WO2020174956A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2020174956A1
WO2020174956A1 PCT/JP2020/002354 JP2020002354W WO2020174956A1 WO 2020174956 A1 WO2020174956 A1 WO 2020174956A1 JP 2020002354 W JP2020002354 W JP 2020002354W WO 2020174956 A1 WO2020174956 A1 WO 2020174956A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
layer
gate
ridge
semiconductor device
Prior art date
Application number
PCT/JP2020/002354
Other languages
English (en)
French (fr)
Inventor
浩隆 大嶽
真也 ▲高▼堂
健太郎 近松
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2021501748A priority Critical patent/JP7317936B2/ja
Priority to US17/433,146 priority patent/US11908927B2/en
Publication of WO2020174956A1 publication Critical patent/WO2020174956A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Definitions

  • the present invention relates to a nitride semiconductor device made of a group III nitride semiconductor (hereinafter sometimes simply referred to as “nitride semiconductor”).
  • a group III nitride semiconductor is a semiconductor that uses nitrogen as a group V element in a group III-V semiconductor.
  • Indium nitride (nN) is a typical example.
  • AI x I n y G a i_ x _ y N (0 £ x £ 1, 0 £ y £ 1, ⁇ £ x + y £ 1) can be expressed as.
  • HEMTs High Electron Mobility Transistors
  • Such a HEMT includes, for example, an electron transit layer made of G a N and an electron supply layer made of A I G a N epitaxially grown on the electron transit layer.
  • a pair of source electrode and drain electrode are formed so as to be in contact with the electron supply layer, and a gate electrode is arranged between them.
  • a two-dimensional electron gas is formed.
  • the source-drain is connected using this two-dimensional electron gas as a channel.
  • the source and drain are cut off. In the state where the control voltage is not applied to the gate electrode, the source-drain conducts, so it becomes a normally-on type device.
  • a device using a nitride semiconductor has features such as high breakdown voltage, high temperature operation, large current density, high-speed switching and low on-resistance, and its application to a power device is under consideration.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 017 7-73506
  • Patent Document 1 discloses that the ridge-shaped mold ⁇ 3 1 ⁇ 1 gate layer (nitride semiconductor gate layer) is laminated on an electron supply layer, and the gate electrode is arranged on the ridge-shaped mold. It discloses a configuration that achieves normally-off by eliminating the channel by the depletion layer extending from the 3 1 ⁇ ] gate layer.
  • a gate leak current flows from the gate electrode to the source electrode through the ridge-shaped mold 3 1 ⁇ 1 gate layer.
  • the gate leakage current is large, the gate voltage required to obtain the desired on-resistance cannot be secured, and the power consumption in the gate drive circuit increases, leading to problems in the power circuit and control circuit section. There is a concern that the efficiency will decrease and the heat generation will increase. This is a big problem for !1 ⁇ /1/1 which features high frequency switching.
  • An object of the present invention is to provide a nitride semiconductor device capable of reducing gate leakage current.
  • a nitride semiconductor device comprises an electron transit layer
  • 2020/174956 3 (: 170? 2020/002354) a gate electrode, a source electrode disposed on the second nitride semiconductor layer and having a source main electrode portion parallel to the ridge portion, and the second electrode.
  • a drain electrode having a drain main electrode portion that is disposed on the nitride semiconductor layer and that is parallel to the ridge portion, and a longitudinal direction of the ridge portion has a semiconductor crystal structure that constitutes the second nitride semiconductor layer. [1 1 0] direction.
  • the nitride semiconductor gate layer is disposed so as to surround the source main electrode portion, and the nitride semiconductor gate layer includes the source main electrode portion. It has a pair of said ridge parts arrange
  • the gate electrode is formed on the ridge connecting portion and a pair of gate main electrode portions formed on the pair of ridge portions, respectively. And a base portion connecting the corresponding end portions of the electrode portion.
  • the gate main electrode portion and the drain main electrode portion are arranged on both sides of the source main electrode portion in this order from a side closer to the source main electrode portion.
  • the ratio of the distance between the pair of ridges to the length of the ridge in the longitudinal direction is 1/100 or less.
  • the inclination angles of the opposing walls of the two ridge connecting portions on both ends of the pair of ridges are substantially equal to the inclination angles of the side walls of the ridge.
  • an insulating film is interposed between the nitride semiconductor gate layer and the gate electrode.
  • the sidewall along the longitudinal direction of the ridge is a (10-1 2) plane.
  • a sidewall along a longitudinal direction of the ridge is an inclined surface inclined with respect to a surface of the second nitride semiconductor layer, and the inclined surface of the second nitride semiconductor layer is The inclination angle with respect to the surface is 80 degrees or more and less than 90 degrees.
  • a sidewall of the ridge along the longitudinal direction is perpendicular to the surface of the second nitride semiconductor layer.
  • the first nitride semiconductor layer comprises ⁇ 3 1 ⁇ 1 layer, the second (0 ⁇ 1) layers, and the nitride semiconductor gate layer is a mold layer 31 !! layer.
  • a method for manufacturing a nitride semiconductor device includes a first nitride semiconductor layer forming an electron transit layer and a second nitride semiconductor layer forming an electron supply layer on a substrate. And a nitride semiconductor gate layer material film containing an acceptor-type impurity in that order, and a gate electrode film that is a material film of a gate electrode is formed on the nitride semiconductor gate layer material film.
  • a source electrode including a source main electrode portion arranged so as to be formed is formed on the electron supply layer, and at the same time, is arranged to be parallel to the ridge portion in a region outside the pair of ridge portions.
  • This manufacturing method can reduce the gate leakage current of the gate leakage current. ⁇ 2020/174956 5 ⁇ (: 170? 2020 /002354
  • a compound semiconductor device is obtained.
  • the second nitride semiconductor layer is composed of an eight-layer, 0 3 (i (0 ⁇ father ⁇ 1) layer.
  • the nitride semiconductor gate layer material film is patterned by dry etching.
  • the nitride semiconductor gate layer material film is patterned by dry etching and wet etching after dry etching.
  • Fig. 1 is a partial plan view for explaining a structure of a nitride semiconductor device according to a first embodiment of the present invention.
  • Fig. 2 is an enlarged sectional view taken along line 11-11 in Fig. 1.
  • Fig. 3 is an enlarged sectional view taken along line 111-111 in Fig. 1.
  • FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the nitride semiconductor device of FIG. 1, and is a cross-sectional view corresponding to the cross section of FIG.
  • FIG. 48 is a cross-sectional view showing the next step of FIG. 48.
  • FIG. 40 is a cross-sectional view showing the next step of FIG.
  • FIG. 40 is a cross-sectional view showing a step subsequent to FIG. 40.
  • FIG. 4 £ is a cross-sectional view showing a step subsequent to that of FIG.
  • FIG. 4 is a cross-sectional view showing the next step of FIG.
  • FIG. 4° is a cross-sectional view showing a step subsequent to FIG. 4.
  • FIG. 5 is a cross-sectional view showing an example of a manufacturing process of the nitride semiconductor device of FIG. 1, and is a cross-sectional view corresponding to the cross section of FIG.
  • FIG. 5M is a sectional view showing a step subsequent to FIG.
  • FIG. 50 is a sectional view showing a step subsequent to that in FIG.
  • FIG. 50 is a sectional view showing a step subsequent to FIG. ⁇ 2020/174956 6 ⁇ (: 170? 2020/002354
  • FIG. 5A is a cross-sectional view showing a step subsequent to FIG.
  • FIG. 5 is a cross-sectional view showing the next step of FIG.
  • FIG. 5° is a cross-sectional view showing a step subsequent to FIG. 5.
  • FIG. 6 is a graph showing an experimental result for the present embodiment, showing an experimental result of a gate-source leak current ⁇ 9 [8] with respect to a gate-source voltage V 9 [V]. ..
  • Fig. 6 is a graph showing the experimental results for the comparative example, showing the experimental results of the gate-source leak current ⁇ 9 [8] for the gate-source voltage V 9 [V].
  • FIG. 7 is a cross-sectional view corresponding to FIG. 2, for illustrating the configuration of the nitride semiconductor device according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for explaining the structure of the nitride semiconductor device of FIG. 7, and is a cross-sectional view corresponding to FIG. 3.
  • FIG. 9 is a partial plan view for explaining the structure of the nitride semiconductor device according to the third embodiment of the present invention.
  • FIG. 10 is a sectional view taken along line XI of FIG.
  • FIG. 11 is a sectional view for illustrating the structure of the nitride semiconductor device according to the fourth embodiment of the present invention, and is a sectional view corresponding to FIG. 2.
  • FIG. 12 is a cross-sectional view for explaining the configuration of the nitride semiconductor device of FIG. 11 and is a cross-sectional view corresponding to FIG. 3.
  • FIG. 13 is a cross-sectional view for explaining the configuration of the nitride semiconductor device according to the fifth embodiment of the present invention, and is a cross-sectional view corresponding to FIG. 2.
  • FIG. 14 is a cross-sectional view for explaining the structure of the nitride semiconductor device of FIG. 13 and corresponds to FIG.
  • FIG. 15 is a cross-sectional view showing another example of the cross-sectional shape of the passivation film and the source electrode in FIG.
  • FIG. 1 is a partial plan view for explaining the configuration of the nitride semiconductor device according to the first embodiment of the present invention.
  • Fig. 2 is an enlarged sectional view taken along the line 11-11 in Fig. 1.
  • FIG. 3 is an enlarged sectional view taken along the line 111-111 in FIG.
  • the +direction, -X direction, +direction and single direction shown in Figs. 1, 2 and 3 may be used below.
  • the +direction is a predetermined direction along the surface of the semiconductor device 1 in a plan view
  • the +direction is a direction along the surface of the semiconductor device 1 and a direction orthogonal to the +direction.
  • the X direction is the direction opposite to the + direction
  • the _ direction is the direction opposite to the + direction.
  • the nitride semiconductor device 1 includes a semiconductor laminated structure (nitride semiconductor structure) 2 and an electrode metal structure arranged on the semiconductor laminated structure 2.
  • the electrode metal structure includes a plurality of source electrodes 3, a plurality of gate electrodes 4 and a plurality of drain electrodes 5.
  • the source electrode 3 and the drain electrode 5 extend in the X direction.
  • the gate electrode 4 includes a pair of gate main electrode portions 4 extending in parallel with each other in the X direction and two base portions 4 connecting the corresponding end portions of the pair of gate main electrode portions 4 respectively. including.
  • One source electrode 3 is formed so as to cover a pair of gate main electrode portions 48 of one gate electrode 4 in plan view.
  • the source electrode 3 includes a source main electrode part 38 disposed between the pair of gate main electrode parts 48 in the lengthwise middle part and an extension part 3 around the source main electrode part 38 in plan view. It consists of and.
  • the source main electrode section 38 is the area surrounded by the outline of the source contact hole 6 in the entire area of the source electrode 3 in plan view.
  • the extension part 3 means the part other than the source main electrode part 38 in the whole area of the source electrode 3 in plan view.
  • the source contact hole 6 will be described later.
  • the extension part 3 is composed of a pair of gate main electrode parts 48 and two base parts 4 parts. ⁇ 2020/174956 8 ⁇ (: 170? 2020 /002354
  • Drain electrodes 5 are arranged on both sides of one source electrode 3, respectively.
  • the drain electrode 5 is composed of a drain main electrode portion 58, which is an intermediate portion in the longitudinal direction and the width direction, and an extension portion 5 around the drain main electrode portion 58, when seen in a plan view.
  • the drain main electrode portion 58 is a region surrounded by the contour of the drain contact hole 7 in the entire region of the drain electrode 5 in plan view.
  • the drain contact hole 7 will be described later.
  • the extension part 5 means the part other than the drain main electrode part 58 in the whole area of the drain electrode 5 in plan view.
  • the source main electrode part 38 (3), the gate main electrode part 48 ( ⁇ ) and the drain main electrode part 58 ((1)) are 0 0 3 0 0 0 3 in the vertical direction. Are arranged periodically in the order of.
  • the device structure is constructed by sandwiching the gate main electrode part 48 (°) between the source main electrode part 38 (3) and the drain main electrode part 58 (0).
  • the surface region on the semiconductor laminated structure 2 includes an active area 8 including the device structure and a non-active area 9 outside the active area 8.
  • the base part 4 of the gate electrode 4 connects the corresponding ends of the pair of gate main electrode parts 48 in the non-active area 9 respectively.
  • the semiconductor laminated structure 2 includes a substrate 11 and a substrate 1
  • the substrate 11 may be, for example, a low-resistance silicon substrate.
  • Low resistance silicon substrates are available, for example: (More specifically, 0. 01 It may be a mold substrate having an electrical resistivity of about (about).
  • the substrate 11 may be a low-resistance silicon substrate or a low-resistance 3 substrate (3 substrates, low-resistance ⁇ 3 1 ⁇ 1 substrate, etc.
  • the thickness of the substrate 11 is determined by the semiconductor process. In the inside, for example, it is about 650, ⁇ 2020/174956 9 ⁇ (: 170? 2020/002354
  • the substrate 11 is electrically connected to the source electrode 3.
  • the buffer layer 12 is composed of a multilayer buffer layer in which a plurality of nitride semiconductor films are stacked.
  • the buffer layer 12 includes a first buffer layer (not shown) made of an eight I 1 ⁇ ! film that is in contact with the surface of the substrate 11 and a surface of the first buffer layer (opposite the substrate 11). Side surface), and a second buffer layer (not shown) consisting of an 8 I 1 ⁇ 1 / 8 ⁇ ⁇ 3 1 ⁇ 1 superlattice layer.
  • the thickness of the first buffer layer is It is a degree.
  • the thickness of the second buffer layer is Buffer layer 1 2
  • it may be composed of a single film or a composite film of 8* 3 1 ⁇ 1.
  • the first nitride semiconductor layer 13 constitutes an electron transit layer.
  • the first nitride semiconductor layer 13 is The thickness is about 0.5 to 2.
  • an impurity for making it semi-insulating may be introduced in a region other than the surface region. In that case, the impurity concentration would be 4 x 1 0 1 60 The above is preferable.
  • the impurities are, for example, 0 or 6.
  • the second nitride semiconductor layer 14 constitutes an electron supply layer.
  • the second nitride semiconductor layer 14 is made of a nitride semiconductor having a band gap larger than that of the first nitride semiconductor layer 13.
  • the second nitride semiconductor layer 14 is made of a nitride semiconductor having a higher eight-eighth composition than the first nitride semiconductor layer 13. In nitride semiconductors, the higher the 8I composition, the larger the bad gap.
  • the second nitride semiconductor layer 14 is composed of 8 layers; ⁇ 1 ⁇ 3 1 _ ; ⁇ 11 1 ⁇ 1 layer (0 ⁇ X 1 ⁇ 1), and its thickness is
  • the first nitride semiconductor layer (electron transit layer) 13 and the second nitride semiconductor layer (electron supply layer) 14 are nitride semiconductors having different band gaps (eight I composition). , And there is a lattice mismatch between them. Then, by the spontaneous polarization of the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14 and the piezoelectric polarization due to the lattice mismatch between them, the first nitride semiconductor layer 13 ⁇ 2020/174956 10 ⁇ (: 170? 2020/002354
  • the energy level of the conduction band of the first nitride semiconductor layer 13 at the interface between and the second nitride semiconductor layer 14 is lower than the Fermi level.
  • the first nitride semiconductor layer 13 is formed at a position close to the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14 (for example, at a distance of a few points from the interface).
  • Dimensional electronic gas (20) has spread 10.
  • a nitride semiconductor gate layer 15 is interposed between the second nitride semiconductor layer 14 and the gate electrode 4.
  • the nitride semiconductor gate layer 15 is formed on the surface of the second nitride semiconductor layer 14 by epitaxial growth.
  • the nitride semiconductor gate layer 15 has substantially the same shape as the gate electrode 4 in plan view. Specifically, the nitride semiconductor gate layer 15 connects a pair of ridge portions 1558 extending in parallel with each other in the X direction and corresponding end portions of the pair of ridge portions 1558, respectively. Includes two ridge connections 15 and 15.
  • the gate main electrode portion 48 of the gate electrode 4 is formed on the ridge portion 1 58 of the nitride semiconductor gate layer 15 to form the nitride semiconductor gate layer 15
  • the base portion 4 of the gate electrode 4 is formed on the ridge connection portion 15. Therefore, as shown in FIG. 1, in a plan view, the nitride semiconductor gate layer 15 is formed so as to surround the source main electrode portion 8 similarly to the gate electrode 4. That is, the gate electrode 4 and the nitride semiconductor gate layer 15 are each formed in an annular shape in plan view.
  • the gate portion 20 is constituted by the ridge socket ⁇ 1558 of the nitride semiconductor gate layer 15 and the gate main electrode portion 48 of the gate electrode 4 formed thereon. ing.
  • the longitudinal direction (X direction) of the ridge portion 158 is the [1 10] direction in the semiconductor crystal structure forming the second nitride semiconductor layer 14.
  • the cross-sectional shape of the ridge portion 158 is trapezoidal. That is, the side surface of the ridge portion 1558 is an inclined surface inclined with respect to the surface of the second nitride semiconductor layer 14.
  • the side surface of the ridge portion 1558 is a substantially (10_12) plane.
  • the ratio 0 / !_ of the interval 0 is about 1/250. It is preferable that the ratio 0/!_ of the interval 0 of the pair of ridges 158 to the length !_ of the ridges 158 is 1/100 or less. The reason for this is that if the specific aperture / !_ is less than 1/100, it will pass from the base 4 of the gate electrode 4 to the ridge connection 15 of the nitride semiconductor gate layer 15. This is because the gate leakage current flowing through the source electrode 3 can be reduced.
  • the nitride semiconductor gate layer 15 is made of a nitride semiconductor doped with an acceptor type impurity.
  • the nitride semiconductor gate layer 15 is composed of an ⁇ 3 1 ⁇ 1 layer (type ⁇ 3 1 ⁇ 1 layer) doped with an acceptor type impurity, and its thickness is The concentration of the acceptor type impurity implanted into the nitride semiconductor gate layer 15 is 1 ⁇ 1. The above is preferable.
  • the acceptor type impurity is IV! 9 (magnesium).
  • the acceptor impurities may be acceptor impurities other than 1 ⁇ / 19 such as n (zinc).
  • the nitride semiconductor gate layer 15 is located near the interface between the first nitride semiconductor layer (electron transit layer) 13 and the second nitride semiconductor layer (electron supply layer) 14 just below the gate portion 20. It is provided to offset the two-dimensional electron gas 10 generated in the.
  • the gate electrode 4 is made of the gate 1 ⁇ 1 in this embodiment.
  • the film thickness of the gate electrode 4 is
  • a region in which nitride semiconductor gate layer 15 surrounds source main electrode portion 38 is formed on the surface of second nitride semiconductor layer 14.
  • a two-dimensional electron gas dividing groove 16 is formed in each region between each end of the source main electrode part 3 and the ridge connecting part 15 corresponding to the end.
  • the two-dimensional electron gas dividing groove 16 reaches the inside of the first nitride semiconductor layer 13 and divides the two-dimensional electron gas 10.
  • the two-dimensional electron gas dividing groove 16 has a rectangular shape that is long in the vertical direction in a plan view.
  • the two-dimensional electron gas dividing groove 16 is an example of the two-dimensional electron gas dividing portion of the present invention.
  • the second nitride semiconductor layer 14 has a second nitride ⁇ 2020/174956 12 boxes (: 170? 2020/002354
  • a passivation film 17 covering the exposed surfaces of the semiconductor layer 14, the nitride semiconductor gate layer 15 and the gate electrode 4 is formed. Therefore, the side surface and the surface of the gate portion 20 are covered with the passivation film 17.
  • the passivation film 17 is made of 3 1!! film and has a thickness of about 50!
  • the passivation film 17 may be composed of 3 I 1 ⁇ 1, 3 I 0, 3 I 0 1 ⁇ ! or a composite film thereof.
  • a source contact hole 6 and a drain contact hole 7 are formed in the passivation film 17.
  • the source contact hole 6 and the drain contact hole 7 are formed so as to sandwich the gate portion 20.
  • the source main electrode portion 38 of the source electrode 3 penetrates the source contact hole 6 and is in ohmic contact with the second nitride semiconductor layer 14.
  • the extension part 3 of the source electrode 3 covers the gate part 20 (gate main electrode part 48).
  • the negative part of the extension 3 m of the source electrode 3 covers a part of the base 4 m of the gate electrode 4.
  • part of the extension 3 of the source electrode 3 enters the two-dimensional electron gas dividing groove 16.
  • the drain main electrode portion 58 of the drain electrode 5 penetrates the drain contact hole 7 and is in ohmic contact with the second nitride semiconductor layer 14.
  • the source electrode 3 and the drain electrode 5 are, for example, a first metal layer (artificial metal layer) in contact with the second nitride semiconductor layer 14 and a second metal layer (main electrode) laminated on the first metal layer.
  • Metal layer Metal layer
  • third metal layer adheresion layer laminated on the second metal layer
  • fourth metal layer barrier metal layer laminated on the third metal layer.
  • the first metal layer has, for example, a thickness of It is a moderate level.
  • the second metal layer has, for example, a thickness of It is about eight layers
  • the third metal layer has, for example, a thickness of It is a moderate level.
  • the fourth metal layer has, for example, a thickness of It is a level 1 ⁇ 1 layer.
  • Second nitride semiconductor layer (electron supply layer) with different band gap (eight I composition)
  • a two-dimensional electron gas 10 is formed in the first nitride semiconductor layer 13 near the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14 and this two-dimensional electron gas is formed.
  • the gate main electrode portion 48 of the gate electrode 4 faces the second nitride semiconductor layer 14 with the ridge portion 15 8 of the nitride semiconductor gate layer 15 interposed therebetween.
  • the ionization acceptor contained in VIII increases the energy levels of the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14. Therefore, the energy level of the conduction band at the heterojunction interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14 becomes higher than the Fermi level. Therefore, just below the gate main electrode section 48 (gate section 20), the spontaneous polarization of the first nitride semiconductor layer 13 and the second nitride semiconductor layer 14 and the piezo polarization due to their lattice mismatch. The two-dimensional electron gas 10 caused by is not formed.
  • a predetermined voltage for example, 10 to 500 V
  • the OFF voltage ( ⁇ ) or the ON voltage (5) is applied to the gate electrode 4 with the source electrode 3 as the reference potential ( ⁇ ).
  • FIGS. 48 to 4° and FIGS. 58 to 5° are cross-sectional views for explaining one example of the manufacturing process of the above-described nitride semiconductor device 1, and show a plurality of steps in the manufacturing process. ⁇ 2020/174956 14 ⁇ (: 170? 2020/002354
  • FIGS. 5A to 5G are cross-sectional views corresponding to the cut surface of FIG.
  • a buffer layer 12 and a first nitride are formed on a substrate 11 by a MOCVD (metal organic chemical vapor deposition) method.
  • MOCVD metal organic chemical vapor deposition
  • the semiconductor layer 13 and the second nitride semiconductor layer 14 are epitaxially grown. As a result, the semiconductor laminated structure 2 is obtained.
  • the gate layer material film 3 which is the material film of the nitride semiconductor gate layer 15 is formed on the second nitride semiconductor layer 14 by the MOCVD method. 1 is formed. Further, the gate electrode film 32, which is the material film of the gate electrode 4, is formed on the gate layer material film 31 by the scutter method.
  • the gate layer material film 31 is a p-type GaN film and the gate electrode film 32 is a TiN film.
  • a resist pattern is formed on the gate electrode film 32 by photolithography so as to cover a portion of the gate electrode film 32 to be the gate electrode 4. 3 3 is formed. Then, the gate electrode film 32 and the gate layer material film 31 are patterned by etching using the resist pattern 33 as a mask.
  • the gate electrode 4 composed of the gate electrode film 32 and the gate layer material film
  • a nitride semiconductor gate layer 15 made of 3 1 is obtained.
  • the nitride semiconductor gate layer 15 is composed of a ridge portion 15 A and a ridge connecting portion 15 B.
  • the gate electrode 4 includes a gate main electrode portion 4 A formed on the ridge portion 15 A and a base portion 4 B formed on the ridge connecting portion 15 B.
  • the gate portion 20 composed of the ridge portion 15 A and the gate main electrode portion 4 A is obtained. After that, the resist pattern 33 is removed.
  • the patterning of the gate layer material film 31 is performed only by dry etching, for example.
  • the patterning of the gate layer material film 31 is carried out by performing a first etching step by dry etching and a second etching step by wet etching thereafter. ⁇ 2020/174956 15 ⁇ (: 170? 2020/002354
  • a side wall (for example, 3 0 2 ) is formed on the side wall of the gate layer material film 31 and the ridge portion 15 8 is formed by dry etching with a lateral width defined by the side wall side wall.
  • the structure may be formed by the step of removing the side wall after the step.
  • the nitride semiconductor gate layer 15 is formed on the surface of the second nitride semiconductor layer 14 by photolithography and etching. Two-dimensional electron gas dividing grooves 16 are formed at both ends in the region surrounding the eight.
  • a passivation film 17 is formed so as to cover the entire exposed surface.
  • the passivation film 17 is composed of 3 I 1 ⁇ !, for example.
  • a source contact hole 6 and a drain contact hole 7 reaching the nitride semiconductor layer 14 are formed.
  • a source/drain electrode film 34 is formed so as to cover the entire exposed surface.
  • the source/drain electrode film 34 is patterned by photolithography and etching to form the source electrode 3 and the drain electrode 5 that are in mechanical contact with the second nitride semiconductor layer 14. ..
  • the nitride semiconductor device 1 having the structure shown in FIGS. 1 to 3 is obtained.
  • the longitudinal direction of the ridge portion 15 is the [1 1 0] direction in the semiconductor crystal structure forming the second nitride semiconductor layer 14.
  • the longitudinal direction of the ridge portion 15 is [10 0 in the semiconductor crystal structure forming the second nitride semiconductor layer 14].
  • the X direction in FIG. 1 indicates the semiconductor crystal structure of the second nitride semiconductor layer 14
  • the longitudinal direction of the part 38, the gate main electrode part 48, and the drain main electrode part 58 is the vertical direction in FIG. Therefore, in the comparative example, the source main electrode portion 38 (3), the gate main electrode portion 48 (0) and the drain main electrode portion 58 (0) are 0 0 3 0 0 3 in the X direction. It will be arranged periodically in order.
  • FIGS. 68 and 66 are graphs showing the experimental results of the gate-source leakage current [9] with respect to the gate-source voltage V 9 [V].
  • the graph in FIG. 68 shows the experimental results for the embodiment.
  • the graph in Fig. 6 shows the experimental results for the comparative example.
  • Table 1 shows the experimental results of the gate-source leakage current ⁇ 9 [
  • the ridge portion 15 of the present embodiment and the comparative example is formed by selective growth of crystals. ⁇ 2020/17 4956 17 ⁇ (: 170? 2020/002354
  • the ridge portion 158 is formed by etching (mainly dry etching) the material film of the nitride semiconductor gate layer 15 (in this embodiment, the mold 0 31 ⁇ !).
  • etching mainly dry etching
  • the side surface of the ridge portion 158 having a longitudinal direction in the [1 10] direction is in the [1 0 0] direction as in selective growth. It can be inferred that the surface with a smaller surface roughness was more likely to appear than the side surface of the ridge 1558 having the longitudinal direction at
  • the gate leakage current was reduced because the surface roughness of the side surface of the ridge portion 15 was smaller than that in the comparative example.
  • the longitudinal direction of the ridge portion 15 is the second nitride semiconductor layer.
  • the nitride semiconductor gate layer 15 has the source main electrode portion.
  • the source electrode 4 from the gate electrode 4 is connected to the source electrode via the two-dimensional electron gas.
  • the gate leakage current flowing in 3 can be reduced.
  • the side surface (inclined surface) of the ridge portion 1558 is substantially (
  • the side surface of the ridge portion 1558 does not have to be the (1 0 — 1 2) plane.
  • the inclination angle of the side surface of the ridge portion 158 is preferably not less than 80 degrees and less than 90 degrees with respect to the surface of the second nitride semiconductor layer 14.
  • cross-sectional shapes of the passivation film 17 and the source electrode 3 in FIG. 2 may be the shapes shown in FIG.
  • FIG. 7 is a cross-sectional view for explaining the configuration of the nitride semiconductor device according to the second embodiment of the present invention, and is a cross-sectional view corresponding to FIG.
  • FIG. 8 is a cross-sectional view for explaining the structure of the nitride semiconductor device of FIG. 7, and shows a cross section corresponding to FIG. ⁇ 2020/174956 18 ⁇ (: 170? 2020/002354
  • FIG. 7 parts corresponding to the respective parts in FIG. 2 described above are shown with the same reference numerals as in FIG.
  • parts corresponding to the respective parts in FIG. 3 described above are denoted by the same reference numerals as in FIG.
  • the plan view of the main part of the nitride semiconductor device according to the second embodiment is almost the same as the plan view (FIG. 1) of the nitride semiconductor device 1 according to the first embodiment.
  • the nitride semiconductor device 1 according to the second embodiment is different from the nitride semiconductor device 1 according to the first embodiment in that the passivation film 17 has a first insulating film 17 and a second insulating film. It differs in that it is composed of 1 7 and.
  • the first insulating film 17 78 is formed on the surface of the second nitride semiconductor layer 14 (contact hole).
  • the first insulating film 17 is formed with the opening 41 for exposing the region surrounded by the peripheral portion on the upper surface of the nitride semiconductor gate layer 15.
  • the first insulating film 1 78 is made of a 3 1 1! film in this embodiment.
  • the first insulating film 178 may be made up of a 3 ⁇ 2 film.
  • the gate electrode 4 (gate main electrode portion 48 and base portion 4) is formed of the first insulating film 17 8 and the nitride semiconductor gate on the peripheral edge of the upper surface of the nitride semiconductor gate layer 15. It is formed so as to cover the exposed surface of the upper surface of the insulating layer 15.
  • the second insulating film 17 and the gate electrode 4 are formed on the surface of the first insulating film 17 (excluding the portions where the contact holes 6 and 7 are formed and the portion covered by the gate electrode 4). Is formed so as to cover the side surface and the upper surface.
  • the second insulating film 17M is made of a film 3 ⁇ 1! in this embodiment.
  • the second insulating film 1 7 Snake may consist 3 I ⁇ 2 film.
  • a source contact hole 6 and a drain contact hole 7 are formed through the first insulating film 17 and the second insulating film 17 respectively.
  • the source electrode 3 penetrates through the source contact hole 6 and is in ohmic contact with the second nitride semiconductor layer 14.
  • the drain electrode 5 is a drain contact ⁇ 2020/174956 19 ⁇ (: 170? 2020/002354
  • the longitudinal direction of the ridge portion 1558 is the [1 10] direction in the semiconductor crystal structure forming the second nitride semiconductor layer 14. ..
  • the nitride semiconductor gate layer 15 is formed.
  • the first insulating film 17 is formed so as to cover the entire exposed surface. Then, the opening 4 1 is formed in the first insulating film 1 7 8 on the nitride semiconductor gate layer 15 so that the region surrounded by the peripheral portion on the upper surface of the nitride semiconductor gate layer 15 is exposed. It is formed.
  • a gate electrode film which is a material film of the gate electrode 4 is formed so as to cover the entire exposed surface. Then, the gate electrode 4 is formed by patterning the gate electrode film.
  • a second insulating film 17 is formed so as to cover the entire exposed surface. Then, a source contact hole 6 and a drain contact hole 7 penetrating them are formed in the first insulating film 17 and the second insulating film 17 respectively.
  • a source/drain electrode film is formed so as to cover the entire exposed surface. Then, the source/drain electrode film is patterned to form the source electrode 3 and the drain electrode 5 that make ohmic contact with the second nitride semiconductor layer 14.
  • FIG. 9 is a partial plan view for explaining the configuration of the nitride semiconductor device according to the third embodiment of the present invention.
  • FIG. 10 is a sectional view taken along the line in FIG. In FIG. 9, parts corresponding to the respective parts in FIG. 1 described above are denoted by the same reference numerals as in FIG. In FIG. 10, parts corresponding to the respective parts in FIG. 3 described above are shown with the same symbols as in FIG.
  • the cross section taken along line 11-11 of Fig. 9 is the same as the cross section of Fig. 2 described above. ⁇ 2020/174956 20 boxes (: 170? 2020/002354
  • the nitride semiconductor device 1 according to the third embodiment differs from the nitride semiconductor device 1 according to the first embodiment only in that the two-dimensional electron gas dividing groove 16 is not formed. ing. Also in the nitride semiconductor device 1 according to the third embodiment, the longitudinal direction of the ridge portion 15 is the [1 10] direction in the semiconductor crystal structure forming the second nitride semiconductor layer 14.
  • FIG. 11 is a cross-sectional view for illustrating the configuration of the nitride semiconductor device according to the fourth embodiment of the present invention, and is a cross-sectional view corresponding to FIG.
  • FIG. 12 is a cross-sectional view for explaining the configuration of the nitride semiconductor device of FIG. 11 and is a cross-sectional view corresponding to FIG.
  • FIG. 11 parts corresponding to the parts in FIG. 2 described above are denoted by the same reference numerals as in FIG.
  • FIG. 12 parts corresponding to the respective parts in FIG. 3 described above are denoted by the same reference numerals as those in FIG.
  • the plan view of the main part of the nitride semiconductor device 10 according to the fourth embodiment is the same as the plan view (FIG. 1) of the nitride semiconductor device 1 according to the first embodiment.
  • the nitride semiconductor device 1 according to the fourth embodiment includes a side surface of the ridge portion 15 (see FIG. 11) and the ridge connecting portion 1). The only difference is that the side surface of the groove 5 (see FIG. 12) is formed perpendicularly (90 degrees) to the surface of the second nitride semiconductor layer 14. According to the fourth embodiment. Also in the nitride semiconductor device 1 ⁇ 3, the longitudinal direction of the ridge portion 15 is the [1 10] direction in the semiconductor crystal structure forming the second nitride semiconductor layer 14.
  • the two-dimensional electron gas dividing groove 16 is formed similarly to the nitride semiconductor device 1 according to the first embodiment, but the two-dimensional electron The gas dividing groove 16 may not be formed.
  • FIG. 13 is a cross-sectional view for explaining the configuration of the nitride semiconductor device according to the fifth embodiment of the present invention, and is a cross-sectional view corresponding to FIG.
  • FIG. 14 is a cross-sectional view for explaining the configuration of the nitride semiconductor device of FIG. 13 and is a cross-sectional view corresponding to FIG. ⁇ 2020/174956 21 ⁇ (: 170? 2020 /002354
  • FIG. 13 parts corresponding to the respective parts in Fig. 2 described above are denoted by the same reference numerals as in Fig. 2.
  • FIG. 14 parts corresponding to the respective parts in FIG. 3 described above are denoted by the same reference numerals as those in FIG.
  • the plan view of the main part of the nitride semiconductor device 10 according to the fifth embodiment is almost the same as the plan view (FIG. 1) of the nitride semiconductor device 1 according to the first embodiment.
  • the nitride semiconductor device 10 according to the fifth embodiment has a side surface of the ridge portion 15 (see FIG. 13) and a ridge connecting portion 15 The difference is that the side surface of the ridge (see FIG. 14) is formed perpendicularly (90 degrees) to the surface of the second nitride semiconductor layer 14.
  • the nitride semiconductor device 10 according to the fifth embodiment is characterized in that the gate insulating film 18 is interposed between the nitride semiconductor gate layer 15 and the gate electrode 4. It is different from the nitride semiconductor device 1 according to the embodiment.
  • the gate insulating film 18 is composed of a pair of main insulating film portions 18 8 formed on the pair of ridge portions 1 58 of the nitride semiconductor gate layer 15 and a ridge connecting portion 1 of the nitride semiconductor gate layer 15. It consists of the main insulating film connecting portion 18 formed on the 5th wall.
  • the ridge portion 15, the main insulating film portion 18 8 formed thereon, and the gate main electrode portion 48 formed on the ridge portion 15 are formed.
  • the Gabe part 208 is composed by.
  • the gate insulating film 18 is made of 3 1 ⁇ ! in this embodiment. Gate insulation film
  • Gate insulating film 1 8 is 3 I
  • the longitudinal direction of the ridge portion 1558 is the [1 1 0] direction in the semiconductor crystal structure forming the second nitride semiconductor layer 14 is there.
  • the two-dimensional electron gas dividing groove 16 is formed as in the nitride semiconductor device 1 according to the first embodiment.
  • the dividing groove 16 may not be formed.
  • the side surface of the ridge portion 1558 and the side surface of the ridge coupling portion 15m are opposite to the surface of the second nitride semiconductor layer 14. Although formed vertically, these side surfaces may be formed as inclined surfaces inclined with respect to the surface of the second nitride semiconductor layer 14. That is, the cross section of the ridge portion 158 may be trapezoidal.
  • silicon is illustrated as an example of the material of the substrate 11.
  • any other substrate material such as a sapphire substrate or a 3 substrate can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

窒化物半導体装置1は、電子走行層を構成する第1窒化物半導体層13と、第1窒化物半導体層上に形成され、電子供給層を構成する第2窒化物半導体層14と、第2窒化物半導体層上に配置され、少なくとも一部にリッジ部15Aを有し、アクセプタ型不純物を含む窒化物半導体ゲート層15と、窒化物半導体ゲート層の少なくともリッジ部上に配置されたゲート電極4と、第2窒化物半導体層上に配置され、リッジ部に平行なソース主電極部3Aを有するソース電極3と、第2窒化物半導体層上に配置され、リッジ部に平行なドレイン主電極部5Aを有するドレイン電極5とを含む。リッジ部の長手方向が、第2窒化物半導体層を構成する半導体結晶構造の[110]方向である。

Description

\¥02020/174956 1 卩(:17 2020 /002354 明 細 書
発明の名称 : 窒化物半導体装置
技術分野
[0001] この発明は、 III族窒化物半導体 (以下単に 「窒化物半導体」 という場合が ある。 ) からなる窒化物半導体装置に関する。
背景技術
[0002] III族窒化物半導体とは、 III-V族半導体において V族元素として窒素を用 いた半導体である。 窒化アルミニウム (A 丨 N) 、 窒化ガリウム (G a N)
、 窒化インジウム (丨 n N) が代表例である。 一般には、 A I x I nyG a i_x _yN (0£x£ 1 , 0£ y £ 1 , 〇£x + y £ 1) と表わすことができる。
[0003] このような窒化物半導体を用いた H EMT (High Electron Mobi lity Tran sistor;高電子移動度トランジスタ) が提案されている。 このような H EMT は、 例えば、 G a Nからなる電子走行層と、 この電子走行層上にエピタキシ ヤル成長された A I G a Nからなる電子供給層とを含む。 電子供給層に接す るように一対のソース電極およびドレイン電極が形成され、 それらの間にゲ -卜電極が配置される。
[0004] G a Nと A 丨 G a Nとの格子不整合に起因する分極のために、 電子走行層 内において、 電子走行層と電子供給層との界面から数 Aだけ内方の位置に、 二次元電子ガスが形成される。 この二次元電子ガスをチヤネルとして、 ソー ス · ドレイン間が接続される。 ゲート電極に制御電圧を印加することで、 二 次元電子ガスを遮断すると、 ソース · ドレイン間が遮断される。 ゲート電極 に制御電圧を印加していない状態では、 ソース · ドレイン間が導通するので 、 ノーマリーオン型のデバイスとなる。
[0005] 窒化物半導体を用いたデバイスは、 高耐圧、 高温動作、 大電流密度、 高速 スイッチングおよび低オン抵抗といった特徴を有するため、 パワーデバイス への応用が検討されている。
[0006] しかし、 パワーデバイスとして用いるためには、 ゼロバイアス時に電流を 〇 2020/174956 2 卩(:170? 2020 /002354
遮断するノーマリーオフ型のデバイスである必要があるため、 前述のような 1~1巳1\/1丁は、 パワーデバイスには適用できない。
[0007] ノーマリーオフ型の窒化物半導体 1~1巳 IV!丁を実現するための構造は、 たと えば、 特許文献 1 において提案されている。
先行技術文献
特許文献
[0008] 特許文献 1 :特開 2 0 1 7 - 7 3 5 0 6号公報
発明の概要
発明が解決しようとする課題
[0009] 特許文献 1は、 八 丨 ◦ 3 電子供給層にリッジ形状の 型◦ 3 1\1ゲート層 (窒化物半導体ゲート層) を積層し、 その上にゲート電極を配置し、 前記 型◦ 3 1\]ゲート層から広がる空乏層によってチヤネルを消失させることで、 ノーマリーオフを達成する構成を開示している。
[0010] このような構成では、 ゲート電極からリッジ形状の 型◦ 3 1\1ゲート層を 介してソース電極にゲートリーク電流が流れる。 ゲートリーク電流が大きい 場合、 所望のオン抵抗を得るために必要なゲート電圧が確保できない、 また はゲートドライブ回路での消費電力が増加するといった問題に繫がり、 パワ —回路、 および制御回路部での効率低下、 発熱増加が懸念される。 これは、 高周波スイッチングを特長に掲げる ! !巳1\/1丁にとって大きな課題となる。
[001 1 ] この発明の目的は、 ゲートリーク電流を低減できる窒化物半導体装置を提 供することにある。
課題を解決するための手段
[0012] 本発明の一実施形態に係る窒化物半導体装置は、 電子走行層を構成する第
1窒化物半導体層と、 前記第 1窒化物半導体層上に形成され、 電子供給層を 構成する第 2窒化物半導体層と、 前記第 2窒化物半導体層上に配置され、 少 なくとも一部にリッジ部を有し、 アクセプタ型不純物を含む窒化物半導体ゲ -卜層と、 前記窒化物半導体ゲート層の少なくとも前記リッジ部上に配置さ 〇 2020/174956 3 卩(:170? 2020 /002354 れたゲート電極と、 前記第 2窒化物半導体層上に配置され、 前記リッジ部に 平行なソース主電極部を有するソース電極と、 前記第 2窒化物半導体層上に 配置され、 前記リッジ部に平行なドレイン主電極部を有するドレイン電極と を含み、 前記リッジ部の長手方向が、 前記第 2窒化物半導体層を構成する半 導体結晶構造の [1 1 0] 方向である。
[0013] この構成では、 リッジ部の長手方向が、 第 2窒化物半導体層を構成する半 導体結晶構造において [1 1 0] 方向であるので、 ゲートリーク電流のゲー トリーク電流を低減できる。
[0014] この発明の一実施形態では、 平面視において、 前記窒化物半導体ゲート層 が、 前記ソース主電極部を囲むように配置されており、 前記窒化物半導体ゲ -卜層は、 前記ソース主電極部の両側それぞれに配置された一対の前記リッ ジ部と、 これらのリッジ部の対応する端部どうしを連結するリッジ連結部と を有している。
[0015] この発明の一実施形態では、 前記ゲート電極は、 前記一対のリッジ部上に それぞれ形成された一対のゲート主電極部と、 前記リッジ連結部上に形成さ れ、 前記一対のゲート主電極部の対応する端部どうしを連結するべース部と を有している。
[0016] この発明の一実施形態では、 前記ソース主電極部の両側に、 前記ゲート主 電極部および前記ドレイン主電極部が、 前記ソース主電極部に近い方からそ の順に配置されている。
[0017] この発明の一実施形態では、 前記リッジの長手方向の長さに対する前記一 対のリッジの間隔の比が、 1 / 1 0 0以下である。
[0018] この発明の一実施形態では、 前記一対のリッジの両端側にある 2つのリッ ジ連結部の対向壁の傾斜角度が、 前記リッジの側壁の傾斜角度とほぼ等しい
[0019] この発明の一実施形態では、 前記窒化物半導体ゲート層が前記ソース主電 極部を囲んでいる領域内において、 前記ソース主電極部の端部と対応する前 記リッジ連結部との間に、 2次元電子ガス分断部が形成されている。 〇 2020/174956 4 卩(:170? 2020 /002354
[0020] この発明の一実施形態では、 前記窒化物半導体ゲート層と前記ゲート電極 との間に絶縁膜が介在している。
[0021 ] この発明の一実施形態では、 前記リッジの長手方向に沿う側壁が、 (1 0 — 1 2) 面である。
[0022] この発明の一実施形態では、 前記リッジの長手方向に沿う側壁が前記第 2 窒化物半導体層の表面に対して傾斜した傾斜面であり、 前記傾斜面の前記第 2窒化物半導体層の表面に対する傾斜角度が 8 0度以上 9 0度未満である。
[0023] この発明の一実施形態では、 前記リッジの長手方向に沿う側壁が前記第 2 窒化物半導体層の表面に対して垂直である。
[0024] この発明の一実施形態では、 前記第 1窒化物半導体層が◦ 3 1\1層からなり 、 前記第
Figure imgf000006_0001
(0< <1) 層からなり、 前記窒化物半導体ゲート層が 型◦ 3 1\!層からなる。
[0025] この発明の一実施形態に係る窒化物半導体装置の製造方法は、 基板上に、 電子走行層を構成する第 1窒化物半導体層と、 電子供給層を構成する第 2窒 化物半導体層と、 アクセプタ型不純物を含む窒化物半導体ゲート層材料膜と を、 その順に形成する第 1工程と、 前記窒化物半導体ゲート層材料膜上に、 ゲート電極の材料膜であるゲート電極膜を形成する第 2工程と、 前記ゲート 電極膜および前記窒化物半導体ゲート層材料膜をエッチングによってバター ニングすることにより、 互いに平行な一対のリッジ部とそれらの対応する端 部どうしを連結するリッジ連結部を有する窒化物半導体ゲート層と、 前記リ ッジ部上に形成されたゲート主電極部を有するゲート電極を形成する第 3エ 程と、 前記一対のリッジ部の間の領域内において前記リッジ部に平行となる ように配置されたソース主電極部を含むソース電極を、 前記電子供給層上に 形成すると同時に、 前記一対のリッジ部の外側の領域内において前記リッジ 部に平行となるように配置されたドレイン主電極部を含むドレイン電極を形 成する第 4工程とを含み、 前記リッジの長手方向が、 前記第 2窒化物半導体 層を構成する半導体結晶構造の [ 1 1 0 ] 方向である。
[0026] この製造方法では、 ゲートリーク電流のゲートリーク電流を低減できる窒 〇 2020/174956 5 卩(:170? 2020 /002354
化物半導体装置が得られる。
[0027] この発明の一実施形態では、 前記第 2窒化物半導体層が八 丨 , 0 3 (ぃ (0<父<1) 層からなる。
[0028] この発明の一実施形態では、 前記第 3工程では、 前記窒化物半導体ゲート 層材料膜は、 ドライエッチングによりバターニングされる。
[0029] この発明の一実施形態では、 前記第 3工程では、 前記窒化物半導体ゲート 層材料膜は、 ドライエッチングおよびドライエッチング後のウエッ トエッチ ングによりパターニングされる。
[0030] 本発明における上述の、 またはさらに他の目的、 特徴および効果は、 添付 図面を参照して次に述べる実施形態の説明により明らかにされる。
図面の簡単な説明
[0031] [図 1]図 1は、 この発明の第 1実施形態に係る窒化物半導体装置の構成を説明 するための部分平面図である。
[図 2]図 2は、 図 1の 11-11線に沿う拡大断面図である。
[図 3]図 3は、 図 1の 111-111線に沿う拡大断面図である。
[図4八]図4 は、 図 1の窒化物半導体装置の製造工程の一例を示す断面図で あって、 図 2の切断面に対応した断面図である。
[図 48]図 4巳は、 図 4八の次の工程を示す断面図である。
[図 ]図 4〇は、 図 4巳の次の工程を示す断面図である。
[図 40]図 4 0は、 図 4〇の次の工程を示す断面図である。
[図 4£]図 4巳は、 図 4口の次の工程を示す断面図である。
[図 4卩]図 4 は、 図 4巳の次の工程を示す断面図である。
[図 40]図 4◦は、 図 4 の次の工程を示す断面図である。
[図 5八]図 5 は、 図 1の窒化物半導体装置の製造工程の一例を示す断面図で あって、 図 3の切断面に対応した断面図である。
[図 58]図 5巳は、 図 5八の次の工程を示す断面図である。
[図 5(:]図 5〇は、 図 5巳の次の工程を示す断面図である。
[図 50]図 5 0は、 図 5〇の次の工程を示す断面図である。 〇 2020/174956 6 卩(:170? 2020 /002354
[図 5£]図 5巳は、 図 5 0の次の工程を示す断面図である。
[図 5卩]図 5 は、 図 5巳の次の工程を示す断面図である。
[図 50]図 5◦は、 図 5 の次の工程を示す断面図である。
[図 6八]図 6 は、 本実施形態に対する実験結果を示すグラフであって、 ゲー 卜ーソース間電圧V 9 [V] に対するゲートーソース間リーク電流丨 9 [八 ] の実験結果を示すグラフである。
[図 68]図 6巳は、 比較例に対する実験結果を示すグラフであって、 ゲートー ソース間電圧V 9 [V] に対するゲートーソース間リーク電流丨 9 [八] の 実験結果を示すグラフである。
[図 7]図 7は、 この発明の第 2実施形態に係る窒化物半導体装置の構成を説明 するための断面図であって、 図 2に対応する断面図である。
[図 8]図 8は、 図 7の窒化物半導体装置の構成を説明するための断面図であっ て、 図 3に対応する断面図である。
[図 9]図 9は、 この発明の第 3実施形態に係る窒化物半導体装置の構成を説明 するための部分平面図である。
[図 10]図 1 0は、 図 9のXI線に沿う断面図である。
[図 1 1]図 1 1は、 この発明の第 4実施形態に係る窒化物半導体装置の構成を 説明するための断面図であって、 図 2に対応する断面図である。
[図 12]図 1 2は、 図 1 1の窒化物半導体装置の構成を説明するための断面図 であって、 図 3に対応する断面図である。
[図 13]図 1 3は、 この発明の第 5実施形態に係る窒化物半導体装置の構成を 説明するための断面図であって、 図 2に対応する断面図である。
[図 14]図 1 4は、 図 1 3の窒化物半導体装置の構成を説明するための断面図 であって、 図 3に対応する断面図である。
[図 15]図 1 5は、 図 2のパッシベーシヨン膜およびソース電極の断面形状の 他の例を示す断面図である。
発明を実施するための形態
[0032] 以下では、 この発明の実施の形態を、 添付図面を参照して詳細に説明する \¥0 2020/174956 7 卩(:17 2020 /002354
[0033] 図 1は、 この発明の第 1実施形態に係る窒化物半導体装置の構成を説明す るための部分平面図である。 図 2は、 図 1の 11-11線に沿う拡大断面図である 。 図 3は、 図 1の 111-111線に沿う拡大断面図である。
[0034] 説明の便宜上、 以下において、 図 1、 図 2および図 3に示した +乂方向、 —X方向、 +丫方向および一丫方向を用いることがある。 +乂方向は、 平面 視において、 半導体装置 1の表面に沿う所定の方向であり、 +丫方向は、 半 導体装置 1の表面の沿う方向であって、 +乂方向に直交する方向である。 一 X方向は、 +乂方向とは反対の方向であり、 _丫方向は、 +丫方向とは反対 の方向である。 +乂方向および一 X方向を総称するときには単に 「X方向」 という。 +丫方向および一丫方向を総称するときには単に 「丫方向」 という
[0035] 窒化物半導体装置 1は、 半導体積層構造 (窒化物半導体構造) 2と、 半導 体積層構造 2上に配置された電極メタル構造とを含む。
[0036] 電極メタル構造は、 図 1 に示すように、 複数のソース電極 3、 複数のゲー 卜電極 4および複数のドレイン電極 5を含む。 ソース電極 3およびドレイン 電極 5は X方向に延びている。 ゲート電極 4は、 互いに平行に X方向に延び た一対のゲート主電極部 4 と、 これらの一対のゲート主電極部 4 の対応 する端部どうしをそれぞれ連結する 2つのべース部 4巳とを含む。
[0037] 1つのソース電極 3は、 平面視において、 1つのゲート電極 4の一対のゲ —卜主電極部 4八を覆うように形成されている。 ソース電極 3は、 平面視に おいて、 一対のゲート主電極部 4八の長さ中間部の間に配置されたソース主 電極部 3八と、 ソース主電極部 3八の周囲の延長部 3巳とからなる。 この実 施形態では、 ソース主電極部 3八とは、 平面視において、 ソース電極 3の全 領域のうち、 ソースコンタクトホール 6の輪郭に囲まれた領域をいうものと する。 延長部 3巳は、 平面視において、 ソース電極 3の全領域のうち、 ソー ス主電極部 3八以外の部分をいう。 ソースコンタクトホール 6については、 後述する。 延長部 3巳は、 一対のゲート主電極部 4八と 2つのべース部 4巳 〇 2020/174956 8 卩(:170? 2020 /002354
の一部を覆っている。
[0038] 1つのソース電極 3の両側のそれぞれに、 ドレイン電極 5が配置されてい る。 ドレイン電極 5は、 平面視において、 長手方向および幅方向の中間部で あるドレイン主電極部 5八と、 ドレイン主電極部 5八の周囲の延長部 5巳と からなる。 この実施形態では、 ドレイン主電極部 5八とは、 平面視において 、 ドレイン電極 5の全領域のうち、 ドレインコンタクトホール 7の輪郭に囲 まれた領域をいうものとする。 ドレインコンタクトホール 7については、 後 述する。 延長部 5巳は、 平面視において、 ドレイン電極 5の全領域のうち、 ドレイン主電極部 5八以外の部分をいう。
[0039] 図 1の例では、 ソース主電極部 3八 (3) 、 ゲート主電極部 4八 (◦) お よびドレイン主電極部 5八 ⑴) は、 丫方向に 0 0 3 0 0 0 3の順に周期的 に配置されている。 これにより、 ソース主電極部 3八 (3) およびドレイン 主電極部 5八 (0) でゲート主電極部 4八 (◦) を挟むことによって素子構 造が構成されている。 半導体積層構造 2上の表面の領域は、 当該素子構造を 含むアクティブエリア 8と、 アクティブエリア 8の外側のノンアクティブエ リア 9とからなる。 ゲート電極 4のべース部 4巳は、 ノンアクティブエリア 9において、 一対のゲート主電極部 4八の対応する端部どうしをそれぞれ連 結している。
[0040] 半導体積層構造 2は、 図 2および図 3に示すように、 基板 1 1 と、 基板 1
1の表面に形成されたバッファ層 1 2と、 バッファ層 1 2上にエピタキシャ ル成長された第 1窒化物半導体層 1 3と、 第 1窒化物半導体層 1 3上にエピ タキシャル成長された第 2窒化物半導体層 1 4とを含む。
[0041 ] 基板 1 1は、 例えば、 低抵抗のシリコン基板であってもよい。 低抵抗のシ リコン基板は、 例えば、 〇.
Figure imgf000010_0001
(より具体的には 〇. 0 1
Figure imgf000010_0002
程度) の電気抵抗率を有した 型基板でもよ い。 また、 基板 1 1は、 低抵抗のシリコン基板の他、 低抵抗の 3 丨 (3基板、 低抵抗の◦ 3 1\1基板等であってもよい。 基板 1 1の厚さは、 半導体プロセス 中においては、 例えば 6 5 0 程度であり、 チップ化する前段階において 〇 2020/174956 9 卩(:170? 2020 /002354
、 3 0 0 以下程度に研削される。 基板 1 1は、 ソース電極 3に電気的に 接続されている。
[0042] バッファ層 1 2は、 この実施形態では、 複数の窒化物半導体膜を積層した 多層バッファ層から構成されている。 この実施形態では、 バッファ層 1 2は 、 基板 1 1の表面に接する八 I 1\!膜からなる第 1バッファ層 (図示略) と、 この第 1バッファ層の表面 (基板 1 1 とは反対側の表面) に積層された八 I 1\1 /八 丨 ◦ 3 1\1超格子層からなる第 2バッファ層 (図示略) とから構成され ている。 第 1バッファ層の膜厚は、
Figure imgf000011_0001
程度である。 第 2バッファ層の膜厚は、
Figure imgf000011_0002
バッファ層 1 2は
、 例えば、 八 丨 ◦ 3 1\1の単膜または複合膜から構成されていてもよい。
[0043] 第 1窒化物半導体層 1 3は、 電子走行層を構成している。 この実施形態で は、 第 1窒化物半導体層 1 3は、
Figure imgf000011_0003
らなり、 その厚さは〇. 5 〜 2 程度である。 また、 第 1窒化物半導体層 1 3を流れるリーク電流を 抑制する目的で、 表面領域以外には半絶縁性にするための不純物が導入され ていてもよい。 その場合、 不純物の濃度は、 4 X 1 0 1 6
Figure imgf000011_0004
以上であるこ とが好ましい。 また、 不純物は、 例えば〇または 6である。
[0044] 第 2窒化物半導体層 1 4は、 電子供給層を構成している。 第 2窒化物半導 体層 1 4は、 第 1窒化物半導体層 1 3よりもバンドギャップの大きい窒化物 半導体からなっている。 この実施形態では、 第 2窒化物半導体層 1 4は、 第 1窒化物半導体層 1 3よりも八 丨組成の高い窒化物半導体からなっている。 窒化物半導体においては、 八 I組成が高いほどバッ ドギャップは大きくなる 。 この実施形態では、 第 2窒化物半導体層 1 4は、 八 丨 ;< 13 1 _ ;< 1 1\1層 (0 < X 1 < 1) からなり、 その厚さは
Figure imgf000011_0005
[0045] このように第 1窒化物半導体層 (電子走行層) 1 3と第 2窒化物半導体層 (電子供給層) 1 4とは、 バンドギャップ (八 I組成) の異なる窒化物半導 体からなっており、 それらの間には格子不整合が生じている。 そして、 第 1 窒化物半導体層 1 3および第 2窒化物半導体層 1 4の自発分極と、 それらの 間の格子不整合に起因するピエゾ分極とによって、 第 1窒化物半導体層 1 3 〇 2020/174956 10 卩(:170? 2020 /002354
と第 2窒化物半導体層 1 4との界面における第 1窒化物半導体層 1 3の伝導 帯のエネルギーレベルはフェルミ準位よりも低くなる。 これにより、 第 1窒 化物半導体層 1 3内には、 第 1窒化物半導体層 1 3と第 2窒化物半導体層 1 4との界面に近い位置 (例えば界面から数 程度の距離) に、 二次元電子ガ ス (2 0巳〇) 1 0が広がっている。
[0046] 第 2窒化物半導体層 1 4とゲート電極 4との間には、 窒化物半導体ゲート 層 1 5が介在している。 窒化物半導体ゲート層 1 5は、 エピタキシャル成長 によって、 第 2窒化物半導体層 1 4の表面に形成されている。 窒化物半導体 ゲート層 1 5は、 平面視において、 ゲート電極 4とほぼ同じ形状を有してい る。 具体的には、 窒化物半導体ゲート層 1 5は、 互いに平行に X方向に延び た一対のリッジ部 1 5八と、 これらの一対のリッジ部 1 5八の対応する端部 どうしをそれぞれ連結する 2つのリッジ連結部 1 5巳とを含む。
[0047] 図 2および図 3に示すように、 窒化物半導体ゲート層 1 5のリッジ部 1 5 八上にゲート電極 4のゲート主電極部 4八が形成され、 窒化物半導体ゲート 層 1 5のリッジ連結部 1 5巳上にゲート電極 4のべース部 4巳が形成されて いる。 したがって、 図 1 に示すように、 平面視において、 窒化物半導体ゲー 卜層 1 5は、 ゲート電極 4と同様に、 ソース主電極部八を取り囲むように形 成されている。 つまり、 ゲート電極 4および窒化物半導体ゲート層 1 5は、 それぞれ平面視で環状に形成されている。 図 2に示すように、 窒化物半導体 ゲート層 1 5のリッジ咅^ 1 5八と、 その上に形成されたゲート電極 4のゲー 卜主電極部 4八とによって、 ゲート部 2 0が構成されている。
[0048] この実施形態では、 リッジ部 1 5八の長手方向 (X方向) は、 第 2窒化物 半導体層 1 4を構成する半導体結晶構造において [1 1 0] 方向である。 ま た、 この実施形態では、 リッジ部 1 5八の横断面形状は台形である。 つまり 、 リッジ部 1 5八の側面は、 第 2窒化物半導体層 1 4の表面に対して傾斜し た傾斜面である。 そして、 この実施形態では、 リッジ部 1 5八の側面は、 ほ ぼ ( 1 0 _ 1 2) 面である。
[0049] 図 1 を参照して、 リッジ部 1 5八の長さ !_に対する一対のリッジ部 1 5八 〇 2020/174956 1 1 卩(:170? 2020 /002354
の間隔 0の比 0 / !_は、 1 / 2 5 0程度である。 リッジ部 1 5八の長さ !_に対 する一対のリッジ部 1 5八の間隔 0の比 0 / !_は、 1 / 1 0 0以下であるこ とが好ましい。 この理由は、 比口/ !_が 1 / 1 0 0以下であれば、 ゲート電 極 4のべース部 4巳から、 窒化物半導体ゲート層 1 5のリッジ連結部 1 5巳 を経由してソース電極 3に流れるゲートリーク電流を低減できるからである
[0050] 窒化物半導体ゲート層 1 5は、 アクセプタ型不純物がドーピングされた窒 化物半導体からなる。 この実施形態では、 窒化物半導体ゲート層 1 5は、 ア クセプタ型不純物がドーピングされた◦ 3 1\1層 ( 型〇 3 1\1層) からなって おり、 その厚さは
Figure imgf000013_0001
窒化物半導体ゲート層 1 5に注入されるアクセプタ型不純物の濃度は、 1 X 1
Figure imgf000013_0002
以上であ ることが好ましい。 この実施形態では、 アクセプタ型不純物は、 IV! 9 (マグ ネシウム) である。 アクセプタ型不純物は、 n (亜鉛) 等の 1\/1 9以外のア クセプタ型不純物であってもよい。 窒化物半導体ゲート層 1 5は、 ゲート部 2 0の直下の領域において、 第 1窒化物半導体層 (電子走行層) 1 3と第 2 窒化物半導体層 (電子供給層) 1 4との界面付近に生じる二次元電子ガス 1 0を相殺するために設けられている。
[0051 ] ゲート電極 4は、 この実施形態では、 丁 丨 1\1からなる。 ゲート電極 4の膜 厚は、
Figure imgf000013_0003
[0052] 図 1および図 3を参照して、 平面視において、 第 2窒化物半導体層 1 4の 表面には、 窒化物半導体ゲート層 1 5がソース主電極部 3八を取り囲んでい る領域内において、 ソース主電極部 3 の各端部とその端部に対応するリッ ジ連結部 1 5巳との間領域のそれぞれに、 二次元電子ガス分断溝 1 6が形成 されている。 二次元電子ガス分断溝 1 6は、 第 1窒化物半導体層 1 3の内部 に達しており、 二次元電子ガス 1 0を分断している。 二次元電子ガス分断溝 1 6は、 平面視において、 丫方向に長い矩形状である。 二次元電子ガス分断 溝 1 6は、 本発明の 2次元電子ガス分断部の一例である。
[0053] 図 2および図 3に示すように、 第 2窒化物半導体層 1 4上には、 第 2窒化 〇 2020/174956 12 卩(:170? 2020 /002354
物半導体層 1 4、 窒化物半導体ゲート層 1 5およびゲート電極 4の露出面を 覆うパッシベーシヨン膜 1 7が形成されている。 したがって、 ゲート部 2 0 の側面および表面は、 パッシベーシヨン膜 1 7によって覆われている。 この 実施形態では、 パッシベーシヨン膜 1 7は 3 丨 1\!膜からなり、 その厚さ 5 0 门〇!〜 2 0 0 〇!程度である。 パッシベーシヨン膜 1 7は、 3 I 1\1、 3 I 0 , 3 I 〇1\!またはそれらの複合膜から構成されてもよい。
[0054] パッシベーシヨン膜 1 7には、 ソースコンタクトホール 6およびドレイン コンタクトホール 7が形成されている。 ソースコンタクトホール 6およびド レインコンタクトホール 7は、 ゲート部 2 0を挟む配置で形成されている。
[0055] ソース電極 3のソース主電極部 3八は、 ソースコンタクトホール 6を貫通 して、 第 2窒化物半導体層 1 4にオーミック接触している。 図 1および図 2 に示すように、 アクティブエリア 8において、 ソース電極 3の延長部 3巳は 、 ゲート部 2 0 (ゲート主電極部 4八) を覆っている。 図 1および図 3に示 すように、 ノンアクティブエリア 9において、 ソース電極 3の延長部 3巳の —部は、 ゲート電極 4のべース部 4巳の一部を覆っている。 また、 ノンアク ティブエリア 9において、 ソース電極 3の延長部 3巳の一部は、 二次元電子 ガス分断溝 1 6内に入り込んでいる。 ドレイン電極 5のドレイン主電極部 5 八は、 ドレインコンタクトホール 7を貫通して、 第 2窒化物半導体層 1 4に 才ーミック接触している。
[0056] ソース電極 3およびドレイン電極 5は、 例えば、 第 2窒化物半導体層 1 4 に接する第 1金属層 (才ーミックメタル層) と、 第 1金属層に積層された第 2金属層 (主電極メタル層) と、 第 2金属層に積層された第 3金属層 (密着 層) と、 第 3金属層に積層された第 4金属層 (バリアメタル層) とからなる 。 第 1金属層は、 例えば、 厚さが
Figure imgf000014_0001
程度の丁 丨層である。 第 2金属層は、 例えば、 厚さが
Figure imgf000014_0002
程度の八 丨層である
。 第 3金属層は、 例えば、 厚さが
Figure imgf000014_0003
程度の丁 丨層である。 第 4金属層は、 例えば、 厚さが
Figure imgf000014_0004
程度の丁 丨 1\1層である。
[0057] この窒化物半導体装置 1では、 第 1窒化物半導体層 (電子走行層) 1 3上 〇 2020/174956 13 卩(:170? 2020 /002354
にバンドギャップ (八 I組成) の異なる第 2窒化物半導体層 (電子供給層)
1 4が形成されてへテロ接合が形成されている。 これにより、 第 1窒化物半 導体層 1 3と第 2窒化物半導体層 1 4との界面付近の第 1窒化物半導体層 1 3内に二次元電子ガス 1 0形成され、 この二次元電子ガス 1 0をチャネルと して利用した 1~1巳1\/1丁が形成されている。 ゲート電極 4のゲート主電極部 4 八は、 窒化物半導体ゲート層 1 5のリッジ部 1 5八を挟んで第 2窒化物半導 体層 1 4に対向している。
[0058] ゲート主電極部 4八の下方においては、 型◦ 3 1\1層からなるリッジ部 1
5八に含まれるイオン化アクセプタによって、 第 1窒化物半導体層 1 3およ び第 2窒化物半導体層 1 4のエネルギーレベルが引き上げられる。 このため 、 第 1窒化物半導体層 1 3と第 2窒化物半導体層 1 4との間のへテロ接合界 面における伝導帯のエネルギーレベルはフェルミ準位よりも大きくなる。 し たがって、 ゲート主電極部 4八 (ゲート部 2 0) の直下では、 第 1窒化物半 導体層 1 3および第 2窒化物半導体層 1 4の自発分極ならびにそれらの格子 不整合によるピエゾ分極に起因する二次元電子ガス 1 0が形成されない。
[0059] よって、 ゲート電極 4にバイアスを印加していないとき (ゼロバイアス時 ) には、 二次元電子ガス 1 0によるチャネルはゲート主電極部 4八の直下で 遮断されている。 こうして、 ノーマリーオフ型の 1~1巳1\/1丁が実現されている 。 ゲート電極 4に適切なオン電圧 (たとえば 5 V) を印加すると、 ゲート主 電極部 4八の直下の第 1窒化物半導体層 1 3内にチャネルが誘起され、 ゲー 卜主電極部 4 の両側の二次元電子ガス 1 0が接続される。 これにより、 ソ —スードレイン間が導通する。
[0060] 使用に際しては、 たとえば、 ソース電極 3とドレイン電極 5の間に、 ドレ イン電極 5側が正となる所定の電圧 (たとえば 1 0 〜 5 0 0 V) が印加さ れる。 その状態で、 ゲート電極 4に対して、 ソース電極 3を基準電位 (〇 ) として、 オフ電圧 (〇 ) またはオン電圧 (5 ) が印加される。
[0061 ] 図 4八~図 4◦および図 5八~図 5◦は、 前述の窒化物半導体装置 1の製 造工程の一例を説明するための断面図であり、 製造工程における複数の段階 〇 2020/174956 14 卩(:170? 2020 /002354
における断面構造が示されている。 図 4 A〜図 4 Gは、 図 2の切断面に対応 する断面図であり、 図 5 A〜図 5 Gは、 図 3の切断面に対応する断面図であ る。
[0062] まず、 図 4 Aおよび図 5 Aに示すように、 M O C V D (Meta l Organ i c Che m i ca l Vapor Depos i t i on) 法によって、 基板 1 1上に、 バッファ層 1 2、 第 1窒化物半導体層 1 3および第 2窒化物半導体層 1 4がエピタキシャル成長 される。 これにより、 半導体積層構造 2が得られる。
[0063] 次に、 図 4 Bおよび図 5 Bに示すように、 M O C V D法によって、 第 2窒 化物半導体層 1 4上に、 窒化物半導体ゲート層 1 5の材料膜であるゲート層 材料膜 3 1が形成される。 さらに、 スバッタ法によって、 ゲート層材料膜 3 1上に、 ゲート電極 4の材料膜であるゲート電極膜 3 2が形成される。 この 実施形態では、 ゲート層材料膜 3 1は p型 G a N膜であり、 ゲート電極膜 3 2は T i N膜である。
[0064] 次に、 図 4 Cおよび図 5 Cに示すように、 フォトリソグラフィにより、 ゲ -卜電極膜 3 2におけるゲート電極 4となる部分を覆うように、 ゲート電極 膜 3 2上にレジストバターン 3 3が形成される。 そして、 レジストパターン 3 3をマスクとするエッチングにより、 ゲート電極膜 3 2およびゲート層材 料膜 3 1がバターニングされる。
[0065] これにより、 ゲート電極膜 3 2からなるゲート電極 4と、 ゲート層材料膜
3 1からなる窒化物半導体ゲート層 1 5とが得られる。 窒化物半導体ゲート 層 1 5は、 リッジ部 1 5 Aとリッジ連結部 1 5 Bとからなる。 ゲート電極 4 は、 リッジ部 1 5 Aに形成されたゲート主電極部 4 Aと、 リッジ連結部 1 5 B上に形成されたべース部 4 Bとからなる。 これにより、 リッジ部 1 5 Aと ゲート主電極部 4 Aとからなるゲート部 2 0が得られる。 この後、 レジスト パターン 3 3が除去される。
[0066] ゲート層材料膜 3 1のバターニングは、 例えば、 ドライエッチングのみに よって行われる。 ゲート層材料膜 3 1のバターニングを、 ドライエッチング による第 1エッチングエ程と、 その後のウエッ トエッチングによる第 2エッ 〇 2020/174956 15 卩(:170? 2020 /002354
チングエ程とによって行うようにしてもよい。 また、 ゲート層材料膜 3 1の 側壁にサイ ドウォール (例えば 3 丨 0 2) を形成し、 サイ ドウォール側壁で規 定される横幅でドライエッチングを行うことでリッジ部 1 5八を形成し、 そ の後サイ ドウォールを除去する工程によって、 構造作製を行ってもよい。
[0067] 次に、 図 4 0および図 5 0に示すように、 フオトリソグラフィおよびエッ チングによって、 第 2窒化物半導体層 1 4の表面に、 窒化物半導体ゲート層 1 5がソース主電極部 3八を取り囲んでいる領域内の両端部に、 二次元電子 ガス分断溝 1 6が形成される。
[0068] 次に、 図 4巳および図 5巳に示すように、 露出した表面全体を覆うように 、 パッシベーシヨン膜 1 7が形成される。 パッシベーシヨン膜 1 7は例えば 3 I 1\!からなる。
[0069] 次に、 図 4 および図 5 に示すように、 パッシベーシヨン膜 1 7に、 第
2窒化物半導体層 1 4に達するソースコンタクトホール 6およびドレインコ ンタクトホール 7が形成される。
[0070] 次に、 図 4◦および図 5◦に示すように、 露出した表面全体を覆うように ソース · ドレイン電極膜 3 4が形成される。
[0071] 最後に、 フオトリソグラフィおよびエッチングによってソース · ドレイン 電極膜 3 4がパターニングされることにより、 第 2窒化物半導体層 1 4に才 —ミック接触するソース電極 3およびドレイン電極 5が形成される。 こうし て、 図 1〜図 3に示すような構造の窒化物半導体装置 1が得られる。
[0072] 前述の実施形態に係る窒化物半導体装置 1では、 リッジ部 1 5 の長手方 向は、 第 2窒化物半導体層 1 4を構成する半導体結晶構造において [1 1 0 ] 方向である。 これに対して、 全体的な構造は前述の実施形態と同様である が、 リッジ部 1 5 の長手方向が、 第 2窒化物半導体層 1 4を構成する半導 体結晶構造において [1 0 0] 方向である窒化物半導体装置を、 比較例とい うことにする。
[0073] 図 1の X方向が、 第 2窒化物半導体層 1 4を構成する半導体結晶構造の [
1 1 0] 方向であるとすると、 比較例では、 リッジ部 1 5八、 ソース主電極 〇 2020/174956 16 卩(:170? 2020 /002354
部 3八、 ゲート主電極部 4八およびドレイン主電極部 5八の長手方向は図 1 の丫方向となる。 したがって、 比較例では、 ソース主電極部 3八 (3) 、 ゲ —卜主電極部 4八 (0) およびドレイン主電極部 5八 (0) は、 X方向に 0 0 3 0 0 0 3の順に周期的に配置されることになる。
[0074] 図 6八および図 6巳は、 ゲートーソース間電圧 V 9 [V] に対するゲート —ソース間リーク電流丨 9 [八] の実験結果を示すグラフである。 図 6八の グラフは、 実施形態に対する実験結果を示している。 図 6巳のグラフは、 比 較例に対する実験結果を示している。
[0075] また、 表 1は、 ゲートーソース間電圧 V 9が + 5 Vおよび一 5 Vであると きの、 実施形態および比較例のゲートーソース間リーク電流丨 9 [|^八] の 実験結果を示している。
[0076] [表 1] 表 1
Figure imgf000018_0002
[0077] 図 6八および図 6巳および表 1から、 ゲートーソース間電圧が約 4 [V] 以上の範囲および約一 4 [V] 以下の範囲において、 比較例に比べて実施形 態では、 ゲートーソース間リーク電流 (ゲートリーク電流) 丨 9が低減され ていることがわかる。
[0078] この理由について考察する。 結晶の選択成長の観点で見ると、 G a ^ 〇 \ a r
Figure imgf000018_0001
において、 [ 1 0 0] 方向に長手方向を有する形状に成長を行う と、 選択成長された結晶の側面は表面ラフネスが大きくなるのに対し、 [1 1 0] 方向に長手方向を有する形状に成長を行うと、 比較的平坦な側面が得 られることが知られている。 これは、 [1 1 0] 方向に長手方向を有するリ ッジの側面 (傾斜面) が安定面となることを示している。
[0079] 本実施形態および比較例のリッジ部 1 5 は、 結晶の選択成長によって形 〇 2020/174956 17 卩(:170? 2020 /002354
成されるのではなく、 窒化物半導体ゲート層 1 5の材料膜 (この実施形態で は、 型〇 3 1\!) をエッチング (主としてドライエッチング) することによ って形成される。 しかしながら、 エッチングによってリッジ部 1 5八を形成 した場合においても、 選択成長と同様に、 [1 1 0] 方向に長手方向を有す るリッジ部 1 5八の側面は、 [1 0 0] 方向に長手方向を有するリッジ部 1 5八の側面に比べて、 表面ラフネスが小さい面が出やすかったと推定できる
[0080] 表面ラフネスが大きいと、 リッジ部 1 5八の側面の表面積が大きくなり、 ゲート電極 4からソース電極 3へのリーク経路が多くなり、 ゲートリーク電 流は大きくなる。 本実施形態では、 比較例に比べて、 リッジ部 1 5 の側面 の表面ラフネスが小さいため、 ゲートリーク電流が小さくなったと考えられ る。
[0081] 前述の実施形態では、 リッジ部 1 5 の長手方向が、 第 2窒化物半導体層
1 4を構成する半導体結晶構造において [1 1 0] 方向であるので、 ゲート リーク電流のゲートリーク電流を低減できる。
[0082] また、 前述の実施形態では、 窒化物半導体ゲート層 1 5がソース主電極部
3八を取り囲んでいる領域内の両端部に二次元電子ガス分断溝 1 6が形成さ れているので、 ゲート電極 4のべース部 4巳から二次元電子ガスを介してソ —ス電極 3に流れるゲートリーク電流を低減することができる。
[0083] なお、 前述の実施形態では、 リッジ部 1 5八の側面 (傾斜面) は、 ほぼ (
1 0 - 1 2) 面であるが、 リッジ部 1 5八の側面は、 (1 0— 1 2) 面でな くてもよい。 この場合、 リッジ部 1 5八の側面の傾斜角度は、 第 2窒化物半 導体層 1 4の表面に対して 8 0度以上 9 0度未満であることが好ましい。
[0084] また、 図 2のパッシベーシヨン膜 1 7およびソース電極 3の断面形状は、 図 1 5に示されるような形状であってもよい。
[0085] 図 7は、 この発明の第 2実施形態に係る窒化物半導体装置の構成を説明す るための断面図であって、 図 2に対応する断面図である。 図 8は、 図 7の窒 化物半導体装置の構成を説明するための断面図であって、 図 3に対応する断 〇 2020/174956 18 卩(:170? 2020 /002354
面図である。
[0086] 図 7において、 前述の図 2の各部に対応する部分には図 2と同じ符号を付 して示す。 図 8において、 前述の図 3の各部に対応する部分には図 3と同じ 符号を付して示す。 なお、 第 2実施形態に係る窒化物半導体装置の主要部の 平面図は、 第 1実施形態に係る窒化物半導体装置 1の平面図 (図 1) とほぼ 同様である。
[0087] 第 2実施形態に係る窒化物半導体装置 1 は、 第 1実施形態に係る窒化物 半導体装置 1 に比べて、 パッシベーション膜 1 7が、 第 1絶縁膜 1 7八と、 第 2絶縁膜 1 7巳とから構成されている点で異なっている。
[0088] 第 1絶縁膜 1 7八は、 第 2窒化物半導体層 1 4の表面 (コンタクトホール
6 , 7が形成される部分を除く) と、 窒化物半導体ゲート層 1 5 (リッジ部 1 5 およびリッジ連結部 1 5巳) の側面および上面の周縁部を覆うように 形成されている。 言い換えれば、 第 1絶縁膜 1 7 には、 窒化物半導体ゲー 卜層 1 5の上面における周縁部に囲まれた領域を露出させる開口部 4 1が形 成されている。 第 1絶縁膜 1 7八は、 この実施形態では、 3 丨 1\!膜からなる 。 第 1絶縁膜 1 7八は、 3 丨 〇2膜から構成されてもよい。
[0089] ゲート電極 4 (ゲート主電極部 4八およびべース部 4巳) は、 窒化物半導 体ゲート層 1 5の上面周縁部上の第 1絶縁膜 1 7八および窒化物半導体ゲー 卜層 1 5の上面の露出面を覆うように形成されている。
[0090] 第 2絶縁膜 1 7巳は、 第 1絶縁膜 1 7八の表面 (コンタクトホール 6 , 7 が形成される部分およびゲート電極 4によって覆われている部分を除く) と 、 ゲート電極 4の側面および上面を覆うように形成されている。 第 2絶縁膜 1 7巳は、 この実施形態では、 3 丨 1\!膜からなる。 第 2絶縁膜 1 7巳は、 3 I 〇2膜から構成されてもよい。
[0091 ] 第 1絶縁膜 1 7 および第 2絶縁膜 1 7巳には、 それらを貫通するソース コンタクトホ _ル 6およびドレインコンタクトホール 7が形成されている。 ソース電極 3は、 ソースコンタクトホール 6を貫通して、 第 2窒化物半導体 層 1 4に才ーミック接触している。 ドレイン電極 5は、 ドレインコンタクト 〇 2020/174956 19 卩(:170? 2020 /002354
ホール 7を貫通して、 第 2窒化物半導体層 1 4にオーミック接触している。
[0092] 第 2実施形態に係る窒化物半導体装置 1 においても、 リッジ部 1 5八の 長手方向は、 第 2窒化物半導体層 1 4を構成する半導体結晶構造において [ 1 1 0] 方向である。
[0093] 第 2実施形態に係る窒化物半導体装置 1 においては、 第 2窒化物半導体 層 1 4上に窒化物半導体ゲート層 1 5の材料膜であるゲート層材料膜が形成 された後に、 ゲート層材料膜がパターニングされることにより、 窒化物半導 体ゲート層 1 5が形成される。
[0094] 次に、 露出した表面全体を覆うように第 1絶縁膜 1 7 が形成される。 そ して、 窒化物半導体ゲート層 1 5の上面における周縁部に囲まれた領域が露 出するように、 窒化物半導体ゲート層 1 5上の第 1絶縁膜 1 7八に開口部 4 1が形成される。
[0095] 次に、 露出した表面全体を覆うようにゲート電極 4の材料膜であるゲート 電極膜が形成される。 そして、 ゲート電極膜がパターニングされることによ り、 ゲート電極 4が形成される。
[0096] 次に、 露出した表面全体を覆うように第 2絶縁膜 1 7巳が形成される。 そ して、 第 1絶縁膜 1 7 および第 2絶縁膜 1 7巳に、 それらを貫通するソー スコンタクトホール 6およびドレインコンタクトホール 7が形成される。
[0097] 最後に、 露出した表面全体を覆うようにソース · ドレイン電極膜が形成さ れる。 そして、 ソース · ドレイン電極膜がバターニングされることにより、 第 2窒化物半導体層 1 4にオーミック接触するソース電極 3およびドレイン 電極 5が形成される。
[0098] 図 9は、 この発明の第 3実施形態に係る窒化物半導体装置の構成を説明す るための部分平面図である。 図 1 0は、 図 9の 線に沿う断面図である。 図 9において、 前述の図 1の各部に対応する部分には図 1 と同じ符号を付して 示す。 図 1 0において、 前述の図 3の各部に対応する部分には図 3と同じ符 号を付して示す。 図 9の 11-11線に沿う断面は、 前述の図 2の断面図と同じで ある。 〇 2020/174956 20 卩(:170? 2020 /002354
[0099] 第 3実施形態に係る窒化物半導体装置 1 巳は、 第 1実施形態に係る窒化物 半導体装置 1 に比べて、 二次元電子ガス分断溝 1 6が形成されていない点の みが異なっている。 第 3実施形態に係る窒化物半導体装置 1 巳においても、 リッジ部 1 5 の長手方向は、 第 2窒化物半導体層 1 4を構成する半導体結 晶構造において [1 1 0] 方向である。
[0100] 図 1 1は、 この発明の第 4実施形態に係る窒化物半導体装置の構成を説明 するための断面図であって、 図 2に対応する断面図である。 図 1 2は、 図 1 1の窒化物半導体装置の構成を説明するための断面図であって、 図 3に対応 する断面図である。
[0101] 図 1 1 において、 前述の図 2の各部に対応する部分には図 2と同じ符号を 付して示す。 図 1 2において、 前述の図 3の各部に対応する部分には図 3と 同じ符号を付して示す。 なお、 第 4実施形態に係る窒化物半導体装置 1 〇の 主要部の平面図は、 第 1実施形態に係る窒化物半導体装置 1の平面図 (図 1 ) と同様である。
[0102] 第 4実施形態に係る窒化物半導体装置 1 (3は、 第 1実施形態に係る窒化物 半導体装置 1 に比べて、 リッジ部 1 5 の側面 (図 1 1参照) およびリッジ 連結部 1 5巳の側面 (図 1 2参照) が、 第 2窒化物半導体層 1 4の表面に対 して垂直 (9 0度) に形成されている点のみが異なっている。 第 4実施形態 に係る窒化物半導体装置 1 <3においても、 リッジ部 1 5 の長手方向は、 第 2窒化物半導体層 1 4を構成する半導体結晶構造において [1 1 0] 方向で ある。
[0103] 第 4実施形態に係る窒化物半導体装置 1 (3では、 第 1実施形態に係る窒化 物半導体装置 1 と同様に二次元電子ガス分断溝 1 6が形成されているが、 二 次元電子ガス分断溝 1 6は形成されていなくてもよい。
[0104] 図 1 3は、 この発明の第 5実施形態に係る窒化物半導体装置の構成を説明 するための断面図であって、 図 2に対応する断面図である。 図 1 4は、 図 1 3の窒化物半導体装置の構成を説明するための断面図であって、 図 3に対応 する断面図である。 〇 2020/174956 21 卩(:170? 2020 /002354
[0105] 図 1 3において、 前述の図 2の各部に対応する部分には図 2と同じ符号を 付して示す。 図 1 4において、 前述の図 3の各部に対応する部分には図 3と 同じ符号を付して示す。 なお、 第 5実施形態に係る窒化物半導体装置 1 0の 主要部の平面図は、 第 1実施形態に係る窒化物半導体装置 1の平面図 (図 1 ) とほぼ同様である。
[0106] 第 5実施形態に係る窒化物半導体装置 1 0は、 第 1実施形態に係る窒化物 半導体装置 1 に比べて、 リッジ部 1 5 の側面 (図 1 3参照) およびリッジ 連結部 1 5巳の側面 (図 1 4参照) が、 第 2窒化物半導体層 1 4の表面に対 して垂直 (9 0度) に形成されている点が異なっている。
[0107] さらに、 第 5実施形態に係る窒化物半導体装置 1 0は、 窒化物半導体ゲー 卜層 1 5とゲート電極 4との間にゲート絶縁膜 1 8が介在している点で、 第 1実施形態に係る窒化物半導体装置 1 と異なっている。 ゲート絶縁膜 1 8は 、 窒化物半導体ゲート層 1 5の一対のリッジ部 1 5八上に形成された一対の 主絶縁膜部 1 8八と、 窒化物半導体ゲート層 1 5のリッジ連結部 1 5巳上に 形成された主絶縁膜連結部 1 8巳とからなる。 したがって、 第 5実施形態に 係る窒化物半導体装置 1 口では、 リッジ部 1 5 と、 その上に形成された主 絶縁膜部 1 8八と、 その上に形成されたゲート主電極部 4八とによって、 ゲ -卜部 2 0八が構成されている。
[0108] ゲート絶縁膜 1 8は、 この実施形態では、 3 丨 1\!からなる。 ゲート絶縁膜
1 8の厚さは、 1 0 n 〜 5 0 n 程度である。 ゲート絶縁膜 1 8は、 3 I
Figure imgf000023_0001
[0109] 第 5実施形態に係る窒化物半導体装置 1 口においても、 リッジ部 1 5八の 長手方向が、 第 2窒化物半導体層 1 4を構成する半導体結晶構造において [ 1 1 0 ] 方向である。
[01 10] この構成では、 窒化物半導体ゲート層 1 5とゲート電極 4との間にゲート 絶縁膜 1 8が介在しているので、 ゲートリーク電流をより低減させることが できる。 〇 2020/174956 22 卩(:170? 2020 /002354
[0111] 第 5実施形態に係る窒化物半導体装置 1 0では、 第 1実施形態に係る窒化 物半導体装置 1 と同様に二次元電子ガス分断溝 1 6が形成されているが、 二 次元電子ガス分断溝 1 6は形成されていなくてもよい。
[0112] また、 第 5実施形態に係る窒化物半導体装置 1 0では、 リッジ部 1 5八の 側面およびリッジ連結部 1 5巳の側面が、 第 2窒化物半導体層 1 4の表面に 対して垂直に形成されているが、 これらの側面は第 2窒化物半導体層 1 4の 表面に対して傾斜した傾斜面に形成されていてもよい。 つまり、 リッジ部 1 5八の横断面は、 台形状であってもよい。
[0113] 以上、 この発明の実施形態について説明したが、 この発明は、 さらに他の 実施形態で実施することもできる。 例えば、 前述の実施形態では、 基板 1 1 の材料例としてシリコンを例示したが、 ほかにも、 サファイア基板や◦ 3 基板などの任意の基板材料を適用できる。
[0114] 本発明の実施形態について詳細に説明してきたが、 これらは本発明の技術 的内容を明らかにするために用いられた具体例に過ぎず、 本発明はこれらの 具体例に限定して解釈されるべきではなく、 本発明の範囲は添付の請求の範 囲によってのみ限定される。
[0115] この出願は、 201 9年2月 28日に日本国特許庁に提出された特願 20
1 9-3627 1号に対応しており、 その出願の全開示はここに引用により 組み込まれるものとする。
符号の説明
[0116] 1 , 1 , 1 6, 1 0 窒化物半導体装置
2 半導体積層構造
3 ソース電極
3八 ソース主電極
3巳 延長部
4 ゲート電極
4八 ゲート主電極部
4巳 ベース部 4956 23 卩(:170? 2020 /002354
5 ドレイン電極
5八 ドレイン主電極部
5巳 延長部
6 ソースコンタクトホール
7 ドレインコンタクトホール
8 アクティブエリア
9 ノンアクティブエリア
0 二次元電子ガス (2 0巳◦)
1 基板
2 バッファ層
3 第 1窒化物半導体層 (電子走行層)
4 第 2窒化物半導体層 (電子供給層)
5 窒化物半導体ゲート層
5八 リッジ咅 6
5巳 リッジ連結部
6 二次元電子ガス分断溝
7 パッシベーシヨン膜
8 ゲート絶縁膜
8 主絶縁膜部
8巳 主絶縁膜連結部
0 , 2 0八 ゲート部
1 ゲート層材料膜
2 ゲート電極膜
3 レジストパターン
4 ソース · ドレイン電極膜

Claims

\¥0 2020/174956 24 卩(:17 2020 /002354
請求の範囲
[請求項 1] 電子走行層を構成する第 1窒化物半導体層と、
前記第 1窒化物半導体層上に形成され、 電子供給層を構成する第 2 窒化物半導体層と、
前記第 2窒化物半導体層上に配置され、 少なくとも一部にリッジ部 を有し、 アクセプタ型不純物を含む窒化物半導体ゲート層と、 前記窒化物半導体ゲート層の少なくとも前記リッジ部上に配置され たゲート電極と、
前記第 2窒化物半導体層上に配置され、 前記リッジ部に平行なソー ス主電極部を有するソース電極と、
前記第 2窒化物半導体層上に配置され、 前記リッジ部に平行なドレ イン主電極部を有するドレイン電極とを含み、
前記リッジ部の長手方向が、 前記第 2窒化物半導体層を構成する半 導体結晶構造の [1 1 0] 方向である、 窒化物半導体装置。
[請求項 2] 平面視において、 前記窒化物半導体ゲート層が、 前記ソース主電極 部を囲むように配置されており、
前記窒化物半導体ゲート層は、 前記ソース主電極部の両側それぞれ に配置された一対の前記リッジ部と、 これらのリッジ部の対応する端 部どうしを連結するリッジ連結部とを有している、 請求項 1 に記載の 窒化物半導体装置。
[請求項 3] 前記ゲート電極は、 前記一対のリッジ部上にそれぞれ形成された一 対のゲート主電極部と、 前記リッジ連結部上に形成され、 前記一対の ゲート主電極部の対応する端部どうしを連結するべース部とを有して いる、 請求項 2に記載の窒化物半導体装置。
[請求項 4] 前記ソース主電極部の両側に、 前記ゲート主電極部および前記ドレ イン主電極部が、 前記ソース主電極部に近い方からその順に配置され ている、 請求項 3に記載の窒化物半導体装置。
[請求項 5] 前記リッジの長手方向の長さに対する前記一対のリッジの間隔の比 〇 2020/174956 25 卩(:170? 2020 /002354
が、 1 / 1 0 0以下である請求項 2〜 4のいずれか一項に記載の窒化 物半導体装置。
[請求項 6] 前記一対のリッジの両端側にある 2つのリッジ連結部の対向壁の傾 斜角度が、 前記リッジの側壁の傾斜角度とほぼ等しい、 請求項 2〜 5 のいずれか一項に記載の窒化物半導体装置。
[請求項 7] 前記窒化物半導体ゲート層が前記ソース主電極部を囲んでいる領域 内において、 前記ソース主電極部の端部と対応する前記リッジ連結部 との間に、 2次元電子ガス分断部が形成されている、 請求項 2〜 6の いずれか一項に記載の窒化物半導体装置。
[請求項 8] 前記窒化物半導体ゲート層と前記ゲート電極との間に絶縁膜が介在 している、 請求項 1〜 7のいずれか一項に記載の窒化物半導体装置。
[請求項 9] 前記リッジの長手方向に沿う側壁が、 (1 0 _ 1 2) 面である、 請 求項 1〜 8のいずれか一項に記載の窒化物半導体装置。
[請求項 10] 前記リッジの長手方向に沿う側壁が前記第 2窒化物半導体層の表面 に対して傾斜した傾斜面であり、 前記傾斜面の前記第 2窒化物半導体 層の表面に対する傾斜角度が 8 0度以上 9 0度未満である、 請求項 1 〜 8のいずれか一項に記載の窒化物半導体装置。
[請求項 1 1 ] 前記リッジの長手方向に沿う側壁が前記第 2窒化物半導体層の表面 に対して垂直である、 請求項 1〜 8のいずれか一項に記載の窒化物半 導体装置。
[請求項 12] 前記第 1窒化物半導体層が◦ 3 !\!層からなり、
前記第 2窒化物半導体層が I , 0 3 (ぃ,) (0< <1) 層か らなり、
前記窒化物半導体ゲート層が 型◦ 3 1\!層からなる、 請求項 1〜 1 1のいずれか一項に記載の窒化物半導体装置。
[請求項 13] 基板上に、 電子走行層を構成する第 1窒化物半導体層と、 電子供給 層を構成する第 2窒化物半導体層と、 アクセプタ型不純物を含む窒化 物半導体ゲート層材料膜とを、 その順に形成する第 1工程と、 〇 2020/174956 26 卩(:170? 2020 /002354
前記窒化物半導体ゲート層材料膜上に、 ゲート電極の材料膜である ゲート電極膜を形成する第 2工程と、
前記ゲート電極膜および前記窒化物半導体ゲート層材料膜をエッチ ングによってバターニングすることにより、 互いに平行な一対のリッ ジ部とそれらの対応する端部どうしを連結するリッジ連結部を有する 窒化物半導体ゲート層と、 前記リッジ部上に形成されたゲート主電極 部を有するゲート電極を形成する第 3工程と、
前記一対のリッジ部の間の領域内において前記リッジ部に平行とな るように配置されたソース主電極部を含むソース電極を、 前記電子供 給層上に形成すると同時に、 前記一対のリッジ部の外側の領域内にお いて前記リッジ部に平行となるように配置されたドレイン主電極部を 含むドレイン電極を形成する第 4工程とを含み、
前記リッジの長手方向が、 前記第 2窒化物半導体層を構成する半導 体結晶構造の [1 1 0] 方向である、 窒化物半導体装置の製造方法。
[請求項 14] 前記第 2窒化物半導体層が I , 0 3 (ぃ,) (0< <1) 層か らなる、 請求項 1 3に記載の窒化物半導体装置の製造方法。
[請求項 15] 前記第 3工程では、 前記窒化物半導体ゲート層材料膜は、 ドライエ ッチングによりバターニングされる、 請求項 1 3または 1 4に記載の 窒化物半導体装置の製造方法。
[請求項 16] 前記第 3工程では、 前記窒化物半導体ゲート層材料膜は、 ドライエ ッチングおよびドライエッチング後のウエッ トエッチングによりパタ —ニングされる、 請求項 1 3または 1 4に記載の窒化物半導体装置の 製造方法。
PCT/JP2020/002354 2019-02-28 2020-01-23 窒化物半導体装置 WO2020174956A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501748A JP7317936B2 (ja) 2019-02-28 2020-01-23 窒化物半導体装置
US17/433,146 US11908927B2 (en) 2019-02-28 2020-01-23 Nitride semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-036271 2019-02-28
JP2019036271 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020174956A1 true WO2020174956A1 (ja) 2020-09-03

Family

ID=72239363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002354 WO2020174956A1 (ja) 2019-02-28 2020-01-23 窒化物半導体装置

Country Status (3)

Country Link
US (1) US11908927B2 (ja)
JP (1) JP7317936B2 (ja)
WO (1) WO2020174956A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172588A1 (ja) * 2021-02-10 2022-08-18 ローム株式会社 窒化物半導体装置および窒化物半導体装置の製造方法
WO2023276972A1 (ja) * 2021-07-01 2023-01-05 ローム株式会社 窒化物半導体装置
JP7336606B2 (ja) 2020-11-26 2023-08-31 ローム株式会社 窒化物半導体装置
WO2023171438A1 (ja) * 2022-03-10 2023-09-14 ローム株式会社 窒化物半導体装置
WO2023243556A1 (ja) * 2022-06-15 2023-12-21 ローム株式会社 電界効果トランジスタ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817710A (zh) * 2018-12-29 2019-05-28 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
US20220293757A1 (en) * 2019-05-10 2022-09-15 Rohm Co., Ltd. Nitride semiconductor device and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340580A (ja) * 1999-05-26 2000-12-08 Sanken Electric Co Ltd 半導体装置
JP2012064900A (ja) * 2010-09-17 2012-03-29 Panasonic Corp 半導体装置
JP2012523700A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション 逆拡散抑制構造
JP2014146744A (ja) * 2013-01-30 2014-08-14 Renesas Electronics Corp 半導体装置
WO2015125471A1 (ja) * 2014-02-21 2015-08-27 パナソニック株式会社 電界効果トランジスタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767741B2 (ja) 2015-10-08 2020-10-14 ローム株式会社 窒化物半導体装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340580A (ja) * 1999-05-26 2000-12-08 Sanken Electric Co Ltd 半導体装置
JP2012523700A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション 逆拡散抑制構造
JP2012064900A (ja) * 2010-09-17 2012-03-29 Panasonic Corp 半導体装置
JP2014146744A (ja) * 2013-01-30 2014-08-14 Renesas Electronics Corp 半導体装置
WO2015125471A1 (ja) * 2014-02-21 2015-08-27 パナソニック株式会社 電界効果トランジスタ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336606B2 (ja) 2020-11-26 2023-08-31 ローム株式会社 窒化物半導体装置
WO2022172588A1 (ja) * 2021-02-10 2022-08-18 ローム株式会社 窒化物半導体装置および窒化物半導体装置の製造方法
WO2023276972A1 (ja) * 2021-07-01 2023-01-05 ローム株式会社 窒化物半導体装置
WO2023171438A1 (ja) * 2022-03-10 2023-09-14 ローム株式会社 窒化物半導体装置
WO2023243556A1 (ja) * 2022-06-15 2023-12-21 ローム株式会社 電界効果トランジスタ

Also Published As

Publication number Publication date
JPWO2020174956A1 (ja) 2021-12-23
JP7317936B2 (ja) 2023-07-31
US20220181477A1 (en) 2022-06-09
US11908927B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2020174956A1 (ja) 窒化物半導体装置
US20220310797A1 (en) Nitride-based semiconductor device and method of manufacturing the same
JP4592938B2 (ja) 半導体装置
TWI770134B (zh) 半導體裝置及半導體裝置之製造方法
JP5242068B2 (ja) GaN系半導体デバイスおよびその製造方法
US10868164B2 (en) Nitride semiconductor device
US20220209001A1 (en) Nitride semiconductor device and method for manufacturing same
JP2008004720A (ja) 窒化物半導体を用いたヘテロ構造電界効果トランジスタ
CN112018107B (zh) 氮化物半导体装置
JP7175727B2 (ja) 窒化物半導体装置
US20180047822A1 (en) Semiconductor device
US20230290836A1 (en) Nitride semiconductor device comprising layered structure of active region and method for manufacturing the same
JP7216523B2 (ja) 窒化物半導体装置
JP5487590B2 (ja) 半導体装置及びその製造方法
JP2011210785A (ja) 電界効果トランジスタ、およびその製造方法
JP2010153748A (ja) 電界効果半導体装置の製造方法
US20220359669A1 (en) Nitride semiconductor device and method of manufacturing the same
US20190074174A1 (en) Method of manufacturing semiconductor device and the semiconductor device
US20220165875A1 (en) Nitride semiconductor apparatus
JP2014060427A (ja) 半導体装置及びその製造方法
CN114981935A (zh) 氮化物半导体装置的制造方法及氮化物半导体装置
TW201711141A (zh) 半導體裝置及半導體裝置之製造方法
JP4955858B2 (ja) 多層構造半導体装置
WO2023238852A1 (ja) 窒化物半導体装置
WO2022172588A1 (ja) 窒化物半導体装置および窒化物半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763163

Country of ref document: EP

Kind code of ref document: A1