WO2020177223A1 - 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法 - Google Patents

基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法 Download PDF

Info

Publication number
WO2020177223A1
WO2020177223A1 PCT/CN2019/088600 CN2019088600W WO2020177223A1 WO 2020177223 A1 WO2020177223 A1 WO 2020177223A1 CN 2019088600 W CN2019088600 W CN 2019088600W WO 2020177223 A1 WO2020177223 A1 WO 2020177223A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium salt
magnesium alloy
micro
corrosion
self
Prior art date
Application number
PCT/CN2019/088600
Other languages
English (en)
French (fr)
Inventor
卢小鹏
钱堃
李岩
韩鑫鑫
张涛
王福会
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020177223A1 publication Critical patent/WO2020177223A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/57Treatment of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/02Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in air or gases by adding vapour phase inhibitors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Definitions

  • the invention belongs to material surface treatment technology, and relates to a self-repair coating and a preparation method thereof.
  • Magnesium alloys and their alloys are widely used due to their rich resources and recyclability, which is an important development direction of "lightweight" manufacturing in the future.
  • Magnesium alloys have many advantages, such as low density, high specific strength and rigidity, good electromagnetic shielding, and good castability and dimensional stability.
  • magnesium alloys and their alloys have relatively negative electrode potential and poor corrosion resistance. Therefore, only suitable surface treatment methods can be used to make them meet the requirements of corrosion protection performance during use.
  • Traditional surface treatment methods, such as coating, deposited film or chemical conversion coating have complex treatments, and require higher requirements on the surface of the sample, and the resulting film has defects that limit its use. Under these conditions, the surface treatment technology that generates oxide film through anode spark discharge in the electrolyte has ushered in an opportunity for development.
  • micro-arc oxidation has been widely used in metals such as magnesium, aluminum, titanium, and their alloys, providing a better solution for the use of these alloys in aviation and oceans, as well as the production of various parts. Good corrosion resistance.
  • the micro-arc oxidation technology also has certain drawbacks. Its high porosity caused by spark discharge during the preparation process reduces its use in long-period corrosive environments.
  • the self-healing coating prepared with the micro-arc oxide film as the bottom layer can greatly improve the corrosion resistance of the micro-arc oxide film, so it has received great attention.
  • the repair mechanism of the self-healing coating is that when the coating is damaged under the action of corrosion, the corrosion inhibitor is released from the carrier and filled in the corroded area, so as to achieve the purpose of repairing the coating.
  • the present invention aims to provide a calcium salt-based corrosion-resistant self-healing coating on the surface of magnesium alloys and a preparation method thereof, which solves the problem of poor corrosion resistance and traditional surface treatment of magnesium alloys and alloys in the prior art.
  • a preparation method of calcium salt-based corrosion-resistant self-healing coating on the surface of magnesium alloy includes the following steps:
  • Configure electrolyte configure the micro-arc oxidation electrolyte according to the type of magnesium alloy on which the oxide layer is grown and the type of composition of the required oxide layer;
  • micro-arc oxidation film use the metal substrate on which the oxide film needs to be grown as the anode, and the graphite plate as the cathode, and place it in the micro-arc oxidation electrolyte obtained in step (1); according to the size of the metal substrate for which the oxide layer needs to be grown , Adjust the distance between the anode and cathode to be 10-1000mm; the micro-arc oxidation adopts a DC pulse power supply, selects constant voltage or constant current mode, the current density of constant current mode is 1-10A/dm 2 , and the output voltage under constant voltage mode is 200 -600V, control pulse frequency is 50-5000Hz, pulse duty cycle is 10%-70%;
  • Step (3) Preparation of self-healing layer: Calcium salt solution is prepared according to the component types of the self-healing layer, the calcium salt solution includes calcium salt and corrosion inhibitor, the pH value is 3-6, and the calcium salt concentration is 30-120g/L;
  • step (2) the magnesium alloy with the micro-arc oxide film is immersed in a calcium salt solution to prepare the film by a deposition reaction, the preparation temperature is 40-80° C., and the preparation time is 10 min-60 min.
  • the corrosion inhibitor in the calcium salt solution in step (3) is one or two or more of the corrosion inhibitors effective for the corresponding magnesium alloy, and the concentration is 0.01 mol/L.
  • the calcium salt in the calcium salt solution in step (3) is one or a mixture of two or more of calcium nitrate, calcium sulfate, and calcium dihydrogen phosphate.
  • micro-arc oxidation electrolyte in step (1) includes a silicate electrolyte system, a phosphate electrolyte system, an aluminate electrolyte system, or a carbonate electrolyte system.
  • the silicate electrolyte system includes silicate 20 g/L, fluoride 4 g/L, and an aqueous solution that adjusts the pH value of alkali metal hydroxide to 12.
  • the phosphate electrolyte system includes an aqueous solution of 30 g/L phosphate, 4 g/L fluoride, and an alkali metal hydroxide to adjust the pH to 12.
  • the calcium salt solution described in step (3) includes 60 g/L of calcium nitrate, 0.01 mol/L of an effective corrosion inhibitor for the alloy, and adjusting the pH to 3 with nitric acid.
  • the metal matrix includes all kinds of magnesium alloys.
  • the self-healing coating provided by the present invention has a denser film layer and lower porosity due to the existence of the deposited layer, and can effectively resist the corrosion of corrosive media in a corrosive environment.
  • the corrosion inhibitor can be loaded in the holes of the micro-arc oxide film.
  • the corrosion inhibitor can gather in the corroded place in time, the self-repair method is sensitive, and the start-up repair is timely.
  • the film thickness and structure are uniform, and there is no problem of preferential breakdown of some defects of the film layer.
  • the film layer has a strong bonding force with the substrate and has a strong ability to resist damage by external forces.
  • the preparation of the film layer is relatively simple, the equipment requirements are low, and it is easy for large-scale production and the preparation of complex workpieces.
  • Figure 1 shows the preparation process of the oxide layer in the self-healing coating provided by the present invention.
  • Figure 2 is the preparation process of the self-healing layer part of the self-healing coating provided by the present invention.
  • Figure 3 is a schematic diagram of the self-healing coating provided by the present invention.
  • Fig. 4 is a graph showing the corrosion test results of the self-healing coating in Example 1 of the present invention.
  • the present invention provides a corrosion-resistant self-healing coating on the surface of magnesium alloy based on calcium salt.
  • the surface of the metal sample (metal substrate) 3 to be prepared for the micro-arc oxidation film is the prepared film layer 8.
  • the film layer 8 includes an oxide layer grown on the surface of the magnesium alloy substrate and a self-healing layer deposited on the surface of the oxide layer.
  • the oxide layer is prepared on the surface of the metal sample (metal matrix) 3 of the micro-arc oxide film to be prepared by electrolytic solution through micro-arc oxidation, and the self-healing layer is loaded into the film layer by adding calcium salt solution under acidic conditions.
  • the corrosion inhibitor 9 is deposited on the surface of the oxide layer.
  • the method for preparing a self-healing coating uses an electrolyte to prepare an oxide layer on the surface of a magnesium alloy by micro-arc oxidation, and then contains calcium salt and corrosion inhibitor in acid. Prepare the self-healing layer in the solution.
  • the preparation device of the oxide layer in the self-healing coating mainly includes: a micro-arc oxidation power supply 1, a graphite plate used as a micro-arc oxidation cathode 2, a metal sample (metal substrate) to be prepared for the micro-arc oxidation film ) 3.
  • Micro-arc oxidation electrolyte 4 the graphite plate 2 used as the micro-arc oxidation cathode is inserted into the micro-arc oxidation electrolyte 4, the metal sample (metal substrate) to be prepared for the micro-arc oxidation film 3 is placed in the micro-arc In the oxidized electrolyte 4, the graphite plate 2 used as the micro-arc oxidation cathode 2 and the metal sample (metal matrix) 3 to be prepared for the micro-arc oxidation film are respectively connected to the negative electrode and the positive electrode of the micro-arc oxidation power supply 1 through wires.
  • the preparation device of the self-healing layer in the self-healing coating mainly includes: an acidic calcium salt solution added with corrosion inhibitor for post-sealing treatment; 5, a metal sample containing a micro-arc oxide film 6.
  • Heating device 7, the acidic calcium salt solution added with corrosion inhibitor 5 for the post-sealing treatment is placed in the container, and the metal sample 6 containing the micro-arc oxide film is placed in the post-sealing treatment with the added retarder.
  • the container is placed in the heating device 7, and the acid calcium salt solution 5 added with the corrosion inhibitor for the post-sealing treatment in the container is heated by the heating device 7 (such as: water bath heating, etc.).
  • the self-healing layer provided by the present invention has a better protective effect in a corrosive environment, and has the following advantages as a workpiece: (a) a denser film layer and a lower porosity; (b) ) Corrosion inhibitors are loaded in the film. When corrosion occurs, the corrosion inhibitors can gather in the corroded area in time.
  • the self-repairing method is sensitive and the repair is started in time; (c) It can realize multiple repairs in one area and multiple areas at the same time.
  • the repair method is sensitive and the repair is started in time; (d) the thickness and structure of the film are uniform; (e) the film and the substrate have strong bonding force, and the ability to resist damage by external force is strong; (f) the preparation of the film is relatively simple and requires more equipment Low, easy to mass production and preparation of complex workpieces.
  • the film layer can be successfully prepared on the surface of the metal anode.
  • the main parameters that need to be adjusted for micro-arc oxidation are the concentration of each component in the electrolyte, the pH value and the electrical parameters in the micro-arc oxidation process.
  • the main parameters that need to be adjusted for the preparation of the self-healing layer are the concentration of each component in the solution, the pH value, and the temperature and preparation time during the preparation process.
  • the purpose of the present invention can be achieved through the following key steps:
  • the current density of the constant current mode is 1-10A/dm 2
  • the output voltage in the constant voltage mode is 200-600V
  • the control pulse frequency is 50-5000Hz
  • the pulse duty The ratio is 10%-70%
  • Step 1 Choose AM50 magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: sodium silicate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant current mode, the current density is 2A/dm 2 , the pulse frequency is adjusted to 300 Hz, and the pulse duty cycle is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the ingredients are: calcium nitrate 30g/L, barbituric acid 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with the micro-arc oxide film is immersed in the solution to prepare the film by deposition reaction
  • the preparation temperature is 50°C, and the preparation time is 30 minutes.
  • Step 1 Choose AM50 magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: sodium silicate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant voltage mode, the voltage value is 450V, the control pulse frequency is 300Hz, and the pulse duty ratio is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the components are: calcium nitrate 30g/L, barbituric acid 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with a micro-arc oxide film is immersed in the solution to prepare the film by deposition reaction
  • the temperature during preparation is 50°C and the preparation time is 60 minutes.
  • Step 1 Choose AZ91D magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: sodium silicate 20g/L, potassium fluoride 4g/L, sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant current mode, the current density is 2A/dm 2 , the pulse frequency is adjusted to 300 Hz, and the pulse duty cycle is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the components are: calcium nitrate 60g/L, sodium lauryl sulfate 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with the micro-arc oxide film is immersed in the solution through the deposition reaction
  • the film layer was prepared, the temperature during preparation was 80°C, and the preparation time was 30 minutes.
  • Step 1 Choose AZ91D magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: sodium silicate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant voltage mode, the voltage value is 450V, the control pulse frequency is 300Hz, and the pulse duty ratio is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the components are: calcium nitrate 60g/L, sodium lauryl sulfate 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with the micro-arc oxide film is immersed in the solution through the deposition reaction
  • the film layer was prepared, the temperature during preparation was 50°C, and the preparation time was 60 min.
  • Step 1 Choose MB8 magnesium alloy as the base material, configure the micro-arc oxidation growth electrolyte composition: sodium silicate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant voltage mode, the voltage value is 450V, the control pulse frequency is 300Hz, and the pulse duty ratio is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the components are: calcium nitrate 60g/L, barbituric acid 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with the micro-arc oxide film is soaked in the solution to prepare the film by deposition reaction
  • the preparation temperature is 80°C, and the preparation time is 30 min.
  • Step 1 Choose AM50 magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: trisodium phosphate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant current mode, the current density is 2A/dm 2 , the pulse frequency is adjusted to 300 Hz, and the pulse duty cycle is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the components are: calcium nitrate 30g/L, sodium lauryl sulfate 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with the micro-arc oxide film is immersed in the solution through the deposition reaction
  • the film layer was prepared, the temperature during preparation was 50°C, and the preparation time was 60 min.
  • Step 1 Choose AM50 magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: trisodium phosphate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant voltage mode, the voltage value is 450V, the control pulse frequency is 300Hz, and the pulse duty ratio is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the components are: calcium nitrate 30g/L, sodium lauryl sulfate 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with the micro-arc oxide film is immersed in the solution through the deposition reaction To prepare the film, the temperature during preparation is 50°C, and the preparation time is 30 minutes.
  • Step 1 Choose AZ91 magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: trisodium phosphate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant voltage mode, the voltage value is 450V, the control pulse frequency is 300Hz, and the pulse duty ratio is 30%;
  • Step 4 Configure the composition of the acidic calcium salt solution: calcium nitrate 60g/L, sodium salicylate 0.01mol/L, nitric acid adjust the pH to 3, soak the metal with the micro-arc oxidation film in the solution to prepare the film by deposition reaction
  • the temperature during preparation is 50°C and the preparation time is 60 minutes.
  • Step 1 Choose MB8 magnesium alloy as the matrix material, configure the micro-arc oxidation growth electrolyte composition: sodium hexametaphosphate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant voltage mode, the current density is 2A/dm 2 and the pulse frequency is adjusted to 300Hz, and the pulse duty cycle is 30%;
  • Step 4 Configure the composition of the acidic calcium salt solution: calcium nitrate 60g/L, sodium salicylate 0.01mol/L, nitric acid adjust the pH to 3, soak the metal with the micro-arc oxidation film in the solution to prepare the film by deposition reaction
  • the preparation temperature is 80°C, and the preparation time is 30 min.
  • Step 1 Select MB8 magnesium alloy as the base material, configure the micro-arc oxidation growth electrolyte composition: sodium hexametaphosphate 20g/L, potassium fluoride 4g/L, and sodium hydroxide to adjust the pH to 12;
  • Step 2 Use the metal substrate that needs to grow the oxide film as the anode, and the graphite plate as the cathode, and adjust the distance between the anode and the cathode to 200mm;
  • Step 3 Select the constant current mode, the current density is 2A/dm 2 and the pulse frequency is adjusted to 300Hz, and the pulse duty cycle is 30%;
  • Step 4 Configure the acidic calcium salt solution.
  • the ingredients are: calcium nitrate 30g/L, sodium salicylate 0.01mol/L, nitric acid adjusts the pH to 3, and the metal with the micro-arc oxide film is soaked in the solution to prepare the film by deposition reaction
  • the temperature during preparation is 80°C and the preparation time is 60 min.

Abstract

本发明公开了基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,属于材料的自修复技术领域,解决了现有的技术中镁合金表面涂层在腐蚀条件下易失效及自我修复能力较差的问题。上述自修复涂层由两个部分组成,包括生长于镁合金基底表面的氧化层与沉积于氧化层表面的自修复层。基层在电解液中微弧氧化而成,自修复层采用钙盐溶液在酸性条件下加入缓蚀剂沉积制成。本发明制备的自修复涂层具有原料来源广泛,成本低廉,加工难度小等优点,易于制备及重复,可在涂层腐蚀破损时及时形成新的保护能力从而有效解决常规涂层腐蚀环境下防护性能低的技术问题。

Description

基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法 技术领域
本发明属于材料表面处理技术,涉及一种自修复涂层及其制备方法。
背景技术
镁合金及其合金由于其资源丰富及可回收利用这一特点,而被广泛地利用,是未来制造业“轻量化”的重要发展方向。镁合金具有很多优点,比如密度小,比强度比刚度高,良好的电磁屏蔽性以及良好的铸造性和尺寸稳定性。但是镁合金及其合金的电极电位较负,耐腐蚀性较差,因此只有运用合适的表面处理方法来使得它们满足使用过程中的腐蚀防护性能要求。传统的表面处理方法如镀膜,沉积膜或化学转化膜等存在处理较复杂,对试样表面要求较高,生成的膜层存在缺陷而使得使用受到限制。在这种条件下,通过在电解液中阳极火花放电生成氧化膜的表面处理技术迎来了发展的契机。
微弧氧化作为目前最为先进的表面处理技术之一,已经被广泛地运用于镁铝钛等金属及其合金上,为这些合金在航空、海洋中的使用以及各种零部件生产等提供了更好的耐腐蚀性能。但是微弧氧化技术也存在一定的缺陷,其由于制备过程中火花放电导致的高孔隙率降低了其在长周期腐蚀环境中的使用。以微弧氧化膜为底层制备的自修复涂层可较大程度地提高微弧氧化膜的耐蚀性,因此受到了极大的关注。自修复涂层的修复机理是涂层在腐蚀作用下破损时,缓蚀剂剂从载体中释放并填补在腐蚀处,从而达到修复涂层的目的。
发明内容
鉴于上述的分析,本发明旨在提供一种基于钙盐的镁合金表面耐腐蚀自修复涂层及其制备方法,解决了现有技术中镁合金及其合金耐蚀性能较差及传统表面处理技术提供的腐蚀防护作用有限的问题。
为解决上述问题,本发明主要是通过以下技术方案实现的:
一种基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,包括如下步骤:
(1)配置电解液:按生长氧化层的镁合金种类及所需要氧化层的成分种类配置微弧氧化电解液;
(2)生成微弧氧化膜:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,置于步骤(1)得到的微弧氧化电解液中;根据需要生长氧化层的金属基体工件大小,调节阴阳两极的间距在10-1000mm;所述微弧氧化采用直流脉冲电源,选择恒压或者恒流模式,恒流模式电流密度为1-10A/dm 2,恒压模式下输出电压为200-600V,调控脉冲频率为50-5000Hz,脉冲占空比为10%-70%;
(3)制备自修复层:按自修复层的成分种类配置钙盐溶液,所述钙盐溶液包括钙盐和缓蚀剂,pH值在3-6,钙盐浓度为30-120g/L;将步骤(2)制得有微弧氧化膜的镁合金浸泡在钙盐溶液中通过沉积反应制备膜层,制备时的温度为40-80℃,制备时间为10min-60min。
进一步地,步骤(3)的钙盐溶液中的缓蚀剂为对相应镁合金有效的缓蚀剂中的一种或 两种以上,其浓度为0.01mol/L。
进一步地,步骤(3)所述钙盐溶液中钙盐为硝酸钙、硫酸钙、磷酸二氢钙中的一种或两种以上的混合。
进一步地,步骤(1)所述微弧氧化电解液包括硅酸盐电解液体系、磷酸盐电解液体系、铝酸盐电解液体系或碳酸盐电解液体系。
优选的,硅酸盐电解液体系包括硅酸盐20g/L、氟化物4g/L和调节碱金属氢氧化物pH值至12的水溶液。
优选的,磷酸盐电解液体系包括磷酸盐30g/L、氟化物4g/L和调节碱金属氢氧化物调节pH值至12的水溶液。
优选的,步骤(3)所述的钙盐溶液包括硝酸钙60g/L、对合金有效的缓蚀剂0.01mol/L以及用硝酸调节pH值至3。
优选的,所述金属基体包括所有种类的镁合金。
与现有技术相比,本发明的优点在于:
本发明提供的自修复涂层由于沉积层的存在拥有较为致密的膜层与较低的孔隙率,可有效抵御腐蚀环境下腐蚀介质的侵蚀。通过制备过程中添加缓蚀剂,可以使微弧氧化膜孔洞中负载缓蚀剂,在腐蚀出现时缓蚀剂可及时在腐蚀处聚集,自修复方式灵敏,启动修复及时。膜层厚度及结构均匀,不存在膜层部分缺陷处优先被击穿的问题,同时膜层与基体结合力强,抗外力破坏的能力强。膜层的制备较为简单,对设备要求较低,易于大规模生产以及复杂工件的制备。
附图说明
图1为本发明提供的自修复涂层中氧化层部分的制备过程。
图2为本发明提供的自修复涂层中自修复层层部分的制备过程。
图3为本发明提供的自修复涂层示意图。
图4为本发明实施例1的自修复涂层腐蚀实验结果图。
图中:1微弧氧化电源;2用作微弧氧化阴极的石墨板;3待制备微弧氧化膜的金属样品(金属基体);4微弧氧化的电解液;5用于封孔后处理的添加了缓蚀剂的酸性钙盐溶液;6含微弧氧化膜的金属样品;7加热装置;8制备的膜层;9膜层中负载的缓蚀剂;10未经过封孔后处理的微弧氧化样品经过30天盐雾腐蚀后的形貌;11经过添加了缓蚀剂的酸性钙盐溶液封孔后处理的微弧氧化样品经过30天盐雾腐蚀后的形貌。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理。
本发明所提供了一种基于钙盐的镁合金表面耐腐蚀自修复涂层,如图3所示,待制备微弧氧化膜的金属样品(金属基体)3表面为制备的膜层8,制备的膜层8包括生长于镁合金基底 表面的氧化层与沉积于氧化层表面的自修复层。其中,所述氧化层采用电解液通过微弧氧化在待制备微弧氧化膜的金属样品(金属基体)3表面制得,所述自修复层采用钙盐溶液在酸性条件下加入膜层中负载的缓蚀剂9沉积于氧化层表面制成。
本发明所提供的一种自修复涂层的制备方法,如图1至2所示,使用电解液在镁合金表面通过微弧氧化制备一层氧化层,之后在酸性含有钙盐与缓蚀剂的溶液中制备自修复层。
如图1所示,自修复涂层中氧化层部分的制备装置,主要包括:微弧氧化电源1、用作微弧氧化阴极的石墨板2、待制备微弧氧化膜的金属样品(金属基体)3、微弧氧化的电解液4,用作微弧氧化阴极的石墨板2插设于微弧氧化的电解液4,待制备微弧氧化膜的金属样品(金属基体)3置于微弧氧化的电解液4内,用作微弧氧化阴极的石墨板2、待制备微弧氧化膜的金属样品(金属基体)3分别通过导线连接微弧氧化电源1的负极和正极。
如图2所示,自修复涂层中自修复层层部分的制备装置,主要包括:用于封孔后处理的添加了缓蚀剂的酸性钙盐溶液5、含微弧氧化膜的金属样品6、加热装置7,用于封孔后处理的添加了缓蚀剂的酸性钙盐溶液5置于容器内,含微弧氧化膜的金属样品6置于用于封孔后处理的添加了缓蚀剂的酸性钙盐溶液5内,所述容器置于加热装置7中,通过加热装置7对所述容器内用于封孔后处理的添加了缓蚀剂的酸性钙盐溶液5进行加热(如:水浴加热等)。
与现有的技术相比,本发明提供的自修复层在腐蚀环境中具有较好的防护作用,作为工件既有以下优点:(a)较为致密的膜层与较低的孔隙率;(b)膜层中负载缓蚀剂,在腐蚀出现时缓蚀剂可及时在腐蚀处聚集,自修复方式灵敏,启动修复及时;(c)可实现一个区域多次修复及多个区域同时修复,自修复方式灵敏,启动修复及时;(d)膜层厚度及结构均匀;(e)膜层与基体结合力强,抗外力破坏的能力强;(f)膜层的制备较为简单,对设备要求较低,易于大规模生产以及复杂工件的制备。
根据本发明所提供的工艺,无论金属阳极是何种镁合金,均能在其表面成功制备膜层。
根据本发明所提供的工艺,微弧氧化需调控的主要参数为电解液中各成分的浓度,pH值及微弧氧化过程中的电参数。
根据本发明所提供的工艺,自修复层制备需调控的主要参数为溶液中各成分的浓度,pH值及制备过程中的温度及制备时间。
根据本发明所提供的工艺,本发明的目的可通过如下关键步骤实现:
(1)根据生长氧化层的镁合金种类及所需要氧化层的成分种类配置微弧氧化生长电解液;
(2)根据需要生长氧化层的金属基体工件的大小调节阴阳两极的间距在10-1000mm;
(3)微弧氧化过程选择恒压或者恒流模式,恒流模式电流密度为1-10A/dm 2,恒压模式下输出电压为200-600V,调控脉冲频率为50-5000Hz,脉冲占空比为10%-70%;
(4)根据所需要自修复层的成分种类配置钙盐溶液,pH值在3-6,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为40-80℃,制备时间为 10min-60min。
为使本发明的目的、方法方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。
实施例1:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择AM50镁合金作为基体材料,配置微弧氧化生长电解液成分为:硅酸钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒流模式,电流密度为2A/dm 2,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙30g/L,巴比妥酸0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为50℃,制备时间为30min。
如图4所示,未经过封孔后处理的微弧氧化样品经过30天盐雾腐蚀后的形貌10以及经过添加了缓蚀剂的酸性钙盐溶液封孔后处理的微弧氧化样品经过30天盐雾腐蚀后的形貌11。由图4可以看出,本发明制备的自修复涂层可在涂层腐蚀破损时及时形成新的保护能力从而有效解决常规涂层腐蚀环境下防护性能低的技术问题。
实施例2:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择AM50镁合金作为基体材料,配置微弧氧化生长电解液成分为:硅酸钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒压模式,电压值为450V,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙30g/L,巴比妥酸0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为50℃,制备时间为60min。
实施例3:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择AZ91D镁合金作为基体材料,配置微弧氧化生长电解液成分为:硅酸钠 20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒流模式,电流密度为2A/dm 2,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙60g/L,十二烷基硫酸钠0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为80℃,制备时间为30min。
实施例4:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择AZ91D镁合金作为基体材料,配置微弧氧化生长电解液成分为:硅酸钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒压模式,电压值为450V,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙60g/L,十二烷基硫酸钠0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为50℃,制备时间为60min。
实施例5:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择MB8镁合金作为基体材料,配置微弧氧化生长电解液成分为:硅酸钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒压模式,电压值为450V,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙60g/L,巴比妥酸0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为80℃,制备时间为30min。
实施例6:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择AM50镁合金作为基体材料,配置微弧氧化生长电解液成分为:磷酸三钠 20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒流模式,电流密度为2A/dm 2,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙30g/L,十二烷基硫酸钠0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为50℃,制备时间为60min。
实施例7:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择AM50镁合金作为基体材料,配置微弧氧化生长电解液成分为:磷酸三钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒压模式,电压值为450V,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙30g/L,十二烷基硫酸钠0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为50℃,制备时间为30min。
实施例8:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择AZ91镁合金作为基体材料,配置微弧氧化生长电解液成分为:磷酸三钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒压模式,电压值为450V,调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙60g/L,水杨酸钠0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为50℃,制备时间为60min。
实施例9:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择MB8镁合金作为基体材料,配置微弧氧化生长电解液成分为:六偏磷酸 钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒压模式,电流密度为2A/dm 2调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙60g/L,水杨酸钠0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为80℃,制备时间为30min。
实施例10:
本实例中通过在镁合金表面采用电解液通过微弧氧化及在含钙盐与缓蚀剂的酸性溶液中沉积制成。按以下步骤实施:
步骤一:选择MB8镁合金作为基体材料,配置微弧氧化生长电解液成分为:六偏磷酸钠20g/L、氟化钾4g/L,氢氧化钠调节pH值至12;
步骤二:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,调节阴阳两极的间距为200mm;
步骤三:选择恒流模式,电流密度为2A/dm 2调控脉冲频率为300Hz,脉冲占空比为30%;
步骤四:配置酸性钙盐溶液成分为:硝酸钙30g/L,水杨酸钠0.01mol/L,硝酸调节pH值在3,将有微弧氧化膜的金属浸泡在溶液中通过沉积反应制备膜层,制备时的温度为80℃,制备时间为60min。

Claims (7)

  1. 一种基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,其特征在于,包括如下步骤:
    (1)配置电解液:根据生长氧化层的镁合金种类及所需要氧化层的成分种类配置微弧氧化电解液;
    (2)生成微弧氧化膜:①设计阴阳极:将需要生长氧化膜的金属基体作为阳极,石墨板作为阴极,置于步骤(1)得到的微弧氧化电解液中,根据需要生长氧化层的金属基体工件的大小调节阴阳两极的间距在10-1000mm;②调节微弧氧化的电参数:所述微弧氧化采用直流脉冲电源,选择恒压或者恒流模式,恒流模式电流密度为1-10A/dm 2,恒压模式下输出电压为200-600V,调控脉冲频率为50-5000Hz,脉冲占空比为10%-70%;
    (3)制备自修复层:根据所需要自修复层的成分种类配置钙盐溶液,所述钙盐溶液包括钙盐和缓蚀剂,pH值在3-6,钙盐浓度为30-120g/L;将步骤(2)制得有微弧氧化膜的镁合金浸泡在钙盐溶液中通过沉积反应制备膜层,制备时的温度为40-80℃,制备时间为10min-60min。
  2. 根据权利要求1所述的基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,其特征在于,步骤(3)的钙盐溶液中的缓蚀剂为对相应镁合金有效的缓蚀剂中的一种或两种以上,其浓度为0.01mol/L。
  3. 根据权利要求1或2所述的基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,其特征在于,步骤(3)所述钙盐溶液中钙盐为硝酸钙、硫酸钙、磷酸二氢钙中的一种或两种以上的混合。
  4. 根据权利要求1或2所述的基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,其特征在于,步骤(1)所述微弧氧化电解液包括硅酸盐电解液体系、磷酸盐电解液体系、铝酸盐电解液体系或碳酸盐电解液体系。
  5. 根据权利要求4所述的基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,其特征在于,硅酸盐电解液体系为包括硅酸盐20g/L、氟化物4g/L和碱金属氢氧化物调节pH值至12的水溶液。
  6. 根据权利要求4所述的基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,其特征在于,磷酸盐电解液体系为包括磷酸盐30g/L、氟化物4g/L和碱金属氢氧化物调节pH值至12的水溶液。
  7. 根据权利要求1所述的基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法,其特征在于,步骤(3)所述的钙盐溶液包括硝酸钙60g/L、对合金有效的缓蚀剂0.01mol/L以及用硝酸调节pH值至3。
PCT/CN2019/088600 2019-03-07 2019-05-27 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法 WO2020177223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910171838.X 2019-03-07
CN201910171838.XA CN109680319B (zh) 2019-03-07 2019-03-07 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法

Publications (1)

Publication Number Publication Date
WO2020177223A1 true WO2020177223A1 (zh) 2020-09-10

Family

ID=66197779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088600 WO2020177223A1 (zh) 2019-03-07 2019-05-27 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法

Country Status (2)

Country Link
CN (1) CN109680319B (zh)
WO (1) WO2020177223A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680319B (zh) * 2019-03-07 2020-04-07 东北大学 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法
CN110424039B (zh) * 2019-09-16 2021-08-10 东北大学 基于水滑石纳米缓蚀微胶囊的镁合金耐蚀自修复微弧氧化涂层的制备方法
CN113373492B (zh) * 2021-04-30 2022-08-16 上海交通大学 一种镁合金超高频微弧氧化的处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304746A (zh) * 2011-09-26 2012-01-04 佳木斯大学 聚吡咯磷酸钙/氧化镁生物陶瓷涂层及其制备方法
CN104694994A (zh) * 2015-03-20 2015-06-10 哈尔滨工业大学 一种具有高生物活性及低降解速率生物医用镁或镁合金表面电化学处理的方法
CN107190302A (zh) * 2017-05-19 2017-09-22 中国科学院金属研究所 一种实现镁合金双重自修复的复合防护涂层及其制备方法
CN108914190A (zh) * 2018-08-03 2018-11-30 中国科学院金属研究所 一种镁合金表面微弧氧化/智能缓释结构一体化复合涂层的制备方法
CN109680319A (zh) * 2019-03-07 2019-04-26 东北大学 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304746A (zh) * 2011-09-26 2012-01-04 佳木斯大学 聚吡咯磷酸钙/氧化镁生物陶瓷涂层及其制备方法
CN104694994A (zh) * 2015-03-20 2015-06-10 哈尔滨工业大学 一种具有高生物活性及低降解速率生物医用镁或镁合金表面电化学处理的方法
CN107190302A (zh) * 2017-05-19 2017-09-22 中国科学院金属研究所 一种实现镁合金双重自修复的复合防护涂层及其制备方法
CN108914190A (zh) * 2018-08-03 2018-11-30 中国科学院金属研究所 一种镁合金表面微弧氧化/智能缓释结构一体化复合涂层的制备方法
CN109680319A (zh) * 2019-03-07 2019-04-26 东北大学 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GNEDENKOV, A. S. ET AL.: "Protective Properties of inhibitor-containing composite coatings on a Mg alloy", CORROSION SCIENCE, vol. 102, 21 October 2015 (2015-10-21), XP029323639, DOI: 20191122175241X *
LIU, DAN ET AL.: "Self-Healing Coating Prepared by Loading Interphase Inhibitors into MAO Coating of AM60 Mg Alloy", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 165, no. 7, 23 May 2018 (2018-05-23), XP55731685, DOI: 20191122175016X *

Also Published As

Publication number Publication date
CN109680319A (zh) 2019-04-26
CN109680319B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020177223A1 (zh) 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法
CN109825866B (zh) 一种合金自修复耐蚀微弧氧化涂层的制备方法
TWI297041B (en) Method for treating the surface of magnesium or magnesium alloy
CN105088309B (zh) 一种压铸铝合金的高效节能阳极氧化处理方法
CN103088384A (zh) 阀金属等离子体电解氧化表面处理方法
KR20100116546A (ko) 금속의 표면처리 방법
CN109680318B (zh) 基于磷酸盐的镁合金表面耐腐蚀自修复涂层的制备方法
CN106065488B (zh) 一种利用正负脉冲阳极氧化法制备阳极铝箔的方法
KR101356230B1 (ko) 양극 산화 피막의 형성 방법
CN110016708A (zh) 适用于铜及其合金的微弧氧化表面处理方法及制品
CN102808168B (zh) 一种微弧氧化多孔膜改性镁基表面室温化学镀镍的方法
CN110424039B (zh) 基于水滑石纳米缓蚀微胶囊的镁合金耐蚀自修复微弧氧化涂层的制备方法
CN103762081A (zh) 一种铝基强诱电体薄膜的制造方法
KR101336443B1 (ko) 고내식성 마그네슘 합금 산화피막의 제조방법
CN1014726B (zh) 金属电解浸蚀处理方法
CN101435081B (zh) 镁合金表面无电压化学制膜和低电压下电化学制膜的方法
JP2000282294A (ja) 耐熱割れ性および腐食性に優れた陽極酸化皮膜の形成方法並びに陽極酸化皮膜被覆部材
CN110685000B (zh) 一种高耐蚀涂层和制备方法、电解液及其应用
TW202229003A (zh) 不鏽鋼材料結構及其表面製作方法
JP2569422B2 (ja) 酸化アルミニウム積層構造皮膜体とその製造方法
CN110257878B (zh) 一种制备铝钛复合板微弧氧化膜的方法
KR101313014B1 (ko) Led 조명기기용 히트싱크의 표면 처리 방법
TWI835152B (zh) 不銹鋼表面製備陶瓷膜的製作方法
CN112899753B (zh) 镁合金表面微弧氧化低氟自封孔涂层电解液及涂层制备方法
KR102350114B1 (ko) 친환경 알루미늄 전해 크로메이트 처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918436

Country of ref document: EP

Kind code of ref document: A1