diagram of the structure of the precursor produced in step S2 in FIG. 1.
  • FIG. 5 is a schematic diagram of the side structure of the precursor produced in step S2 in FIG. 1.
  • FIG. 6 is a schematic diagram of the structure of the wire grid structure produced in step S3 in FIG. 1.
  • Fig. 7 is a schematic structural diagram of a wire grid structure manufactured by the present invention.
  • FIG. 8 is a schematic cross-sectional structure diagram of the wire grid structure shown in FIG. 7.
  • Fig. 9 is a schematic structural diagram of a projection screen manufactured by the present invention.
  • FIG. 10 is a schematic diagram of a wire grid body of the wire grid structure fabricated in FIG. 6.
  • FIG. 11 is a schematic diagram of the structure of the embossing roller in FIG. 2.
  • the present invention provides a method for fabricating a wire grid structure, including:
  • the molten mixed material body in the melt extruder 20 is extruded onto the slab roll 160 to form the slab 120.
  • the thickness of the cast sheet 120 is relatively large.
  • the material of the mixed material body includes organic material and inorganic material.
  • Organic materials include: PET (polyethylene terephthalate) chips with a mass fraction of 40 to 70%, 5 to 10% isophthalic acid, 5 to 10% cyclohexane dimethanol, and 5 to 10% 10% polyethylene glycol.
  • the inorganic material includes 10-20% reflective particle additives.
  • the above-mentioned mixed material is added to the dryer 40, dried and uniformly mixed, and the dried mixed material is sent to the melt extruder 20 to be melted to obtain a molten mixed material body, which is passed through the melt extruder
  • the die head of 20 extrudes the molten mixed material body to the casting roll 160, which is a cooling roller, to cool and solidify the molten mixed material body into the desired casting sheet 120.
  • the temperature needs to be raised to a first preset temperature range, and the first preset temperature range is 170-180°.
  • the temperature needs to be raised to the second preset temperature range, and the second preset temperature range is 270-290°.
  • Each material in the molten mixed material body has a preset ratio.
  • the slices can also be PC (polycarbonate), PVC (polyvinyl chloride), PP (polypropylene), PE (polyethylene), PMMA (polymethyl methacrylate), etc.
  • the mixed material of the cast sheet 120 includes 32.5% terephthalic acid, 32.5% hexanediol, 8% isophthalic acid, 5% cyclohexanedimethanol, 5% Polyethylene glycol, 17% reflective particle additive.
  • the mixed material is added to the dryer 40, mixed and dried at the first preset temperature for 3 hours, and then the dried material is transferred to the melt extruder 20, and at the second preset temperature, Melt and plasticize and mix again, and the molten mixed material body is metered and filtered through the die of the melt extruder 20 and squeezed to the casting roll 160 to form the casting sheet 120.
  • the reflective particle additive may be titanium dioxide (titanium dioxide).
  • the embossing roller 30 patterns the cast sheet 120 to form a precursor 130 having a predetermined wire grid structure pattern, wherein the precursor 130 is wound on the embossing roller 30 and the precursor
  • the body 130 has a first dimension D1 in the height direction L1.
  • the thickness of the cast slab 120 is larger, that is, the first dimension D1 in the height direction L1 of the cast slab 120 is larger.
  • the precursor 130 formed by patterning the cast slab 120 is the first in the height direction L1.
  • the size D1 will also be larger.
  • the first set of stretching rollers 50 and the second set of stretching rollers 60 with preset spacing stretch the precursor 130 in two opposite directions in the direction L2 perpendicular to the height direction L1 to form a line
  • the grid structure 10 wherein the wire grid structure 10 has a second dimension D2 in the height direction L1, the first dimension D1 is greater than the second dimension D2, and the ratio of the first dimension D1 to the second dimension D2 is within the first preset value range Inside.
  • the first preset value range is 1-6.
  • the ratio of the first dimension D1 to the second dimension D2 is preferably 6.
  • the traditional manufacturing method of the wire grid structure 10 can also be: mixing molten mixed materials and extruding the molten mixed material to form a cast sheet 120, stretching the cast sheet 120, and patterning the stretched cast sheet 120 to obtain a wire Grid structure 10.
  • the manufacturing method of the traditional wire grid structure 10 is mainly to first stretch and then pattern, the thickness of the cast sheet 120 after the first stretch is small, so that during the patterning process, the cast sheet 120 is prone to damage and easy to be scrapped.
  • the patterning yield of the cast sheet 120 is relatively low, and the yield of the wire grid structure 10 is relatively low.
  • the cast sheet 120 is first patterned to form a precursor 130 with a larger height in the L1 dimension, and then the precursor 130 is stretched. Therefore, during the patterning process of the cast sheet 120, the cast sheet 120 has The larger the L1 size in the height direction, the simple patterning process and the less difficult process, improve the product yield. That is to say, this application is equivalent to magnifying the size of the traditional cast sheet 120 in the height direction L1 first, and then patterning.
  • the patterning process is performed on the thicker cast sheet 120, and the patterning process is simple.
  • the present application also solves the problem that during the patterning process of the traditional cast sheet 120, the cast sheet 120 is prone to damage and is easy to be scrapped, the patterning yield of the cast sheet 120 is low, and the yield rate of the wire grid structure 10 is low. technical problem.
  • the conventional cast sheet 120 has a small size in the height direction L1 after being stretched, in the patterning process, the cast sheet 120 needs to be patterned by precision equipment with lower hardness, resulting in the wire grid structure 10
  • the production cost is relatively large.
  • the wire grid structure 10 is formed with UV glue, and the wire grid structure 10 is easily blocked due to poor mold release of the UV glue, and the precision equipment is scrapped.
  • the thick cast piece 120 is patterned to form the precursor 130, and then the precursor 130 is stretched to obtain the required wire grid structure 10, during the patterning process, the cast piece
  • the embossing roller 30 for patterning 120 does not need to be too demanding, and there is no need to use precision equipment with lower hardness to pattern the cast sheet 120.
  • the embossing roller 30 with a hardness greater than the preset value can be used to pattern the cast sheet 120. . Therefore, the manufacturing cost of the wire grid structure 10 is also lower. Therefore, the present application also solves the technical problem of the traditional patterning process that the manufacturing cost of the wire grid structure 10 is higher due to the more sophisticated equipment used.
  • an embossing roller 30 with chrome-plated stainless steel surface may be used.
  • the preset distance between the first set of stretching rollers 50 and the second set of stretching rollers 60 is small to ensure that the shape of the wire grid structure 10 in the height direction L1 is not deformed, but the first set of stretching
  • the preset distance between the roller 50 and the second set of stretching rollers 60 should not be too small. Too small a preset distance will cause the stretching rate of the precursor 130 to be too slow.
  • the preset distance between the first set of stretching rollers 50 and the second set of stretching rollers 60 can be selected to be 0.1-0.5 m. Preferably it is 0.2m.
  • Both the first group of stretching rollers 50 and the second group of stretching rollers 60 can be rotating rollers.
  • the first group of stretching rollers 50 rotate the stretching precursor 130 at a first rotation speed
  • the second group of stretching rollers 60 rotate at a second rotation speed.
  • the precursor 130 is rotated and stretched, wherein the ratio of the first rotation speed to the second rotation speed is within the second preset value range.
  • the second preset value range is 1-6.
  • the rotation speed of the first group of stretching rollers 50 can be set to 6m/min
  • the rotation speed of the second group of stretching rollers 60 is 1m/min.
  • the difference in rotation speed of the two sets of stretching rollers 60 stretches the precursor 130 longitudinally, and the ratio is preferably not more than 6.
  • the first rotation speed of the first group of stretching rollers 50 and the second rotation speed of the second group of stretching rollers 60 can be adjusted and set. Ratio to get the required wire grid structure 10. For example, when the ratio of the first dimension D1 to the second dimension D2 is 6, the ratio of the first rotation speed to the second rotation speed can also be selected as 6. For example, when the ratio of the first dimension D1 to the second dimension D2 is 3, the ratio of the first rotation speed to the second rotation speed can also be selected as 3.
  • the precursor 130 Before the precursor 130 is stretched, the precursor 130 needs to be heated to increase the flexibility of the precursor 130.
  • the main material of the precursor 130 is organic matter, and the organic matter will increase flexibility when the temperature is raised, so as to facilitate the stretching in the subsequent process.
  • the precursor 130 is fed into the multi-roll heating device 70, and the precursor 130 is heated in a stepped manner within the third preset temperature range, so as to prevent the precursor 130 from heating up too quickly.
  • the body 130 is deformed.
  • the third preset temperature range is 80-120°.
  • the precursor 130 is also required to maintain a relatively high temperature to ensure flexibility.
  • the infrared heating device 80 heats the precursor 130 so that the precursor 130 maintains better flexibility.
  • the infrared heating device 80 heats the precursor 130 in the fourth preset temperature range.
  • the fourth preset temperature range is 100-150°.
  • the wire grid structure 10 After the wire grid structure 10 is fabricated, the wire grid structure 10 needs to be cooled.
  • the cooling of the wire grid structure 10 is preferably performed on the cooling roller 90 using a stepped cooling method to avoid deformation of the wire grid structure 10 caused by excessive cooling.
  • the cooling of the wire grid structure 10 is performed within the fifth preset temperature range.
  • the fifth preset temperature range is 20-50°.
  • the unpatterned side of the wire grid structure 10 can be coated with a reflective layer 20, and the non-projection surface 103 of the patterned side of the wire grid structure 10 is covered with an absorption layer 30 to form a projection Screen 100.
  • the projection screen 100 is wound up.
  • the winding process is performed through a roll-to-roll process on the winding shaft 110.
  • the roll-to-roll process is suitable for mass production of projection screen 100, which has higher productivity and better yield than single sheet production.
  • the present invention also provides a projection screen 100, including a reflective layer 20, an absorbing layer 30, and the wire grid structure 10 described above.
  • the wire grid structure 10 includes a wire grid structure body 104 and a reflective particle additive 170.
  • the reflective particle additive 170 is arranged on the surface of the grid structure body 104 and/or is arranged inside the wire grid structure body 104.
  • the wire grid structure body 104 includes a body surface 101 and a projection surface 102 and a non-projection surface 103 opposite to the body surface 101 and alternately arranged.
  • the projection surface 102 is used to reflect the projection light, and the absorption layer 30 is provided on the non-projection surface 103.
  • the layer 20 is provided on the surface 101 of the body.
  • the absorption layer 30 is a black absorption layer.
  • the surface of the reflective particle additive 170 is a curved surface.
  • the wire grid structure 10 is made by the above-mentioned manufacturing method of the wire grid structure 10.
  • the reflective particle additive 170 is added to the raw material of the wire grid structure 10.
  • the reflective particle additive 170 does not stretch.
  • the body 130 is stretched, so that microgrooves 140 are formed on the surface of the wire grid structure 10 and pores 150 are formed inside the wire grid structure 10.
  • the microgrooves 140 are microstructures formed on the surface of the wire grid structure 10, and the presence of the microgrooves 140 makes the surface of the wire grid structure 10 a rough surface.
  • the microgrooves 140 on the surface of the wire grid structure 10 are formed in the stretching direction and reflect There is at least one microgroove 140 on both sides of the particle additive 170 and the reflective particle additive 170.
  • one microgroove 140 can be broken to form a plurality of microgrooves 140, so that the number of microgrooves 140 At least twice that of reflective particle additive 170.
  • the pores 150 inside the wire grid structure 10 are formed in the stretching direction and on both sides of the reflective particles. At least one pore 150 is provided on both sides of the reflective particle additive 170, and when the stretching force changes, one pore 150 150 can be broken to form a plurality of air holes 150, so that the number of air holes 150 is at least twice that of the reflective particles.
  • the curved reflective particle additive 170 can also diffuse the incident light after reflection, and the surface of the microgrooves 140 is also curved.
  • the groove 140 can also diffuse the incident light irradiated on the micro groove 140, thereby increasing the viewing angle and brightness gain of the projection screen 100.
  • the curved reflective particle additive 170 can also diffuse the reflected incident light, and the hole wall of the air hole 150 is also curved, and the curved hole wall can also illuminate the micro The incident light on the groove 140 is diffused, thereby increasing the viewing angle and brightness gain of the projection screen 100.
  • the reflective particle additive 170 can reflect incident light, and then less light enters the projection screen and passes through the projection screen, and a large amount of light is reflected. Into the viewer's line of sight, the reflective particle additive 170 also improves the reflectivity of the projection screen.
  • the reflective particle additives 170 on the wire grid structure 10 can reflect and diffuse incident light, which not only increases the reflectivity of the projection screen 100, but also increases the viewing angle and brightness gain of the projection screen 100.
  • the wire grid structure 10 The upper air holes 150 and the microgrooves 140 can scatter the light irradiated on the projection screen 100, and also improve the viewing angle and brightness gain of the projection screen 100.
  • the reflective particle additive 170 includes barium sulfate, titanium dioxide, or calcium carbonate.
  • the reflective particle additive 170 is subjected to coupling treatment. Coupling treatment is to modify the surface of inorganic substances to increase the adhesion between inorganic substances and organic substances.
  • the inorganic substance here is at least one of the aforementioned barium sulfate, titanium dioxide and calcium carbonate
  • the organic substance is the aforementioned PET (polyethylene terephthalate), polyester PC (polycarbonate), PVC At least one of (polyvinyl chloride), PP (polypropylene), PE (polyethylene), PMMA (polymethyl methacrylate), and the like.
  • the wire grid structure 10 manufactured by this application is shown in the following figure.
  • the wire grid structure 10 includes several wire grid bodies 105 connected in sequence, the second dimension D2 of the height direction L1 of the wire grid structure 10 is 50-500um, and the height direction L1 dimension of the wire grid body 105 is within 0-200um .
  • each of the wire grid 105 comprises two base angles [theta] 1 and ⁇ 2, ⁇ 1 is an angle of 89 °, ⁇ 2 is an angle range of 1-10 °, the angle [theta] 2 is Gradual.
  • the direction of the height L1 of the wire grid 105 is the dimension h of the angle ⁇ 2 of the gradient.
  • the range of the dimension h in the height direction L1 of the wire grid body 105 is 5 to 53 um.
  • the dimension of each wire grid body 105 in the direction perpendicular to the height is p 300um.
  • the structure of the embossing roller 30 is designed as follows:
  • the embossing roller 30 In order to ensure the angle of the wire grid structure 10 after stretching, the embossing roller 30 needs to be designed to match the wire grid structure 10, and the outer surface of the embossing roller 30 needs to be designed to have serrated protrusions 301.
  • the embossing roller The top angle ⁇ 5 of each protrusion 301 of 30 must be on the same vertical line.
  • a bottom angle ⁇ 3 of each protrusion 301 of the embossing roller 30 corresponds to the bottom angle ⁇ 1 of the wire grid body 105.
  • the other bottom angle ⁇ 4 of the roller 30 corresponds to the bottom angle ⁇ 2 of the wire grid body 105, and the angle ⁇ 4 may be a fixed angle, such as 89.8333°.
  • the initial height H of the embossing roller 30 is 30 um.
  • the ⁇ 1 of the wire grid body 105 is 1°
  • the bottom angle ⁇ 3 of the protrusion 301 corresponding to the embossing roller 30 is 5.9788°.
  • the gradation termination height H of the embossing roller 30 is 318 um.
  • the bottom angle ⁇ 1 of the wire grid body 105 is 10°
  • the bottom angle ⁇ 3 of the protrusion 301 corresponding to the embossing roller 30 is 46.6133°.
  • the angle range of one base angle ⁇ 3 of the protrusion 301 is 5.9788 ⁇ 46.6133°
  • the angle of the other base angle ⁇ 4 is 89.8333°
  • the range of the height H is 30-318um
  • the dimension P perpendicular to the height is 300um .

Abstract

一种线栅结构(10)及其制作方法、包括线栅结构(10)的投影屏幕(100)。线栅结构(10)的制造方法包括:S1,将熔融挤出机(20)内的熔融态的混合材料体挤出至铸片辊(160)上以形成铸片(120);S2,压印辊(30)对铸片(120)进行图案化以形成具有预设线栅结构图案的前驱体(130),其中,前驱体(130)缠绕在压印辊(30)上,且前驱体(130)具有高度方向(L1)的第一尺寸(D1);S3,具有预设间距的第一组拉伸辊(50)和第二组拉伸辊(60)在与高度方向(L1)垂直的方向(L2)上以两个相反方向拉伸前驱体(130)以形成线栅结构(10),其中,线栅结构(10)具有高度方向(L1)的第二尺寸(D2),第一尺寸(D1)大于第二尺寸(D2)。线栅结构(10)的制造方法解决了因制成线栅结构的铸片的高度较小,铸片有可能在图案化的过程中发生压穿而损坏,铸片图案化过程的良率较低,线栅结构的良率较低的技术问题。

Description

线栅结构及其制作方法、投影屏幕 技术领域
本发明涉及投影技术领域,特别涉及一种线栅结构及其制作方法、投影屏幕。
背景技术
投影屏幕包括线栅结构。线栅结构包括线栅体,线栅体的高度较小。在线栅结构的制成过程中,通常通过对铸片进行图案化以形成所需的线栅结构,而由于线栅结构中的线栅体的高度较小,制成线栅结构的铸片的高度也较小,铸片有可能在图案化的过程中发生压穿而损坏,铸片图案化过程的良率较低,线栅结构的良率较低。
发明内容
本发明的目的在于提供一种线栅结构及其制作方法、投影屏幕,以解决因制成线栅结构的铸片的高度较小,铸片有可能在图案化的过程中发生压穿而损坏,铸片图案化过程的良率较低,线栅结构的良率较低的技术问题。
本发明提供一种线栅结构,包括线栅结构本体以及反射粒子添加剂,所述反射粒子添加剂设于所述栅结构本体的表面和/或设于所述线栅结构本体的内部。
其中,所述线栅结构的内部形成有位于所述反射粒子添加剂相对两侧的气孔。
其中,所述气孔的数量至少为所述反射粒子添加剂的两倍。
其中,所述线栅结构的表面上形成有位于所述反射粒子添加剂相对两侧的微槽。
其中,所述微槽的数量至少为所述反射粒子添加剂的两倍。
其中,所述反射粒子添加剂包括硫酸钡、二氧化钛或碳酸钙中的至少一种;所述线栅结构本体的材质包括聚对苯二甲酸已二醇酯、间苯二甲酸、环已烷二甲醇以及聚乙二醇中的至少一种。
本发明提供一种投影屏幕,包括反射层、吸收层以及上述的线栅结构,所述线栅结构本体包括本体表面以及与所述本体表面相对的且交替设置的投影表面与非投影表面,所述投影表面用于反射投影光线,所述吸收层设于所述非投影表面上,所述反射层设于本体表面上。
本发明提供一种线栅结构的制作方法,包括:
将熔融挤出机内的熔融态的混合材料体挤出至铸片辊上以形成铸片;
压印辊对所述铸片进行图案化以形成具有预设线栅结构图案的前驱体,其中,所述前驱体缠绕在所述压印辊上,且所述前驱体具有高度方向的第一尺寸;
具有预设间距的第一组拉伸辊和第二组拉伸辊在与高度方向垂直的方向上以两个相反方向拉伸所述前驱体以形成所述线栅结构,其中,所述线栅结构具有高度方向的第二尺寸,所述第一尺寸大于所述第二尺寸。
其中,所述压印辊对所述铸片进行图案化以形成具有预设线栅结构图案的前驱体的步骤包括:
所述铸片辊运送所述铸片至所述铸片辊与压印辊之间的间隙,所述压印辊在所述间隙内对所述铸片进行压印以得到具有预设线栅结构图案的所述前驱体。
其中,所述具有预设间距的第一组拉伸辊和第二组拉伸辊在与高度方向垂直的方向上以两个相反方向拉伸所述前驱体以形成所述线栅结构的步骤包括:
所述第一组拉伸辊以第一转速转动拉伸所述前驱体,所述第二组拉伸辊以第二转速转动拉伸所述前驱体。
其中,所述第一尺寸是所述第二尺寸的1-6倍;所述第一转速是所述第二转速的1-6倍。
其中,所述压印辊对所述铸片进行图案化以形成具有预设线栅结构图案的前驱体的步骤包括:
采用大于预设硬度值的压印辊对所述铸片进行图案化。
综上所述,本申请通过对高度方向尺寸较大的铸片进行图案化以制作高度方向尺寸较大的前驱体,以降低铸片的图案化难度,提升了铸片的图案化良率,从而提升了线栅结构的良率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的线栅结构的制作方法流程示意图。
图2是图1中的线栅结构的制作装置结构示意图。
图3是图1中步骤S1制作铸片的结构示意图。
图4是图1中步骤S2制作前驱体的结构示意图。
图5是图1中步骤S2制作前驱体的侧面结构示意图。
图6是图1中步骤S3制作线栅结构的结构示意图。
图7是本发明制作出的线栅结构的结构示意图。
图8是图7所示的线栅结构的截面结构示意图。
图9是本发明制作出的投影屏幕的结构示意图。
图10是图6中制作的线栅结构的一个线栅体的结构示意图。
图11是图2中压印辊的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1、图2,本发明提供一种线栅结构的制作方法,包括:
S1,请参阅图3,将熔融挤出机20内的熔融态的混合材料体挤出至铸片辊160上以形成铸片120。在本步骤中,铸片120的厚度是较大的。混合材料体的材质包括有机物材质及无机物材质。有机物材质包括:质量分数为40~70%的PET(聚对苯二甲酸已二醇酯)切片,5~10%的间苯二甲酸,5-10%的环已烷二甲醇,以及5~10%的聚乙二醇。无机物材质包括10~20%的反射粒子添加剂。具体为,将上述混合材料加入到干燥器40中,进行干燥并进行均匀混合,干燥后的混合材料送入熔融挤出机20,进行熔融以得到熔融态的混合材料体,通过熔融挤出机20的模头将熔融态的混合材料体挤出至铸片辊160,铸片辊160为冷却辊,以将熔融态的混合材料体冷却凝固成所需的铸片120。在干燥的过程中, 需将温度升至第一预设温度范围,第一预设温度范围为170~180°。在熔融的过程中,需将温度升为第二预设温度范围,第二预设温度范围为270~290°。熔融态的混合材料体中的每种材料具有预设比例。切片还可以为PC(聚碳酸酯)、PVC(聚氯乙烯)、PP(聚丙烯)、PE(聚乙烯)以及PMMA(聚甲基丙烯酸甲酯)等。
在一种具体的实施例中,铸片120的混合材料包括32.5%的对苯二甲酸,32.5%的已二醇,8%的间苯二甲酸,5%的环已烷二甲醇,5%的聚乙二醇,17%的反射粒子添加剂。将该混合材料加入干燥器40中,在第一预设温度的条件下混合并干燥3小时,之后将干燥的上述材料转入熔融挤出机20中,在第二预设温度的条件下,熔融塑化并再次混合,熔融态的混合材料体经过计量和过滤通过熔融挤出机20的模头挤压至铸片辊160以形成铸片120。在本实施例中,反射粒子添加剂可以为钛白粉(二氧化钛)。
S2,请参阅图4、图5,压印辊30对铸片120进行图案化以形成具有预设线栅结构图案的前驱体130,其中,前驱体130缠绕在压印辊30上,且前驱体130具有高度方向L1的第一尺寸D1。根据步骤S1可知,铸片120的厚度较大,即铸片120高度方向L1的第一尺寸D1是较大的,本步骤由铸片120图案化形成的前驱体130在高度方向L1的第一尺寸D1也会是较大的。
S3,请参阅图6,具有预设间距的第一组拉伸辊50和第二组拉伸辊60在与高度方向L1垂直的方向L2上以两个相反方向拉伸前驱体130以形成线栅结构10,其中,线栅结构10具有高度方向L1的第二尺寸D2,第一尺寸D1大于第二尺寸D2,且第一尺寸D1与第二尺寸D2的比值在第一预设值范围之内。第一预设值范围为1-6。在一个具体的实施例中,第一尺寸D1与第二尺寸D2的比值优选为6。
因此,本申请通过对高度方向L1尺寸较大的铸片120进行图案化以制作高度方向L1尺寸较大的前驱体130,以降低铸片120的图案化难度,提升了铸片120的图案化良率,从而提升了线栅结构10的良率。
传统的线栅结构10的制作方法还可以为:混合熔融混合材料并挤压熔融态的混合材料体形成铸片120,拉伸铸片120,拉伸后的铸片120进行图案化以得到线栅结构10。传统线栅结构10的制成方法主要为先拉伸后进行图案化,先拉伸后的铸片120厚度较小,从而在图案化的过程中,容易发生铸片120的损坏, 易报废,铸片120的图案化良率较低,线栅结构10的良率较低。
本申请中,先进行对铸片120图案化以形成高度方向L1尺寸较大的前驱体130,后对前驱体130进行拉伸,因而在铸片120的图案化过程中,铸片120因具有较大的高度方向L1尺寸而图案化过程简单,工艺难度较小,提升了产品的良率。即本申请相当于先对传统铸片120在高度方向L1的尺寸放大倍数,后进行图案化,图案化过程在较厚的铸片120上进行,图案化过程简单。因此,本申请还解决了传统的铸片120在图案化的过程中,铸片120容易发生损坏,易报废,铸片120的图案化良率较低,线栅结构10的良率较低的技术问题。
进一步地,由于传统的铸片120拉伸后的高度方向L1的尺寸较小,在图案化的过程中,需通过硬度较低的精密设备对铸片120进行图案化,导致线栅结构10的制作成本较大。同时,线栅结构10使用UV胶水成型,线栅结构10极易因UV胶水的脱模不良导致线栅结构10堵塞,从而精密设备报废。本申请中,由于通过对较厚的铸片120进行图案化以形成前驱体130,之后对前驱体130进行拉伸以得到所需的线栅结构10,在图案化的过程中,对铸片120进行图案化的压印辊30就无需要求太高,无需使用硬度较低的精密设备对铸片120进行图案化,可采用大于预设硬度值的压印辊30对铸片120进行图案化。从而线栅结构10的制成成本也较低。从而本申请还解决了传统的图案化过程,因使用的设备较精密,线栅结构10的制成成本较高的技术问题。在本申请的一种具体的实施例中,可采用不锈钢表面镀铬的压印辊30。
对于上述步骤S3,第一组拉伸辊50和第二组拉伸辊60之间的预设距离较小可保证线栅结构10在高度方向L1上的形状无变形,但是第一组拉伸辊50和第二组拉伸辊60之间的预设间距也不能太小,太小的预设间距将会导致前驱体130的拉伸速率太慢。在一个具体的实施例中,可选择第一组拉伸辊50和第二组拉伸辊60的预设间距为0.1~0.5m。优选为0.2m。
第一组拉伸辊50与第二组拉伸辊60均可以为转辊,第一组拉伸辊50以第一转速转动拉伸前驱体130,第二组拉伸辊60以第二转速转动拉伸前驱体130,其中,第一转速与第二转速的比值在第二预设值范围之内。第二预设值范围为1-6。在一种具体的实施例中,可设定第一组拉伸辊50的转速为6m/min,第二组拉伸辊60的转速为1m/min,通过第一组拉伸辊50与第二组拉伸辊60的转速差对前驱体130进行纵向拉伸,优选比例不超过6。在具体的实践中,可根据前 驱体130的具体的高度方向L1的第一尺寸D1,调整设定第一组拉伸辊50的第一转速与第二组拉伸辊60的第二转速的比值来得到所需的线栅结构10。如当第一尺寸D1与第二尺寸D2的比值为6时,可选择第一转速与第二转速的比值也为6。如当第一尺寸D1与第二尺寸D2的比值为3时,可选择第一转速与第二转速的比值也为3。
在前驱体130拉伸之前,需要对前驱体130进行升温,以增大前驱体130的柔性。根据上述的论述可知,前驱体130的主要材质为有机物,有机物在升温时会增大柔性,以方便后续过程的拉伸。具体为,在前驱体130拉伸之前,将前驱体130送入多辊加热装置70,在第三预设温度范围内采用阶梯升温的方式对前驱体130进行加热,以避免升温太快使得前驱体130发生变形。第三预设温度范围为80~120°。
在第一组拉伸辊50和第二组拉伸辊60对前驱体130的拉伸过程中,还需要前驱体130保持较高的温度以保证柔性。本申请通过红外加热装置80对前驱体130加热以使以前驱体130保持较好的柔性。红外加热装置80在第四预设温度范围内对前驱体130进行加热。第四预设温度范围为100~150°。
在上述线栅结构10制成后,还需冷却线栅结构10,冷却线栅结构10优选为在冷却辊90上采用阶梯降温的方法进行,以避免过快冷却导致线栅结构10的变形。线栅结构10的冷却在第五预设温度范围内进行。第五预设温度范围为20~50°。
请参阅图9,在线栅结构10冷却后,可在线栅结构10无图案的一侧涂覆反射层20,在线栅结构10的具有图案一侧的非投影表面103上覆盖吸收层30以形成投影屏幕100。
在投影屏幕100制成后,对投影屏幕100进行收卷。收卷过程通过在收卷轴110上通过卷对卷工艺进行。卷对卷工艺适合投影屏幕100的量产,对比单张生产的产能更高,良率更优。
请继续参阅图6-9,本发明还提供一种投影屏幕100,包括反射层20、吸收层30以及上述的线栅结构10,线栅结构10包括线栅结构本体104以及反射粒子添加剂170,反射粒子添加剂170设于栅结构本体104的表面和/或设于线栅结构本体104的内部。线栅结构本体104包括本体表面101以及与本体表面101相对的且交替设置的投影表面102与非投影表面103,投影表面102用于反射投 影光线,吸收层30设于非投影表面103上,反射层20设于本体表面101上。吸收层30为黑色吸收层。反射粒子添加剂170的表面为曲面。
请参阅图7、8、10,线栅结构10由上述的线栅结构10的制作方法制成。根据上述的线栅结构10的制作方法可知,在线栅结构10的制成原料中,加入了反射粒子添加剂170,在前驱体130的拉伸过程中,由于反射粒子添加剂170不发生拉伸,前驱体130发生了拉伸,从而在线栅结构10的表面上形成微槽140,在线栅结构10的内部形成气孔150。微槽140为形成在线栅结构10的表面上的微结构,微槽140的存在使得线栅结构10的表面为粗糙的表面。
具体的,由于第一组拉伸辊50和第二组拉伸辊60以两个相反方向拉伸前驱体130,则线栅结构10表面上的微槽140形成于拉伸方向上且在反射粒子添加剂170的两侧,反射粒子添加剂170的两侧至少各有一个微槽140,且当拉伸力发生变化时,一个微槽140可破裂形成多个微槽140,从而微槽140的数量至少为反射粒子添加剂170的两倍。
同理,线栅结构10内部的气孔150形成于拉伸方向上且在反射粒子的两侧,反射粒子添加剂170的两侧至少各有一个气孔150,且当拉伸力发生变化时,一个气孔150可破裂形成多个气孔150,从而气孔150的数量至少为反射粒子的两倍。
从而,对于线栅结构10的表面,由于反射粒子添加剂170的表面为曲面,曲面的反射粒子添加剂170也可以将反射后的入射光线进行扩散,而微槽140的表面也为曲面,曲面的微槽140也可将照射到微槽140上的入射光线进行扩散,从而增大了投影屏幕100的可视角与亮度增益。
对于线栅结构10的内部,同理,曲面的反射粒子添加剂170也可以将反射后的入射光线进行扩散,气孔150的孔壁也为曲弯曲状,弯曲状的孔壁也可将照射到微槽140上的入射光线进行扩散,从而增大了投影屏幕100的可视角与亮度增益。
进一步地,由于线栅结构10的内部与表面均有反射粒子添加剂170,反射粒子添加剂170可将入射光线反射,进而进入投影屏幕并穿过投影屏幕的光线较少,大量的光线发生了反射,进入观看者的视线中,从而反射粒子添加剂170还提高了投影屏幕的反射率。
从而,线栅结构10上的反射粒子添加剂170可将入射光线进行反射与扩散, 不仅增大了投影屏幕100的反射率,而且增大了投影屏幕100的可视角与亮度增益,线栅结构10上的气孔150与微槽140可将照射到投影屏幕100上的光线进行散射,也提高了投影屏幕100的可视角和亮度增益。
在一种具体的实施例中,反射粒子添加剂170包括硫酸钡、二氧化钛或碳酸钙。优选的,反射粒子添加剂170经过偶联处理。偶联处理即将无机物表面进行改性处理以增加无机物同有机物的附着力。此处的无机物即为上述的硫酸钡、二氧化钛以及碳酸钙等中的至少一种,有机物为上述的PET(聚对苯二甲酸已二醇酯)、聚酯PC(聚碳酸酯)、PVC(聚氯乙烯)、PP(聚丙烯)、PE(聚乙烯)以及PMMA(聚甲基丙烯酸甲酯)等中的至少一种。
请继续参阅图6,本申请制得的线栅结构10如下图所示。线栅结构10包括数个依次连接的数个线栅体105,线栅结构10的高度方向L1的第二尺寸D2为50~500um,线栅体105的高度方向L1的尺寸在0~200um内。
一个具体的线栅机构10中,每个线栅体105包括两个底角θ 1和θ 2,θ 1的角度为89°,θ 2的角度范围为1-10°,θ 2的角度是渐变的。线栅体105的高度方向L1的尺寸h是根据θ 2的角度进行渐变。线栅体105的高度方向L1的尺寸h的范围为5~53um。每个线栅体105的与高度垂直方向上的尺寸为p为300um。
请参阅图11,设计压印辊30的结构如下:
为保证拉伸后线栅结构10的角度,压印辊30需设计为与线栅结构10相匹配的结构,压印辊30的外表面需设计为具有锯齿状的凸起301,压印辊30的每个凸起301的顶角θ 5的顶点需在同一垂直线上,压印辊30的每个凸起301的一个底角θ 3对应线栅体105的底角θ 1,压印辊30的另一个底角θ 4对应线栅体105的底角θ 2,θ 4角度可以为一个固定的角度,如89.8333°。
根据三角函数公式计算:
压印辊30的初始高度H为30um,此时线栅体105的θ 1为1°,对应压印辊30的凸起301的底角θ 3为5.9788°。压印辊30的渐变终止高度H为318um,此时线栅体105的底角θ 1为10°,对应压印辊30的凸起301的底角θ 3为46.6133°。即:凸起301的一个底角θ 3角度范围为5.9788~46.6133°,另一个底角θ 4的角度为89.8333°,高度H的范围为30-318um,与高度垂直方向上的尺寸P为300um。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (12)

  1. 一种线栅结构,其特征在于,包括线栅结构本体以及反射粒子添加剂,所述反射粒子添加剂设于所述栅结构本体的表面和/或设于所述线栅结构本体的内部。
  2. 根据权利要求1所述的线栅结构,其特征在于,所述线栅结构的内部形成有位于所述反射粒子添加剂相对两侧的气孔。
  3. 根据权利要求2所述的线栅结构,其特征在于,所述气孔的数量至少为所述反射粒子添加剂的两倍。
  4. 根据权利要求1或2所述的线栅结构,其特征在于,所述线栅结构的表面上形成有位于所述反射粒子添加剂相对两侧的微槽。
  5. 根据权利要求4所述的线栅结构,其特征在于,所述微槽的数量至少为所述反射粒子添加剂的两倍。
  6. 根据权利要求1所述的线栅结构,其特征在于,所述反射粒子添加剂包括硫酸钡、二氧化钛或碳酸钙中的至少一种;所述线栅结构本体的材质包括聚对苯二甲酸已二醇酯、间苯二甲酸、环已烷二甲醇以及聚乙二醇中的至少一种。
  7. 一种投影屏幕,其特征在于,包括反射层、吸收层以及如权利要求1-6任一项所述的线栅结构,所述线栅结构本体包括本体表面以及与所述本体表面相对的且交替设置的投影表面与非投影表面,所述投影表面用于反射投影光线,所述吸收层设于所述非投影表面上,所述反射层设于本体表面上。
  8. 一种线栅结构的制作方法,其特征在于,包括:
    将熔融挤出机内的熔融态的混合材料体挤出至铸片辊上以形成铸片;
    压印辊对所述铸片进行图案化以形成具有预设线栅结构图案的前驱体,其中,所述前驱体缠绕在所述压印辊上,且所述前驱体具有高度方向的第一尺寸;
    具有预设间距的第一组拉伸辊和第二组拉伸辊在与高度方向垂直的方向上以两个相反方向拉伸所述前驱体以形成所述线栅结构,其中,所述线栅结构具有高度方向的第二尺寸,所述第一尺寸大于所述第二尺寸。
  9. 根据权利要求7所述的线栅结构的制作方法,其特征在于,所述压印辊对所述铸片进行图案化以形成具有预设线栅结构图案的前驱体的步骤包括:
    所述铸片辊运送所述铸片至所述铸片辊与压印辊之间的间隙,所述压印辊在所述间隙内对所述铸片进行压印以得到具有预设线栅结构图案的所述前驱体。
  10. 根据权利要求8所述的线栅结构的制作方法,其特征在于,所述具有预设间距的第一组拉伸辊和第二组拉伸辊在与高度方向垂直的方向上以两个相反方向拉伸所述前驱体以形成所述线栅结构的步骤包括:
    所述第一组拉伸辊以第一转速转动拉伸所述前驱体,所述第二组拉伸辊以第二转速转动拉伸所述前驱体。
  11. 根据权利要求10所述的线栅结构的制作方法,其特征在于,所述第一尺寸是所述第二尺寸的1-6倍;所述第一转速是所述第二转速的1-6倍。
  12. 根据权利要求8所述的线栅结构的制作方法,其特征在于,所述压印辊对所述铸片进行图案化以形成具有预设线栅结构图案的前驱体的步骤包括:
    采用大于预设硬度值的压印辊对所述铸片进行图案化。
PCT/CN2020/076765 2019-03-04 2020-02-26 线栅结构及其制作方法、投影屏幕 WO2020177590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/436,457 US20220155667A1 (en) 2019-03-04 2020-02-26 Wire grid structure and manufacturing method therefor, and projection screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910161117.0 2019-03-04
CN201910161117.0A CN111650809A (zh) 2019-03-04 2019-03-04 线栅结构及其制作方法、投影屏幕

Publications (1)

Publication Number Publication Date
WO2020177590A1 true WO2020177590A1 (zh) 2020-09-10

Family

ID=72337013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076765 WO2020177590A1 (zh) 2019-03-04 2020-02-26 线栅结构及其制作方法、投影屏幕

Country Status (3)

Country Link
US (1) US20220155667A1 (zh)
CN (1) CN111650809A (zh)
WO (1) WO2020177590A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599272A1 (en) * 1992-11-25 1994-06-01 Sony Corporation Image projector
CN1670618A (zh) * 2004-03-15 2005-09-21 株式会社有泽制作所 反射式屏幕装置
CN1834756A (zh) * 2005-03-16 2006-09-20 东丽世韩有限公司 用于薄膜晶体管液晶显示器的有孔隙的散光板
CN101103284A (zh) * 2004-05-11 2008-01-09 出光兴产株式会社 集成棱镜的光漫射板及其制造方法
CN101512398A (zh) * 2006-06-28 2009-08-19 3M创新有限公司 取向的聚合物制品及方法
CN101602254A (zh) * 2008-06-12 2009-12-16 颖台科技股份有限公司 非对称光扩散元件与其制造方法
CN104460213A (zh) * 2014-12-26 2015-03-25 成都宽显科技有限责任公司 投影屏幕及投影显示系统
CN106226988A (zh) * 2016-01-04 2016-12-14 宁波激智科技股份有限公司 一种显示用光学投影幕布及其制备方法
JP2017026759A (ja) * 2015-07-21 2017-02-02 Jxエネルギー株式会社 スクリーンおよびそれを備えた画像投影装置
CN206292519U (zh) * 2016-12-08 2017-06-30 广东建业显示信息技术有限公司 一种抗强光投影幕
CN108153102A (zh) * 2016-12-05 2018-06-12 深圳市光峰光电技术有限公司 投影屏幕及其制造方法
CN208126098U (zh) * 2018-05-08 2018-11-20 中强光电股份有限公司 投影屏幕

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003213418A1 (en) * 2002-03-08 2003-09-22 Takahiko Ueda Screen
US6900941B2 (en) * 2002-05-16 2005-05-31 Eastman Kodak Company Light diffuser with colored variable diffusion
JP4704739B2 (ja) * 2004-11-10 2011-06-22 直史 山内 スクリーン及びこれを用いた画像投影システム
WO2015108295A1 (en) * 2014-01-15 2015-07-23 Lg Electronics Inc. Reflective screen, display having the same and method for manufacturing reflective screen
JP2016038537A (ja) * 2014-08-11 2016-03-22 旭硝子株式会社 ワイヤグリッド型偏光子、光源モジュールおよび投射型表示装置
GB2537192B (en) * 2015-08-05 2017-04-12 Harkness Screens Int Ltd A projection screen
KR101811427B1 (ko) * 2017-02-28 2018-01-25 (주)주신에이브이티 빔프로젝터용 스크린 및 이의 제조방법
CN109388013B (zh) * 2017-08-04 2022-02-11 深圳光峰科技股份有限公司 投影屏幕和投影系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599272A1 (en) * 1992-11-25 1994-06-01 Sony Corporation Image projector
CN1670618A (zh) * 2004-03-15 2005-09-21 株式会社有泽制作所 反射式屏幕装置
CN101103284A (zh) * 2004-05-11 2008-01-09 出光兴产株式会社 集成棱镜的光漫射板及其制造方法
CN1834756A (zh) * 2005-03-16 2006-09-20 东丽世韩有限公司 用于薄膜晶体管液晶显示器的有孔隙的散光板
CN101512398A (zh) * 2006-06-28 2009-08-19 3M创新有限公司 取向的聚合物制品及方法
CN101602254A (zh) * 2008-06-12 2009-12-16 颖台科技股份有限公司 非对称光扩散元件与其制造方法
CN104460213A (zh) * 2014-12-26 2015-03-25 成都宽显科技有限责任公司 投影屏幕及投影显示系统
JP2017026759A (ja) * 2015-07-21 2017-02-02 Jxエネルギー株式会社 スクリーンおよびそれを備えた画像投影装置
CN106226988A (zh) * 2016-01-04 2016-12-14 宁波激智科技股份有限公司 一种显示用光学投影幕布及其制备方法
CN108153102A (zh) * 2016-12-05 2018-06-12 深圳市光峰光电技术有限公司 投影屏幕及其制造方法
CN206292519U (zh) * 2016-12-08 2017-06-30 广东建业显示信息技术有限公司 一种抗强光投影幕
CN208126098U (zh) * 2018-05-08 2018-11-20 中强光电股份有限公司 投影屏幕

Also Published As

Publication number Publication date
US20220155667A1 (en) 2022-05-19
CN111650809A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN103293575A (zh) 扩散增亮薄膜及其制造方法
KR20080048946A (ko) 요철된 수지시트 물질의 제조방법
KR101379544B1 (ko) 목분을 함유한 스킨층을 갖는 창호용 프로파일
JP2014506202A5 (zh)
CN102135266A (zh) 导光板及其制造方法
US7919021B2 (en) Method for producing optical sheet
CN104040381B (zh) 光学薄片的制造装置以及光学薄片的制造方法
CN104097377A (zh) 一种双面离型纸及其生产方法
CN101602254A (zh) 非对称光扩散元件与其制造方法
WO2020177590A1 (zh) 线栅结构及其制作方法、投影屏幕
CN102343675A (zh) 一种导光板加工机及导光板的生产工艺
CN102582190A (zh) 一种光学用双向拉伸聚酯基膜及其制作方法
JP2002250807A (ja) レンズシート、それを用いたプロジェクションスクリーン、及びレンズシートの成形方法
CN103796824A (zh) 纹理膜及制造方法
CN110684331A (zh) 一种防眩光扩散板及其制备工艺
CN102917856A (zh) 利用压料辊的速度控制在挤压涂布膜的同时消除缺陷的方法
JP2003236914A (ja) 熱可塑性樹脂シートの製造方法
KR101156192B1 (ko) 박막 블로운 필름의 제조장치 및 제조방법
CN105419135B (zh) 扩散板母料及其制备方法和扩散板的制备方法
KR20140101027A (ko) 창호용 프로파일, 이를 제조하기 위한 제조장치 및 제조방법
CN104441708B (zh) 聚乙烯醇宽幅薄膜的制备方法及装置
CN108819187A (zh) 一种热压反光膜生产设备
CN103029387A (zh) 带纹理结构的薄膜及其制造方法
TW201838784A (zh) 塗層材料及其製造方法
CN206926278U (zh) 带肋板的生产设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765492

Country of ref document: EP

Kind code of ref document: A1