WO2020177485A1 - 一种纳米银粒子/纤维素纤维复合材料及制备方法 - Google Patents

一种纳米银粒子/纤维素纤维复合材料及制备方法 Download PDF

Info

Publication number
WO2020177485A1
WO2020177485A1 PCT/CN2020/070675 CN2020070675W WO2020177485A1 WO 2020177485 A1 WO2020177485 A1 WO 2020177485A1 CN 2020070675 W CN2020070675 W CN 2020070675W WO 2020177485 A1 WO2020177485 A1 WO 2020177485A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cellulose fiber
nano
nano silver
fibers
Prior art date
Application number
PCT/CN2020/070675
Other languages
English (en)
French (fr)
Inventor
李海龙
公昊
刘梦茹
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020177485A1 publication Critical patent/WO2020177485A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J35/58
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles

Definitions

  • the invention belongs to the field of organic-inorganic composite materials, and specifically relates to a nano-silver particle/cellulose fiber composite material and a preparation method.
  • the preparation method is mainly divided into chemical method, physical method, and biological method.
  • Chemical methods usually use reducing agents such as sodium borohydride, sodium citrate, ascorbic acid, hydrazine hydrate, and elemental hydrogen to reduce silver ions.
  • Physical methods mainly include evaporation and condensation methods, microwave methods, ultrasound-assisted methods, laser ablation methods, etc., while biological methods Use the extracts of biological organisms as drugs for preparing nano silver particles, such as enzymes/proteins, amino acids, polysaccharides, vitamins, etc., which are not harmful to the environment.
  • Traditional physical and chemical methods require expensive equipment and a large amount of chemical reagents, so they have disadvantages such as high energy consumption, high cost, and certain pollution.
  • Cellulose is the main component of plant cell walls. It is a linear polymer compound formed by D-glucopyranosyl groups connected by 1,4- ⁇ -glycosidic bonds. It has a wide range of raw materials, renewable, biodegradable, Biocompatibility and other characteristics, cellulose has weak reducibility and can be used as a green reducing agent for the production of nano silver.
  • the invention provides a nano silver particle/cellulose fiber composite material and a preparation method.
  • the method selects cellulose fiber as the reducing agent and carrier, and adds it to the Ag + solution after being soaked in ammonia water.
  • the nano-silver particles are reduced under hydrothermal conditions. The conditions are simple, the cost is low, and there is no need to add reducing agents, dispersants and other chemicals. , Green and pollution-free, the obtained nano silver particles are evenly distributed on the cellulose fiber, and the particle size is uniform.
  • a preparation method of nano silver particle/cellulose fiber composite material includes the following steps:
  • the pre-treated mixture is mixed with a silver ion solution, subjected to a hydrothermal reaction, and then washed and dried to obtain cellulose fibers loaded with nano silver particles.
  • the hydrothermal reaction temperature is 60-200° C.
  • the reaction time is 0.5-36 h.
  • the hydrothermal reaction temperature is 80-180°C, and the reaction time is 1-24 h.
  • the cellulose fiber concentration during pretreatment is 0.1-5% by weight, and the ammonia solution concentration is 0.5%-15%.
  • the cellulose fiber concentration after mixing with the silver ion solution is 0.1-5 wt%.
  • the silver ion concentration is 0.5-200 mmol/L.
  • the cellulose fibers include pulp fibers, seed fibers, tencel fibers, viscose fibers, and modal fibers.
  • the stirring rate is 500-1500 rpm
  • the stirring time is 5-120 min
  • the stirring temperature is 5-40°C.
  • the drying temperature is 5 to 100° C.
  • the drying time is 4-24 h.
  • the invention provides a nano-silver particle/cellulose fiber composite material and a preparation method thereof to obtain a nano-silver particle/cellulose fiber composite material.
  • the nano-silver particle/cellulose fiber composite material is prepared by the above preparation method.
  • the cellulose fiber composed of cellulose is selected as the reducing agent, because its surface is rich in a large number of reducing groups, after being soaked and swelled in ammonia water, more reducing groups can be exposed and added to the silver ion After the solution, silver ions form silver ammonia ions on the surface of the cellulose fibers, reducing the Ag + /Ag standard redox potential from +0.799V to +0.38V, and more nano silver particles can be reduced under hydrothermal conditions.
  • the cellulose fiber can load nano silver particles.
  • the obtained cellulose fiber loaded with nano silver particles has the superior properties of both cellulose fiber and nano silver, and the cellulose fiber is functionalized, and can be processed into fabrics, decorations, etc., and applied in the fields of catalysis and antibacterial.
  • the present invention has the following advantages and beneficial effects:
  • the present invention uses cellulose fiber as the reducing agent and carrier without adding other reducing agents, dispersants and other chemicals, reducing the amount of chemicals, green, pollution-free, and biodegradable, and the obtained cellulose loaded with nano silver particles Fiber is easy to collect and use.
  • cellulose fibers are selected to reduce nano silver particles under hydrothermal conditions, water is used as a solvent, there is no secondary pollution, and the reaction time is short.
  • nano silver particles obtained by the method of the present invention are uniformly distributed on the fiber, and the particle size is uniform.
  • nano silver particles obtained by the method of the present invention are loaded on the cellulose fiber to functionalize the cellulose fiber and have the superior performance of nano silver.
  • the method of the present invention has simple operation and low cost, and the yield of nano silver particles can be as high as 50 wt% or more.
  • FIG. 1 is the SEM images of the bleached eucalyptus pulp fiber loaded with nano silver particles obtained in Example 1 at different magnifications.
  • Example 2 is the SEM images of the Modal fiber loaded with nano silver particles obtained in Example 2 at different magnifications.
  • Example 3 is the SEM images of the Tencel fiber loaded with nano silver particles obtained in Example 3 under different magnifications.
  • Example 4 is the SEM images of the viscose fiber loaded with nano silver particles obtained in Example 4 at different magnifications.
  • Figure 5 is the XRD patterns of different cellulose fibers loaded with nano silver particles obtained in Examples 1, 2, 3, and 4.
  • the reduction and loading of bleached eucalyptus pulp fibers with nano silver particles specifically includes the following steps:
  • the fiber concentration is 0.1wt%
  • the stirring time is 30min
  • the stirring speed is 500rpm
  • the stirring temperature is 20°C
  • the obtained XRD pattern of the bleached eucalyptus pulp fiber loaded with nano-silver particles is shown in Fig. 5.
  • the nano-silver particles synthesized by the hydrothermal method of the bleached eucalyptus pulp fiber are basically consistent with the characteristic absorption peaks of silver in the PDF#04-0783 card.
  • the reduction and loading of modal fiber with nano silver particles includes the following steps:
  • the fiber concentration is 5wt%
  • the stirring time is 5min
  • the stirring speed is 500rpm
  • the stirring temperature is 5°C
  • the obtained SEM images of the modal fiber loaded with nano-silver particles at different magnifications are shown in Fig. 2. From Fig. 2, the nano-silver particles supported on the surface of the modal fiber can be clearly seen. The nano-silver particles have uniform particle size and uniform distribution.
  • the obtained XRD pattern of the modal fiber loaded with nano-silver particles is shown in FIG. 5, and the nano-silver particles synthesized by the modal fiber hydrothermally are basically consistent with the characteristic absorption peak of silver in the PDF#04-0783 card.
  • Tencel fiber reduction and loading of nano silver particles specifically includes the following steps:
  • the fiber concentration is 2wt%
  • the stirring time is 60min
  • the stirring speed is 800rpm
  • the stirring temperature is 40°C
  • the obtained XRD pattern of the Tencel fiber loaded with nano silver particles is shown in Figure 5.
  • the nano silver particles hydrothermally synthesized by the Tencel fiber are basically consistent with the characteristic absorption peak of silver in the PDF#04-0783 card.
  • the reduction and loading of viscose fibers with nano silver particles specifically includes the following steps:
  • the fiber concentration is 1wt%
  • the stirring time is 120min
  • the stirring speed is 1500rpm
  • the stirring temperature is 15°C
  • the fiber concentration is 15wt% after stirring to obtain ammonia water and viscose fiber mixture.
  • the obtained XRD pattern of the viscose fiber loaded with nano-silver particles is shown in Figure 5.
  • the nano-silver particles synthesized by the viscose fiber hydrothermally are basically consistent with the characteristic absorption peak of silver in the PDF#04-0783 card.

Abstract

一种纳米银粒子/纤维素纤维复合材料及制备方法,包括以下步骤:(1)纤维素纤维预处理:将纤维素纤维分散在氨水溶液中搅拌进行预处理,然后控制预处理后的混合物中纤维浓度为5-20wt%;(2)纤维素纤维水热合成纳米银粒子:将上述预处理后的混合物与银离子混合,进行水热反应,之后洗涤,干燥,得到负载纳米银粒子的纤维素纤维。选用可生物降解的纤维素纤维为还原剂和载体,在水热条件下还原出纳米银粒子,条件简单,成本低,绿色无污染,得到负载纳米银粒子的纤维素纤维兼具纤维素纤维和纳米银的优越性能,使纤维素纤维功能化,可应用于催化、抗菌等领域。

Description

一种纳米银粒子/纤维素纤维复合材料及制备方法 技术领域
本发明属有机无机复合材料领域,具体涉及一种纳米银粒子/纤维素纤维复合材料及制备方法。
背景技术
目前,根据纳米银的制备方式和所加入化学试剂的种类,其制备方法主要划分为化学法、物理法、生物法。化学法通常采用硼氢化钠、柠檬酸钠、抗坏血酸、水合肼、元素氢等还原剂还原银离子,物理法主要包括蒸发冷凝法,微波法,超声辅助法,激光烧蚀法等,而生物法使用生物有机体的提取物作为制备纳米银粒子的药物,如酶/蛋白质、氨基酸、多糖、维生素等,对环境无害。传统的物理法和化学法需要使用高昂的设备和大量的化学试剂,因此存在能耗高,成本高,有一定污染等缺点。
随着科技的进步,未来的纳米银生产技术将向成本低、消耗低、污染低的生物法制备方向发展。在原有制备方法上,具有独特技术和成本优势的生物还原法将可能成为未来纳米银生产技术的突破口。纤维素是植物细胞壁的主要组成成分,由D-吡喃式葡萄糖基通过1,4-β-糖苷键连接而成的线性高分子化合物,具有原料来源广泛、可再生性、生物可降解性、生物兼容性等特点,纤维素具有弱还原性,可作为生产纳米银的绿色还原剂。
发明内容
本发明提供了一种纳米银粒子/纤维素纤维复合材料及制备方法。该方法选用纤维素纤维为还原剂和载体,经氨水浸泡后加入到Ag +溶液中,在水热条件下还原出纳米银粒子,条件简单,成本低,无需添加还原剂、分散剂等化学药品,绿色无污染,得到的纳米银粒子在纤维素纤维上分布均匀,粒径均一。
本发明的目的通过如下技术方案实现:
一种纳米银粒子/纤维素纤维复合材料的制备方法,包括以下步骤:
(1)纤维素纤维预处理
将纤维素纤维分散在氨水溶液中搅拌进行预处理,然后控制预处理后的混合物中纤维浓度为5-20wt%;
(2)纤维素纤维水热合成纳米银粒子
将上述预处理后的混合物与银离子溶液混合,进行水热反应,之后洗涤,干燥,得到负载纳米银粒子的纤维素纤维。
优选地,步骤(2)中,水热反应温度为60-200℃,反应时间为0.5-36h。
优选地,步骤(2)中,水热反应温度为80-180℃,反应时间为1-24h。
优选地,步骤(1)中,预处理时纤维素纤维浓度为0.1-5wt%,氨水溶液浓度为0.5%-15%。
优选地,步骤(2)中,与银离子溶液混合后纤维素纤维浓度为0.1-5wt%。
优选地,步骤(2)中,所述银离子浓度为0.5-200mmol/L。
优选地,步骤(1)中,所述纤维素纤维包括纸浆纤维,种子纤维、天丝纤维、粘胶纤维、莫代尔纤维。
优选地,步骤(1)中,搅拌速率为500-1500rpm,搅拌时间为5-120min,搅拌温度为5-40℃。
优选地,步骤(2)中,所述干燥温度为5至100℃,干燥时间为4-24h。
本发明提供了一种纳米银粒子/纤维素纤维复合材料及制备方法,得到纳米银粒子/纤维素纤维复合材料,所述纳米银粒子/纤维素纤维复合材料由以上制备方法制备。
本发明中选用由纤维素构成的纤维素纤维为还原剂,因其表面富含大量的还原性基团,经氨水浸泡润胀后,可以暴露出更多的还原性基团,加入到银离子溶液后,银离子在纤维素纤维表面形成银氨离子,使Ag +/Ag标准氧化还原电位从+0.799V减小至+0.38V,在水热条件下可以还原出更多的纳米银粒子, 同时纤维素纤维可以负载纳米银粒子。得到的负载纳米银粒子的纤维素纤维兼具纤维素纤维和纳米银的优越性能,使纤维素纤维功能化,可以加工成织物、装饰品等,应用于催化、抗菌等领域。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明采用纤维素纤维为还原剂和载体,无需添加其他还原剂、分散剂等化学药品,减少了化学品用量,绿色无污染,生物可降解,得到的负载纳米银粒子的纤维素纤维易于收集利用。
(2)本发明在水热条件下选用纤维素纤维还原出纳米银粒子,水作为溶剂,无二次污染,反应时间短。
(3)本发明方法得到的纳米银粒子在纤维上均匀分布,粒径均一。
(4)本发明方法得到的纳米银粒子负载在纤维素纤维上,使纤维素纤维功能化,具有纳米银的优越性能。
(5)本发明方法操作简单,成本低,纳米银粒子产率可以高达50wt%以上。
附图说明
图1为实施例1中得到的负载有纳米银粒子的漂白桉木浆纤维在不同倍率下的SEM图。
图2为实施例2中得到的负载有纳米银粒子的莫代尔纤维在不同倍率下的SEM图。
图3为实施例3中得到的负载有纳米银粒子的天丝纤维在不同倍率下的SEM图。
图4为实施例4中得到的负载有纳米银粒子的粘胶纤维在不同倍率下的SEM图。
图5为实施例1、2、3、4中得到负载有纳米银粒子的不同纤维素纤维的XRD图。
具体实施方式
以下结合具体实施例及附图对本发明技术方案作进一步详细的说明,但本发明的保护范围不限于此。
实施例1
漂白桉木浆纤维还原和负载纳米银粒子,具体包括如下步骤:
(1)漂白桉木浆纤维预处理
将漂白桉木浆纤维分散在3%氨水溶液中,纤维浓度为0.1wt%,搅拌时间为30min,搅拌速率为500rpm,搅拌温度为20℃,搅拌后滤至纤维浓度为5wt%(将一定量的氨水保留在体系中),得到氨水与漂白桉木浆纤维的混合物。
(2)漂白桉木浆纤维水热合成纳米银粒子
将上述氨水和漂白桉木浆纤维的混合物加入到10mmol/L Ag +溶液中,纤维浓度为0.1wt%,在反应釜中反应,反应温度为140℃,反应时间为4h,反应后洗涤,60℃下干燥12h,得到负载纳米银粒子的漂白桉木浆纤维。
得到的负载有纳米银粒子的漂白桉木浆纤维在不同倍率下的SEM图如图1所示,通过图1可清晰地看到漂白桉木浆纤维表面负载的纳米银粒子,纳米银粒子粒径均一,分布均匀。
得到的负载有纳米银粒子的漂白桉木浆纤维的XRD图如图5所示,漂白桉木浆纤维水热合成的纳米银粒子与PDF#04-0783卡片中银的特征吸收峰基本吻合。
实施例2
莫代尔纤维还原和负载纳米银粒子,具体包括如下步骤:
(1)莫代尔纤维预处理
将莫代尔纤维分散在15%氨水溶液中,纤维浓度为5wt%,搅拌时间为5min,搅拌速率为500rpm,搅拌温度为5℃,搅拌后滤至纤维浓度为20wt%,得到氨水和莫代尔纤维的混合物。
(2)莫代尔纤维水热合成纳米银粒子
将上述氨水和莫代尔纤维的混合物加入到0.5mmol/L Ag +溶液中,纤维浓度为0.5wt%,在高压反应釜中反应,反应温度为180℃,反应时间为1h,反应后洗涤,室温下干燥24h,得到负载纳米银粒子的莫代尔纤维。
得到的负载有纳米银粒子的莫代尔纤维在不同倍率下的SEM图如图2所示,通过图2可清晰地看到莫代尔纤维表面负载的纳米银粒子,纳米银粒子粒径均一,分布均匀。
得到的负载有纳米银粒子的莫代尔纤维的XRD图如图5所示,莫代尔纤维水热合成的纳米银粒子与PDF#04-0783卡片中银的特征吸收峰基本吻合。
实施例3
天丝纤维还原和负载纳米银粒子,具体包括如下步骤:
(1)天丝纤维预处理
将天丝纤维分散在5%氨水溶液中,纤维浓度为2wt%,搅拌时间为60min,搅拌速率为800rpm,搅拌温度为40℃,搅拌后滤至纤维浓度为10wt%,得到氨水和天丝纤维的混合物。
(2)天丝纤维水热合成纳米银粒子
将上述氨水和天丝纤维的混合物加入到50mmol/L Ag +溶液中,纤维浓度为1wt%,在高压反应釜中反应,反应温度为120℃,反应时间为6h,反应后洗涤,80℃下干燥6h,得到负载纳米银粒子的天丝纤维。
得到的负载有纳米银粒子的天丝纤维在不同倍率下的SEM图如图3所示,通过图3可清晰地看到天丝纤维表面负载的纳米银粒子,纳米银粒子粒径均一,分布均匀。
得到的负载有纳米银粒子的天丝纤维的XRD图如图5所示,天丝纤维水热合成的纳米银粒子与PDF#04-0783卡片中银的特征吸收峰基本吻合。
实施例4
粘胶纤维还原和负载纳米银粒子,具体包括如下步骤:
(1)粘胶纤维预处理
将粘胶纤维分散在0.5%氨水溶液中,纤维浓度为1wt%,搅拌时间为120min,搅拌速率为1500rpm,搅拌温度为15℃,搅拌后滤至纤维浓度为15wt%,得到氨水和粘胶纤维的混合物。
(2)粘胶纤维水热合成纳米银粒子
将上述氨水和粘胶纤维的混合物加入到200mmol/L Ag +溶液中,纤维浓度为5wt%,在高压反应釜中反应,反应温度为80℃,反应时间为24h,反应后洗涤,100℃下干燥3h,得到负载纳米银粒子的粘胶纤维。
得到的负载有纳米银粒子的粘胶纤维在不同倍率下的SEM图如图4所示,通过图4可清晰地看到粘胶纤维表面负载的纳米银粒子,纳米银粒子粒径均一,分布均匀。
得到的负载有纳米银粒子的粘胶纤维的XRD图如图5所示,粘胶纤维水热合成的纳米银粒子与PDF#04-0783卡片中银的特征吸收峰基本吻合。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种纳米银粒子/纤维素纤维复合材料的制备方法,其特征在于,包括以下步骤:
    (1)纤维素纤维预处理
    将纤维素纤维分散在氨水溶液中搅拌进行预处理,然后控制预处理后的混合物中纤维浓度为5-20wt%;
    (2)纤维素纤维水热合成纳米银粒子
    将上述预处理后的混合物与银离子溶液混合,进行水热反应,之后洗涤,干燥,得到负载纳米银粒子的纤维素纤维。
  2. 根据权利要求1所述的方法,其特征在于,步骤(2)中,水热反应温度为60-200℃,反应时间为0.5-36h。
  3. 根据权利要求2所述的方法,其特征在于,步骤(2)中,水热反应温度为80-180℃,反应时间为1-24h。
  4. 根据权利要求1所述的方法,其特征在于,步骤(1)中,预处理时纤维素纤维浓度为0.1-5wt%,氨水溶液浓度为0.5%-15%。
  5. 根据权利要求1~4任意一项所述的方法,其特征在于,步骤(2)中,与银离子溶液混合后纤维素纤维浓度为0.1-5wt%。
  6. 根据权利要求5所述的方法,其特征在于,步骤(2)中,所述银离子浓度为0.5-200mmol/L。
  7. 根据权利要求1~4任意一项所述的方法,其特征在于,步骤(1)中,所述纤维素纤维包括纸浆纤维,种子纤维、天丝纤维、粘胶纤维、莫代尔纤维。
  8. 根据权利要求1~4任意一项所述的方法,其特征在于,步骤(1)中,搅拌速率为500-1500rpm,搅拌时间为5-120min,搅拌温度为5-40℃。
  9. 根据权利要求1~4任意一项所述的方法,其特征在于,步骤(2)中,所述干燥温度为5至100℃,干燥时间为4-24h。
  10. 权利要求1至9中任意一项所述方法制备的纳米银粒子/纤维素纤维复合材料。
PCT/CN2020/070675 2019-03-05 2020-01-07 一种纳米银粒子/纤维素纤维复合材料及制备方法 WO2020177485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910162162.8 2019-03-05
CN201910162162.8A CN109944067A (zh) 2019-03-05 2019-03-05 一种纳米银粒子/纤维素纤维复合材料及制备方法

Publications (1)

Publication Number Publication Date
WO2020177485A1 true WO2020177485A1 (zh) 2020-09-10

Family

ID=67008304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070675 WO2020177485A1 (zh) 2019-03-05 2020-01-07 一种纳米银粒子/纤维素纤维复合材料及制备方法

Country Status (2)

Country Link
CN (1) CN109944067A (zh)
WO (1) WO2020177485A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169792A (zh) * 2020-11-03 2021-01-05 西安工程大学 柔性Ag-Pd/ZrO2@碳纤维布催化剂的制备方法
CN116459790A (zh) * 2023-04-24 2023-07-21 西华师范大学 飞絮纤维负载零价纳米银高效固定气态碘材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944067A (zh) * 2019-03-05 2019-06-28 华南理工大学 一种纳米银粒子/纤维素纤维复合材料及制备方法
CN110862578B (zh) * 2019-11-26 2022-06-24 湖南工业大学 一种纳米银吸附纤维素抗菌复合材料的制备方法
CN114032675B (zh) * 2021-09-14 2024-03-29 中国林业科学研究院木材工业研究所 导电纤维及其制备方法
CN115612156B (zh) * 2022-09-14 2024-03-01 福建师范大学 一种Ag NPs-BCM基底及其制备方法与在癌症标志物检测中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477143A (zh) * 2003-07-18 2004-02-25 清华大学 一种表面负载功能基团的天然高分子微球的制备方法
EP2630086A1 (en) * 2010-10-21 2013-08-28 Oulun Yliopisto Photocatalytic material
CN103611531A (zh) * 2013-12-16 2014-03-05 长春工业大学 氧化银/二氧化钛复合纳米纤维光催化剂的制备方法及其应用
CN109944067A (zh) * 2019-03-05 2019-06-28 华南理工大学 一种纳米银粒子/纤维素纤维复合材料及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785852B (zh) * 2014-01-25 2016-08-17 华南理工大学 一种纳米银-纳米微晶纤维素复合物及其制备方法与应用
CN107699874B (zh) * 2017-09-15 2020-01-03 天津科技大学 一种纳米银-纤维素复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477143A (zh) * 2003-07-18 2004-02-25 清华大学 一种表面负载功能基团的天然高分子微球的制备方法
EP2630086A1 (en) * 2010-10-21 2013-08-28 Oulun Yliopisto Photocatalytic material
CN103611531A (zh) * 2013-12-16 2014-03-05 长春工业大学 氧化银/二氧化钛复合纳米纤维光催化剂的制备方法及其应用
CN109944067A (zh) * 2019-03-05 2019-06-28 华南理工大学 一种纳米银粒子/纤维素纤维复合材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO GONG ET AL.: "In situ green preparation of silver nanoparticles/chemical pulp fiber composites with excellent catalytic performance", JOURNAL OF MATERIALS SCIENCE, vol. 54, no. 9, 31 January 2019 (2019-01-31), XP036702428, ISSN: 0022-2461, DOI: 20200228092208X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169792A (zh) * 2020-11-03 2021-01-05 西安工程大学 柔性Ag-Pd/ZrO2@碳纤维布催化剂的制备方法
CN112169792B (zh) * 2020-11-03 2023-03-24 西安工程大学 柔性Ag-Pd/ZrO2@碳纤维布催化剂的制备方法
CN116459790A (zh) * 2023-04-24 2023-07-21 西华师范大学 飞絮纤维负载零价纳米银高效固定气态碘材料的制备方法
CN116459790B (zh) * 2023-04-24 2024-03-29 西华师范大学 飞絮纤维负载零价纳米银高效固定气态碘材料的制备方法

Also Published As

Publication number Publication date
CN109944067A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2020177485A1 (zh) 一种纳米银粒子/纤维素纤维复合材料及制备方法
CN108589266B (zh) 纳米金属颗粒/金属有机框架复合抗菌纤维素纤维的制备方法
CN104831389B (zh) 一种多功能粘胶纤维及其制备方法
CN106106522B (zh) 一种纳米氧化锌-载银壳聚糖复合抗菌剂及其制备方法
Duan et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@ MOF‐199s nanocatalysts for catalytic reduction of 4‐nitrophenol
CN102847533B (zh) 微波法合成凹土/钯纳米复合材料催化剂的方法
CN105646923A (zh) 一种负载纳米银粒子的纳米纤维素抗菌薄膜的制备方法
CN101811664A (zh) 一种纤维素/银纳米复合材料及其制备方法
CN103397513A (zh) 低温制备的纳米二氧化钛溶胶整理剂及其应用
CN102836745B (zh) 一种具有气凝胶基体的光催化材料的制备方法
CN105420923B (zh) 一种增强纳米纤维膜力学性能的方法
CN111450806A (zh) 一种基于废弃玉米芯的多孔吸附抗菌复合材料的制备方法
CN109603910B (zh) 一种光热增强降解化学战剂模拟物的纳米核壳复合物及其复合纤维膜的制备方法与应用
CN111978595B (zh) 一种基于植物废弃物粉末的环保型载银抗菌剂及其制备方法
CN105440314A (zh) 一种具有抗菌活性的纤维素复合材料及其制备方法
CN110302837B (zh) 一种用于高级氧化工艺处理染料废水的纤维素基催化膜及其制备方法
CN105332087B (zh) 一种介孔磷酸锆负载纳米银抗菌聚酯纤维及其制备方法
Su et al. Tailoring growth of MOF199 on hierarchical surface of bamboo and its antibacterial property
CN105506767B (zh) 一种介孔磷酸锆负载纳米银抗菌聚丙烯纤维及其制备方法
CN111066784A (zh) Ag/AgCl/纤维素复合抗菌材料及其制备方法和应用
CN111995799B (zh) 一种纳米银/纤维素复合抗菌材料的制备方法
CN111945420B (zh) 一种绿色环保银纤维面料及其制备方法
CN107694543A (zh) 一种利用毛竹纸浆纤维素改性制备重金属离子吸附剂的方法
CN111764168A (zh) 一种抗菌防护服整理工艺
CN107321391A (zh) 一种制备磁性复合生物基固载磷钨酸催化剂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767100

Country of ref document: EP

Kind code of ref document: A1