WO2020173294A1 - 共体天线及电子设备 - Google Patents

共体天线及电子设备 Download PDF

Info

Publication number
WO2020173294A1
WO2020173294A1 PCT/CN2020/074608 CN2020074608W WO2020173294A1 WO 2020173294 A1 WO2020173294 A1 WO 2020173294A1 CN 2020074608 W CN2020074608 W CN 2020074608W WO 2020173294 A1 WO2020173294 A1 WO 2020173294A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
frequency band
sub
working frequency
Prior art date
Application number
PCT/CN2020/074608
Other languages
English (en)
French (fr)
Inventor
孙乔
李堃
卢亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910278901.XA external-priority patent/CN111628298B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20763968.3A priority Critical patent/EP3916917A4/en
Priority to US17/432,731 priority patent/US12003017B2/en
Publication of WO2020173294A1 publication Critical patent/WO2020173294A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0279Improving the user comfort or ergonomics
    • H04M1/0281Improving the user comfort or ergonomics for providing single handed use or left/right hand conversion

Definitions

  • This application relates to the field of communication technology, and in particular to a community antenna and electronic equipment. Background technique
  • This application provides a community antenna and electronic equipment, which aims to reduce the space occupied by the antenna, so as to deploy more antennas in a limited clear space.
  • this application provides a community antenna.
  • the common body antenna includes a radiator, a first ground point, a second ground point, a first feed point, a second feed point, a first filter circuit, and a second filter circuit; the first ground point and the second ground point The grounding points are all grounded, and the first grounding point and the second grounding point are respectively located at opposite ends of the radiation body; the radiation body is provided with a gap, and the gap divides the radiator into first A sub-radiator and a second sub-radiator, the first feeding point is located on the first sub-radiator, and the second feeding point is located on the second sub-radiator; the first filter circuit One end of the second filter circuit is connected to the first feeding point, and the other end is grounded; one end of the second filter circuit is connected to the second feeding point, and the other end is grounded; the radio frequency signal transmitted by the first feeding point is The resonance of the first sub-radiator and the parasitic resonance of the second sub-radiator generate a plurality of working frequency bands of different antenna modes,
  • the two feeding points in this application can transmit signals at the same time.
  • This enables multiple antenna modes to be generated on the radiator at the same time, so that different antenna modes share the radiator, thereby reducing the volume occupied by the antenna.
  • the use of feed points and corresponding radio frequency components can be reduced, thereby further simplifying the structure of the antenna and reducing the volume occupied by the antenna.
  • the radiator is divided into a first sub-radiator and the second sub-radiator by setting a gap, and the first sub-radiator and the second self-radiator are respectively fed.
  • the first sub-radiator resonates due to the signal fed from the first feeding point
  • the second sub-radiator will generate parasitic resonance under the influence of the first sub-radiator; at the same time, when the second sub-radiator is due to the second feed
  • the first sub-radiator will generate parasitic resonance under the influence of the second sub-radiator.
  • the common body antenna will generate Parasitic resonance, thereby further increasing the working frequency band covered by the antenna, that is, it is possible to further increase the number of antenna modes while avoiding increasing the space occupied by the antenna.
  • one end of the first filter circuit is connected to the first feeding point and the other end is grounded; one end of the second filter circuit is connected to the second feeding point, and the other end is grounded ,
  • the feed position of the radio frequency signal through the first filter circuit and the second filter circuit. Due to the different feeding positions, different antenna patterns are generated. That is, through the first filter circuit and the second filter circuit, the common antenna can obtain more different antenna patterns, thereby ensuring the required antenna patterns. In this case, avoid increasing the layout space of the antenna.
  • the first filter circuit is a high-impedance low-pass filter circuit
  • the high-impedance low-pass filter circuit is a pass band in the GPS frequency band, and is a stop band in a frequency band greater than or equal to 2.4G WIFI, That is, the first filter circuit can pass radio frequency signals in the GPS frequency band, but does not allow radio frequency signals greater than or equal to the 2.4G WIFI frequency band to pass.
  • the second filter circuit is a high-pass low-impedance filter circuit
  • the high-pass low-impedance filter circuit is a stop band in the GPS frequency band, and a pass band in a frequency band greater than or equal to 2.4G WIFI, that is, the first filter circuit can make the frequency greater than RF signals in the 2.4G WIFI frequency band or equal to pass, and RF signals in the GPS frequency band are not allowed to pass.
  • the first filter circuit enables the radio frequency signal of a certain frequency band to be grounded through the first filter circuit
  • the second filter circuit enables the radio frequency signal of a certain frequency band to be grounded through the second filter circuit.
  • the first filter circuit and the second filter circuit both include a first capacitor and a first inductor arranged in parallel.
  • the first filter circuit or the second filter circuit further includes a second inductor, and the second inductor is connected in series with the first capacitor.
  • the first filter circuit or the second filter circuit further includes a second capacitor, and the second capacitor is connected in series with the first capacitor and the first inductor arranged in parallel.
  • the working frequency band generated by the resonance of the first sub-radiator and the parasitic resonance of the second sub-radiator covers the working frequency bands of the WIFI antenna and the Sub 6G antenna, that is, the radiator can simultaneously serve as a WIFI antenna.
  • the antenna and the radiator of the Sub 6G antenna thereby realizing the common body of the WIFI antenna and the Sub 6G antenna.
  • the working frequency band generated by the resonance of the second sub-radiator and the parasitic resonance of the first sub-radiator covers the working frequency bands of the GPS L1 antenna and the GPS L5 antenna, that is, the radiator can At the same time as the radiator of the GPS L1 antenna and the GPS L5 antenna, so as to realize the common body of the GPS L1 antenna and the GPS L5 antenna.
  • the working frequency band generated by the resonance of the first sub-radiator and the parasitic resonance of the second sub-radiator covers the working frequency bands of the WIFI antenna and the Sub 6G antenna
  • the The working frequency band generated by the resonance of the second sub radiator and the parasitic resonance of the first sub radiator covers the working frequency bands of the GPS L1 antenna and the GPS L5 antenna, so that the WIFI antenna, the Sub 6G antenna, the GPS L1 antenna, and the GPS L5 antenna can be implemented.
  • the common body enables the common body antenna to occupy a small space while covering working frequency bands of multiple different antenna modes.
  • the common body antenna can realize the coverage of multiple antenna modes through two feeding points (the first feeding point and the second feeding point), which can reduce the feeding points compared with the antenna of the prior art. Therefore, it is possible to reduce the number of shrapnel or connecting wires connecting the feeding point and the radio frequency front end and the number of resonant elements for adjusting the antenna mode, thereby simplifying the structure of the antenna and further reducing the space occupied by the antenna.
  • the working frequency band generated by the resonance of the first radiator includes a first working frequency band, a second working frequency band, and a third working frequency band
  • the working frequency band generated by the parasitic resonance of the second radiator includes a first working frequency band.
  • the first working frequency band covers the working frequency band of the 2.4G WIFI antenna
  • the second working frequency band and the fourth working frequency band cover the working frequency band of the Sub 6G antenna
  • the fifth working frequency band covers the working frequency band of the 5G WIFI antenna.
  • the working frequency band generated by the resonance of the first sub radiator and the parasitic resonance generated by the second sub radiator can cover the working frequency bands of the Sub 6G antenna and 2.4G WIFI and 5G WIFI antennas, that is, the radiator It can realize the common body of Sub 6G antenna and WIFI antenna at the same time, saving the layout space of the antenna.
  • the Sub 6G antenna refers to a frequency band whose working frequency band is lower than the antenna mode of 6G Hz.
  • the Sub 6G frequency band mainly includes 5G frequency bands such as N77, N78, N79, etc., to meet the existing 5G communication requirements.
  • the first working frequency band is the working frequency band of the IFA quarter antenna mode generated by the resonance of the first sub-radiator
  • the second working frequency band is the working frequency band from the first feeding point to all the antennas.
  • the working frequency band of the half-wavelength mode of the loop antenna formed by the first grounding point, and the third working frequency band is the working frequency band of the IFA three-quarter antenna mode generated by the resonance of the first sub-radiator;
  • the fourth working frequency band is the half-wavelength mode of the loop parasitic antenna generated by the parasitic resonance of the second sub-radiator, and the fifth working frequency band is the second half-wavelength mode of the loop parasitic antenna generated by the second sub-radiator parasitic resonance.
  • the operating frequency band generated by the resonance of the second sub-radiator includes a sixth operating frequency band
  • the operating frequency band generated by the parasitic resonance of the first sub-radiator includes a seventh operating frequency band
  • the sixth operating frequency band Covers the working frequency band of the GPS L5 antenna
  • the seventh working frequency band covers the working frequency band of the GPS L1 antenna, so that the working frequency band generated by the radiator can simultaneously cover the working frequency band of the GPS L5 antenna and the working frequency band of the GPS L1 antenna.
  • the sixth working frequency band is a working frequency band of a composite left-handed antenna mode generated by the resonance of the second sub-radiator, and the seventh working frequency band is a parasitic resonance generated by the first sub-radiator.
  • the sixth working frequency band is generated by the composite left-handed antenna mode, and the length of the radiator of the composite left-handed antenna mode is 1/8 X. Compared with other antenna modes, the length of the radiator is smaller, which can further To reduce the layout space of the antenna.
  • a tuning element is connected between the first feeding point and/or the second feeding point and the radio frequency front end, and the tuning element is used to adjust the common antenna The type of each antenna mode and its working frequency band.
  • the type of the tuning element connected between the first feeding point and/or the second feeding point and the radio frequency front end is adjusted according to actual requirements, so that the antenna pattern generated by the common antenna can meet the actual use requirements.
  • the tuning element may be a capacitive element or an inductive element, and the capacitive element and the inductive element may be connected in parallel or in series to the first feeding point and/or the second feeding point and the radio frequency front end between.
  • the tuning element includes a capacitive element connected between the second feeding point and the radio frequency front end.
  • the width of the slot is greater than the thirty-second wavelength of the highest resonant frequency and less than one sixteenth of the highest resonant frequency; the highest resonant frequency is a plurality of different antennas of the common body antenna The highest operating frequency among the operating frequencies of the antenna mode.
  • the width of the slit needs to be controlled within a certain range to prevent the width of the slit from being too wide or too narrow, so as to ensure that the first radiator and the second radiator in a certain working frequency band
  • the bodies can influence each other to produce parasitic resonance.
  • the distance from the first feeding point to the slot is a sixteenth wavelength of the operating frequency of the antenna pattern formed between the first feeding point and the slot
  • the distance from the second feeding point to the slot is one-eighth wavelength of the operating frequency of the antenna pattern formed between the second feeding point and the slot
  • the first connection The distance from the location to the slot is a quarter wavelength of the operating frequency of the antenna pattern formed between the first ground point and the slot
  • the distance from the second ground point to the slot is the A quarter wavelength of the operating frequency of the antenna pattern formed between the second ground point and the slot.
  • the common antenna can generate a required working frequency band to meet actual requirements.
  • this application also provides an electronic device.
  • the electronic device includes a middle frame, a main board and the common antenna, the middle frame is grounded, and the first ground point and the second ground point of the common antenna are both connected to the middle frame to realize the second Grounding of a grounding point and the second grounding point.
  • the radio frequency front end of the common antenna is arranged on the main board, and the main board is arranged on the middle frame. Since the common body antenna occupies a small space, the required headroom is also small, which can make the layout in the electronic device more compact.
  • the electronic device includes a metal frame surrounding the main board and the middle frame, and a part of the metal frame is the radiation body of the common antenna as the radiation
  • the metal frame of the body is spaced from the main board to form a gap, and the gap is a clearance area of the common antenna.
  • FIG. 1 is a schematic structural diagram of a community antenna according to an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a first embodiment of a filter circuit in a common antenna according to an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a second embodiment of a filter circuit in a community antenna according to an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a third embodiment of a filter circuit in a common antenna according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a fourth embodiment of a filter circuit in a common antenna according to an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a community antenna according to another embodiment of the application.
  • FIG. 7 is a simulation diagram of S parameters of the community antenna in the embodiment of FIG. 6;
  • FIG. 8 is a schematic diagram of the current distribution of the IFA quarter antenna mode generated by the resonance of the first sub-radiator of the common body antenna in the embodiment of FIG. 6;
  • FIG. 9 is a schematic diagram of the current distribution in the half-wavelength mode of the loop antenna generated by the resonance of the first sub-radiator of the common body antenna in the embodiment of FIG. 6;
  • FIG. 10 is a schematic diagram of the current distribution of the IFA three-quarter antenna mode generated by the resonance of the first sub-radiator of the common antenna in the embodiment of FIG. 6;
  • FIG. 11 is a schematic diagram of current distribution in a half-wavelength mode of the loop parasitic antenna generated by the parasitic resonance of the second sub-radiator of the common body antenna in the embodiment of FIG. 6;
  • FIG. 12 is a schematic diagram of the current distribution in the three-half wavelength mode of the loop parasitic antenna generated by the parasitic resonance of the second sub-radiator of the common body antenna in the embodiment of FIG. 6;
  • FIG. 13 is a schematic diagram of the current distribution of the composite left-handed antenna mode generated by the resonance of the second sub-radiator of the common body antenna of the embodiment of FIG. 6;
  • FIG. 14 is a schematic diagram of current distribution of a quarter-wavelength parasitic antenna mode formed by the parasitic resonance of the first sub-radiator of the common body antenna in the embodiment of FIG. 6;
  • FIG. 15 is a simulation efficiency diagram of the community antenna of the embodiment in FIG. 6;
  • Fig. 16a is a simulation diagram of the radiation direction of the GPS L1 antenna mode of the common antenna of the embodiment of Fig. 6;
  • Fig. 16b is a simulation diagram of the radiation direction of the GPS L5 antenna mode of the common antenna of the embodiment of Fig. 6;
  • FIG. 16c is a simulation diagram of the radiation direction of the 2.4G WIFI antenna mode of the community antenna of the embodiment of FIG. 6;
  • FIG. 16d is a simulation diagram of the radiation direction of the 5G WIFI antenna mode of the community antenna of the embodiment of FIG. 6;
  • FIG. 17 is a schematic structural diagram of an electronic device according to an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of an electronic device according to another embodiment of the application. detailed description
  • This application provides a community antenna and an electronic device including the community antenna.
  • the radiator of the common body antenna can realize a common body of multiple different antenna modes, so as to reduce the occupied space of the antenna.
  • the electronic devices include mobile phones, tablets, smart watches and other electronic devices.
  • the common body antenna 100 includes a radiator 10, a first ground point A, a second ground point B, a first feed point C, a second feed point D, a first filter circuit 30, and a second filter circuit 40. Both the first ground point A and the second ground point B are grounded. The first ground point A and the second ground point B are located at opposite ends of the radiator 10, respectively.
  • the radiator 10 is provided with a gap 11, and the gap 11 divides the radiator 10 into a first sub-radiator 12 and a second sub-radiator 13.
  • the first feeding point C is located on the first sub-radiator 12, the second feeding point D is located on the second sub-radiator 13, and the first feeding point C is connected to the second
  • the two feeding points D are both connected to the radio frequency front end 20.
  • the radio frequency signal generated by the radio frequency front end 20 is transmitted to the radiator 10 via the first feeding point C and the second feeding point D, or the signal received by the radiator 10 passes through the first feeding point C
  • the second feeding point D are transmitted to the radio frequency front end 20.
  • the first feeding point C and the second feeding point D are connected to the radio frequency front end 20 through a spring sheet or a connecting wire.
  • One end of the first filter circuit 30 is connected in parallel between the first feed point C and the radio frequency front end 20, and the other end is grounded; one end of the second filter circuit 40 is connected in parallel to the second feeder Between point D and the radio frequency front end 20, and the other end is grounded.
  • the radio frequency signal transmitted by the first feeding point C is resonated by the first sub-radiator 12 and the parasitic resonance of the second sub-radiator 13 to generate a plurality of working frequency bands of different antenna modes, and the second feeder
  • the radio frequency signal transmitted at point D resonates through the second sub-radiator 13 and the parasitic resonance of the first sub-radiator 12 to generate multiple working frequency bands of different antenna modes.
  • the radio frequency signal transmitted by the first feeding point C is resonated by the first sub-radiator 12 and the parasitic resonance of the second sub-radiator 13 can generate multiple working frequency bands of different antenna modes.
  • the radio frequency signal transmitted by the second feeding point D is resonated by the second sub-radiator 13 and the parasitic resonance of the first sub-radiator 12 can generate multiple working frequency bands of different antenna modes.
  • the transmitted radio frequency signal causes the first sub-radiator 12 to generate a certain induced electromotive force.
  • the gap 11 is equivalent to an equivalent capacitance, and the second sub-radiator 13 is also A certain induced electromotive force is generated, that is, the second sub-radiator 13 generates a parasitic resonance of a certain frequency band.
  • the resonance generated by the first sub-radiator 12 and the second sub-radiator 13 is generated by the resonance generated by the first sub-radiator 12 and the second sub-radiator 13, and the mutual influence between the first radiator 10 and the second radiator 10 Parasitic resonance increases the working frequency band covered by the common antenna 100, and does not need to increase the number of feed points and radiators, which can further increase the antenna mode At the same time, avoid increasing the space occupied by the antenna.
  • two feeding points including the first feeding point C and the second feeding point are provided on the radiation body 10 between the first ground point A and the second ground point B).
  • D compared to the antenna structure with only one feeding point provided on the radiators 10 of two adjacent ground points (that is, each radiator 10 is provided with one feeding point), the two feeding points in this application The points can perform signal transmission at the same time, so that multiple antenna modes can be generated on the radiator 10 at the same time, so that different antenna modes share the radiator 10, thereby reducing the volume occupied by the antenna.
  • the number of radiators can be reduced, thereby reducing the occupied space of the common antenna 100.
  • multiple antenna modes can be generated through two feeding points (the first feeding point C and the second feeding point D), which can reduce the number of feeding points compared to the prior art antenna Therefore, it is possible to reduce the number of shrapnel or connecting wires connected between the feeding point and the radio frequency front end and the resonant elements for adjusting the antenna mode, thereby simplifying the structure of the antenna and further reducing the space occupied by the antenna.
  • one end of the first filter circuit 30 is connected in parallel between the first feed point C and the radio frequency front end 20, and the other end is grounded; one end of the second filter circuit 40 is connected in parallel Between the second feeding point D and the radio frequency front end 20, and the other end is grounded, so that the feeding position of the radio frequency signal is adjusted by the first filter circuit 30 and the second filter circuit 40. Due to the different feeding positions, different antenna patterns are generated. That is, through the first filter circuit 30 and the second filter circuit 40, the common body antenna 100 can obtain more different antenna patterns, thereby ensuring In the case of the required antenna pattern, avoid increasing the layout space of the antenna.
  • the first filter circuit 30 is a high impedance low pass filter circuit, and the high impedance low pass filter circuit can achieve a high impedance low pass filter effect.
  • the high-impedance low-pass filtering effect means that the high-impedance low-pass filter circuit is the passband in the GPS frequency band, and the stop-band in the frequency band greater than or equal to 2.4GWIFI, that is, the first filter circuit 30 can enable Radio frequency signals in the GPS frequency band pass, and radio frequency signals greater than or equal to the 2.4GWIFI frequency band are not allowed to pass.
  • the second filter circuit 40 is a high-pass low-impedance filter circuit, and the high-pass low-impedance filter circuit can achieve a high-pass and low-impedance filter effect.
  • the filtering effect of high-pass and low-impedance means that the high-pass and low-impedance filter circuit is the stop band in the GPS frequency band and the pass band in the frequency band greater than or equal to 2.4GWIFI, that is, the second filter circuit 40 can make the frequency greater than or equal to The radio frequency signal in the 2.4GWIFI frequency band passes through and prevents the radio frequency signal in the GPS frequency band from passing. Pass the first filter circuit 30 so that the radio frequency signal of a certain frequency band can be grounded through the first filter circuit 30, and pass the second filter circuit 40 so that the radio frequency signal of a certain frequency band can be grounded through the second filter circuit 40, so that different The feed position of the radio frequency signal is different, so that different antenna patterns are obtained.
  • FIG. 2 is a schematic structural diagram of a filter circuit according to an embodiment of the application.
  • the filter circuit includes a circuit of a first capacitor 311 and a first inductor 312 arranged in parallel.
  • FIG. 3 is a schematic structural diagram of a filter circuit according to a second embodiment of the application. The difference between the filter circuit in the embodiment shown in FIG. 3 and the filter circuit shown in FIG. 2 lies in the following:
  • the circuit further includes a second inductor 313, and after the second inductor 313 is connected in series with the first capacitor 311, it is then connected in series with the first inductor 312.
  • FIG. 4 is a schematic structural diagram of a filter circuit according to a third embodiment of this application.
  • the circuit further includes a second capacitor 314 which is connected in series with the first capacitor 311 and the first inductor 312 arranged in parallel.
  • the first capacitor 311 and the second capacitor 314 may be fixed capacitors or adjustable capacitors, and the first inductor 312 and the second inductor 313 may be fixed inductors or adjustable inductors.
  • FIG. 5 is a schematic diagram of the structure of the filter circuit of the fourth embodiment of this application.
  • the first capacitor 314 is an adjustable capacitor.
  • the first filter circuit 31 and the second filter circuit 32 may be the filter circuits shown in any of the embodiments shown in FIGS. 2 to 4, and the first circuit filter circuit 31 and the second filter circuit 32 The types can be the same or different.
  • the first filter circuit 31 and the second filter circuit 32 are both filter circuits of the embodiment shown in FIG. 2.
  • the first inductance 312 of the first filter circuit 31 is about 4 nH, and the first capacitor 311 of the first filter circuit 31 is about 1 PF, so as to obtain a high impedance low pass filter circuit;
  • the first inductance 312 of the second filter circuit 32 is about 6.8 nH, and the first capacitor 311 of the first filter circuit 31 is about 1.5 pF, so as to obtain a high-pass and low-impedance filter circuit.
  • a tuning element 50 is further connected between the first feeding point C and/or the second feeding point D and the radio frequency front end 20.
  • the tuning element 50 is used to adjust the type of each antenna mode of the common antenna 100 and its working frequency band.
  • the type or number of tuning elements 50 connected between the first feeding point C and/or the second feeding point D and the radio frequency front end 20 can be adjusted according to actual requirements, so that the antenna mode of the common antenna 100 can be Meet the needs of actual use.
  • the tuning element 50 may be a capacitive element or an inductive element, and the capacitive element and the inductive element may be connected in parallel or in series to the first feeding point and/or the second feeding point and the radio frequency Between the front end.
  • the tuning element 50 includes a capacitive element connected between the second feeding point D and the radio frequency front end 20.
  • a capacitive element By disposing a capacitive element between the second feeding point D and the radio frequency front end 20, the second sub-radiator 13 can generate a composite left and right-handed antenna pattern, so as to obtain the required working frequency band while reducing as much as possible.
  • the size of the small radiator 10 saves the layout space of the antenna.
  • tuning elements such as capacitive elements or inductive elements may also be connected between the radio frequency front end 20 and the first feeding point C to obtain the desired antenna mode.
  • FIG. 7 is a simulation diagram of S parameters of the common antenna 100 according to the embodiment shown in FIG. 6 of this application.
  • the dark solid line is the S22 parameter simulation diagram of the working frequency band generated by the resonance of the first sub-radiator 12 and the parasitic resonance of the second sub-radiator 13 for the signal fed by the first feeding point C; shallow
  • the solid colored line is the S21 parameter simulation diagram of the common body antenna 100; the dark dashed line is the parasitic resonance of the signal fed by the second feeding point D through the second sub-radiator 13 and the first sub-radiator 12
  • the generated S 11 parameter simulation diagram of the working frequency band is the generated.
  • the abscissa is the frequency, the unit is GHz; the ordinate is the S parameter value, the unit is dB.
  • the signal fed by the first feeding point C resonates through the first sub-radiator 12 and the parasitic resonance of the second sub-radiator 13 includes resonance a, resonance b, resonance c, At least five resonances of resonance d and resonance e; the signal fed from the second feeding point D resonates through the second sub-radiator 13 and the parasitic resonance of the first sub-radiator 12 includes resonance f and resonance g At least two resonances.
  • the working frequency band generated by the signal fed by the first feeding point C through the resonance of the first sub radiator 12 and the parasitic resonance of the second sub radiator 13 covers the working frequency bands of the WIFI antenna and the Sub 6G antenna, even though Obtaining the WIFI antenna and the Sub 6G antenna together can reduce the number of radiators, and can reduce the number of feed points, the number of shrapnel connected to the feed point and the radio frequency front end, and the means for adjusting the antenna mode The number of resonant elements, etc., thereby simplifying the structure of the antenna and saving the layout space of the common antenna 100.
  • the WIFI antenna mode specifically includes a 2.4G WIFI antenna mode and a 5G WIFI antenna mode.
  • the working frequency of the 2.4G WIFI antenna mode is 2.4Ghz ⁇ 2.5GHz, which is the frequency band corresponding to position resonance a in Fig. 7; the working frequency of the 5G WIFI antenna mode is 4.9Ghz ⁇ 5.9GHz, which is the position resonance in Fig. 7 Frequency band corresponding to d and e.
  • the Sub 6G antenna mainly refers to a frequency band of an antenna mode with a working frequency band lower than 6G Hz.
  • the Sub 6G frequency band mainly includes 5G frequency bands such as the N77 frequency band, the N78 frequency band, and the N79 frequency band, so that the common antenna 100 can meet the existing 5G communication requirements.
  • the operating frequency of the N77 antenna mode is 3.3Ghz ⁇ 4.2GHz
  • the operating frequency of the N78 antenna mode is 3.3Ghz ⁇ 3.8GHz
  • the operating frequency of the N79 antenna mode is 4.4 GHz to 5.0 GHz, which is the frequency band corresponding to position resonance b and c in FIG. 7.
  • the working frequency band that can be generated by the resonance of the first sub-radiator 12 includes a first working frequency band, a second working frequency band, and a third working frequency band
  • the working frequency band generated by the parasitic resonance of the second sub-radiator 13 includes a fourth working frequency band.
  • Working frequency band and the fifth working frequency band are working frequency band and the fifth working frequency band.
  • the first working frequency band covers the working frequency band of a 2.4G WIFI antenna
  • the second working frequency band and the fourth working frequency band cover the working frequency band of a Sub 6G antenna
  • the third working frequency band and the fifth working frequency band cover 5G WIFI The working frequency band of the antenna.
  • the working frequency band generated by the resonance of the first sub-radiator 12 and the parasitic resonance generated by the second sub-radiator 13 can cover the working frequency bands of the Sub 6G antenna, 2.4G WIFI antenna, and 5G WIFI antenna, that is,
  • the radiator 10 can realize a community of a Sub 6G antenna, a 2.4G WIFI antenna, and a 5G WIFI antenna at the same time, which saves the layout space of the community antenna 100. It can be understood that, in other embodiments of the present application, by adjusting the position of the first feeding point C and/or the second feeding point D, the position of the slit 11, or the size or shape of the radiator 10, the The common body antenna 100 can also generate other required operating frequency bands.
  • the first working frequency band is the working frequency band of the quarter antenna mode of the IFA generated by the resonance of the first sub-radiator 12, and its current distribution is shown in the direction of the arrow in FIG. 8.
  • the current direction of the IFA quarter antenna mode is the direction from the first ground point A to the slot 11.
  • the second working frequency band is a half-wavelength mode of the loop antenna generated by the resonance of the first sub-radiator 12, and its current distribution is shown in the direction of the arrow in FIG. 9. Specifically, there is a current zero point between the first feed point C and the first ground point A, and the current flows in the direction of the current zero point from the first feed point C and the first ground point A respectively. Among them, the current zero point refers to the position where the current is zero.
  • the third working frequency band is the working frequency band of the IFA three-quarter antenna mode generated by the resonance of the first sub-radiator 12, and its current distribution is shown in the direction of the arrow in FIG. 10. Wherein, there is a current zero point between the first feeding point C and the gap 11, and the current flows from the first feeding point C and the gap 11 to the current zero point respectively.
  • the second filter circuit 40 connected between the radio frequency front end 20 and the second feeding point D is a high-pass low-impedance filter circuit, it can allow the radio frequency signal of the fourth working frequency band to be fed to the ground through the second filter circuit 40 .
  • the radio frequency signal will be grounded via the second ground point B through the second sub-radiator 13.
  • the wavelength mode generated by the parasitic resonance of the second sub-radiator 13 is the half-wavelength mode of the loop parasitic antenna, and the working frequency band of the half-wavelength mode of the loop parasitic antenna covers the fourth operation Frequency band.
  • the current distribution of the half-wavelength mode of the loop parasitic antenna is shown in the direction of the arrow in FIG. 11. Wherein, a current zero point is formed between the second feed point D and the second ground point B, and the current flows from the second feed point D and the second ground point B to the current zero point respectively.
  • the second filter circuit 40 connected between the radio frequency front end 20 and the second feed point D is a high-pass low-impedance filter circuit, it can allow the radio frequency signal of the fifth working frequency band to be fed to the ground through the second filter circuit 40 .
  • the radio frequency signal will be grounded via the second ground point B through the second sub-radiator 13.
  • the wavelength mode generated by the parasitic resonance of the second sub-radiator 13 is the three-half wavelength mode of the loop parasitic antenna, and the operating frequency band of the three-half wavelength mode of the loop parasitic antenna covers the fifth operation Frequency band.
  • the current distribution of the three-half-wavelength mode of the loop parasitic antenna is shown in the direction of the arrow in FIG. 12.
  • two spaced current zero points are formed between the second feed point D and the second ground point B, which are respectively the first zero point and the second zero point, which are closer to the gap than that.
  • the current direction of the three-half-wavelength mode of the loop parasitic antenna flows from the first zero point and the second ground point B to the second zero point, and part of the current flows from the first zero point to the slot direction.
  • the working frequency band generated by the resonance of the second sub-radiator 13 and the parasitic resonance of the first sub-radiator 12 covers the working frequency bands of the GPS L1 antenna mode and the GPS L5 antenna mode, so that the GPS L1 antenna and the GPS L5 antenna can be shared Body design, can reduce the number of radiators, and can reduce the number of feed points, connected to the feed point and the radiation The number of shrapnel in the frequency front end, and the number of resonant elements used to adjust the antenna mode, etc., thereby simplifying the structure of the antenna and saving the layout space of the common antenna 100.
  • the working frequency band of the GPS L5 antenna is 1176.45 MHz, which is the frequency band corresponding to position resonance f in FIG. 7;
  • the working frequency band of the GPS L1 antenna is 1575.42 MHz, which is the frequency band corresponding to position resonance g in FIG.
  • the operating frequency band generated by resonance of the second sub-radiator 13 includes a sixth operating frequency band
  • the operating frequency band generated by parasitic resonance of the first sub-radiator 12 includes a seventh operating frequency band.
  • the six working frequency bands cover the working frequency band of the GPS L5 antenna
  • the seventh working frequency band covers the working frequency band of the GPS L1 antenna, so that the working frequency band generated by the radiator 10 can simultaneously cover the working frequency band of the GPS L5 antenna and the GPS L1 antenna.
  • Working frequency band thereby realizing the common body of GPS L 1 antenna and GPS L5 antenna, saving antenna layout space.
  • the sixth working frequency band is the working frequency band of the composite left and right-handed antenna mode (CRLH antenna mode) generated by the resonance of the second sub radiator 13, and its current distribution is shown in FIG.
  • the current direction of the composite left-handed antenna mode is the direction from the second feeding point D to the second grounding point B through the second radiator 13.
  • the sixth operating frequency band is generated by a composite left-handed antenna pattern, and the length of the radiator 10 of the composite left-handed antenna pattern is 1/8X, that is, the first feeding point C and the first grounding point
  • the length of the radiator between A is 1/8 of the wavelength.
  • the length of the radiator 10 is smaller, which can further reduce the layout space of the antenna.
  • the first filter circuit 30 connected between the radio frequency front end 20 and the first feed point C is a high-impedance low-pass filter circuit, it can allow the radio frequency signal of the seventh working frequency band to pass through the first filter circuit 30 to feed the ground, so that all A quarter-wavelength parasitic antenna mode formed by the parasitic resonance generated by the first sub-radiator 12 under the influence of the second sub-radiator 13, and the working frequency band of the quarter-wavelength parasitic antenna mode covers the The seventh working frequency band.
  • the current distribution of the quarter-wavelength parasitic antenna mode is shown in Figure 14. Wherein, the current direction of the quarter-wave parasitic antenna mode formed by the parasitic resonance is the direction from the slot 11 to the first ground point A.
  • the working frequency band generated by the resonance of the first sub-radiator and the parasitic resonance of the second sub-radiator covers the working frequency bands of the WIFI antenna and the Sub 6G antenna
  • the second sub-radiator The working frequency band generated by the bulk resonance and the parasitic resonance of the first sub-radiator covers the working frequency bands of the GPS L1 antenna and the GPS L5 antenna, so as to realize the common body of the WIFI antenna, the Sub 6G antenna, the GPS L1 antenna and the GPS L5 antenna, As a result, the common body antenna occupies a small space while covering the working frequency bands of multiple different antenna modes.
  • the common body antenna can realize the coverage of multiple antenna modes through two feeding points (the first feeding point and the second feeding point), which can reduce the feeding points compared with the antenna of the prior art. Therefore, it is possible to reduce the number of shrapnel or connecting wires connecting the feeding point and the radio frequency front end and the number of resonant elements for adjusting the antenna mode, thereby simplifying the structure of the antenna and further reducing the space occupied by the antenna.
  • the width of the slit 11 needs to be within a certain range to prevent the width of the slit from being too wide or too narrow, so as to ensure that the first radiator and the first radiator are in a certain working frequency band.
  • the two radiators can influence each other to generate parasitic resonance, thereby increasing the number of antenna modes without increasing the antenna structure, so as to reduce the occupied space of the common antenna 100.
  • the width of the slot 11 is that the width of the slot is greater than a thirty-second wavelength of the highest resonance frequency and less than a sixteenth wavelength of the highest resonance frequency; the highest resonance frequency is The highest operating frequency among the operating frequencies of the multiple different antenna modes of the common body antenna.
  • the highest resonance frequency is the working frequency band of the 5G WIFI.
  • FIG. 15 is a simulation efficiency diagram of the community antenna 100 according to an embodiment of the application.
  • the abscissa is the frequency and the unit is GHz; the ordinate is the efficiency and the unit is dBp. It can be seen from the figure that the radiation efficiency of each operating frequency band is Above -5dBp, it has high radiation efficiency. In addition, the radiation efficiency in the frequency band above 3GHz is relatively high.
  • the radiation efficiency of the GPSL1 antenna with a working frequency band of 1575.42MHz is about 1 db lower than that of the GPSL5 antenna with a working frequency band of 1176.45MHz.
  • Figure 16a, Figure 16b and Figure 16c, Figure 16d are respectively the radiation direction simulation diagrams of GPS L1 antenna mode and GPS L5 antenna mode. It can be seen from the figure that the upper hemisphere ratios of GPSL5 antenna mode and GPSL1 antenna mode are both above -3dB, and the upper hemisphere ratio is higher. High, good for user experience.
  • Figure 16c and Figure 16d are respectively the radiation direction simulation diagram of 2.4G WIFI antenna mode and GPS L5 antenna mode. It can be seen from the figure that the directivity of 2.4GWIFI antenna mode is about 4, and the directivity of 5GWIFI antenna mode is about 5.5 , Good directionality.
  • the distance from the first feeding point C to the slot 11, the distance from the second feeding point D to the slot 11, and the first grounding point A to the slot also need to be within a certain range, so that the common antenna 100 can generate a required working frequency band to meet actual requirements.
  • the distance from the first feeding point C to the slot 11 is one-sixteenth of the wavelength of the working frequency of the antenna pattern formed between the two, and the second feeding point D
  • the distance to the slot 11 is one-eighth wavelength of the working frequency of the antenna mode formed between the two; the distance from the first ground point C to the slot 11 is from the first ground point C to A quarter wavelength of the operating frequency of the antenna pattern formed between the slots 11; the distance from the second ground point B to the slot 11 is four times the operating frequency of the antenna pattern formed between the two One-half the wavelength to obtain each antenna mode in the above-mentioned embodiment.
  • the electronic device 1000 may be a mobile phone, a tablet, a mobile watch, or the like.
  • the electronic device 1000 includes a middle frame 110, a main board 120, and the common antenna 100.
  • the middle frame 110 is grounded.
  • the first ground point A and the second ground point B of the common antenna 100 are both connected to the middle frame 110.
  • the frame 110 is connected to realize the grounding of the first ground point A and the second ground point B.
  • the radio frequency front end 20 of the common antenna 100 is disposed on the main board 120, and the main board 120 is disposed on the middle frame 110.
  • the headroom of the community antenna 100 is about 1.3 mm.
  • the middle frame 110 includes a middle plate 111 and a frame 112 surrounding the middle plate, the radiator 10 of the common antenna 100 is arranged between the middle plate 111 and the frame 112, and the main board 120 is fixed to On the board 111.
  • the frame 112 is a non-metal frame, and the radio frequency signal generated or received by the radiator 10 can pass through the non-metal frame for transmission, thereby avoiding the restriction of the frame 112 on the signal generation of the common antenna 100.
  • the form of the common body antenna 100 may be a flexible printed circuit (FPC) antenna form, a laser-direct-structuring (Laser-Direct-structuring, LDS) antenna form, or a single antenna (Microstrip Disk Antenna). , MDA) and other antenna forms.
  • FPC flexible printed circuit
  • LDS laser-direct-structuring
  • MDA single antenna
  • the frame 112 of the electronic device 1100 is a metal frame, and part of the metal frame is The radiation body 10 of the community antenna 100.
  • the metal frame As the radiator 10 of the common antenna 100, the space occupied by the common antenna can be further reduced.
  • the slot 11 of the common antenna 100 is located on the upper frame of the frame 112. It can be understood that, in other embodiments of the present application, the slot 11 of the common body antenna 100 may also be located on the side frame of the frame 112.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供共体天线及包括共体天线的移动终端。共体天线包括经缝隙分割为第一子辐射体及第二子辐射体的辐射体、第一馈电点、第二馈电点;第一馈电点传输的射频信号经第一子辐射体谐振以及第二子辐射体的寄生谐振产生多个不同天线模式的工作频段,第二馈电点传输的射频信号经第二子辐射体谐振以及第一子辐射体的寄生谐振产生多个不同天线模式的工作频段。通过第一子辐射体与第二子辐射体产生的谐振,以及第一子辐射体与第二子辐射体之间相互影响产生的寄生谐振,使得所述共体天线能够产生多个不同天线模式。并且,各不同的天线模式共用辐射体,且仅需要两个馈入点即可,实现天线共体并简化天线结构,从而减少共体天线的占用空间。

Description

共体天线及电子设备 本申请要求在 2019年 2月 27日提交中国国家知识产权局、 申请号为 201910146738.1、 发明名称为 “一种共体天线方案” 的中国专利申请的优先权, 在 2019年 4月 4日提交中国国 家知识产权局、 申请号为 201910278901.X、 发明名称为 “共体天线及电子设备” 的中国专利 申请的优先权其全部内容通过引用结合在本申请中。 技术领域
本申请涉及通信技术领域, 尤其涉及共体天线及电子设备。 背景技术
随着通信技术的不断发展, 需要在手机等移动终端内布局更多的天线。 并且, 由于手机 等移动终端要的发展趋势为高屏占比、 多摄像头, 使得天线净空的大幅减少, 天线的布局空 间进一步压缩。 因此,如何在有限的净空空间内布局更多的天线,成了天线设计的一大难题。 发明内容
本申请提供共体天线及电子设备, 旨在减小天线占用的空间, 以在有限的净空空间内布 局更多的天线。
第一方面, 本申请提供一种共体天线。 所述共体天线包括辐射体、 第一接地点、 第二接 地点、 第一馈电点、 第二馈电点、 第一滤波电路以及第二滤波电路; 所述第一接地点及第二 接地点均接地, 所述第一接地点及第二接地点分别位于所述福射体相对的两端; 所述福射体 上设有缝隙, 所述缝隙将所述辐射体分割为第一子辐射体与第二子辐射体, 所述第一馈电点 位于所述第一子辐射体上, 所述第二馈电点位于所述第二子辐射体上; 所述第一滤波电路的 一端连接至所述第一馈电点,另一端接地;所述第二滤波电路的一端连接至所述第二馈电点, 另一端接地; 所述第一馈电点传输的射频信号经所述第一子辐射体谐振以及所述第二子辐射 体的寄生谐振产生多个不同天线模式的工作频段, 所述第二馈电点传输的射频信号经所述第 二子辐射体谐振以及所述第一子辐射体的寄生谐振产生多个不同天线模式的工作频段。
本申请中,通过在第一接地点与第二接地点之间的所述辐射体上设置至少两个馈电点(包 括第一馈电点及第二馈电点) , 相对于相邻的两个接地点的福射体上仅设置一个馈电点的天 线结构(即每个福射体设有一个馈电点)来说,本申请中两个馈电点能够同时进行信号传输, 以使得所述辐射体上能够同时产生多种天线模式, 实现不同天线模式共用辐射体, 从而减少 天线占用的体积。 并且, 在覆盖同样种类的天线模式的情况下, 本申请中通过共用辐射体, 能够减少馈电点以及相应的射频元件的使用, 从而进一步筒化天线的结构, 减小天线占用的 体积。
本申请中, 通过设置缝隙将所述辐射体分割为第一子辐射体与所述第二子辐射体, 并分 别对所述第一子辐射体与第二自辐射体分别进行馈电。 当第一子辐射体由于第一馈电点馈入 信号而产生谐振时, 第二子辐射体会在第一子辐射体的影响下产生寄生谐振; 同时, 当第二 子辐射体由于第二馈电点馈入信号而产生谐振时, 第一子辐射体会在第二子辐射体的影响下 产生寄生谐振。 通过第一辐射体与第二辐射体之间的相互影响, 使得所述共体天线上会产生 寄生谐振, 从而进一步的增加天线覆盖的工作频段, 即能够进一步的在增加天线模式的数量 的同时, 避免增加天线占用空间。
进一步的,本申请通过将所述第一滤波电路的一端连接至所述第一馈电点,另一端接地; 所述第二滤波电路的一端连接至所述第二馈电点, 另一端接地, 从而通过第一滤波电路及第 二滤波电路调整射频信号的馈地位置。 由于馈电位置的不同, 从而产生不同的天线模式, 即 通过所述第一滤波电路及第二滤波电路,使得所述共体天线能够得到更多的不同的天线模式, 从而保证所需天线模式的情况下, 避免增加天线的布局空间。
本申请一实施例中, 所述第一滤波电路为高阻低通滤波电路, 所述高阻低通滤波电路在 GPS的频段为通带, 在大于或等于 2.4G WIFI的频段为阻带, 即所述第一滤波电路能够使得 GPS频段的射频信号通过, 并不允许大于或等于 2.4G WIFI频段的射频信号通过。 所述第二 滤波电路为高通低阻滤波电路, 所述高通低阻滤波电路在 GPS 频段为阻带, 在大于或等于 2.4G WIFI的频段为通带,即所述第一滤波电路能够使得大于或等于 2.4G WIFI频段的射频信 号通过, 并不允许 GPS频段的射频信号通过。 通过第一滤波电路以使得一定频段的射频信号 能够通过第一滤波电路进行接地, 并通过第二滤波电路以使得一定频段的射频信号能够通过 第二滤波电路进行接地。 通过改变接地点的位置, 从而使得不同射频信号的馈地位置不同, 从而得到不同的天线模式。
本申请一种实施例中, 所述第一滤波电路及所述第二滤波电路均包括并联设置的第一电 容及第一电感。
本申请另一种实施例中, 所述第一滤波电路或所述第二滤波电路还包括第二电感, 所述 第二电感与所述第一电容串联。
本申请另一种实施例中, 所述第一滤波电路或所述第二滤波电路还包括第二电容, 所述 第二电容与并联设置的所述第一电容及第一电感串联。
本申请一些实施例中, 所述第一子辐射体谐振以及所述第二子辐射体的寄生谐振产生的 工作频段覆盖 WIFI天线及 Sub 6G天线的工作频段, 即所述辐射体能够同时作为 WIFI天线 与所述 Sub 6G天线的辐射体, 从而实现 WIFI天线与 Sub 6G天线的共体。 进一步的, 在一 些实施例中, 所述第二子辐射体谐振以及所述第一子辐射体的寄生谐振产生的工作频段覆盖 GPS L1天线及 GPS L5天线的工作频段,即所述辐射体能够同时作为 GPS L1天线以及 GPS L5 天线的辐射体, 从而实现 GPS L1天线以及 GPS L5天线的共体。 可以理解的是, 在一些实施 例中, 所述第一子辐射体谐振以及所述第二子辐射体的寄生谐振产生的工作频段覆盖 WIFI 天线及 Sub 6G天线的工作频段, 同时, 所述第二子辐射体谐振以及所述第一子辐射体的寄 生谐振产生的工作频段覆盖 GPS L1天线及 GPS L5天线的工作频段, 从而能够实现 WIFI天 线、 Sub 6G天线以及 GPS L1天线、 GPS L5天线的共体, 使得所述共体天线在覆盖多个不 同天线模式的工作频段的同时, 占用空间较小。 同时, 所述共体天线通过两个馈电点 (第一 馈电点及第二馈电点) 即能够实现多种天线模式的覆盖, 相对于现有技术的天线来说能够减 少馈电点的数量, 从而能够减少馈电点与射频前端连接的弹片或者连接线以及调整天线模式 的谐振元件的数量, 从而筒化天线的结构, 进一步的减少天线占用空间。 本申请一些实施例 中, 所述第一子辐射体谐振产生的工作频段包括第一工作频段、 第二工作频段及第三工作频 段, 所述第二子辐射体寄生谐振产生的工作频段包括第四工作频段以及第五工作频段; 所述 第一工作频段覆盖 2.4G WIFI天线的工作频段, 所述第二工作频段及第四工作频段覆盖 Sub 6G天线的工作频段,所述第三工作频段及第五工作频段覆盖 5G WIFI天线的工作频段。这些 实施例中, 所述第一子辐射体的谐振与所述第二子辐射体产生的寄生谐振产生的工作频段能 够覆盖 Sub 6G天线以及 2.4G WIFI、 5GWIFI天线的工作频段, 即所述辐射体能够同时实现 Sub 6G天线与 WIFI天线的共体, 节省了天线的布局空间。
其中, 所述 Sub 6G天线是指工作频段低于 6G Hz的天线模式的频段。 本申请一些实施 例中,所述 Sub 6G频段主要包括 N77、 N78 、 N79等 5G频段, 以满足现有 5G通信的需求。
具体的, 一些实施例中, 所述第一工作频段为所述第一子辐射体谐振产生的 IFA四分之 一天线模式的工作频段, 所述第二工作频段为第一馈电点至所述第一接地点形成的环形天线 的二分之一波长模式的工作频段, 所述第三工作频段为所述第一子辐射体谐振产生的 IFA四 分之三天线模式的工作频段; 所述第四工作频段为所述第二子辐射体寄生谐振产生的环寄生 天线的二分之一波长模式, 所述第五工作频段为所述第二子辐射体寄生谐振产生的环寄生天 线的二分之三波长模式。
本申请一些实施例中, 所述第二子辐射体谐振产生的工作频段包括第六工作频段, 所述 第一子辐射体寄生谐振产生的工作频段包括第七工作频段, 所述第六工作频段覆盖 GPS L5 天线的工作频段, 所述第七工作频段覆盖 GPS L1天线的工作频段, 从而使得所述辐射体产 生的工作频段能够同时覆盖 GPS L5天线的工作频段以及 GPS L1天线的工作频段,从而实现 GPS L 1天线以及 GPS L5天线的共体, 节省天线的布局空间。
具体的, 一些实施例中, 所述第六工作频段为所述第二子辐射体谐振产生的复合左右手 天线模式的工作频段, 所述第七工作频段为所述第一子辐射体寄生谐振产生的带天线模式的 工作频段。 通过复合左右手天线模式产生所述第六工作频段, 所述复合左右手天线模式的辐 射体的长度为 1/8 X , 相对于其它天线模式来说, 所述辐射体的长度更小, 从而能够进一步的 减少天线的布局空间。
具体的, 一些实施例中, 所述第一馈电点和 /或所述第二馈电点与所述射频前端之间连接 有调谐元件, 所述调谐元件用于调节所述共体天线的各个天线模式的类型及其工作频段。 通 过实际需求以调整第一馈电点和 /或所述第二馈电点与所述射频前端之间连接的调谐元件的 类型, 从而使得共体天线产生的天线模式能够满足实际使用的需求。 本申请中, 所述调谐元 件可以为电容元件或者电感元件, 所述电容元件与电感元件可以并联或者串联至所述第一馈 电点和 /或所述第二馈电点与所述射频前端之间。
本申请的一实施例中, 所述调谐元件包括连接于所述第二馈电点与所述射频前端之间的 电容元件。 通过第二馈电点与所述射频前端之间设置电容元件, 使得所述射频前端至所述第 二接地点形成复合左右手天线, 从而能够得到一定的工作频段的同时, 能够尽量的减小辐射 体的大小, 节省天线布局空间。
本申请中, 所述缝隙的宽度大于最高谐振频率的三十二之一波长, 并小于最高谐振频率 的十六分之一波长; 所述最高谐振频率为所述共体天线的多个不同的所述天线模式的工作频 率中最高的工作频率。
本申请中, 需要将所述缝隙的宽度控制在一定的范围内, 避免所述缝隙的宽度过宽或者 过窄, 以保证在一定工作频段下, 所述第一辐射体与所述第二辐射体之间能够相互影响而产 生寄生谐振。
本申请一些实施例中, 所述第一馈电点至所述缝隙的距离为所述第一馈电点至所述缝隙 之间的形成的天线模式的工作频率的十六分之一波长, 所述第二馈电点至所述缝隙的距离为 所述第二馈电点至所述缝隙之间的形成的天线模式的工作频率的八分之一波长; 所述第一接 地点至所述缝隙的距离为所述第一接地点至所述缝隙之间的形成的天线模式的工作频率的四 分之一波长; 所述第二接地点至所述缝隙的距离为所述第二接地点至所述缝隙之间的形成的 天线模式的工作频率的四分之一波长。 本申请中, 通过设计所述第一馈电点至所述缝隙的距 离、 所述第二馈电点至所述缝隙的距离、 所述第一接地点至所述缝隙的距离、 所述第一接地 点至所述缝隙的距离在一定的范围内, 使得所述共体天线能够产生所需的工作频段, 以满足 实际使用的需求。
第二方面, 本申请还提供一种电子设备。 所述电子设备包括中框、 主板以及所述共体天 线, 所述中框接地, 所述共体天线的第一接地点及第二接地点均与所述中框连接, 以实现所 述第一接地点及所述第二接地点的接地。 所述共体天线的射频前端设置于所述主板上, 所述 主板设于所述中框上。 由于所述共体天线占用的空间较小, 使得要求的净空也较小, 从而能 够使得电子设备内的布局更加的紧凑。
本申请的一些实施例中,所述电子设备包括围设于所述主板及所述中框周围的金属边框, 部分所述金属边框为所述共体天线的福射体, 作为所述福射体的金属边框与所述主板之间间 隔以形成间隙,所述间隙为所述共体天线的净空区。通过将金属边框作为共体天线的辐射体, 从而能够进一步的减小共用天线占用的空间。 附图说明
为更清楚地阐述本申请的构造特征和功效, 下面结合附图与具体实施例来对其进行详细 说明。
图 1为本申请一种实施例的共体天线的结构示意图;
图 2为本申请实施例的共体天线中滤波电路的第一种实施例的结构示意图;
图 3为本申请实施例的共体天线中滤波电路的第二种实施例的结构示意图;
图 4为本申请实施例的共体天线中滤波电路的第三种实施例的结构示意图;
图 5为本申请实施例的共体天线中滤波电路的第四种实施例的结构示意图;
图 6为本申请另一种实施例的共体天线的结构示意图;
图 7为图 6实施例的共体天线的 S参数仿真图;
图 8为图 6实施例的共体天线的第一子辐射体谐振产生的 IFA四分之一天线模式的电流 分布示意图;
图 9为图 6实施例的共体天线的第一子辐射体谐振产生的环形天线的二分之一波长模式 的电流分布示意图;
图 10为图 6实施例的共体天线的第一子福射体谐振产生的 IFA四分之三天线模式的电流 分布示意图;
图 11为图 6实施例的共体天线的第二子辐射体寄生谐振产生的环寄生天线的二分之一波 长模式的电流分布示意图;
图 12为图 6实施例的共体天线的第二子辐射体寄生谐振产生的环寄生天线的二分之三波 长模式的电流分布示意图;
图 13为图 6实施例的共体天线的第二子辐射体谐振产生的复合左右手天线模式的电流分 布示意图;
图 14为图 6实施例的共体天线的第一子辐射体寄生谐振形成的四分之一波长寄生天线模 式的电流分布示意图; 图 15为图 6实施例的共体天线的仿真效率图;
图 16a为图 6实施例的的共体天线的 GPS L1天线模式的辐射方向仿真图;
图 16b为图 6实施例的的共体天线的 GPS L5天线模式的辐射方向仿真图;
图 16c为图 6实施例的的共体天线的 2.4G WIFI天线模式的辐射方向仿真图; 图 16d为图 6实施例的的共体天线的 5G WIFI天线模式的辐射方向仿真图;
图 17为本申请一种实施例的电子设备的结构示意图;
图 18为本申请另一种实施例的电子设备的结构示意图。 具体实施方式
下面将结合本申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描 述。
本申请提供共体天线以及包括所述共体天线的电子设备。 所述共体天线的辐射体能够实 现多种不同天线模式的共体, 以减少天线的占用空间。 所述电子设备包括手机、 平板、 智能 手表等电子设备。
请参阅图 1, 本申请提供一种共体天线 100。 所述共体天线 100包括辐射体 10、 第一接 地点 A、第二接地点 B、第一馈电点 C、第二馈电点 D、第一滤波电路 30、第二滤波电路 40。 所述第一接地点 A及第二接地点 B均接地。 所述第一接地点 A及第二接地点 B分别位于所 述辐射体 10相对的两端。 所述辐射体 10上设有缝隙 11, 所述缝隙 11将所述辐射体 10分割 为第一子辐射体 12与第二子辐射体 13。 所述第一馈电点 C位于所述第一子辐射体 12上, 所 述第二馈电点 D位于所述第二子辐射体 13上, 所述第一馈电点 C与所述第二馈电点 D均与 射频前端 20连接。 所述射频前端 20产生的射频信号经所述第一馈电点 C与所述第二馈电点 D传输至辐射体 10或者所述辐射体 10接收的信号经所述第一馈电点 C与所述第二馈电点 D 传输至所述射频前端 20。具体的,所述第一馈电点 C与所述第二馈电点 D通过弹片或者连接 线与所述射频前端 20进行连接。 所述第一滤波电路 30的一端并联至所述第一馈电点 C与所 述射频前端 20之间, 且另一端接地; 所述第二滤波电路 40的一端并联至所述第二馈电点 D 与所述射频前端 20之间, 且另一端接地。 所述第一馈电点 C传输的射频信号经所述第一子 辐射体 12谐振以及所述第二子辐射体 13的寄生谐振产生多个不同天线模式的工作频段, 所 述第二馈电点 D传输的射频信号经所述第二子辐射体 13谐振以及所述第一子辐射体 12的寄 生谐振产生多个不同天线模式的工作频段。
本申请中, 所述第一馈电点 C传输的射频信号经所述第一子辐射体 12谐振以及所述第 二子辐射体 13的寄生谐振能够产生多个不同天线模式的工作频段。 并且, 所述第二馈电点 D 传输的射频信号经所述第二子辐射体 13谐振以及所述第一子辐射体 12的寄生谐振能够产生 多个不同天线模式的工作频段。 具体的, 当通过所述第一馈电点 C 为所述第一子辐射体 12 馈入射频信号时,传输的射频信号引起所述第一子福射体 12产生一定的感应电动势。 由于所 述第一子辐射体 12与所述第二子辐射体 13之间具有一个缝隙 11, 所述缝隙 11相当于一个 等效电容, 通过电容接合使得所述第二子辐射体 13也会产生一定的感应电动势, 即所述第二 子辐射体 13产生一定频段的寄生谐振。
本申请中, 通过所述第一子辐射体 12与所述第二子辐射体 13产生的谐振, 以及所述第 一福射体 10与第二福射体 10之间的相互影响而产生的寄生谐振, 增加所述共体天线 100覆 盖的工作频段, 并且不需要增加馈电点以及辐射体的数量, 能够进一步的在增加天线模式的 数量的同时, 避免增加天线的占用空间。
进一步的, 本申请中, 通过在第一接地点 A与第二接地点 B之间的所述福射体 10上设 置两个馈电点(包括第一馈电点 C及第二馈电点 D), 相对于相邻的两个接地点的辐射体 10 上仅设置一个馈电点的天线结构(即每个辐射体 10设有一个馈电点)来说, 本申请中两个馈 电点能够同时进行信号传输, 以使得所述辐射体 10上能够同时产生多种天线模式, 实现不同 天线模式共用辐射体 10, 从而减少天线占用的体积。 并且, 在覆盖同样种类的天线模式的情 况下, 本申请中通过共用辐射体 10, 能够减少辐射体的数量, 进而减小共体天线 100的占用 空间。 并且, 本申请中通过两个馈电点 (第一馈电点 C及第二馈电点 D) 即能够产生多种天 线模式, 相对于现有技术的天线来说能够减少馈电点的数量, 从而能够减少馈电点与射频前 端连接的弹片或者连接线以及调整天线模式的谐振元件的数量, 从而筒化天线的结构, 进一 步的减少天线占用空间。
进一步的, 本申请通过将所述第一滤波电路 30的一端并联至所述第一馈电点 C与所述 射频前端 20之间, 且另一端接地; 所述第二滤波电路 40的一端并联至所述第二馈电点 D与 所述射频前端 20之间, 且另一端接地, 从而通过第一滤波电路 30及第二滤波电路 40调整射 频信号的馈地位置。 由于馈电位置的不同, 从而产生不同的天线模式, 即通过所述第一滤波 电路 30及第二滤波电路 40, 使得所述共体天线 100能够得到更多的不同的天线模式, 从而 保证得到所需天线模式的情况下, 避免增加天线的布局空间。
本实施例中, 所述第一滤波电路 30为高阻低通滤波电路, 所述高阻低通滤波电路能够实 现高阻低通的滤波效果。 具体的, 高阻低通的滤波效果是指所述高阻低通滤波电路在 GPS的 频段为通带, 在大于或等于 2.4GWIFI的频段为阻带, 即所述第一滤波电路 30能够使得 GPS 频段的射频信号通过,并不允许大于或等于 2.4GWIFI频段的射频信号的通过。所述第二滤波 电路 40为高通低阻滤波电路,所述高通低阻滤波电路能够实现高通低阻的滤波效果。具体的, 高通低阻的滤波效果是指所述高通低阻滤波电路在 GPS频段为阻带,在大于或等于 2.4GWIFI 的频段为通带,即所述第二滤波电路 40能够使得大于或等于 2.4GWIFI频段的射频信号通过, 并阻碍 GPS频段的射频信号通过。 通过第一滤波电路 30以使得一定频段的射频信号能够通 过第一滤波电路 30进行接地, 并通过第二滤波电路 40以使得一定频段的射频信号能够通过 第二滤波电路 40进行接地,从而使得不同射频信号的馈地位置不同,从而得到不同的天线模 式。
本申请中,所述第一滤波电路 31与所述第二滤波电路 32的结构可以为多种不同的形态。 例如, 请参阅图 2, 图 2为本申请一实施例的滤波电路的结构示意图, 所述滤波电路包括并 联设置的第一电容 311及第一电感 312的电路。 请参阅图 3, 图 3为本申请第二种实施例的 滤波电路的结构示意图, 图 3所示实施例的所述滤波电路与图 2所示的滤波电路的结构的差 别在于:所述滤波电路还包括第二电感 313 ,所述第二电感 313与所述第一电容 311串联后, 再与所述第一电感 312串联。 请参阅图 4, 图 4为本申请第三种实施例的滤波电路的结构示 意图, 图 4所示实施例的所述滤波电路与图 2所示的滤波电路的结构的差别在于: 所述滤波 电路还包括第二电容 314,所述第二电容 314与并联设置的所述第一电容 311及第一电感 312 串联。 其中, 所述第一电容 311及第二电容 314可以为固定电容或者可调电容, 所述第一电 感 312及第二电感 313可以为固定电感或者可调电感。 例如, 如图 5所示, 图 5为本申请第 四种实施例的滤波电路的结构示意图, 图 5所示实施例的所述滤波电路与图 2所示的滤波电 路的结构的差别在于: 所述第一电容 314为可调电容。 本申请中, 所述第一滤波电路 31与所述第二滤波电路 32可以为图 2至图 4任一实施例 所示的滤波电路, 且第一电路滤波电路 31与第二滤波电路 32的类型可以相同也可以不同。 本实施例中,所述第一滤波电路 31与所述第二滤波电路 32均为图 2所示实施例的滤波电路。 通过调整滤波电路中的第一电容 311、 第二电容 314以及第一电感 312、 第二电感 313中任一 一个或者几个的大小值不同,从而实现所述滤波电路的高通低阻的效果或者低通高阻的效果。 本实施例中, 所述第一滤波电路 31的第一电感 312约为 4nH, 所述第一滤波电路 31的第一 电容 311约为 lpF, 以得到高阻低通的滤波电路; 所述第二滤波电路 32的第一电感 312约为 6.8nH, 所述第一滤波电路 31的第一电容 311约为 1.5pF, 以得到高通低阻的滤波电路。
进一步的, 请参阅图 6, 本申请的一实施例中, 所述第一馈电点 C和 /或所述第二馈电点 D与所述射频前端 20之间还连接有调谐元件 50,所述调谐元件 50用于调节所述共体天线 100 的各个天线模式的类型及其工作频段。通过实际需求以调整第一馈电点 C和 /或所述第二馈电 点 D与所述射频前端 20之间连接的调谐元件 50的类型或者数量, 从而使得共体天线 100的 天线模式能够满足实际使用的需求。本申请中, 所述调谐元件 50可以为电容元件或者电感元 件, 所述电容元件与电感元件可以并联或者串联至所述第一馈电点和 /或所述第二馈电点与所 述射频前端之间。 本实施例中, 所述调谐元件 50包括连接于所述第二馈电点 D与所述射频 前端 20之间的电容元件。 通过第二馈电点 D与所述射频前端 20之间设置电容元件, 使得所 述第二子辐射体 13能够产生复合左右手天线模式,从而能够得到所需的工作频段的同时, 能 够尽量的减小辐射体 10的大小, 节省天线的布局空间。 可以理解的是, 在本申请的其它实施 例中, 在所述射频前端 20与第一馈电点 C之间也可以连接电容元件或者电感元件等调谐元 件, 以得到所需的天线模式。
请参阅图 7, 图 7为本申请图 6所示实施例的共体天线 100的 S参数仿真图。 其中, 深 色实线为第一馈电点 C馈入的信号经所述第一子辐射体 12谐振以及所述第二子辐射体 13的 寄生谐振产生的工作频段的 S22参数仿真图; 浅色实线为共体天线 100的 S21参数仿真图; 深色虚线为第二馈电点 D馈入的信号经所述第二子辐射体 13谐振以及所述第一子辐射体 12 的寄生谐振产生的工作频段的 S 11 参数仿真图。 其中, 横坐标为频率, 单位为 GHz ; 纵坐 标为 S参数值, 单位为 dB。从图中可以看出, 第一馈电点 C馈入的信号经所述第一子辐射体 12谐振以及所述第二子辐射体 13的寄生谐振产生包括谐振 a、 谐振 b、 谐振 c、 谐振 d、谐振 e的至少五种谐振; 第二馈电点 D馈入的信号经所述第二子辐射体 13谐振以及所述第一子辐 射体 12的寄生谐振产生包括谐振 f、 谐振 g的至少两种谐振。
所述第一馈电点 C馈入的信号经所述第一子辐射体 12谐振以及所述第二子辐射体 13的 寄生谐振产生的工作频段覆盖 WIFI天线及 Sub 6G天线的工作频段,即使得 WIFI天线与 Sub 6G天线共体, 能够减少辐射体的数量, 并且能够减少馈入点的数量、 连接于所述馈入点与射 频前端的弹片的数量, 以及用于调整所述天线模式的谐振元件等的数量, 从而筒化天线的结 构,并节省所述共体天线 100的布局空间。本实施例中,所述 WIFI天线模式的具体包括 2.4G WIFI天线模式以及 5G WIFI天线模式。所述 2.4G WIFI天线模式的工作频率为 2.4Ghz~2.5GHz, 即图 7中位置谐振 a对应的频段; 所述 5G WIFI天线模式的工作频率为 4.9Ghz~5.9GHz, 即 图 7中位置谐振 d、 e对应的频段。 所述 Sub 6G天线主要是指工作频段低于 6G Hz的天线模 式的频段。 本申请一些实施例中, 所述 Sub 6G频段主要包括 N77频段、 N78频段及 N79频 段等 5G频段, 以使得所述共体天线 100能够满足现有的 5G通信的需求。 其中, 所述 N77 天线模式的工作频率为 3.3Ghz~4.2GHz, 所述 N78天线模式的工作频率为 3.3Ghz~3.8GHz, 所述 N79天线模式的工作频率为 4.4Ghz~5.0GHz, 即图 7中位置谐振 b、 c对应的频段。
具体的, 所述第一子辐射体 12谐振能够产生的工作频段包括第一工作频段、 第二工作频 段及第三工作频段,所述第二子辐射体 13寄生谐振产生的工作频段包括第四工作频段以及第 五工作频段。 其中, 所述第一工作频段覆盖 2.4G WIFI天线的工作频段, 所述第二工作频段 及第四工作频段覆盖 Sub 6G 天线的工作频段, 所述第三工作频段及第五工作频段覆盖 5G WIFI天线的工作频段。 这些实施例中, 所述第一子辐射体 12的谐振与所述第二子辐射体 13 产生的寄生谐振产生的工作频段能够覆盖 Sub 6G天线以及 2.4G WIFI天线、 5GWIFI天线的 工作频段, 即所述辐射体 10能够同时实现 Sub 6G天线、 2.4G WIFI天线以及 5GWIFI天线的 共体, 节省了共体天线 100的布局空间。 可以理解的是, 在本申请的其它实施例中, 通过调 整第一馈电点 C和 /或第二馈电点 D的位置、缝隙 11的位置或者辐射体 10的尺寸或者形状等, 所述共体天线 100也能够产生其它需要的工作频段。
具体的,所述第一工作频段为所述第一子辐射体 12谐振产生的 IFA四分之一天线模式的 工作频段, 其电流分布如图 8中箭头方向所示。 其中, IFA四分之一天线模式的电流方向为 所述第一接地点 A至所述缝隙 11的方向。
所述第二工作频段为所述第一子辐射体 12谐振产生的环形天线的二分之一波长模式,其 电流分布如图 9中箭头方向所示。 具体的, 第一馈电点 C与第一接地点 A之间具有一个电流 零点, 电流分别从所述第一馈电点 C与第一接地点 A向电流零点方向流动。 其中, 电流零点 是指电流为 0的位置。
所述第三工作频段为所述第一子辐射体 12谐振产生的 IFA四分之三天线模式的工作频段, 其电流分布如图 10中箭头方向所示。 其中, 所述第一馈电点 C与所述缝隙 11之间具有一个 电流零点, 电流分别从第一馈电点 C与缝隙 11向电流零点流动。
本实施例中, 由于连接于射频前端 20与第二馈电点 D之间的第二滤波电路 40为高通低 阻滤波电路, 能够允许第四工作频段的射频信号经过第二滤波电路 40馈地。 同时, 射频信号 会经过所述第二子辐射体 13经第二接地点 B接地。 此时, 所述第二子辐射体 13寄生谐振产 生的波长模式为环寄生天线的二分之一波长模式, 所述环寄生天线的二分之一波长模式的工 作频段覆盖所述第四工作频段。所述环寄生天线的二分之一波长模式的电流分布如图 11中箭 头方向所示。 其中, 第二馈电点 D与第二接地点 B之间形成有一个电流零点, 电流分别从第 二馈电点 D与第二接地点 B向电流零点流动。
本实施例中, 由于连接于射频前端 20与第二馈电点 D之间的第二滤波电路 40为高通低 阻滤波电路, 能够允许第五工作频段的射频信号经过第二滤波电路 40馈地。 同时, 射频信号 会经过所述第二子辐射体 13经第二接地点 B接地。 此时, 所述第二子辐射体 13寄生谐振产 生的波长模式为环寄生天线的二分之三波长模式, 所述环寄生天线的二分之三波长模式的工 作频段覆盖所述第五工作频段。所述环寄生天线的二分之三波长模式的电流分布如图 12中箭 头方向所示。 其中, 第二馈电点 D与第二接地点 B之间形成有间隔的两个电流零点, 分别为 第一零点以及第二零点, 相较于更靠近所述缝隙。 且所述环寄生天线的二分之三波长模式的 电流方向分别从第一零点及第二接地点 B向第二零点流动, 且部分电流从第一零点向缝隙方 向流动。
所述第二子辐射体 13 谐振以及所述第一子辐射体 12 的寄生谐振产生的工作频段覆盖 GPS L1天线模式及 GPS L5天线模式的工作频段,从而使得 GPS L1天线以及 GPS L5天线能 够共体设计, 能够减少辐射体的数量, 并且能够减少馈入点的数量、 连接于所述馈入点与射 频前端的弹片的数量, 以及用于调整所述天线模式的谐振元件等的数量, 从而筒化天线的结 构,并节省所述共体天线 100的布局空间。其中,所述 GPS L5天线的工作频段为 1176.45MHz, 即图 7中位置谐振 f对应的频段; 所述 GPS L1天线的工作频段为 1575.42MHz, 即图 7中位 置谐振 g对应的频段。
具体的, 本实施例中, 所述第二子辐射体 13谐振产生的工作频段包括第六工作频段, 所 述第一子辐射体 12寄生谐振产生的工作频段包括第七工作频段,所述第六工作频段覆盖 GPS L5天线的工作频段, 所述第七工作频段覆盖 GPS L1天线的工作频段, 从而使得所述辐射体 10产生的工作频段能够同时覆盖 GPS L5天线的工作频段以及 GPS L1天线的工作频段,从而 实现 GPS L 1天线以及 GPS L5天线的共体, 节省天线的布局空间。
本实施例中,所述第六工作频段为所述第二子辐射体 13谐振产生的复合左右手天线模式 (CRLH天线模式)的工作频段, 其电流分布如图 13所示。 其中, 复合左右手天线模式的电 流方向为所述第二馈电点 D经所述第二辐射体 13至所述第二接地点 B的方向。
本实施例中, 通过复合左右手天线模式产生所述第六工作频段, 所述复合左右手天线模 式的辐射体 10的长度为 1/8 X,即所述第一馈电点 C与第一接地点 A之间的辐射体的长度为 波长的 1/8。 相对于其它天线模式来说, 所述辐射体 10的长度更小, 从而能够进一步的减少 天线的布局空间。
由于连接于射频前端 20与第一馈电点 C之间的第一滤波电路 30为高阻低通滤波电路, 能够允许第七工作频段的射频信号经过第一滤波电路 30馈地, 从而使得所述第一子辐射体 12在所述第二子辐射体 13的影响下产生的寄生谐振形成的四分之一波长寄生天线模式, 所 述四分之一波长寄生天线模式的工作频段覆盖所述第七工作频段。 所述四分之一波长寄生天 线模式的电流分布如图 14所示。其中, 寄生谐振形成的四分之一波长寄生天线模式的电流方 向为所述缝隙 11至所述第一接地点 A的方向。
本申请的一些实施例中, 所述第一子辐射体谐振以及所述第二子辐射体的寄生谐振产生 的工作频段覆盖 WIFI天线及 Sub 6G天线的工作频段, 同时, 所述第二子辐射体谐振以及所 述第一子辐射体的寄生谐振产生的工作频段覆盖 GPS L1天线及 GPS L5天线的工作频段,从 而能够实现 WIFI天线、 Sub 6G天线以及 GPS L1天线、 GPS L5天线的共体, 使得所述共体 天线在覆盖多个不同天线模式的工作频段的同时, 占用空间较小。 同时, 所述共体天线通过 两个馈电点 (第一馈电点及第二馈电点) 即能够实现多种天线模式的覆盖, 相对于现有技术 的天线来说能够减少馈电点的数量, 从而能够减少馈电点与射频前端连接的弹片或者连接线 以及调整天线模式的谐振元件的数量, 从而筒化天线的结构, 进一步的减少天线占用空间。
进一步的, 本申请中, 所述缝隙 11的宽度需要在一定的范围内, 避免所述缝隙的宽度过 宽或者过窄, 以保证在一定工作频段下, 所述第一辐射体与所述第二辐射体之间能够相互影 响而产生寄生谐振,从而在不增加天线结构的情况增加天线模式的数量,以减小共体天线 100 的占用空间。 本申请一些实施例中, 所述缝隙 11的宽度为所述缝隙的宽度大于最高谐振频率 的三十二之一波长, 并小于最高谐振频率的十六分之一波长; 所述最高谐振频率为所述共体 天线的多个不同的所述天线模式的工作频率中最高的工作频率。 具体的, 对于上述实现 WIFI 天线、 Sub 6G天线以及 GPS L1天线、 GPS L5天线的共体的共体天线来说, 所述最高谐振频 率为所述 5G WIFI的工作频段。
请参阅图 15 ,图 15为本申请一实施例的共体天线 100的仿真效率图,其横坐标为频率, 单位为 GHz; 纵坐标为效率, 单位为 dBp。 从图中可以看出, 各个工作频段的辐射效率均在 -5dBp 以上, 具有较高的辐射效率。 并且, 3GHz 以上频段的辐射效率较高。 工作频段为 1575.42MHz的 GPSL1天线的辐射效率比工作频段为 1176.45MHz的 GPSL5天线的辐射效率 低 ldB左右。
请参阅图 16a、 图 16b以及图 16c、 图 16d。 图 16a及图 16b分别为 GPS L1天线模式以 及 GPS L5天线模式的辐射方向仿真图, 从图中可以看出, GPSL5天线模式和 GPSL1天线模 式的上半球比率均在 -3dB以上, 上半球比率较高, 有利于用户体验。 图 16c及图 16d分别为 2.4G WIFI天线模式以及 GPS L5天线模式的辐射方向仿真图, 从图中可以看出, 2.4GWIFI 天线模式的方向性在 4左右, 5GWIFI天线模式的方向性在 5.5左右, 方向性较好。
进一步的, 本申请中, 所述第一馈电点 C至所述缝隙 11的距离、 所述第二馈电点 D至 所述缝隙 11的距离、 所述第一接地点 A至所述缝隙 11的距离、 所述第一接地点 A至所述缝 隙 11的距离也需要在一定的范围内, 使得所述共体天线 100能够产生所需的工作频段, 以满 足实际使用的需求。本申请一些实施例中,所述第一馈电点 C至所述缝隙 11的距离为二者之 间形成的天线模式的工作频率的十六分之一波长, 所述第二馈电点 D至所述缝隙 11的距离 为二者之间的形成的天线模式的工作频率的八分之一波长; 所述第一接地点 C至所述缝隙 11 的距离为所述第一接地点 C至所述缝隙 11之间的形成的天线模式的工作频率的四分之一波长; 所述第二接地点 B至所述缝隙 11的距离为二者之间的形成的天线模式的工作频率的四分之一 波长, 从而得到上述的实施例中的各个天线模式。
请参阅图 17 ,本申请还提供一种电子设备 1000。所述电子设备 1000可以为手机、平板、 移动手表等。 所述电子设备 1000包括中框 110、 主板 120以及所述共体天线 100, 所述中框 110接地, 所述共体天线 100的第一接地点 A及第二接地点 B均与所述中框 110连接, 以实 现所述第一接地点 A及所述第二接地点 B的接地。 所述共体天线 100的射频前端 20设置于 所述主板 120上, 所述主板 120设于所述中框 110上。 由于所述共体天线 100占用的空间较 小,使得要求的净空也较小,从而能够在有限的空间内布局更多的天线,并提升天线的性能。 本申请一实施例中, 所述共体天线 100的净空在 1.3mm左右。
具体的, 所述中框 110包括中板 111以及围设于中板周围的边框 112, 所述共体天线 100 的辐射体 10设于中板 111以及边框 112之间,所述主板 120固定于中板 111上。本实施例中, 所述边框 112为非金属边框,所述辐射体 10产生或接收的射频信号能够穿过所述非金属边框 进行传输, 从而避免边框 112对共体天线 100信号产生的限制。 其中, 所述共体天线 100的 形式可以为柔性主板 ( Flexible Printed Circuit , FPC ) 、 的天线形式, 激光直接成型 ( Laser-Direct- structuring, LDS )的天线形式或者獨:带天线 ( Microstrip Disk Antenna, MDA ) 等天线形式。
请参阅图 18 , 本申请的另一些实施例提供一种电子设备 1100, 所述电子设备 1100与电 子设备 1000的差别在于: 所述电子设备 1100的边框 112为金属边框, 部分所述金属边框为 所述共体天线 100的福射体 10。通过将金属边框作为共体天线 100的福射体 10,从而能够进 一步的减小共用天线占用的空间。 本实施例中, 所述共体天线 100的缝隙 11位于所述边框 112的上边框上。 可以理解的是, 在本申请的其他实施例中, 所述共体天线 100的缝隙 11也 可以位于所述边框 112的侧边框上。
以上所述为本申请的优选实施方式, 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本申请原理的前提下, 还可以做出若千改进和润饰, 这些改进和润饰也视为本申请 的保护范围。

Claims

权利要求书
1、 一种共体天线, 其特征在于, 包括辐射体、 第一接地点、 第二接地点、 第一馈电点、 第二馈电点、 第一滤波电路以及第二滤波电路; 所述第一接地点及第二接地点均接地, 所述 第一接地点及第二接地点分别位于所述福射体相对的两端; 所述福射体上设有缝隙, 所述缝 隙将所述辐射体分割为第一子辐射体与第二子辐射体, 所述第一馈电点位于所述第一子辐射 体上, 所述第二馈电点位于所述第二子辐射体上; 所述第一滤波电路的一端连接至所述第一 馈电点, 另一端接地; 所述第二滤波电路的一端连接至所述第二馈电点, 另一端接地; 所述 第一馈电点传输的射频信号经所述第一子辐射体谐振以及所述第二子辐射体的寄生谐振产生 覆盖 WIFI天线及 Sub 6G天线的工作频段;所述第二馈电点传输的射频信号经所述第二子辐 射体谐振以及所述第一子辐射体的寄生谐振产生覆盖 GPS L1天线及 GPS L5天线的工作频段。
2、如权利要求 1所述的共体天线,其特征在于,所述第一滤波电路为高阻低通滤波电路, 所述高阻低通滤波电路在 GPS的频段为通带, 在大于 2.4GWIFI的频段为阻带; 所述第二滤 波电路为高通低阻滤波电路, WIFI 所述高通低阻滤波电路在在 GPS 频段为阻带, 在大于 2.4GWIFI的频段为通带。
3、 如权利要求 2所述的共体天线, 其特征在于, 所述第一滤波电路及所述第二滤波电路 均包括并联设置的第一电容及第一电感。
4、 如权利要求 3所述的共体天线, 其特征在于, 所述第一滤波电路或所述第二滤波电路 还包括第二电感, 所述第二电感与所述第一电容串联。
5、 如权利要求 3或 4所述的共体天线, 其特征在于, 所述第一滤波电路或所述第二滤波 电路还包括第二电容, 所述第二电容与并联设置的所述第一电容及第一电感串联。
6、 如权利要求 1所述的共体天线, 其特征在于, 所述第一子辐射体谐振产生的工作频段 包括第一工作频段、 第二工作频段及第三工作频段, 所述第二子辐射体寄生谐振产生的工作 频段包括第四工作频段以及第五工作频段;
所述第一工作频段覆盖 2.4G WIFI天线的工作频段, 所述第二工作频段及第四工作频段 覆盖 Sub 6G天线中的工作频段,所述第三工作频段及第五工作频段覆盖 5G WIFI天线的工作 频段。
7、 如权利要求 6所述的共体天线, 其特征在于, 所述第一工作频段为所述第一子辐射体 谐振产生的 IFA四分之一天线模式的工作频段, 所述第二工作频段为所述第一子辐射体形成 的环形天线的二分之一波长模式的工作频段, 所述第三工作频段为所述第一子辐射体谐振产 生的 IFA四分之三天线模式的工作频段; 所述第四工作频段为所述第二子辐射体寄生谐振产 生的环寄生天线的二分之一波长模式, 所述第五工作频段为所述第二子辐射体寄生谐振产生 的环寄生天线的二分之三波长模式。
8、 如权利要求 1所述的共体天线, 其特征在于, 所述第二子辐射体谐振产生的工作频段 包括第六工作频段, 所述第一子辐射体寄生谐振产生的工作频段包括第七工作频段, 所述第 六工作频段覆盖 GPS L5天线的工作频段, 所述第七工作频段覆盖 GPS L1天线的工作频段。
9、 如权利要求 8所述的共体天线, 其特征在于, 所述第六工作频段为所述第二子辐射体 谐振产生的复合左右手天线模式的工作频段, 所述第七工作频段为所述第一子辐射体寄生谐 振产生的带天线模式的工作频段。
10、 如权利要求 1-9任一项所述的共体天线, 其特征在于, 所述第一馈电点和 /或所述第 二馈电点与射频前端之间连接有调谐元件, 所述射频前端与所述第一馈电点及所述第二馈电 点连接并为所述第一馈电点及所述第二馈电点提供射频信号, 所述调谐元件用于调节所述共 体天线的各个天线模式的类型及其工作频段。
11、 如权利要求 10所述的共体天线, 其特征在于, 所述调谐元件包括连接于所述第二馈 电点与所述射频前端之间的电容元件。
12、 如权利要求 1所述的共体天线, 其特征在于, 所述缝隙的宽度大于最高谐振频率的 三十二之一波长, 并小于最高谐振频率的十六分之一波长; 所述最高谐振频率为所述共体天 线的多个不同的所述天线模式的工作频率中最高的工作频率。
13、 如权利要求 1或 12所述的共体天线, 其特征在于, 所述第一馈电点至所述缝隙的距 离为所述第一馈电点至所述缝隙之间的形成的天线模式的工作频率的十六分之一波长, 所述 第二馈电点至所述缝隙的距离为所述第二馈电点至所述缝隙之间的形成的天线模式的工作频 率的八分之一波长; 所述第一接地点至所述缝隙的距离为所述第一接地点至所述缝隙之间的 形成的天线模式的工作频率的四分之一波长; 所述第二接地点至所述缝隙的距离为所述第二 接地点至所述缝隙之间的形成的天线模式的工作频率的四分之一波长。
14、 一种共体天线, 其特征在于, 包括辐射体、 第一接地点、 第二接地点、 第一馈电点、 第二馈电点、 第一滤波电路以及第二滤波电路; 所述第一接地点及第二接地点均接地, 所述 第一接地点及第二接地点分别位于所述福射体相对的两端; 所述福射体上设有缝隙, 所述缝 隙将所述辐射体分割为第一子辐射体与第二子辐射体, 所述第一馈电点位于所述第一子辐射 体上, 所述第二馈电点位于所述第二子辐射体上; 所述第一滤波电路的一端连接至所述第一 馈电点, 另一端接地; 所述第二滤波电路的一端连接至所述第二馈电点, 另一端接地; 所述 第一馈电点传输的射频信号经所述第一子辐射体谐振以及所述第二子辐射体的寄生谐振产生 多个不同天线模式的工作频段, 所述第二馈电点传输的射频信号经所述第二子辐射体谐振以 及所述第一子辐射体的寄生谐振产生多个不同天线模式的工作频段。
15、 如权利要求 14所述的共体天线, 其特征在于, 所述第一子辐射体谐振以及所述第二 子辐射体的寄生谐振产生的工作频段覆盖 WIFI天线及 Sub 6G天线的工作频段;所述第二子 辐射体谐振以及所述第一子辐射体的寄生谐振产生的工作频段覆盖 GPS L1天线及 GPS L5天 线的工作频段。
16、 如权利要求 14或 15所述的共体天线, 其特征在于, 所述第一滤波电路为高阻低通 滤波电路, 所述高阻低通滤波电路在 GPS的频段为通带, 在大于 2.4GWIFI的频段为阻带; 所述第二滤波电路为高通低阻滤波电路, WIFI所述高通低阻滤波电路在在 GPS频段为阻带, 在大于 2.4GWIFI的频段为通带。
17、 如权利要求 16所述的共体天线, 其特征在于, 所述第一滤波电路及所述第二滤波电 路均包括并联设置的第一电容及第一电感。
18、 如权利要求 17所述的共体天线, 其特征在于, 所述第一滤波电路或所述第二滤波电 路还包括第二电感, 所述第二电感与所述第一电容串联。
19、 如权利要求 17或 18所述的共体天线, 其特征在于, 所述第一滤波电路或所述第二 滤波电路还包括第二电容, 所述第二电容与并联设置的所述第一电容及第一电感串联。
20、 如权利要求 14-19任一项所述的共体天线, 其特征在于, 所述第一馈电点和 /或所述 第二馈电点与射频前端之间连接有调谐元件, 所述射频前端与所述第一馈电点及所述第二馈 电点连接并为所述第一馈电点及所述第二馈电点提供射频信号, 所述调谐元件用于调节所述 共体天线的各个天线模式的类型及其工作频段。
21、 一种终端设备, 其特征在于, 包括中框、 主板以及如权利要求 1-13任一项所述的共 体天线或者如权利要求 14-20任一项所述的共体天线, 所述中框接地, 所述共体天线的第一 接地点及第二接地点均与所述中框连接, 所述共体天线的射频前端设置于所述主板上。
22、 如权利要求 21所述的终端设备, 其特征在于, 所述终端设备包括围设于所述主板及 所述中框周围的金属边框, 部分所述金属边框为所述共体天线的辐射体。
PCT/CN2020/074608 2019-02-27 2020-02-10 共体天线及电子设备 WO2020173294A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20763968.3A EP3916917A4 (en) 2019-02-27 2020-02-10 ANTENNA AND ELECTRONIC DEVICE WITH COMMON RADIATOR
US17/432,731 US12003017B2 (en) 2019-02-27 2020-02-10 Radiator sharing antenna and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910146738 2019-02-27
CN201910146738.1 2019-02-27
CN201910278901.X 2019-04-04
CN201910278901.XA CN111628298B (zh) 2019-02-27 2019-04-04 共体天线及电子设备

Publications (1)

Publication Number Publication Date
WO2020173294A1 true WO2020173294A1 (zh) 2020-09-03

Family

ID=72239097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074608 WO2020173294A1 (zh) 2019-02-27 2020-02-10 共体天线及电子设备

Country Status (3)

Country Link
EP (1) EP3916917A4 (zh)
CN (1) CN114824836A (zh)
WO (1) WO2020173294A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736432A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN112821050A (zh) * 2021-01-07 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备
WO2023125225A1 (zh) * 2021-12-28 2023-07-06 Oppo广东移动通信有限公司 电子设备及其控制方法
EP4152517A4 (en) * 2021-05-28 2023-12-20 Honor Device Co., Ltd. TERMINAL ANTENNA AND ELECTRONIC TERMINAL DEVICE
EP4224631A4 (en) * 2020-09-30 2024-04-10 Guangdong Oppo Mobile Telecommunications Corp Ltd ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
EP4239796A4 (en) * 2020-12-18 2024-05-01 Huawei Tech Co Ltd ELECTRONIC DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649675B (zh) * 2022-02-16 2024-03-22 昆山睿翔讯通通信技术有限公司 一种终端天线及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514624A (zh) * 2015-12-23 2016-04-20 广东欧珀移动通信有限公司 一种移动终端天线系统及移动终端
WO2017101068A1 (zh) * 2015-12-17 2017-06-22 华为技术有限公司 一种移动通讯终端
US20180026339A1 (en) * 2016-07-21 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端
CN109546311A (zh) * 2018-12-12 2019-03-29 维沃移动通信有限公司 一种天线结构及通信终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496608B2 (en) * 2013-04-17 2016-11-15 Apple Inc. Tunable multiband antenna with passive and active circuitry
US9431717B1 (en) * 2013-06-25 2016-08-30 Amazon Technologies, Inc. Wideband dual-arm antenna with parasitic element
CN104103888B (zh) * 2014-08-06 2016-09-21 广东欧珀移动通信有限公司 一种手机及其天线
CN104767026B (zh) * 2015-03-09 2017-10-20 华南理工大学 一种覆盖七频段的小型移动通信设备天线
CN104993241A (zh) * 2015-05-21 2015-10-21 深圳市万普拉斯科技有限公司 移动终端及其天线装置
CN108470977B (zh) * 2018-03-28 2020-07-03 Oppo广东移动通信有限公司 天线组件、天线装置及电子设备
CN108631041B (zh) * 2018-04-25 2020-04-03 Oppo广东移动通信有限公司 天线组件及电子装置
CN108832267B (zh) * 2018-05-29 2024-05-17 Oppo广东移动通信有限公司 电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017101068A1 (zh) * 2015-12-17 2017-06-22 华为技术有限公司 一种移动通讯终端
CN105514624A (zh) * 2015-12-23 2016-04-20 广东欧珀移动通信有限公司 一种移动终端天线系统及移动终端
US20180026339A1 (en) * 2016-07-21 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端
CN109546311A (zh) * 2018-12-12 2019-03-29 维沃移动通信有限公司 一种天线结构及通信终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916917A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4224631A4 (en) * 2020-09-30 2024-04-10 Guangdong Oppo Mobile Telecommunications Corp Ltd ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
EP4239796A4 (en) * 2020-12-18 2024-05-01 Huawei Tech Co Ltd ELECTRONIC DEVICE
CN112736432A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN112821050A (zh) * 2021-01-07 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备
EP4152517A4 (en) * 2021-05-28 2023-12-20 Honor Device Co., Ltd. TERMINAL ANTENNA AND ELECTRONIC TERMINAL DEVICE
WO2023125225A1 (zh) * 2021-12-28 2023-07-06 Oppo广东移动通信有限公司 电子设备及其控制方法

Also Published As

Publication number Publication date
CN114824836A (zh) 2022-07-29
EP3916917A1 (en) 2021-12-01
US20220140471A1 (en) 2022-05-05
EP3916917A4 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
CN111628298B (zh) 共体天线及电子设备
WO2020173294A1 (zh) 共体天线及电子设备
US11557827B2 (en) Antennaless wireless device
US11139574B2 (en) Antennaless wireless device
JP3864127B2 (ja) デュアルフィーディングポートを有するマルチバンドチップアンテナ及びこれを用いる移動通信装置
EP2405533B1 (en) Multiband antenna and method for an antenna to be capable of multiband operation
JP4868128B2 (ja) アンテナ装置及びそれを用いた無線通信機器
TWI446731B (zh) 用於膝上型電腦及可攜裝置之單纜線天線模組
WO2022142824A1 (zh) 天线系统及电子设备
EP3767742B1 (en) Antenna device and mobile terminal
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
WO2023142785A1 (zh) 天线组件及电子设备
EP1368855A1 (en) Antenna arrangement
CN112421211B (zh) 天线及电子设备
WO2022247502A1 (zh) 天线组件及电子设备
CN113922048B (zh) 一种终端天线及终端电子设备
CN103872430A (zh) 电子设备、天线、和用于形成天线的方法
CN113437480A (zh) 一种多频天线装置及移动终端
WO2022199307A1 (zh) 天线组件及电子设备
WO2023024458A1 (zh) 一种辐射元件以及天线
US12003017B2 (en) Radiator sharing antenna and electronic device
WO2023273607A1 (zh) 天线模组及电子设备
WO2023273604A1 (zh) 天线模组及电子设备
WO2024060819A1 (zh) 天线组件及电子设备
CN115117599A (zh) 天线结构和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020763968

Country of ref document: EP

Effective date: 20210825