WO2020177011A1 - 背光模组、显示装置及背光模组的制备方法 - Google Patents

背光模组、显示装置及背光模组的制备方法 Download PDF

Info

Publication number
WO2020177011A1
WO2020177011A1 PCT/CN2019/076696 CN2019076696W WO2020177011A1 WO 2020177011 A1 WO2020177011 A1 WO 2020177011A1 CN 2019076696 W CN2019076696 W CN 2019076696W WO 2020177011 A1 WO2020177011 A1 WO 2020177011A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
backlight module
optical film
layer
film layer
Prior art date
Application number
PCT/CN2019/076696
Other languages
English (en)
French (fr)
Inventor
王鹏鹏
王海生
丁小梁
李扬冰
张平
邓立凯
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980000213.5A priority Critical patent/CN111971616B/zh
Priority to PCT/CN2019/076696 priority patent/WO2020177011A1/zh
Priority to US16/646,360 priority patent/US11353743B2/en
Publication of WO2020177011A1 publication Critical patent/WO2020177011A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present disclosure relates to the field of display, and in particular to a backlight module, a display device, and a preparation method of the backlight module.
  • a depth camera can be used to obtain depth information of a target within the camera's field of view.
  • a backlight module including:
  • the optical film layer is arranged on one side of the substrate.
  • At least one photosensitive element arranged on the substrate and used for sensing light from a side of the optical film layer away from the substrate;
  • a micro-hole array is provided on the optical film layer, and the orthographic projection of the micro-hole array on the substrate and the orthographic projection of the at least one photosensitive element on the substrate at least partially overlap.
  • the micropore array includes a plurality of micropores, and the inner wall of at least part of the micropores in the plurality of micropores is provided with a first reflective layer.
  • a light absorption layer is further provided between the inner wall and the first reflective layer.
  • the backlight module further includes:
  • the first homogenizing layer is located on the side of the optical film layer away from the substrate;
  • the first uniform light layer includes a first uniform light pattern, and the orthographic projection of the first uniform light pattern on the substrate and the orthographic projection of the microhole array on the substrate at least partially overlap.
  • the backlight module further includes:
  • At least one detecting light emitting element is arranged on the substrate;
  • the orthographic projection of the microhole array on the substrate and the orthographic projection of the at least one detection light emitting element on the substrate at least partially overlap.
  • the detection light emitting element includes an infrared light source
  • the photosensitive element includes an infrared light sensor
  • the backlight module further includes:
  • the first backlight source is arranged on the substrate and located between the at least one photosensitive element and the at least one light emitting element.
  • the backlight module further includes:
  • the second backlight source is arranged on at least one side of the optical film layer along the extension direction of the optical film layer.
  • the photosensitive element is located on a side of the substrate adjacent to the optical film layer.
  • the substrate includes a transparent substrate, the surface of the transparent substrate adjacent to the optical film layer is provided with a second reflective layer, and the photosensitive element is located on the transparent substrate away from the optical film layer.
  • the second reflective layer includes a light-transmitting area, and the orthographic projection of the light-transmitting area on the transparent substrate at least partially overlaps the orthographic projection of the at least one photosensitive element on the transparent substrate.
  • the photosensitive element includes a photosensitive sensor, a filter and a lens
  • the filter is arranged on a side of the photosensitive sensor adjacent to the optical film layer
  • the lens is arranged on the filter.
  • the sheet is adjacent to one side of the optical film layer.
  • the backlight module further includes:
  • the height of the light-shielding structure in the direction perpendicular to the substrate is greater than the height of the photosensitive element in the direction perpendicular to the substrate.
  • the optical film layer includes:
  • the prism layer is located on one side of the substrate
  • a diffusion layer located on the side of the prism layer adjacent to the substrate;
  • the quantum dot layer is located between the diffusion layer and the prism layer.
  • a display device including:
  • the display panel is located on the light emitting side of the backlight module.
  • the display panel further includes:
  • the second homogenizing layer is located on the side of the optical film layer away from the substrate;
  • the second uniform light layer includes a second uniform light pattern, and the orthographic projection of the second uniform light pattern on the substrate and the orthographic projection of the microhole array on the substrate at least partially overlap.
  • a method for manufacturing a backlight module including:
  • At least one photosensitive element is arranged on the substrate;
  • An optical film layer is formed on one side of the substrate, and a microhole array is formed on the optical film layer, the orthographic projection of the microhole array on the substrate and the at least one photosensitive element on the substrate The orthographic projections overlap at least partially.
  • the at least one photosensitive element when setting the at least one photosensitive element, it further includes:
  • the operation of setting the photosensitive element, the first backlight source and the detection light emitting element includes:
  • At least one of the at least one photosensitive element, the first backlight source, and the at least one detection light emitting element is micro-transferred onto the substrate.
  • the manufacturing method of the backlight module further includes:
  • the orthographic projection of the microhole array on the substrate and the orthographic projection of the at least one detection light emitting element on the substrate are at least partially overlapped.
  • Fig. 1 is a schematic structural diagram of an embodiment of a backlight module according to the present disclosure
  • FIG. 2 is a partial top view of an embodiment of the backlight module according to the present disclosure
  • FIG. 3 is an enlarged schematic diagram of the position shown by circle A in FIG. 1;
  • FIGS. 4 to 6 are schematic diagrams of some embodiments of the backlight module according to the present disclosure.
  • FIG. 7 is a schematic diagram of the structure of an optical film layer in an embodiment of the backlight module according to the present disclosure.
  • FIG. 8 is a schematic diagram of the structure of a photosensitive element in an embodiment of the backlight module according to the present disclosure
  • Figures 9-14 are respectively structural schematic diagrams of some embodiments of display devices according to the present disclosure.
  • 15 is a schematic diagram of an equivalent optical path when implementing depth recognition according to an embodiment of the display device of the present disclosure
  • 16 is a schematic diagram of the arrangement of photosensitive elements, light-emitting elements, and sub-pixel units in a display panel in an embodiment of a display device according to the present disclosure
  • FIG. 17 is a schematic flowchart of an embodiment of a method for manufacturing a backlight module according to the present disclosure.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intermediate device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intermediate device, or may not be directly connected to the other device but has an intermediate device.
  • the detection scheme implemented by the Time-of-Flight (TOF) depth camera module adopts an independent TOF depth camera module based on a silicon-based image sensor.
  • the module includes multiple components such as light source, receiving array and circuit.
  • the light source emits a beam of modulated infrared light, and the infrared light is reflected upon the target.
  • the reflected tuned square wave is received by the receiving array after passing through the lens, and then the received information is demodulated by the demodulation unit, and the target distance is calculated.
  • This kind of module takes up a lot of space and is difficult to achieve miniaturization.
  • it is also difficult to integrate due to the limitation of the internal structure of the display device.
  • the present disclosure provides a backlight module, a display device and a manufacturing method of the backlight module, which can realize the integration of the photosensitive element in the backlight module.
  • FIG. 1 is a schematic structural diagram of an embodiment of a backlight module according to the present disclosure.
  • Fig. 2 is a partial top view of an embodiment of the backlight module according to the present disclosure.
  • Fig. 3 is an enlarged schematic diagram of the position shown by circle A in Fig. 1.
  • the backlight module includes: an optical film layer 110, a substrate 120 and at least one photosensitive element 130.
  • the substrate 120 may be disposed on one side of the optical film layer 110.
  • At least one photosensitive element 130 may be disposed on the substrate 120 for sensing light from a side of the optical film layer 110 away from the substrate 120, so that the integration of the photosensitive element 130 by the backlight module is realized.
  • the optical film may be A microhole array 111 is provided on the 110, and the orthographic projection of the microhole array 111 on the substrate 120 and the orthographic projection of the at least one photosensitive element 130 on the substrate 120 at least partially overlap.
  • the orthographic projection of the microhole array 111 on the substrate 120 may completely overlap the orthographic projection of the at least one photosensitive element 130 on the substrate 120 to obtain a better optical signal receiving effect.
  • the orthographic projection of the microhole array 111 on the substrate 120 may also partially overlap with the orthographic projection of the at least one photosensitive element 130 on the substrate 120.
  • the light from the side of the optical film layer 110 away from the substrate 120 can be directly projected onto the photosensitive element 130 through the microhole array 111 and imaged on the photosensitive element 130. Since the light entering the photosensitive element 130 is not refracted by the optical film layer 110, on the one hand, the light intensity loss of the light received by the photosensitive element is reduced, thereby helping to reduce the power consumption of the photosensitive element; on the other hand, the optical film can also be eliminated.
  • the adverse effects of the layer such as the blurring and distortion of the optical signal, improve the imaging quality of the photosensitive element.
  • the microwell array 111 includes a plurality of microwells.
  • a plurality of microholes may be arranged in an array and penetrate the entire optical film layer 110 along the thickness direction of the optical film layer 110.
  • the aperture of the micropores in the micropore array 111 may be 3 ⁇ m to 5 mm.
  • the hole edge spacing of adjacent microholes can be determined according to the allowable accuracy of the processing technology, for example, greater than 1 ⁇ m.
  • multiple groups of microhole arrays 111 can be provided on the optical film layer 110.
  • each photosensitive element 130 may correspond to a microhole array 111.
  • two or more photosensitive elements 130 may correspond to one micro-hole array 111, or one photosensitive element 130 may correspond to more than two micro-hole arrays 111.
  • a first reflective layer 111 a may be provided on the inner wall of at least part of the microholes of the microhole array 111.
  • the first reflective layer 111a can prevent the light entering the micro-hole from being refracted from the inner wall of the micro-hole into the optical film layer 110, reducing the loss of light intensity of the light received by the photosensitive element, and can also block the inside of the optical film layer 110 from reaching the optical film layer 110 through reflection.
  • the light outside the walls of the micropores improves the signal-to-noise ratio of the photosensitive element 130.
  • the first reflective layer 111a may include a metal plating layer, for example, an electroplating process is used to form a metal plating layer, such as a copper plating layer, on the inner wall of the micro-hole.
  • a metal plating layer such as a copper plating layer
  • Other processes such as spraying or vapor deposition
  • the reflective layer material such as alloy or non-metal
  • material may also be used.
  • a light absorbing layer can also be provided between the inner wall of the microhole provided with the reflective layer and the first reflective layer, and the light absorbing layer is used to absorb the light from the inside of the optical film layer 110 to the wall of the micropore. Light from the outside.
  • the substrate 120 may be a printed circuit board (Printed Circuit Board, PCB for short).
  • the photosensitive element 130 may be located on the side of the substrate 120 adjacent to the optical film layer 110. Other components may be provided on the substrate 120 to realize the integration of more functions in the backlight module.
  • the photosensitive element 130 and other elements can be placed on the substrate 120 together by means of micro transfer printing.
  • the backlight module may be a direct type backlight module.
  • a first backlight source 150 may be provided on a side of the substrate 120 adjacent to the optical film layer 110 (in FIG. 1 through The arrow shows the light emitted by the backlight).
  • the first backlight source 150 may use conventional or mini LEDs, which may be arranged in an array on the substrate 120.
  • a plurality of photosensitive elements 130 may be arranged between each Mini LED.
  • the backlight module may further include at least one detecting light emitting element 140 as required. At least one detection light emitting element 140 is provided on the substrate 120.
  • the detection light emitting element 140 can be used to emit detection light to the side of the optical film layer 110 away from the substrate 120 (the detection light emitted by the detection light emitting element is shown by the arrow in FIG. 1), thus realizing a direct backlight module Integration of detection light emitting element 140.
  • the detection light emitting element 140 may use an optical element capable of emitting visible light or invisible light, such as an infrared light source.
  • the photosensitive element 130 can receive and detect the reflected light on the object from the light emitted by the light emitting element 140 or other light-emitting elements.
  • the photosensitive element 130 may include an infrared light sensor, such as a 3D TOF sensor, which can sense the reflected light of the light emitted by the infrared light source on the side of the optical film layer 110 away from the substrate 120, and the 3D TOF sensor By detecting the reflected light of the infrared light source, a 3D depth image of the measured object can be obtained, so as to improve the spatial positioning ability and realize various applications, such as gesture recognition, as required.
  • the first backlight source 150 may adopt Mini LEDs arranged in an array on the substrate 120, and a plurality of detection light emitting elements 140 may be arranged between each Mini LED.
  • FIGS 4 to 6 are schematic structural diagrams of some embodiments of the backlight module according to the present disclosure.
  • At least one detecting light emitting element 140 is provided on the substrate 120, and the orthographic projection of the microhole array 111 on the substrate 120 can be the same as the at least one detecting light emitting element 140 on the substrate.
  • the orthographic projections on 120 overlap at least partially. Since the light emitted by the detecting light emitting element 140 is directly emitted to the side of the optical film layer 110 away from the substrate 120 through the microhole array 111, the luminescence loss of the detecting light emitting element 140 can be reduced, thereby helping to reduce the function of the detecting light emitting element 140. Consumption.
  • each detection light emitting element 140 may correspond to a microhole array 111. In other embodiments, two or more detecting light emitting elements 140 may correspond to one microhole array 111, or one detecting light emitting element 140 may correspond to more than two microhole arrays 111.
  • a wider light-transmitting hole is provided on the optical film layer to allow light to directly pass through the optical film layer, in order to make the light-transmitting hole and the photosensitive element or the detection light emitting element directly align, it is generally necessary to accurately align the position during preparation.
  • a light-transmitting hole whose size is larger than the light-receiving area of the photosensitive element or the light-emitting area of the detection light-emitting element is often provided, and this wider light-transmitting hole will make the display of the display device using this backlight module more obvious. influences.
  • the area of each microhole array in the optical film layer can be determined according to the light-receiving area of the photosensitive element or the light-emitting area of the detection light emitting element, and does not require precise alignment, even if the area is wide. It has a significant impact on the display of the display device.
  • the backlight module may be an edge-type backlight module.
  • the second backlight source 160 may be disposed on at least one side of the optical film layer 110 along the extending direction of the optical film layer 110 (the light emitted by the backlight source is shown by arrows in FIG. 5).
  • the optical film layer 110 includes a light guide plate or a light guide film.
  • the second backlight source 160 is located on at least one side of the light guide plate or the light guide film along the extending direction of the light guide plate or the light guide film.
  • the light emitted by the second backlight source 160 is refracted and reflected in the optical film layer 110 to form a uniform light emission effect on the side of the optical film layer 110 away from the substrate 120.
  • the detection light emitting element 140 is further provided on the substrate 120.
  • the photosensitive element 130 By arranging the photosensitive element 130 on the substrate 120, the integration of the detection light emitting element 140 by the side-lit backlight module can be realized.
  • the substrate includes a transparent substrate 120'.
  • the transparent substrate 120' may be a glass plate or the like.
  • the surface of the transparent substrate 120' adjacent to the optical film layer 110 is provided with a second reflective layer 170, and the photosensitive element 130 is located on the side of the transparent substrate 120' away from the optical film layer 110.
  • the second reflective layer 170 can reflect the light incident on the transparent substrate 120' to the light exit side of the backlight module, thereby increasing the light utilization efficiency.
  • the second reflective layer 170 may be a metal layer or other film layer capable of reflecting light.
  • the second reflective layer 170 may further include a light-transmitting area 171.
  • the orthographic projection of the light-transmitting area 171 on the transparent substrate 120' is the same as the orthographic projection of the at least one photosensitive element 130 on the transparent substrate 120'.
  • the projections overlap at least partially. In this way, the light entering from the microhole array 111 can enter the photosensitive element 130 after passing through the light-transmitting area 171 and the transparent substrate.
  • the photosensitive element 130, the detecting light emitting element 140 and the first backlight source 150 can be respectively located on both sides of the transparent substrate 120'.
  • the photosensitive element, the detection light emitting element 140 and the first backlight source 150 can be manufactured separately during the preparation of the backlight module, so that the manufacturing process does not affect each other, thereby improving the yield of the product and increasing the independence of the element.
  • the substrate may also be a non-transparent plate, and accordingly, a light-transmitting hole may be provided on the substrate corresponding to the position of the photosensitive element 130.
  • FIG. 7 is a schematic diagram of the structure of an optical film layer in some embodiments of the backlight module according to the present disclosure.
  • the optical film layer may include a diffusion layer 112 and a prism layer 114.
  • the prism layer 114 is located on one side of the substrate 120, and the diffusion layer 112 is located on the side of the prism layer 114 adjacent to the substrate 120.
  • the prism layer 114 can converge light through refraction and reflection of light, and improve the effect of front light emission and brightness enhancement.
  • the diffusion layer 112 can be used to improve the distribution of the backlight, so that the backlight module can produce a fuzzy and uniform surface light source.
  • the optical film layer may further include a quantum dot (Quantum Dot, QD for short) layer 113 located between the diffusion layer 112 and the prism layer 114.
  • the QD layer 113 can achieve diffuse light emission under the excitation of the light emitted by the first backlight source 150, so that the light emitted by the backlight module is more uniform.
  • the micro-hole array 111 can be distributed on the optical film layer 110 corresponding to the positions of the photosensitive element 130 and the detection light emitting element 140, and the micro-holes sequentially penetrate the diffusion layer 112, the QD layer 113 and the prism layer 114 along the thickness direction of the optical film layer 110 .
  • FIG. 8 is a schematic structural diagram of a photosensitive element in some embodiments of the backlight module according to the present disclosure.
  • the photosensitive element 130 includes a photosensitive sensor 131, a filter 132 and a lens 133.
  • the photosensitive sensor 131 may be an infrared light sensor.
  • the filter 132 is disposed on the side of the photosensitive sensor 131 adjacent to the optical film layer 110, and can be used to filter other light except for the light of a specific wavelength that the photosensitive sensor 131 needs to receive, for example, for sensing infrared light
  • the filter 132 can filter out stray light other than infrared light.
  • the lens 133 is arranged on the side of the filter 132 adjacent to the optical film layer 110, and the light on the light-incoming side of the photosensitive element 130 can be condensed by the lens 133 and imaged on the photosensitive sensor 131.
  • a light shielding structure 134 is provided around the photosensitive element 130.
  • the height of the light-shielding structure 134 in the direction perpendicular to the substrate 120 is greater than the height of the photosensitive element 130 in the direction perpendicular to the substrate 120, so as to prevent the light outside the light-shielding structure 134 from passing through the photosensitive element 130.
  • the light-receiving side enters the photosensitive sensor 131.
  • the light-shielding structure 134 may be provided on the substrate 120 or on the photosensitive element 130, as long as it can achieve the function of shielding light except the light-receiving side.
  • the light shielding structure 134 can also be packaged in the photosensitive element 130 as a part of the photosensitive element 130.
  • the light shielding structure 134 includes a bottom plate and a side plate, and the bottom plate is located on the side of the photosensitive sensor 131 away from the light coming.
  • the side plate is located on the outer side of the photosensitive sensor 131, the filter 132 and the lens 133 in the extending direction of the bottom plate.
  • the upper edge of the side plate may be higher than the lens 133.
  • the bottom plate of the shielding structure 134 is arranged on the side of the substrate 120 close to the optical film layer 110.
  • the upper edge of the side plate of the shielding structure 134 is arranged on the side of the substrate 120' away from the optical film layer 110.
  • Figures 9-14 are respectively structural schematic diagrams of some embodiments of the display device according to the present disclosure.
  • the display device includes the foregoing backlight module and the display panel 200.
  • the display panel 200 is located on the light emitting side of the backlight module (ie, the upper side in FIGS. 9-14).
  • the photosensitive element 130 integrated in the backlight module can receive the reflected light from the object 300 (shown by arrows in FIGS. 7-12).
  • the photosensitive element 130 is used for gesture recognition, the light emitted by the detection light emitting element 140 passes through the optical film layer 110 and the display panel 200 and then illuminates the human hand.
  • the light reflected by the human hand passes through the display panel 200 and the microhole array 111 on the optical film layer 110 and enters the photosensitive element 130 for imaging.
  • the display panel 200 may be a liquid crystal display panel.
  • the display panel 200 in FIG. 8 includes: a cover 210, a first polarizing layer 220, a color filter layer 230, a liquid crystal layer 240, an electrode layer 250, and a second polarizing layer 260.
  • the second polarizing layer 260 is located on the side of the optical film layer 110 away from the substrate 120, that is, the light emitting side of the backlight module.
  • the second polarizing layer 260 there are the second polarizing layer 260, the electrode layer 250, the liquid crystal layer 240, the color filter layer 230, the first polarizing layer 220 and the cover 210 in order.
  • the first polarizing layer 220 and the second polarizing layer 260 are used to control the polarization direction of light.
  • the color filter layer 230 is used to select a specific wavelength band of light to pass through, so as to realize the display of various colors.
  • the liquid crystal molecules contained in the liquid crystal layer 240 can be deflected under the action of the electric field formed by the electrode layer 250, thereby achieving light emission control.
  • the backlight module is a direct type backlight module that integrates the photosensitive element 130 and the detection light emitting element 140.
  • the backlight module in the embodiment of the display device shown in FIG. 11 is an edge-type backlight module that integrates the photosensitive element 130 and the detection light emitting element 140.
  • the backlight module further includes a first uniform light layer 410, and the first uniform light layer 410 is located on a side of the optical film layer 110 away from the substrate 120.
  • the first homogenizing layer 410 may be located between the optical film layer 110 and the display panel 400, for example, between the optical film layer 110 and the second polarizing layer 260 of the display panel 400.
  • the first uniform light layer 410 includes a first uniform light pattern 411, and the orthographic projection of the first uniform light pattern 411 on the substrate 120 and the orthographic projection of the microhole array 111 on the substrate 120 at least partially overlap .
  • the first uniform light pattern 411 can attenuate the brighter visible light of the display panel 200 in the area corresponding to the microhole array 111, so that the front light intensity of the display panel 200 is more uniform, optical correction is easier, and the display quality of the display device is improved. .
  • the first uniform light pattern 411 can also block the visible stray light on the light receiving side of the photosensitive element 130 and reduce the interference of the visible stray light on the photosensitive element 130.
  • the display panel in the display device may include a second uniform light layer 420.
  • the second uniform light layer 420 is located on the side of the optical film layer 110 away from the substrate 120.
  • the second uniform light layer 420 may be located between the second light shielding layer 260 and the electrode layer 250 of the display panel.
  • the second homogenizing layer 420 may also be formed together with the electrode layer 250.
  • the second uniform light layer 420 includes a second uniform light pattern 421.
  • the orthographic projection of the second uniform light pattern 421 on the substrate 120 and the orthographic projection of the microhole array 111 on the substrate 120 are at least Partially overlapped.
  • the material of the first uniform light pattern 411 and the second uniform light pattern 421 can be silver, indium tin oxide (ITO), indium tin oxide-silver (ITO-Ag) or indium tin oxide-silver-indium tin oxide (ITO-Ag). -ITO), etc., which can be formed on a transparent substrate through processes such as etching.
  • ITO-Ag or ITO-Ag-ITO the designer can adjust the thickness of the ITO layer and the Ag layer to meet the needs of uniform light intensity.
  • the photosensitive element 130 may be located on the side of the transparent substrate 120' away from the optical film layer 110.
  • the orthographic projection of the microhole array 111 on the substrate 120 can be combined with at least one detection light emitting element 140 in the The orthographic projections on the substrate 120 at least partially overlap.
  • FIG. 15 is a schematic diagram of an equivalent light path when implementing depth recognition according to an embodiment of the display device of the present disclosure.
  • the photosensitive element and the detection light emitting element in the backlight module can be used for detecting the depth information of the object, so as to realize specific applications such as gesture recognition.
  • a plurality of photosensitive elements 130 may be arranged on the substrate of the backlight module.
  • the detection light emitting element emits light to the object 300 located on the light emitting side of the display panel
  • the light reflected by the object 300 passes through the lens 133 of the photosensitive element 130 and forms an image on the photosensitive sensor 131 of the photosensitive element 130.
  • the number and spacing of the photosensitive elements 130 can be set according to the imaging overlap of the object 300.
  • the imaging of the object 300 is partially overlapped, so that the imaging of multiple photosensitive elements 130 can be spliced to form the full depth of the object 300 Figure, which helps to achieve gesture recognition or spatial interaction.
  • 16 is a schematic diagram of the arrangement of photosensitive elements, detection light emitting elements, and sub-pixel units in a display panel in an embodiment of a display device according to the present disclosure.
  • the display panel includes a plurality of pixels, and each pixel includes sub-pixel units R, G, and B.
  • the sub-pixel units R, G, and B are driven by a gate driving circuit and a data driving circuit.
  • the photosensitive sensor 131 and the detecting light emitting element 140 are also electrically connected to the gate driving circuit and the data driving circuit, and are driven by the gate driving circuit and the data driving circuit.
  • the projection of the photosensitive sensor 131 and the detection light emitting element 140 in the photosensitive element 130 integrated in the backlight module on the display panel are located between each sub-pixel unit.
  • the photosensitive sensor 131 and the detecting light emitting element 140 may be located in the same sub-pixel row or the same sub-pixel column according to design requirements, or may be located in different sub-pixel rows or sub-pixel columns, respectively.
  • Figures 7, 8, and 10 respectively provide structural examples of the optical film layer, the photosensitive element, and the display panel to assist in the description.
  • the film layer, the photosensitive element and the structure of the display panel are restricted.
  • the structure of the optical film layer, the photosensitive element and the display panel can be set according to actual needs.
  • FIG. 17 is a schematic flowchart of an embodiment of a method for manufacturing a backlight module according to the present disclosure.
  • the method for preparing the backlight module includes steps S10-S30.
  • a substrate is provided.
  • the substrate can be a PCB or a transparent plate.
  • at least one photosensitive element is disposed on the substrate. If the substrate is a PCB, a photosensitive element can be arranged above the substrate, and the light-receiving side of the photosensitive element can be set in a direction away from the substrate. If the substrate is a transparent plate material, a photosensitive element is arranged below the substrate, and a second reflective layer including a light-transmitting area is formed above the substrate. The orthographic projection of the light-transmitting area on the transparent substrate at least partially overlaps the orthographic projection of the at least one photosensitive element on the transparent substrate.
  • an optical film layer is formed on one side of the substrate, and a microhole array is formed on the optical film layer.
  • the orthographic projection of the micro-hole array on the substrate and the orthographic projection of the at least one photosensitive element on the substrate at least partially overlap.
  • the optical film layer may be located on the light-receiving side of the photosensitive element.
  • a first reflective layer may be formed on the inner wall of at least part of the microholes in the microhole array, for example, by electroplating copper to form a light barrier Copper plating.
  • a detection light emitting element such as an infrared light source
  • the detection light emitting element is provided on the substrate, when the microhole array is formed, the orthographic projection of the microhole array on the substrate and the at least one detection light emitting element may be on the substrate.
  • the orthographic projections overlap at least partially.
  • a first backlight source such as a conventional or micro light emitting diode array, can also be arranged on the substrate.
  • micro transfer printing ( ⁇ TP) technology When setting at least one of the photosensitive element, the first backlight source, and the detection light emitting element, micro transfer printing ( ⁇ TP) technology may be used.
  • Micro-transfer technology is a micro-assembly technology that enables multiple small devices to move accurately at the same time, for example, to achieve precise movement of hundreds of sub-millimeter devices.
  • at least one of the at least one photosensitive element, the first backlight source, and the at least one detection light emitting element may be micro-transferred onto the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

提供一种背光模组、显示装置及背光模组的制备方法。背光模组包括:基板(120);光学膜层(110),设置在基板(120)的一侧;和至少一个感光元件(130),设置在基板(120)上,用于感测来自光学膜层(110)远离基板(120)的一侧的光线;其中,在光学膜层(110)上设有微孔阵列(111),微孔阵列(111)在基板(120)上的正投影与至少一个感光元件(130)在基板(120)上的正投影至少部分重叠。

Description

背光模组、显示装置及背光模组的制备方法 技术领域
本公开涉及显示领域,尤其涉及一种背光模组、显示装置及背光模组的制备方法。
背景技术
随着3D技术的发展,立体显示、机器视觉和卫星遥感等方面的技术应用对场景的深度信息的获取需求越来越多。在相关技术中,深度相机可用于获取相机视野内目标的深度信息。
发明内容
在本公开的一个方面,提供一种背光模组,包括:
基板;
光学膜层,设置在所述基板的一侧;和
至少一个感光元件,设置在所述基板上,用于感测来自所述光学膜层远离所述基板的一侧的光线;
其中,在所述光学膜层上设有微孔阵列,所述微孔阵列在所述基板上的正投影与所述至少一个感光元件在所述基板上的正投影至少部分重叠。
在一些实施例中,所述微孔阵列包括多个微孔,所述多个微孔中的至少部分微孔的内壁设有第一反射层。
在一些实施例中在所述内壁与所述第一反射层之间还设有光吸收层。
在一些实施例中,所述背光模组还包括:
第一匀光层,位于所述光学膜层远离所述基板的一侧;
其中,所述第一匀光层包括第一匀光图案,所述第一匀光图案在所述基板上的正投影与所述微孔阵列在所述基板上的正投影至少部分重叠。
在一些实施例中,所述背光模组还包括:
至少一个检测光发射元件,设置在所述基板上;
其中,所述微孔阵列在所述基板上的正投影与所述至少一个检测光发射元件在所述基板上的正投影至少部分重叠。
在一些实施例中,所述检测光发射元件包括红外光源,所述感光元件包括红外光 传感器。
在一些实施例中,所述背光模组还包括:
第一背光源,设置在所述基板上,并位于所述至少一个感光元件和至少一个发光元件之间。
在一些实施例中,所述背光模组还包括:
第二背光源,沿所述光学膜层的延伸方向设置在所述光学膜层的至少一侧。
在一些实施例中,所述感光元件位于所述基板邻近所述光学膜层的一侧。
在一些实施例中,所述基板包括透明基板,所述透明基板邻近所述光学膜层一侧的表面设有第二反射层,所述感光元件位于所述透明基板远离所述光学膜层的一侧,所述第二反射层包括透光区域,所述透光区域在所述透明基板上的正投影与所述至少一个感光元件在所述透明基板上的正投影至少部分重叠。
在一些实施例中,所述感光元件包括感光传感器、滤光片和透镜,所述滤光片设置在所述感光传感器邻近所述光学膜层的一侧,所述透镜设置在所述滤光片邻近所述光学膜层的一侧。
在一些实施例中,所述背光模组还包括:
遮光结构,环绕所述感光元件;
其中,所述遮光结构在垂直于所述基板的方向上的高度大于所述感光元件在垂直于所述基板的方向上的高度。
在一些实施例中,所述光学膜层包括:
棱镜层,位于所述基板的一侧;
扩散层,位于所述棱镜层邻近所述基板的一侧;和
量子点层,位于所述扩散层和所述棱镜层之间。
在本公开的一个方面,提供一种显示装置,包括:
前述的背光模组;和
显示面板,位于所述背光模组的出光侧。
在一些实施例中,所述显示面板还包括:
第二匀光层,位于所述光学膜层远离所述基板的一侧;
其中,所述第二匀光层包括第二匀光图案,所述第二匀光图案在所述基板上的正投影与所述微孔阵列在所述基板上的正投影至少部分重叠。
在本公开的一个方面,提供一种背光模组的制备方法,包括:
提供基板;
在所述基板上设置至少一个感光元件;
在所述基板的一侧形成光学膜层,并在所述光学膜层上形成微孔阵列,所述微孔阵列在所述基板上的正投影与所述至少一个感光元件在所述基板上的正投影至少部分重叠。
在一些实施例中,在设置所述至少一个感光元件时,还包括:
在所述基板上设置第一背光源和至少一个检测光发射元件;
设置所述感光元件、所述第一背光源和所述检测光发射元件的操作包括:
将所述至少一个感光元件、所述第一背光源和所述至少一个检测光发射元件中的至少一个微转印到所述基板上。
在一些实施例中,所述背光模组的制备方法还包括:
在形成所述微孔阵列时,使所述微孔阵列在所述基板上的正投影与所述至少一个检测光发射元件在所述基板上的正投影至少部分重叠。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开背光模组的一个实施例的结构示意图;
图2是根据本公开背光模组的一个实施例的局部俯视图;
图3是图1中圆圈A所示位置的放大示意图;
图4-图6分别是根据本公开背光模组的一些实施例的结构示意图;
图7是根据本公开背光模组的一个实施例中光学膜层的结构示意图;
图8是根据本公开背光模组的一个实施例中感光元件的结构示意图;
图9-图14分别是根据本公开显示装置的一些实施例的结构示意图;
图15是根据本公开显示装置的一个实施例在实现深度识别时的等效光路示意图;
图16是根据本公开显示装置的一个实施例中感光元件、发光元件和显示面板中的子像素单元的布置示意图;
图17是根据本公开背光模组的制备方法的一个实施例的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。 此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在相关技术中,飞行时间(Time-of-Flight,简称TOF)深度相机模组所实现的检测方案采用基于硅基图像传感器的独立TOF深度相机模组。该模组包括光源、接收阵列和电路等多个部件。光源发出一束调制的红外光,该红外光照射到目标后发生反射。反射后的调至方波经过镜头后被接收阵列接收,再通过解调单元对接收到的信息进行解调,并计算出目标距离。这种模组占用空间较多,难以实现小型化,另外也受限于显示装置的内部结构限制而难以进行集成。
有鉴于此,本公开提供一种背光模组、显示装置及背光模组的制备方法,能够实现感光元件在背光模组中的集成。
图1是根据本公开背光模组的一个实施例的结构示意图。图2是根据本公开背光模组的一个实施例的局部俯视图。图3是图1中圆圈A所示位置的放大示意图。
参考图1,在一些实施例中,背光模组包括:光学膜层110、基板120和至少一个感光元件130。基板120可设置在所述光学膜层110的一侧。至少一个感光元件130可设置在所述基板120上,用于感测来自所述光学膜层110远离所述基板120的一侧的光线,这样就实现了背光模组对感光元件130的集成。
考虑到光学膜层110对感光元件130接收光线的影响,例如造成感光元件130接收光学信号的虚化和畸变等,参考图1和图2,在一些实施例中,可在所述光学膜层110上设置有微孔阵列111,微孔阵列111在所述基板120上的正投影与所述至少一个感光元件130在所述基板120上的正投影至少部分重叠。微孔阵列111在所述基板120上的正投影可以与至少一个感光元件130在所述基板120上的正投影完全重叠,以获得较好的光学信号接收效果。在另一实施例中,微孔阵列111在所述基板120上的正投影也可以与至少一个感光元件130在所述基板120上的正投影部分重叠。
来自光学膜层110远离基板120一侧的光线可通过微孔阵列111直接投射到感光元件130上,并在感光元件130上成像。由于进入到感光元件130的光线未经光学膜层110折射,因此一方面减少了感光元件接收到的光线的光强损失,从而有利于降低感光元件的功耗;另一方面也可消除光学膜层所带来的不利影响,例如光学信号的虚化和畸变等,从而提高了感光元件的成像质量。
微孔阵列111包括多个微孔。多个微孔可阵列排布,并沿光学膜层110的厚度方向贯穿整个光学膜层110。微孔阵列111中的微孔孔径可以为3μm~5mm。相邻微孔的孔边间距可根据加工工艺的允许精度确定,例如大于1μm。根据感光元件130的数量,可在光学膜层110上设置多组微孔阵列111。在一些实施例中,每个感光元件130可对应一个微孔阵列111。在另一些实施例中,两个以上感光元件130可对应一个微孔阵列111,或者一个感光元件130对应两个以上微孔阵列111。
参考图3,在一些实施例中,可在微孔阵列111的至少部分微孔的内壁设置第一反射层111a。第一反射层111a可避免进入微孔的光线从微孔的内壁折射到光学膜层110中,减少感光元件所接收光线的光强损失,还能够通过反射来遮挡光学膜层110内部射到所述微孔孔壁外侧的光线,从而提高感光元件130的信噪比。第一反射层111a 可包括金属镀层,例如采用电镀工艺在微孔内壁上形成金属镀层,例如铜镀层,也可以采用其他的工艺(例如喷涂或气相沉积)和反射层材质(例如合金或非金属材料)。在另一些实施例中,也可以在设有反射层的微孔的内壁与第一反射层之间设置光吸收层,通过光吸收层来吸收光学膜层110内部射到所述微孔孔壁外侧的光线。
在图1中,基板120可为印制电路板(Printed Circuit Board,简称PCB)。感光元件130可位于所述基板120邻近所述光学膜层110的一侧。在基板120上还可以设置其它元件,以实现背光模组中更多功能的集成。通过微转印手段可将感光元件130和其他元件一并设置在基板120上。
参考图1,在一些实施例中,背光模组可以为直下式背光模组,相应的,可在基板120上邻近所述光学膜层110的一侧设置第一背光源150(图1中通过箭头显示背光源发射的光线)。第一背光源150可采用常规或微型发光二级管(Mini Led),其可在基板120上以阵列方式布置。多个感光元件130可布置在各个Mini Led之间。通过在光学膜层110上设置微孔阵列111,并在基板120上设置感光元件130,可实现直下式背光模组对感光元件130的集成。
在图1中,背光模组可根据需要进一步包括至少一个检测光发射元件140。至少一个检测光发射元件140设置在所述基板上120。检测光发射元件140可用于向所述光学膜层110远离所述基板120一侧发射检测光线(图1中通过箭头显示检测光发射元件发射的检测光线),这样就实现了直下式背光模组对检测光发射元件140的集成。
检测光发射元件140可采用能够发射可见光或者非可见光的光学元件,例如红外光源。感光元件130可以接收检测光发射元件140或者其他发光元件发出的光线在物体上的反射光线。举例来说,感光元件130可以包括红外光传感器,例如3D TOF传感器,可感测所述红外光源发出的光线在所述光学膜层110远离所述基板120的一侧的反射光,3D TOF传感器通过检测红外光源的反射光可获得被测物体的3D深度图像,从而提升空间定位能力,并能够根据需要实现各种应用,例如手势识别等。
在直下式背光模组的实施例中,第一背光源150可采用在基板120上以阵列方式布置的Mini Led,而多个检测光发射元件140可布置在各个Mini Led之间。
图4-图6分别是根据本公开背光模组的一些实施例的结构示意图。
参考图4,在一些实施例中,基板120上设置至少一个检测光发射元件140,微孔阵列111在所述基板120上的正投影可与所述至少一个检测光发射元件140在所述基板120上的正投影至少部分重叠。由于检测光发射元件140发出的光线通过微孔阵 列111直接发射到光学膜层110远离基板120一侧,因此可以减少检测光发射元件140的发光损失,从而有利于降低检测光发射元件140的功耗。
在一些实施例中,每个检测光发射元件140可对应一个微孔阵列111。在另一些实施例中,两个以上检测光发射元件140可对应一个微孔阵列111,或者一个检测光发射元件140对应两个以上微孔阵列111。
如果在光学膜层上设置较宽的透光孔来使光线直接透过光学膜层,为了使透光孔与感光元件或检测光发射元件正对,则一般需要在制备时尽量精确对位,另外往往要设置尺寸大于感光元件的受光面积或检测光发射元件的发光面积的透光孔,而这种较宽的透光孔会使采用这种背光模组的显示装置的显示受到较明显的影响。而本公开实施例中每个微孔阵列在光学膜层的区域可根据感光元件的受光面积或检测光发射元件的发光面积确定,不需要很精确的对位,即便该区域较宽也不会对显示装置的显示造成明显影响。
参考图5,在一些实施例中,背光模组可以为侧入式背光模组。第二背光源160可沿光学膜层110的延伸方向设置在光学膜层110的至少一侧(图5中通过箭头显示背光源发射的光线)。例如,光学膜层110包括导光板或导光膜。所述第二背光源160位于沿所述导光板或导光膜的延伸方向设置在导光板或导光膜的至少一侧。第二背光源160发出的光线在光学膜层110内折射和反射后,以形成光学膜层110远离基板120一侧的均匀出光效果。通过在光学膜层110上设置微孔阵列111,并在基板120上设置感光元件130,可实现侧入式背光模组对感光元件130的集成。
在另一些实施例中,基板120上还设有检测光发射元件140。通过在基板120上设置感光元件130,可实现侧入式背光模组对检测光发射元件140的集成。
参考图6,在一些实施例中,基板包括透明基板120’。透明基板120’可采用玻璃板材等。所述透明基板120’邻近所述光学膜层110一侧的表面设有第二反射层170,所述感光元件130位于所述透明基板120’远离所述光学膜层110的一侧。第二反射层170能够将入射到透明基板120’的光线向背光模组的出光侧反射,从而增加光利用率。第二反射层170可采用金属层或其他能够反射光线的膜层。
在第二反射层170内还可以包括透光区域171,所述透光区域171在所述透明基板120’上的正投影与所述至少一个感光元件130在所述透明基板120’上的正投影至少部分重叠。这样从微孔阵列111进入的光线能够经过透光区域171和透明基板后进入感光元件130。这样感光元件130可与检测光发射元件140和第一背光源150分别位 于透明基板120’的两侧。这样在背光模组的制备时可将感光元件与检测光发射元件140和第一背光源150分开制作,以使制作过程互不影响,从而有利于提高产品的良率,增加元件的独立性。在另一些实施例中,基板还可以采用非透明板材,相应地可在基板上对应于感光元件130的所在位置设置透光孔。
图7是根据本公开背光模组的一些实施例中光学膜层的结构示意图。
参考图7,在一些实施例中,光学膜层可包括扩散层112和棱镜层114。棱镜层114位于基板120的一侧,扩散层112位于所述棱镜层114邻近所述基板120的一侧。棱镜层114可通过光线的折射及反射来达到汇聚光线,并提高正面出光及亮度提升的效果。扩散层112可用于改善背光的分布,可使得背光模组能够产生模糊且均匀化的面光源。
在图7中,光学膜层还可以包括位于扩散层112和棱镜层114之间的量子点(Quantum Dot,简称QD)层113。QD层113在第一背光源150发出的光线的激发下,可实现散射式发光,以使背光模组的出光更加均匀。
微孔阵列111可以分布在光学膜层110上分别对应感光元件130和检测光发射元件140的位置,且微孔沿光学膜层110的厚度方向依次贯穿扩散层112、QD层113和棱镜层114。
图8是根据本公开背光模组的一些实施例中感光元件的结构示意图。
参考图8,在一些实施例中,感光元件130包括感光传感器131、滤光片132和透镜133。感光传感器131可以为红外光传感器。滤光片132设置在所述感光传感器131邻近所述光学膜层110的一侧,可用于滤除感光传感器131所需要接收的特定波长的光之外的其他光,例如对于感测红外光的感光传感器131来说,滤光片132可滤出红外光以外的杂光。透镜133设置在所述滤光片132邻近所述光学膜层110的一侧,位于感光元件130的来光侧的光线可经过透镜133汇聚并在感光传感器131上成像。
为了消除感光元件130外侧的其他光线对感光元件130的干扰,在一些实施例中,环绕感光元件130设置遮光结构134。在图8中,遮光结构134在垂直于所述基板120的方向上的高度大于所述感光元件130在垂直于所述基板120的方向上的高度,以免遮光结构134外侧的光线从感光元件130的受光侧进入感光传感器131。遮光结构134可以设置在基板120上,也可以设置在感光元件130上,只要其能够实现遮挡除了受光侧之外的光线的作用即可。
在图6中,遮光结构134还可以封装在感光元件130中作为感光元件130的一部 分。该遮光结构134包括底板和侧板,底板位于感光传感器131远离来光侧的一侧。侧板位于感光传感器131、滤光片132和透镜133沿底板延伸方向的外侧。侧板的上边沿可高于透镜133。图1、图4~图5中,遮挡结构134的底板设置在基板120靠近光学膜层110的一侧。图6中,遮挡结构134的侧板的上边沿设置在基板120’远离光学膜层110的一侧。
图9-图14分别是根据本公开显示装置的一些实施例的结构示意图。
基于前述各个背光模组实施例,参考图9-图14,在一些实施例中,显示装置包括前述背光模组和显示面板200。显示面板200位于所述背光模组的出光侧(即图9-图14中的上侧)。背光模组所集成的感光元件130能够接收来自物体300的反射光(在图7-图12中通过箭头示出)。举例来说,对于感光元件130用于手势识别时,检测光发射元件140发出的光经过光学膜层110和显示面板200后,照射到人手。人手的反射光线经过显示面板200和光学膜层110上的微孔阵列111进入感光元件130中成像。
参考图8,在一些实施例中,显示面板200可以为液晶显示面板。例如,图8中的显示面板200包括:盖板210、第一偏光层220、彩色滤光层230、液晶层240、电极层250和第二偏光层260。第二偏光层260位于光学膜层110远离基板120的一侧,即背光模组的出光侧。沿着远离基板120的方向,依次为第二偏光层260、电极层250、液晶层240、彩色滤光层230、第一偏光层220和盖板210。第一偏光层220和第二偏光层260用于控制光的偏振方向。彩色滤光层230用于选择特定波段的光通过,以实现各种颜色的显示。液晶层240中包含的液晶分子能够在电极层250形成电场的作用下偏转,从而实现出光控制。
在图10中,背光模组为集成了感光元件130和检测光发射元件140的直下式背光模组。而与其相比,图11所示的显示装置实施例中的背光模组为集成了感光元件130和检测光发射元件140的侧入式背光模组。
参考图12,在一些实施例中,背光模组还包括第一匀光层410,第一匀光层410位于所述光学膜层110远离基板120的一侧。第一匀光层410可位于光学膜层110与显示面板400之间,例如位于光学膜层110与显示面板400的第二偏光层260之间。第一匀光层410包括第一匀光图案411,所述第一匀光图案411在所述基板120上的正投影与所述微孔阵列111在所述基板120上的正投影至少部分重叠。第一匀光图案411能够削弱显示面板200在对应于微孔阵列111的区域更亮的可见光,从而使显示 面板200的正面光强更加均匀,更容易进行光学校正,进而提高显示装置的显示质量。另外,第一匀光图案411还能够遮挡感光元件130受光侧的可见杂光,减少可见杂光对感光元件130的干扰。
参考图13,在一些实施例中,显示装置中的显示面板可以包括第二匀光层420。第二匀光层420位于所述光学膜层110远离所述基板120的一侧。例如第二匀光层420可位于显示面板的第二遮光层260与电极层250之间。在另一些实施例中,第二匀光层420还可以与电极层250一起形成。所述第二匀光层420包括第二匀光图案421,所述第二匀光图案421在所述基板120上的正投影与所述微孔阵列111在所述基板120上的正投影至少部分重叠。
第一匀光图案411和第二匀光图案421的材质可以为银、氧化铟锡(ITO)、氧化铟锡-银(ITO-Ag)或者氧化铟锡-银-氧化铟锡(ITO-Ag-ITO)等,其可在透明基板上通过刻蚀等工艺形成。对于ITO-Ag或ITO-Ag-ITO来说,设计者可调整ITO层和Ag层的厚度,来满足均匀光强的需要。
参考图14,在一些实施例中,感光元件130可位于透明基板120’远离光学膜层110的一侧。对于图9-图14所示实施例中集成有检测光发射元件140的背光模组来说,微孔阵列111在所述基板120上的正投影可以与至少一个检测光发射元件140在所述基板120上的正投影至少部分重叠。
图15是根据本公开显示装置的一个实施例在实现深度识别时的等效光路示意图。
参考图15,在一些实施例中,背光模组中的感光元件和检测光发射元件可用于物体深度信息的检测,以便实现例如手势识别等具体应用。在图13中,多个感光元件130可布置在背光模组的基板上。当检测光发射元件将光线发射到位于显示面板的出光侧的物体300上,物体300反射的光线经过感光元件130的镜头133,并在感光元件130的感光传感器131上成像。
感光元件130的数量及设置间距可根据物体300的成像重叠情况进行设置,在图13中,物体300的成像有部分重叠,这样多个感光元件130的成像可通过拼接来形成物体300的完整深度图,从而有助于实现手势识别或者空间交互。
图16是根据本公开显示装置的一个实施例中感光元件、检测光发射元件和显示面板中的子像素单元的布置示意图。
参考图16,在一些实施例中,显示面板包括多个像素,每个像素包括子像素单元R、G、B。子像素单元R、G、B通过栅极驱动电路和数据驱动电路进行驱动。感光 传感器131和检测光发射元件140也与栅极驱动电路和数据驱动电路电连接,并通过栅极驱动电路和数据驱动电路进行驱动。背光模组中集成的感光元件130中的感光传感器131和检测光发射元件140在显示面板上的投影位于各个子像素单元之间。感光传感器131和检测光发射元件140可以根据设计需要位于同一子像素行或同一子像素列,也可以分别位于不同的子像素行或子像素列。
在上述背光模组及显示装置的各实施例中,图7、图8和图10等分别提供了光学膜层、感光元件和显示面板的结构示例来协助说明,不应将其理解为对光学膜层、感光元件和显示面板的结构的限制。在不同的实施例中,光学膜层、感光元件和显示面板的结构可根据实际需要进行设置。
图17是根据本公开背光模组的制备方法的一个实施例的流程示意图。
参考图17和前述各背光模组和显示装置的实施例,在一些实施例中,背光模组的制备方法包括步骤S10-S30。在步骤S10中,提供基板。基板可以为PCB,也可以为透明板材。在步骤S20中,在所述基板上设置至少一个感光元件。如果基板为PCB,可在基板的上方设置感光元件,并将感光元件的受光侧设置为远离基板的方向。如果基板为透明板材,则在基板的下方设置感光元件,并在基板的上方形成包括透光区域的第二反射层。透光区域在所述透明基板上的正投影与所述至少一个感光元件在所述透明基板上的正投影至少部分重叠。
在步骤S30中,在所述基板的一侧形成光学膜层,并在所述光学膜层上形成微孔阵列。微孔阵列在所述基板上的正投影与所述至少一个感光元件在所述基板上的正投影至少部分重叠。在形成光学膜层时,可使所述光学膜层位于所述感光元件的受光侧。在形成微孔阵列时或者形成微孔阵列后,可在微孔阵列包括的多个微孔中的至少部分微孔的内壁形成第一反射层,例如通过电镀铜的方式,形成可隔光的铜镀层。
在设置感光元件时,还可以根据需要在基板上设置检测光发射元件,例如红外光源等。如果在基板上设置了检测光发射元件,则在形成所述微孔阵列时,可使所述微孔阵列在所述基板上的正投影与所述至少一个检测光发射元件在所述基板上的正投影至少部分重叠。另外,还可以在基板上设置第一背光源,例如常规或微型发光二级管阵列。
在进行感光元件、第一背光源和检测光发射元件中的至少一种的设置时,可采用微转印(μTP)技术。微转印技术是一种能够使多个小型器件在同一时间内精确移动的微装配技术,例如实现数百个亚毫米级的器件的精确移动。在一些实施例中,可将 所述至少一个感光元件、所述第一背光源和所述至少一个检测光发射元件中的至少一个微转印到所述基板上。通过应用这种微转印技术,可使得背光模组能够方便快捷地集成大量的功能元件,从而进一步提高工艺精度和效率。
本说明书中多个实施例采用递进的方式描述,各实施例的重点有所不同,而各个实施例之间相同或相似的部分相互参见即可。对于方法实施例而言,由于其整体以及涉及的步骤与背光模组和显示装置实施例中的内容存在一定的对应关系,因此描述的比较简单,相关之处参见背光模组和显示装置实施例的部分说明即可。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (18)

  1. 一种背光模组,包括:
    基板;
    光学膜层,设置在所述基板的一侧;和
    至少一个感光元件,设置在所述基板上,用于感测来自所述光学膜层远离所述基板的一侧的光线;
    其中,在所述光学膜层上设有微孔阵列,所述微孔阵列在所述基板上的正投影与所述至少一个感光元件在所述基板上的正投影至少部分重叠。
  2. 根据权利要求1所述的背光模组,其中,所述微孔阵列包括多个微孔,所述多个微孔中的至少部分微孔的内壁设有第一反射层。
  3. 根据权利要求2所述的背光模组,其中,在所述内壁与所述第一反射层之间还设有光吸收层。
  4. 根据权利要求1所述的背光模组,还包括:
    第一匀光层,位于所述光学膜层远离所述基板的一侧;
    其中,所述第一匀光层包括第一匀光图案,所述第一匀光图案在所述基板上的正投影与所述微孔阵列在所述基板上的正投影至少部分重叠。
  5. 根据权利要求1所述的背光模组,还包括:
    至少一个检测光发射元件,设置在所述基板上;
    其中,所述微孔阵列在所述基板上的正投影与所述至少一个检测光发射元件在所述基板上的正投影至少部分重叠。
  6. 根据权利要求5所述的背光模组,其中,所述检测光发射元件包括红外光源,所述感光元件包括红外光传感器。
  7. 根据权利要求5所述的背光模组,还包括:
    第一背光源,设置在所述基板上,并位于所述至少一个感光元件和至少一个发光元件之间。
  8. 根据权利要求1所述的背光模组,还包括:
    第二背光源,沿所述光学膜层的延伸方向设置在所述光学膜层的至少一侧。
  9. 根据权利要求1所述的背光模组,其中,所述感光元件位于所述基板邻近所述光学膜层的一侧。
  10. 根据权利要求1所述的背光模组,其中,所述基板包括透明基板,所述透明基板邻近所述光学膜层一侧的表面设有第二反射层,所述感光元件位于所述透明基板远离所述光学膜层的一侧,所述第二反射层包括透光区域,所述透光区域在所述透明基板上的正投影与所述至少一个感光元件在所述透明基板上的正投影至少部分重叠。
  11. 根据权利要求1所述的背光模组,其中,所述感光元件包括感光传感器、滤光片和透镜,所述滤光片设置在所述感光传感器邻近所述光学膜层的一侧,所述透镜设置在所述滤光片邻近所述光学膜层的一侧。
  12. 根据权利要求1所述的背光模组,还包括:
    遮光结构,环绕所述感光元件;
    其中,所述遮光结构在垂直于所述基板的方向上的高度大于所述感光元件在垂直于所述基板的方向上的高度。
  13. 根据权利要求1所述的背光模组,其中,所述光学膜层包括:
    棱镜层,位于所述基板的一侧;
    扩散层,位于所述棱镜层邻近所述基板的一侧;和
    量子点层,位于所述扩散层和所述棱镜层之间。
  14. 一种显示装置,包括:
    权利要求1~13任一所述的背光模组;和
    显示面板,位于所述背光模组的出光侧。
  15. 根据权利要求14所述的显示装置,其中,所述显示面板还包括:
    第二匀光层,位于所述光学膜层远离所述基板的一侧;
    其中,所述第二匀光层包括第二匀光图案,所述第二匀光图案在所述基板上的正投影与所述微孔阵列在所述基板上的正投影至少部分重叠。
  16. 一种背光模组的制备方法,包括:
    提供基板;
    在所述基板上设置至少一个感光元件;
    在所述基板的一侧形成光学膜层,并在所述光学膜层上形成微孔阵列,所述微孔阵列在所述基板上的正投影与所述至少一个感光元件在所述基板上的正投影至少部分重叠。
  17. 根据权利要求16所述的背光模组的制备方法,其中,在设置所述至少一个感光元件时,还包括:
    在所述基板上设置第一背光源和至少一个检测光发射元件;
    设置所述感光元件、所述第一背光源和所述检测光发射元件的操作包括:
    将所述至少一个感光元件、所述第一背光源和所述至少一个检测光发射元件中的至少一个微转印到所述基板上。
  18. 根据权利要求17所述的背光模组的制备方法,还包括:
    在形成所述微孔阵列时,使所述微孔阵列在所述基板上的正投影与所述至少一个检测光发射元件在所述基板上的正投影至少部分重叠。
PCT/CN2019/076696 2019-03-01 2019-03-01 背光模组、显示装置及背光模组的制备方法 WO2020177011A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980000213.5A CN111971616B (zh) 2019-03-01 2019-03-01 背光模组、显示装置及背光模组的制备方法
PCT/CN2019/076696 WO2020177011A1 (zh) 2019-03-01 2019-03-01 背光模组、显示装置及背光模组的制备方法
US16/646,360 US11353743B2 (en) 2019-03-01 2019-03-01 Backlight module, display device and method for manufacturing backlight module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076696 WO2020177011A1 (zh) 2019-03-01 2019-03-01 背光模组、显示装置及背光模组的制备方法

Publications (1)

Publication Number Publication Date
WO2020177011A1 true WO2020177011A1 (zh) 2020-09-10

Family

ID=72336868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076696 WO2020177011A1 (zh) 2019-03-01 2019-03-01 背光模组、显示装置及背光模组的制备方法

Country Status (3)

Country Link
US (1) US11353743B2 (zh)
CN (1) CN111971616B (zh)
WO (1) WO2020177011A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231736B (zh) * 2019-05-29 2020-10-16 惠州市华星光电技术有限公司 背光结构和显示面板
CN115641781A (zh) * 2021-07-19 2023-01-24 群创光电股份有限公司 显示面板以及电子装置
CN114613267B (zh) * 2022-03-09 2023-09-19 深圳市南极光电子科技股份有限公司 一种背光灯板、背光模组及显示器
CN115016173B (zh) * 2022-06-07 2023-12-15 武汉华星光电技术有限公司 背光模组及显示装置
CN115050264B (zh) * 2022-06-21 2023-12-26 厦门天马显示科技有限公司 一种显示模组以及成像控制方法、电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018255A (ja) * 2010-07-07 2012-01-26 Sony Corp 表示装置、情報処理装置および情報処理方法、並びに製造方法
CN104063704A (zh) * 2014-04-04 2014-09-24 深圳印象认知技术有限公司 图像采集装置、液晶终端设备、指纹、图像的采集方法
CN107168465A (zh) * 2017-05-15 2017-09-15 京东方科技集团股份有限公司 显示模组及显示装置
CN109061922A (zh) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN109271057A (zh) * 2018-08-16 2019-01-25 Oppo广东移动通信有限公司 显示组件和电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285952A (zh) * 2008-06-12 2008-10-15 北京汇冠新技术有限公司 包含有触摸检测装置的液晶显示模组
TWI541472B (zh) * 2015-06-11 2016-07-11 友達光電股份有限公司 背光模組
CN206490701U (zh) * 2016-12-06 2017-09-12 广东欧珀移动通信有限公司 一种接近传感器、盖板组件及终端
CN207636182U (zh) * 2017-12-11 2018-07-20 维沃移动通信有限公司 一种移动终端前置面板及移动终端
CN208386730U (zh) * 2018-06-04 2019-01-15 Oppo广东移动通信有限公司 摄像头组件和具有其的电子设备
CN108983470A (zh) * 2018-07-31 2018-12-11 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN109061925B (zh) * 2018-08-31 2021-05-11 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN109375402B (zh) * 2018-11-01 2021-11-02 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN111095288B (zh) * 2019-12-02 2023-09-05 深圳市汇顶科技股份有限公司 屏下光学指纹识别装置及系统、液晶显示屏

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018255A (ja) * 2010-07-07 2012-01-26 Sony Corp 表示装置、情報処理装置および情報処理方法、並びに製造方法
CN104063704A (zh) * 2014-04-04 2014-09-24 深圳印象认知技术有限公司 图像采集装置、液晶终端设备、指纹、图像的采集方法
CN107168465A (zh) * 2017-05-15 2017-09-15 京东方科技集团股份有限公司 显示模组及显示装置
CN109271057A (zh) * 2018-08-16 2019-01-25 Oppo广东移动通信有限公司 显示组件和电子设备
CN109061922A (zh) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 显示屏组件及电子设备

Also Published As

Publication number Publication date
US11353743B2 (en) 2022-06-07
US20210215973A1 (en) 2021-07-15
CN111971616B (zh) 2023-09-01
CN111971616A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2020177011A1 (zh) 背光模组、显示装置及背光模组的制备方法
CN209625238U (zh) 屏下光学指纹识别系统及电子装置
US10871607B2 (en) Lighting device and display device
CN109858434B (zh) 显示面板及其指纹识别方法和显示装置
CN110187544B (zh) 显示装置、液晶显示面板及其驱动方法
CN110174794B (zh) 显示装置、液晶显示面板及其驱动方法
CN108983468A (zh) 一种显示装置
US20210110131A1 (en) Fingerprint recognition apparatus
CN110376780A (zh) 屏下检测系统、液晶显示装置和背光模组
CN113678259B (zh) 针对透显成像配置的发射型显示器
CN110471572B (zh) 一种显示装置和触控器
JP7262600B2 (ja) スクリーンアセンブリ及び電子装置
JP7241932B2 (ja) コリメータ構造に基づくディスプレイを介した画像化のために構成された発光型ディスプレイ
US11258933B2 (en) Light source module and display module
CN110596931A (zh) 显示屏组件及电子设备
CN112771484B (zh) 纹路识别装置及其制作方法
CN111563434A (zh) Oled显示屏及指纹识别模组
US10754196B2 (en) Lighting device and display device
US20220004734A1 (en) Fingerprint recognition apparatus
US20210351242A1 (en) Electronic Device and Display
US11200397B2 (en) Fingerprint identification assembly, display substrate, display panel and fingerprint identification method
WO2020233601A1 (zh) 成像层、成像装置、电子设备、波带片结构及感光像元
CN110232298B (zh) 光学指纹传感器模组
RU2783487C1 (ru) Сборочный узел экрана и электронное устройство
TWI738488B (zh) 指紋識別模組與顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917622

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19917622

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19917622

Country of ref document: EP

Kind code of ref document: A1