WO2023024458A1 - 一种辐射元件以及天线 - Google Patents

一种辐射元件以及天线 Download PDF

Info

Publication number
WO2023024458A1
WO2023024458A1 PCT/CN2022/077197 CN2022077197W WO2023024458A1 WO 2023024458 A1 WO2023024458 A1 WO 2023024458A1 CN 2022077197 W CN2022077197 W CN 2022077197W WO 2023024458 A1 WO2023024458 A1 WO 2023024458A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
radiating
frequency
arm
trace
Prior art date
Application number
PCT/CN2022/077197
Other languages
English (en)
French (fr)
Inventor
H·普里亚南达
胡中皓
D·达马维里亚
J·德西亚
孙静
黄萍
曹奎根
Original Assignee
普罗斯通信技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普罗斯通信技术(苏州)有限公司 filed Critical 普罗斯通信技术(苏州)有限公司
Priority to EP22859817.3A priority Critical patent/EP4395076A1/en
Publication of WO2023024458A1 publication Critical patent/WO2023024458A1/zh
Priority to US18/588,620 priority patent/US20240204408A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • the invention relates to the field of wireless communication, in particular to a radiation element and an antenna with the radiation element.
  • Base station antennas for 3G, LTE or 5G communications consist of arrays of multiple radiating elements operating in different frequency bands.
  • the broad spectrum between 400MHz and 6GHz (the so-called sub-6GHz frequency band) is allocated to telecom operators for wireless communication.
  • sub-6GHz frequency band the so-called sub-6GHz frequency band
  • the industry generally divides the frequency band below 6GHz into the following four separate working sub-bands, that is, the first sub-band is 600MHz to 1GHz, the second sub-band is 1.4GHz to 3GHz, and the third sub-band is 3GHz to 4.2 GHz, the fourth sub-band is 5GHz to 6GHz.
  • the task of the present invention is to design a radiating element for the low frequency band, which minimizes the interference to the high-frequency vibrator, so that it can be combined with the high-frequency vibrator as required without adversely affecting the high-frequency vibrator.
  • the radiating element for the low frequency band has a lower return loss and a better radiation pattern.
  • the present invention provides a radiation element, including: four radiation areas isolated from each other by direct current, each radiation area is constructed in a quadrant of a four-quadrant coordinate system; A radiation area includes a radiation arm and a feeding part for feeding the radiation arm; and a common mode filter, the common mode filter is arranged on two adjacent radiation arms, and the two adjacent radiation arms Between two adjacent feeders corresponding to the radiation arms.
  • the high-frequency current formed by the high-frequency signal at the radiating element can be filtered out, thereby reducing the influence of the radiating element on the high-frequency vibrator and improving the radiation according to the present invention.
  • the common-mode filter includes a first transmission line feeding power to the radiation arm and a second transmission line feeding power to another radiation arm adjacent to the radiation arm ; Wherein, the first transmission line and the second transmission line are bent into inductance coils, and the winding directions of the first transmission line and the second transmission line are the same and the lengths are equal.
  • the lengths of the first transmission line and the second transmission line are not less than 1/8 of the highest frequency wavelength in the high frequency band.
  • the radiating element further includes a dielectric plate, and the radiating arm is arranged on the dielectric plate; the first transmission line and the second transmission line both include a The first trace on one side and the second trace on the other side of the dielectric board, the first trace and the second trace are electrically connected through via holes.
  • the radiating element further includes a dielectric plate, and the radiating area is disposed on the dielectric plate; each radiating arm includes a shunt filter, and the shunt filter includes The third trace located on one side of the dielectric board and the fourth trace located on the other side of the dielectric board; the third trace and the fourth trace are electrically connected through via holes, and are bent together to form an inductance coil.
  • the third trace and the fourth trace intersect three-dimensionally, and both the third trace and the fourth trace include an intersecting area and a non-intersecting area; wherein, The intersection area of the third trace and the fourth trace constitutes a capacitance.
  • the width of the intersection region is not less than 0.5mm, and not greater than 1/8 of the highest frequency wavelength of the high frequency band.
  • the width of the third trace and the fourth trace is smaller than the width of the radiation arm.
  • the radiating element works in the low-frequency band, and in the direction of the coordinate axes of the four-quadrant coordinate system, the maximum dimension of the radiating element is not greater than the central frequency wavelength of the low-frequency band 1/3.
  • the radiation arm includes a first radiation arm, a second radiation arm, and a third radiation arm; wherein, the first radiation arm and the second radiation arm are arranged between There is the shunt filter, and the shunt filter is arranged between the second radiating arm and the third radiating arm.
  • the first radiation arm and the third radiation arm are located on one side of the dielectric plate, and the second radiation arm is located on the other side of the dielectric plate.
  • the first radiating arm, the second radiating arm, and the third radiating arm are located on the same side of the dielectric plate.
  • the width of at least one of the first radiating arm, the second radiating arm, and the third radiating arm is not greater than 1/8 of the highest frequency wavelength of the high-frequency band.
  • each radiation area is further provided with a hollow part; the feeding part and the radiation arm surround to form the hollow part.
  • each power feeding part is also provided with an electric bridge.
  • the length of the electric bridge is not greater than 1/4 of the highest frequency wavelength of the high frequency band.
  • the present invention also proposes an antenna, including: a first radiating unit, the first radiating unit includes several aforementioned radiating elements; a second radiating unit, the second radiating unit includes several high-frequency oscillators, the The operating frequency of the high-frequency vibrator is higher than the operating frequency of the radiating element; and a reflecting plate, the first radiating unit and the second radiating unit are installed on the reflecting plate; wherein, in a direction perpendicular to the reflecting plate Above, the radiating element and the high-frequency vibrator are at least partially overlapped.
  • At least one side of the radiation element overlaps with at least one high-frequency vibrator in the transverse direction of the reflection plate.
  • two sides of the radiation element overlap at least partially with two high-frequency oscillators respectively.
  • the radiating element works in the low-frequency band; wherein, when the antenna has two rows of radiating elements and four rows of high-frequency vibrators in the longitudinal direction, the reflecting plate is The width in the lateral direction is not greater than the lowest frequency wavelength of the low frequency band.
  • the high-frequency vibrator works in the high-frequency band; wherein, in the lateral direction of the reflector, the center-to-center distance between adjacent high-frequency vibrators is not greater than the highest frequency of the high-frequency band wavelength.
  • the high-frequency vibrator works in the high-frequency band; wherein, in the longitudinal direction of the reflector, the center-to-center distance between adjacent high-frequency vibrators is not greater than the highest frequency of the high-frequency band 3/4 of the wavelength.
  • the high-frequency vibrator works in the high-frequency band, and the center frequency wavelength of the high-frequency band is ⁇ ; wherein, in the lateral direction of the reflector, the adjacent high-frequency vibrator The center distance lies between 0.6 ⁇ and ⁇ .
  • the radiating element proposed according to the present invention due to the setting of a common-mode filter, the high-frequency current formed by the high-frequency signal at the radiating element can be filtered out, thereby reducing the effect of the radiating element on high-frequency
  • the interference of the vibrator improves the coexistence and mutual anti-interference between the radiation element and the high-frequency vibrator according to the present invention.
  • the interference to other radiating elements can be minimized on the basis of realizing the radiation performance of the radiating element itself, and the optimal design of the multi-band combined antenna can be realized.
  • Fig. 1 is a schematic plan view of a radiation element 100 according to the present invention when the dielectric plate 10 is removed, wherein: the solid line part and the dotted line part are respectively located on different side walls of the dielectric plate;
  • FIG. 2 is a schematic perspective view of the combination of the radiation element 100 shown in FIG. 1 and the balun 40 .
  • FIG. 3 is a schematic perspective view from another angle of FIG. 2 .
  • FIG. 4 is a schematic perspective view of the radiation element 100 shown in FIG. 1 when the dielectric plate 10 is removed.
  • FIG. 5 is a partially enlarged view of circle B in FIG. 4 .
  • Figure 6 is an equivalent circuit diagram of a common-mode filter.
  • FIG. 7 is a partially enlarged view of circle A in FIG. 4 .
  • Fig. 8 is an equivalent circuit diagram of a shunt filter.
  • FIG. 9 is a schematic diagram of a first embodiment of an antenna according to the present invention.
  • FIG. 10 is a schematic diagram of a second embodiment of an antenna according to the present invention.
  • the inventors of the present invention realized that there is inevitably serious interference between the traditional low-frequency radiation element and the high-frequency oscillator, so that a sufficient distance must be provided between the traditional low-frequency radiation element and the high-frequency oscillator , so as to reduce the signal interference between the traditional low-frequency radiating element and the high-frequency oscillator to meet the requirements for isolation. Such a distance is obviously unfavorable for the current multi-band compact antenna.
  • the low-frequency radiation element and the high-frequency oscillator are placed side by side on a common reflector, the low-frequency radiation element will often block the high-frequency oscillator. Especially when the installation space is limited.
  • the energy radiated by the high-frequency vibrator may be diffracted or cause resonance on the low-frequency radiating element. Both of these mechanisms lead to distortion of the far-field mode of the dichotomer. Therefore, a filter needs to be provided on the low frequency radiating element to eliminate any undesired high frequency current on the low frequency radiating element.
  • the task of the present invention is to design a radiating element for the low frequency band, which minimizes the interference to the high-frequency vibrator, so that it can be combined with the high-frequency vibrator at will without adversely affecting the high-frequency vibrator.
  • the radiating element for the low frequency band has a smaller return loss and a better radiation pattern.
  • the radiating element 100 of the present invention includes a dielectric board 10 , a radiation area 20 disposed on the dielectric board 10 and a common mode filter 30 disposed on the dielectric board 10 .
  • the dielectric board 10 includes a first side wall 11 and a second side wall 12 parallel to the first side wall 11 .
  • the number of the radiation areas 20 is four, namely the radiation area 201 , the radiation area 202 , the radiation area 203 and the radiation area 204 .
  • the radiation zones 201, 202, 203, 204 are respectively constructed in one quadrant of the four-quadrant coordinate system, and before the feed balun 40 (as shown in FIG. 2 ) is connected, the adjacent two radiation zones 20 DC isolation between.
  • the radiation area 201 and the radiation area 203 form a dipole and radiate signals along the +45° direction; the radiation area 202 and the radiation area 204 form another dipole and radiate signals along the -45° direction .
  • Each radiating area 20 includes a radiating arm 21 , a feeding portion 22 for feeding the radiating arm 21 , and a hollow portion 23 .
  • the radiation arm 21 includes a first radiation arm 211 , a second radiation arm 212 , a third radiation arm 213 and a shunt filter 214 .
  • the first radiation arm 211 and the third radiation arm 213 are disposed on the first side wall 11 of the dielectric board 10
  • the second radiation arm 212 is disposed on the second side wall 12 of the dielectric board 10 .
  • the number of the shunt filters 214 is two.
  • One shunt filter 214 is disposed between the first radiating arm 211 and the second radiating arm 212 .
  • Another shunt filter 214 is disposed between the second radiating arm 212 and the third radiating arm 213 .
  • the radiation arm 21 is divided into three shorter radiation arms (namely: the first radiation arm 211, the second radiation arm 212, and the third radiation arm 213) by the shunt filter 214, the Resonance between the radiating element 100 and high frequency signals.
  • the width of at least one of the first radiating arm 211 , the second radiating arm 212 and the third radiating arm 213 is not greater than 1/8 of the highest frequency wavelength of the high frequency band.
  • FIG. 7 is a partially enlarged view of circle A in FIG. 4 .
  • the shunt filter 214 includes a third trace 2141 located on the first side wall 11 of the dielectric board 10 and a fourth trace located on the second side wall 12 of the dielectric board 10 Line 2142.
  • One end of the third trace 2141 is electrically connected to the second radiation arm 212 , and the other end is electrically connected to the fourth trace 2142 through the via hole 101 .
  • the via hole 101 may be a metal conductor disposed in the dielectric board 10 , or may be a metal plating layer located in the through hole of the dielectric board 10 .
  • An end of the fourth trace 2142 away from the via hole 101 is electrically connected to the third radiation arm 213 .
  • the third trace 2141 and the second trace 2142 are bent together to form an inductance coil, so that the high-frequency current in the radiation element 100 can be effectively contained.
  • the high-frequency current is generated after the high-frequency signal radiated by the high-frequency oscillator resonates with the radiation element 100 .
  • the third trace 2141 and the fourth trace 2142 intersect three-dimensionally.
  • Both the third trace 2141 and the fourth trace 2142 include an intersection area 2143 and a non-intersection area 2144 .
  • the intersection area 2143 of the third trace 2141 and the intersection area 2143 of the fourth trace 2142 together form a capacitor.
  • FIG. 8 is an equivalent circuit diagram of the shunt filter 214 .
  • the third trace 2141 and the fourth trace 2142 jointly form an inductance coil 2145
  • the intersection area 2143 of the third trace 2141 and the intersection area 2143 of the fourth trace 2142 jointly form a capacitor 2146 .
  • the inductance coil 2145 and the capacitor 2146 are connected in parallel, they are connected in series with the second radiating arm 212 and the third radiating arm 213 . Since the shunt filter 214 has the effects of the inductance 2145 and the capacitor 2146 at the same time, the shunt filter 214 can not only effectively contain the high-frequency current flowing in the radiating element 100, but also effectively consume the high-frequency current. Energy, thereby effectively avoiding the interference of the radiating element 100 on the high-frequency oscillator.
  • the inductor 2145 is 20nH, and the capacitor is 0.4pF, which are suitable for providing a filter stopband at 1.8GHz.
  • the sizes of the inductance 2145 and the capacitance 2146 can be adjusted as required.
  • the inductance 2145 can be adjusted by adjusting the total length of the third trace 2141 and the fourth trace 2142
  • the capacitance 2146 can be adjusted by adjusting the size of the intersection region 2143 .
  • the width of the intersection region 2143 is greater than the width of the non-intersection region 2144 .
  • the width of the intersecting area 2143 is smaller than the width of the non-intersecting area 2144 .
  • the width of the intersection region 2143 is not less than 0.5 mm, and not greater than 1/8 of the highest frequency wavelength of the high frequency band.
  • the width of the third trace 2141 and the fourth trace 2142 is smaller than the width of the radiation arm 21, that is, the width of the third trace 2141 and the fourth trace 2142 is smaller than the width of the first radiation arm 2141. Widths of the arm 211 , the second radiating arm 212 , and the third radiating arm 213 . Of course, it can be understood that, in other embodiments, it may also be set that: the width of the third trace 2141 and the fourth trace 2142 is greater than the width of the radiation arm 21 .
  • the first radiating arm 211 and the third radiating arm 213 are arranged on the first side wall 11 of the dielectric plate 10, the second radiating arm 212 is arranged on the on the second side wall 12.
  • the first radiating arm 211 , the second radiating arm 212 and the third radiating arm 213 may also be disposed on the same side wall of the dielectric board 10 .
  • the first radiating arm 211, the second radiating arm 212, and the third radiating arm 213 are all disposed on the first side wall 11 of the dielectric board 10, and at this time, the fourth trace 2142 needs to pass through a metal pass through The hole is electrically connected to the third radiating arm 213 .
  • the power feeding part 22 is used to feed power to the radiation arm 21 .
  • the power feeding part 22 includes a base area 221 , a bridge 222 and a hollow part 223 between the base area 221 and the bridge 222 .
  • the base area 221 is electrically connected to the balun 40 (as shown in FIG. 2 ) to obtain the signal fed by the balun 40 .
  • the balun 40 includes two mutually orthogonal dielectric boards, one side of the dielectric board is provided with a ground wire, and the other side is provided with a signal wire. Wherein, the ground wire is electrically connected to one radiation area of the dipole, and the signal wire is electrically connected to the other radiation area of the dipole.
  • the electric bridge 222 is used to reduce the return loss of the radiation element 100 .
  • the length of the electric bridge 222 is not greater than 1/4 of the highest frequency wavelength of the high frequency band.
  • the hollow part 223 is located between the base area 221 and the bridge 222, which can effectively reduce the metal overlapping area between the radiating element 100 and the high-frequency vibrator, thereby reducing the noise when the high-frequency signal passes through the radiating element 100. Diffraction, thereby effectively reducing the interference of the radiating element 100 to the high-frequency oscillator.
  • the hollow part 23 is located between the radiation arm 21 and the feeding part 22 . Due to the small area of the radiating arm 21, the hollow part 23 has a relatively large area, which can effectively reduce the metal overlapping area between the radiating element 100 and the high-frequency vibrator, thereby reducing the high-frequency signal passing through the Diffraction when the radiating element 100 is used, thereby effectively reducing the interference of the radiating element 100 to the high-frequency oscillator.
  • the radiating element 100 has a relatively large Narrow profile, allowing high frequency signals to pass through with minimal diffraction.
  • the common mode filter 30 is arranged on the two adjacent radiating arms 21 and the two feeding parts corresponding to the two adjacent radiating arms 21 Between 22.
  • a high-frequency signal passes through the radiating element 100 , resonance is easily generated in two adjacent radiating arms 21 , thereby generating high-frequency current. Since the high frequency currents in the two radiating arms 21 have the same direction, the high frequency currents in the two adjacent radiating arms 21 are common mode currents.
  • the common-mode filter 30 is used for filtering the common-mode current.
  • the common-mode filter 30 can not only filter out the aforementioned common-mode high-frequency current, but also filter out any form of common-mode current.
  • the common mode filter 30 includes a first transmission line 31 feeding power to a radiation arm and a second transmission line 32 feeding power to another radiation arm adjacent to the radiation arm.
  • the first transmission line 31 and the second transmission line 32 are bent to form an inductance coil, and the first transmission line 31 and the second transmission line 32 have the same winding direction and the same length.
  • FIG. 5 is a partially enlarged view of circle B in FIG. 4 .
  • the first transmission line 31 and the second transmission line 32 both include a first trace 301 located on the first side wall 11 of the dielectric board 10 and a first trace 301 located on the second side of the dielectric board 10 . Second trace 302 on wall 12 .
  • the first trace 301 and the second trace 302 are electrically connected through a via 303 .
  • one end of the first transmission line 31 is connected to the feeder 22 of the radiation area 201, and the other end is connected to the third radiation arm 213 of the radiation area 201; one end of the second transmission line 32 is connected to the radiation area
  • the other end of the feeding part 22 of 204 is connected to the first radiating arm 211 of the radiating area 204 .
  • FIG. 6 is an equivalent circuit diagram of the common mode filter 30 .
  • the first transmission line 31 is equivalent to an inductor 33
  • the second transmission line 32 is equivalent to an inductor 34
  • the inductor 33 and the inductor 34 are tightly coupled.
  • the first transmission line 31 and the second transmission line 32 have the same detour direction and the same length, when the common-mode current flows through the first transmission line 31 and the second transmission line 32, the direction of the common-mode current is the same.
  • a magnetic field in the same direction is generated in the coil of the first transmission line 31 and the coil of the second transmission line 32, thereby increasing the inductance of the coils, so as to attenuate and filter out the common mode current.
  • the lengths of the first transmission line 31 and the second transmission line 32 are not less than 1/8 of the highest frequency wavelength in the high frequency band.
  • the radiating element 100 works in a low frequency band. Since the radiating element 100 is provided with the common mode filter 30 or the shunt filter 214, the radiating element 100 is positioned in the direction AA (as shown in FIG. 1, the direction AA is the coordinate axis of the four-quadrant coordinate system. direction) is not greater than 1/3 of the wavelength of the center frequency in the low frequency band.
  • the radiating element 100 of the present invention is provided with the common mode filter 30 or the shunt filter 214, it can effectively contain and filter out the high-frequency current in the radiating element 100, and then can The interference of the radiating element 100 to the high-frequency oscillator is effectively reduced, so that the high-frequency oscillator has a better radiation pattern.
  • the present invention also discloses an antenna 400 including a first radiation unit 410 , a second radiation unit 420 and a reflection plate 430 .
  • the first radiating unit 410 includes several radiating elements 100, and the radiating elements 100 work in the low-frequency band; the second radiating unit 420 includes several high-frequency oscillators 421, and the high-frequency oscillator 421 works in the high-frequency band , the operating frequency of the high-frequency vibrator 421 is higher than the operating frequency of the radiating element 100 .
  • the first radiation unit 410 and the second radiation unit 420 are installed on the reflection plate 430 .
  • the radiating element 100 and the high-frequency vibrator 421 at least partially overlap, and at this time the radiating element 100 and the high-frequency vibrator 421 are located at different heights.
  • the radiating element 100 and the high-frequency vibrator 421 are located at different heights.
  • two sides of the radiation element 100 respectively overlap with a high-frequency vibrator.
  • the radiating element 100 is provided with a decoupling common-mode filter 30 or a shunt filter 214, so that the radiating element 100 and the high-frequency oscillator 421 are arranged at a relatively small distance, at this time the The radiating element 100 at least partially overlaps the high frequency dipole 421 , so as to reduce the width of the antenna 400 in the horizontal direction BB.
  • the width of the reflector 430 in the lateral direction BB is not greater than the lowest frequency wavelength of the low-frequency band.
  • the distance between the centers of adjacent high-frequency oscillators 421 is not greater than the wavelength of the highest frequency in the high-frequency band.
  • the distance between the centers of adjacent high-frequency oscillators 421 is not greater than 3/4 of the highest frequency wavelength in the high-frequency band.
  • the wavelength of the center frequency of the high frequency band is ⁇ ; wherein, on the transverse direction BB of the reflector 430 , the distance between the centers of adjacent high frequency oscillators 421 is between 0.6 ⁇ and ⁇ .
  • the present invention also discloses a second antenna 500 , including a first radiation unit 510 , a second radiation unit 520 and a reflector 530 .
  • the first radiation unit 510 and the second radiation unit 520 are installed on the reflection plate 530 .
  • the first radiation unit 510 includes several radiation elements 100
  • the second radiation unit 520 includes several high frequency oscillators 521 .
  • at least one side of the radiating element 100 overlaps with at least one high-frequency vibrator 521 .
  • two sides of the radiating element 100 respectively overlap with the two high-frequency oscillators 521 .
  • Such setting can effectively reduce the height of the antenna 500 in the longitudinal direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明提供了一种辐射元件,包括:相互直流隔离的四个辐射区,每个辐射区被构造在四象限坐标系的一个象限之中;每个辐射区包括辐射臂以及为所述辐射臂馈电的馈电部;以及共模滤波器,所述共模滤波器被设置在相邻的两个辐射臂、与所述相邻的两个辐射臂相对应的相邻两个馈电部之间。此外,本发明还提供了一种包括上述的辐射元件的天线。借助于依据本发明的辐射元件,能够在实现该辐射元件自身的辐射性能的基础之上尽量减小对于其他高频率辐射元件的干扰,实现多频段组合天线的优化设计。

Description

一种辐射元件以及天线 技术领域
本发明涉及无线通信领域,尤指一种辐射元件以及具有该辐射元件的天线。
背景技术
用于3G、LTE或者5G等通信的基站天线由工作在不同频段的多个辐射元件阵列组成。在400MHz到6GHz之间的广谱(即所谓的6GHz以下频段)被分配给电信运营商用于无线通信。但是本领域的技术人员了解到要想为如此宽的带宽设计模拟组件将是非常困难的,例如设计滤波器、移相器、辐射元件或者放大器等,因此6GHz以下频段会进一步划分为若干个子频段并单独进行运行,从而便于设计相应的模拟组件。例如,通常业界通常将6GHz以下的频段划分为以下四个单独的工作子频段,即第一个子频段为600MHz至1GHz、第二个子频段为1.4GHz至3GHz、第三个子频段为3GHz至4.2GHz、第四个子频段为5GHz至6GHz。
这四个分离的频段需要单独的组件,例如滤波器、移相器、放大器以及辐射元件。所有这些组件都不能相互干扰,隔离度最小需要在20dB左右,并且每个信号通道之间的隔离度最好为30dB。对于诸如滤波器、移相器之类的屏蔽通道而言,相对容易达到这一目标。在这些通道中,所有信号都被微带线或带状线屏蔽。
然而,由于工作于不同频段的辐射元件之间容易耦合,因此要实现辐射元件之间的隔离是相对困难的。如果隔离无法达到一定的级别,那么将存在严重 的模式失真和端口间隔离问题。这些问题将降低通信网络的性能。如果增加工作于不同频段的相邻两个振子之间的距离,则可以提高工作于不同频段的相邻两个振子之间的隔离性能。但是,如此设置,势必会增大天线的宽度或长度,从而不利于天线的小型化。
另一方面,由于需要覆盖多个频段以及扇区,而基站塔上供安装天线的空间又非常有限,因此生产商需要将工作于不同频段的多个振子集成在一个天线内。这就使得工作于不同频段的多个振子之间的隔离成为较大的挑战。
发明内容
本发明的任务在于设计一种用于低频段的辐射元件,其对于高频振子的干扰得以尽量减小,从而能够和高频振子按要求进行组合而不会对高频振子产生不利影响,另一方面该用于低频段的辐射元件的回波损耗较小而且辐射方向图较好。
具体而言,本发明提供的技术方案如下,即本发明提供一种辐射元件,包括:相互直流隔离的四个辐射区,每个辐射区被构造在四象限坐标系的一个象限之中;每个辐射区包括辐射臂以及为所述辐射臂馈电的馈电部;以及共模滤波器,所述共模滤波器被设置在相邻的两个辐射臂、与所述相邻的两个辐射臂相对应的相邻两个馈电部之间。
由于设置了共模滤波器,使得高频段的信号在所述辐射元件处所形成的高频电流得以被滤除,从而降低了所述辐射元件对高频振子的影响,提高了依据本发明的辐射元件与高频振子的共存性和相互之间的抗干扰性。
进一步地,在本发明的一种实现形式之中,所述共模滤波器包括为辐射臂馈电的第一传输线以及为与所述辐射臂相邻的另一辐射臂馈电的第二传输线;其中,第一传输线、第二传输线弯曲成电感线圈,且第一传输线、第二传输线的绕行方向一致、长度相等。
进一步地,在本发明的一种实现形式之中,所述第一传输线、第二传输线的长度不小于高频波段中最高频率波长的1/8。
进一步地,在本发明的一种实现形式之中,所述辐射元件还包括介质板,所述辐射臂设置于所述介质板上;所述第一传输线、第二传输线都包括位于介质板一侧的第一迹线以及位于介质板另一侧的第二迹线,所述第一迹线、第二迹线通过过孔电性连接。
进一步地,在本发明的一种实现形式之中,所述辐射元件还包括介质板,所述辐射区设置于所述介质板上;每个辐射臂包括分流滤波器,所述分流滤波器包括位于介质板一侧的第三迹线以及位于所述介质板另一侧的第四迹线;所述第三迹线、第四迹线通过过孔电性连接,并共同弯曲形成电感线圈。
进一步地,在本发明的一种实现形式之中,所述第三迹线、第四迹线立体交叉,所述第三迹线、第四迹线都包括交叉区域以及非交叉区域;其中,第三迹线、第四迹线的交叉区域构成电容。
进一步地,在本发明的一种实现形式之中,交叉区域的宽度不小于0.5mm,不大于高频波段的最高频率波长的1/8。
进一步地,在本发明的一种实现形式之中,所述第三迹线、第四迹线的宽度小于所述辐射臂的宽度。
进一步地,在本发明的一种实现形式之中,所述辐射元件工作于低频波段,在四象限坐标系的坐标轴方向上,所述辐射元件的最大尺寸不大于低频波段的中心频率波长的1/3。
进一步地,在本发明的一种实现形式之中,所述辐射臂包括第一辐射臂、第二辐射臂以及第三辐射臂;其中,所述第一辐射臂、第二辐射臂之间设置有所述分流滤波器,所述第二辐射臂、第三辐射臂之间设置有所述分流滤波器。
进一步地,在本发明的一种实现形式之中,所述第一辐射臂、第三辐射臂位于所述介质板的一侧,所述第二辐射臂位于介质板的另一侧。
进一步地,在本发明的一种实现形式之中,所述第一辐射臂、第二辐射臂、第三辐射臂位于所述介质板的同侧。
进一步地,在本发明的一种实现形式之中,所述第一辐射臂、第二辐射臂、第三辐射臂中的至少一个的宽度不大于高频波段的最高频率波长的1/8。
进一步地,在本发明的一种实现形式之中,每个辐射区还设置有镂空部;所述馈电部、辐射臂围设形成所述镂空部。
进一步地,在本发明的一种实现形式之中,每个馈电部还设置有电桥。
进一步地,在本发明的一种实现形式之中,所述电桥的长度不大于高频波段的最高频率波长的1/4。
再者,本发明还提出了一种天线,包括:第一辐射单元,所述第一辐射单元包括若干前述辐射元件;第二辐射单元,所述第二辐射单元包括若干高频振子,所述高频振子的工作频率高于所述辐射元件的工作频率;以及反射板,所述第一辐射单元、第二辐射单元安装在所述反射板上;其中,在垂直于所述反射板的方向上,所述辐射元件、高频振子至少部分重叠。
进一步地,在本发明的一种实现形式之中,在所述反射板的横向上,所述辐射元件的至少一侧与至少一个高频振子重叠。
进一步地,在本发明的一种实现形式之中,在所述反射板的横向上,所述辐射元件的两侧分别与两个高频振子至少部分重叠。
进一步地,在本发明的一种实现形式之中,所述辐射元件工作于低频波段;其中,当所述天线在纵向上具有两列辐射元件,四列高频振子时,所述反射板在横向上的宽度不大于低频波段的最低频率波长。
进一步地,在本发明的一种实现形式之中,所述高频振子工作于高频波段;其中,在反射板的横向上,相邻高频振子的中心间距不大于高频波段的最高频率的波长。
进一步地,在本发明的一种实现形式之中,所述高频振子工作于高频波段; 其中,在反射板的纵向上,相邻高频振子的中心间距不大于高频波段的最高频率波长的3/4。
进一步地,在本发明的一种实现形式之中,所述高频振子工作于高频波段,高频波段的中心频率波长为λ;其中,在反射板的横向上,相邻高频振子的中心间距位于0.6λ和λ之间。
在依据本发明所提出的辐射元件之中,由于设置了共模滤波器,使得高频信号在所述辐射元件处所形成的高频电流得以被滤除,从而降低了所述辐射元件对高频振子的干扰,提高了依据本发明的辐射元件与高频振子的共存性和相互之间的抗干扰性。换句话说,借助于依据本发明的辐射元件,能够在实现该辐射元件自身的辐射性能的基础之上尽量减小对于其他辐射元件的干扰,实现多频段组合天线的优化设计。
附图说明
下面将以明确易懂的方式,结合附图说明优选实施方式,对一种染色体核型分析方法、系统、终端设备和存储介质的上述特性、技术特征、优点及其实现方式予以进一步说明。
图1为依据本发明的一种辐射元件100去除介质板10时的平面示意图,其中:实线部分、虚线部分分别位于介质板的不同侧壁上;
图2为图1所示辐射元件100与巴伦40组合时的立体示意图。
图3为图2的另一角度的立体示意图。
图4为图1所示辐射元件100去除介质板10时的立体示意图。
图5为图4中圆圈B处的局部放大图。
图6为共模滤波器的等效电路图。
图7为图4中圆圈A出的局部放大图。
图8为分流滤波器的等效电路图。
图9为依据本发明的一种天线的第一实施例的示意图。
图10为依据本发明的一种天线的第二实施例的示意图。
具体实施方式
为了说明而不是为了限定之目的,以下描述中提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请得实施例。然而,本领域的技术人员应当清楚:在没有这些具体细节的其他实施例中也可以实现本申请。在其他情况中,省略对众所周知的元器件、电路、装置、系统以及方法的详细说明,以免其中所阐述的不必要的细节妨碍本申请的描述。
本领域的技术人员应当理解:当在本说明书和所附权利要求书中使用时,术语“包括”指示所述描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其他特征、整体、步骤、操作、元素、组件和/或集合的存在或添加。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本发明中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。另外,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
本发明的发明人意识到传统的低频段的辐射元件和高频振子之间不可避免地产生较为严重的干扰,从而使得传统的低频段的辐射元件和高频振子之间必须设置有足够的间距,以此来减小传统的低频段的辐射元件和高频振子之间的信号干扰以满足对于隔离度的要求,这样的间距对于现在的多频段紧凑型天线来说显然是不利的。
具体来看,由于低频段的辐射元件的波长更长,其外形和高度与高频振子相比更大更高。因此,当低频段的辐射元件和高频振子并排放置在共用的反射板上时,低频段的辐射元件往往会遮挡高频振子。尤其是当安装空间有限时更甚。根据低频段的辐射元件的几何形状的不同,高频振子所辐射出的能量可能会被衍射或者在低频段的辐射元件上引起共振。这两种机制都会导致高频振子的远场模式失真。因此,需要在低频辐射元件上设置有滤波器,以消除低频辐射元件上任何不期望的高频电流。同时,还需要将低频辐射元件设计为具有薄金属轮廓,并在内部具有大的中空部分,以允许高频振子所辐射出的信号能够以最小的衍射通过。
基于此,本发明的任务在于设计一种用于低频段的辐射元件,其对于高频振子的干扰得以尽量减小,从而能够和高频振子随意组合而不会对高频振子产生不利影响,另一方面该用于低频段的辐射元件的回波损耗较小而且辐射方向图较好。
请参阅图1以及图2、图3所示,本发明辐射元件100包括介质板10、设置于所述介质板10上的辐射区20以及设置于所述介质板10上的共模滤波器30。所述介质板10包括第一侧壁11以及与所述第一侧壁11平行的第二侧壁12。所述辐射区20的数量为4个,分别为辐射区201、辐射区202、辐射区203以及辐射区204。所述辐射区201、202、203、204分别被构造在四象限坐标系 的一个象限中,并且在接通馈电巴伦40(如图2所示)之前,相邻的两个辐射区20之间直流隔离。所述辐射区201、辐射区203构成一个偶极子,并沿着+45°方向辐射信号;所述辐射区202、辐射区204构成另一个偶极子,并沿着-45°方向辐射信号。每个辐射区20包括辐射臂21、为所述辐射臂21馈电的馈电部22以及镂空部23。所述辐射臂21包括第一辐射臂211、第二辐射臂212、第三辐射臂213以及分流滤波器214。所述第一辐射臂211、第三辐射臂213设置于所述介质板10的第一侧壁11上,所述第二辐射臂212设置于所述介质板10的第二侧壁12上。所述分流滤波器214的数量为2个。一个所述分流滤波器214设置于所述第一辐射臂211、第二辐射臂212之间。另一个所述分流滤波器214设置于所述第二辐射臂212和第三辐射臂213之间。由于所述辐射臂21被所述分流滤波器214分成三个长度较短的辐射臂(即:第一辐射臂211、第二辐射臂212、第三辐射臂213),从而可以有效减少所述辐射元件100与高频信号之间的共振。优选地,所述第一辐射臂211、第二辐射臂212、第三辐射臂213中的至少一个的宽度不大于高频波段的最高频率波长的1/8。
图7所示为图4中圆圈A处的局部放大图。请参阅图7所示,所述分流滤波器214包括位于所述介质板10第一侧壁11上的第三迹线2141以及位于所述介质板10的第二侧壁12上的第四迹线2142。所述第三迹线2141的一端与所述第二辐射臂212电性连接,另一端通过过孔101与所述第四迹线2142电性连接。所述过孔101可以是设置于所述介质板10内的金属导体,也可以是位于介质板10的通孔内的金属镀层。所述第四迹线2142远离所述过孔101的一端与所述第三辐射臂213电性连接。所述第三迹线2141、第二迹线2142共同弯曲形成电感线圈,从而可以有效遏制位于所述辐射元件100内的高频电流。所述高频电流是高频振子辐射的高频信号与所述辐射元件100形成共振后产生的。请参阅图7所示,所述第三迹线2141、第四迹线2142立体交叉。所述第三迹线2141、第四迹线2142都包括交叉区域2143以及非交叉区域2144。所述第三 迹线2141的交叉区域2143与所述第四迹线2142的交叉区域2143共同构成一电容。图8所示为所述分流滤波器214的等效电路图。其中,所述第三迹线2141、第四迹线2142共同构成电感线圈2145,所述第三迹线2141的交叉区域2143与所述第四迹线2142的交叉区域2143共同构成一电容2146。所述电感线圈2145、电容2146并联后,与所述第二辐射臂212、第三辐射臂213串联。由于所述分流滤波器214同时具有电感2145、电容2146的效果,从而使得所述分流滤波器214不仅可以有效遏制在所述辐射元件100内流动的高频电流,而且可以有效消耗高频电流的能量,进而有效避免所述辐射元件100对高频振子的干扰。在本实施例中,所述电感2145为20nH,所述电容为0.4pF,适用于为1.8GHz处提供滤波器阻带。当然,在实际应用中,可以根据需要调节所述电感2145、电容2146的大小。例如,可以通过调节所述第三迹线2141、第四迹线2142的总长度来调节所述电感2145,可以通过调节所述交叉区域2143的大小来调节所述电容2146。
本实施例中,在垂直于所述第一电感迹线2141或者第二电感迹线2142的延伸方向的方向上,所述交叉区域2143的宽度大于所述非交叉区域2144的宽度。为了进一步提升所述分流滤波器214的滤波效果,通常需要用较大的电感搭配小电容来增加滤波带宽。因此,优选地,所述交叉区域2143的宽度小于所述非交叉区域2144的宽度。进一步地,所述交叉区域2143的宽度不小于0.5mm,不大于高频波段的最高频率波长的1/8。进一步地,所述第三迹线2141、第四迹线2142的宽度小于所述辐射臂21的宽度,即:所述第三迹线2141、第四迹线2142的宽度小于所述第一辐射臂211、第二辐射臂212、第三辐射臂213的宽度。当然,可以理解的是,在其他实施例中,也可以设置为:所述第三迹线2141、第四迹线2142的宽度大于所述辐射臂21的宽度。
虽然在本实施例中,所述第一辐射臂211、第三辐射臂213设置于所述介质板10的第一侧壁11上,所述第二辐射臂212设置于所述介质板10的第二侧 壁12上。但是,可以理解的是,在其它实施例中,所述第一辐射臂211、第二辐射臂212、第三辐射臂213亦可以设置于所述介质板10的同一侧壁上。例如,所述第一辐射臂211、第二辐射臂212、第三辐射臂213都设置于所述介质板10的第一侧壁11上,此时所述第四迹线2142需要通过金属过孔与所述第三辐射臂213电性连接。
请参阅图1、图2以及图4所示,所述馈电部22用以为所述辐射臂21馈电。所述馈电部22包括基区221、电桥222以及位于所述基区221和电桥222之间的中空部223。所述基区221与巴伦40(如图2所示)电性连接,以获取所述巴伦40馈送的信号。在本实施例中,所述巴伦40包括两个相互正交的介质板,介质板的一侧设置有地线,另一侧设置有信号线。其中,地线与偶极子的一个辐射区电性连接,信号线与偶极子的另一个辐射区电性连接。所述电桥222用以降低所述辐射元件100的回波损耗。优选地,所述电桥222的长度不大于高频波段的最高频率波长的1/4。所述中空部223位于所述基区221与所述电桥222之间,可以有效降低所述辐射元件100与高频振子的金属重叠面积,从而降低高频信号经过所述辐射元件100时的衍射,进而有效降低所述辐射元件100对高频振子的干扰。
请参阅图1以及图4所示,所述镂空部23位于所述辐射臂21和所述馈电部22之间。由于所述辐射臂21的面积较小,从而使得所述镂空部23具有相对较大的面积,进而可以有效降低所述辐射元件100与高频振子的金属重叠面积,从而降低高频信号经过所述辐射元件100时的衍射,进而有效降低所述辐射元件100对高频振子的干扰。又由于所述第一辐射臂211、第二辐射臂212、第三辐射臂213中的至少一个的宽度不大于高频波段的最高频率波长的1/8,从而使得所述辐射元件100具有较窄的轮廓,从而允许高频信号能够以最小的衍射方式通过。
请参阅图1、图2以及图3所示,所述共模滤波器30设置在相邻的两个辐射臂21、与所述相邻的两个辐射臂21相对应的两个馈电部22之间。当高频信号经过所述辐射元件100时,相邻的两个辐射臂21内容易产生共振,从而产生高频电流。由于两个辐射臂21内的高频电流方向相同,因此位于两个相邻辐射臂21内的高频电流为共模电流。所述共模滤波器30用以滤除所述共模电流。当然,可以理解的是,所述共模滤波器30不仅可以滤除前述共模高频电流,还可以滤除任何形式的共模电流。所述共模滤波器30包括为辐射臂馈电的第一传输线31以及为与所述辐射臂相邻的另一辐射臂馈电的第二传输线32。其中,所述第一传输线31、第二传输线32弯曲形成电感线圈,且第一传输线31、第二传输线32的绕行方向一致,长度相等。图5所示为图4中圆圈B处的局部放大图。请参阅图5所示,所述第一传输31、第二传输线32都包括位于所述介质板10的第一侧壁11上的第一迹线301以及位于所述介质板10的第二侧壁12上的第二迹线302。所述第一迹线301、第二迹线302通过过孔303电性连接。其中,所述第一传输线31的一端连接所述辐射区201的馈电部22,另一端连接所述辐射区201的第三辐射臂213;所述第二传输线32的一端连接所述辐射区204的馈电部22,另一个端连接所述辐射区204的第一辐射臂211。图6所示为所述共模滤波器30的等效电路图。其中,所述第一传输线31等效为电感33,所述第二传输线32等效为电感34,所述电感33、电感34为紧耦合。由于所述第一传输线31、第二传输线32的绕行方向一致、长度相等,因此当共模电流流经所述第一传输线31、第二传输线32时,由于共模电流的方向相同从而会在第一传输线31的线圈、第二传输线32的线圈内产生同向磁场,进而增大线圈的感抗,达到衰减共模电流、滤除共模电流的目的。优选地,所述第一传输线31、第二传输线32的长度不小于高频波段中最高频率波长的1/8。
所述辐射元件100工作于低频波段。由于所述辐射元件100设置有所述共模滤波器30或者所述分流滤波器214,从而使得所述辐射元件100在方向AA (如图1所示,方向AA为四象限坐标系的坐标轴方向)上的最大尺寸不大于低频波段中中心频率波长的1/3。
相较于现有技术,本发明辐射元件100由于设置有所述共模滤波器30或者所述分流滤波器214,从而可以有效遏制、滤除所述辐射元件100内的高频电流,进而可以有效降低所述辐射元件100对高频振子的干扰,从而使得高频振子具有较好的辐射方向图。
请参阅图9所示,本发明还揭示了一种天线400,包括第一辐射单元410、第二辐射单元420以及反射板430。所述第一辐射单元410包括若干所述辐射元件100,所述辐射元件100工作于低频波段;所述第二辐射单元420包括若干高频振子421,所述高频振子421工作于高频波段,所述高频振子421的工作频率高于所述辐射元件100的工作频率。所述第一辐射单元410、第二辐射单元420安装在所述反射板430上。其中,在垂直于所述反射板430的方向上,所述辐射元件100、高频振子421至少部分重叠,此时所述辐射元件100、高频振子421位于不同的高度。如图9所示,在本实施例中,在所述反射板430的横向BB上,所述辐射元件100的两侧分别与一个高频振子重叠。当然,可以理解的是,在其它实施例中,亦可以设置为所述辐射元件100的一侧与一个高频振子重叠。由于所述辐射元件100设置有去耦的共模滤波器30或者分流滤波器214,从而使得所述辐射元件100与所述高频振子421之间以较小的间距排布,此时所述辐射元件100与所述高频振子421至少部分重叠,从而缩小所述天线400在横向BB上的宽度。优选地,当所述天线400在纵向CC上具有两列辐射元件100,4列高频振子421时,所述反射板430在横向BB上的宽度不大于低频波段的最低频率波长。优选地,在所述反射板430的横向BB上,相邻高频振子421的中心间距不大于高频波段的最高频率的波长。优选地,在所述反射板430的纵向CC上,相邻高频振子421的中心间距不大于高频波段内的最高频率波长 的3/4。优选地,假设高频波段的中心频率波长为λ;其中,在所述反射板430的横向BB上,相邻高频振子421的中心间距位于0.6λ和λ之间。
请参阅图10所示,本发明还揭示了第二种天线500,包括第一辐射单元510、第二辐射单元520以及反射板530。所述第一辐射单元510、第二辐射单元520安装在所述反射板530上。所述第一辐射单元510包括若干所述辐射元件100,所述第二辐射单元520包括若干高频振子521。其中,在垂直于所述反射板530的方向上,所述辐射元件100的至少一侧与至少一个所述高频振子521重叠。在本实施例中,所述辐射元件100的两侧分别与两个所述高频振子521重叠。如此设置,可以有效降低所述天线500在纵向上的高度。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (23)

  1. 一种辐射元件,其特征在于,所述辐射元件包括:
    相互直流隔离的四个辐射区,每个辐射区被构造在四象限坐标系的一个象限之中;每个辐射区包括辐射臂以及为所述辐射臂馈电的馈电部;以及
    共模滤波器,所述共模滤波器被设置在相邻的两个辐射臂、与所述相邻的两个辐射臂相对应的相邻两个馈电部之间。
  2. 根据权利要求1所述的辐射元件,其特征在于,所述共模滤波器包括为辐射臂馈电的第一传输线以及为与所述辐射臂相邻的另一辐射臂馈电的第二传输线;其中,第一传输线、第二传输线弯曲成电感线圈,且第一传输线、第二传输线的绕行方向一致、长度相等。
  3. 根据权利要求2所述的辐射元件,其特征在于,所述第一传输线、第二传输线的长度不小于高频波段中最高频率波长的1/8。
  4. 根据权利要求2所述的辐射元件,其特征在于,所述辐射元件还包括介质板,所述辐射臂设置于所述介质板上;所述第一传输线、第二传输线都包括位于介质板一侧的第一迹线以及位于介质板另一侧的第二迹线,所述第一迹线、第二迹线通过过孔电性连接。
  5. 根据权利要求1所述的辐射元件,其特征在于,所述辐射元件还包括介质板,所述辐射区设置于所述介质板上;每个辐射臂包括分流滤波器,所述分流滤波器包括位于介质板一侧的第三迹线以及位于所述介质板另一侧的第四迹线;所述第三迹线、第四迹线通过过孔电性连接,并共同弯曲形成电感线圈。
  6. 根据权利要求5所述的辐射元件,其特征在于,所述第三迹线、第四迹线立体交叉,所述第三迹线、第四迹线都包括交叉区域以及非交叉区域;其中,第三迹线、第四迹线的交叉区域构成电容。
  7. 根据权利要求6所述的辐射元件,其特征在于,交叉区域的宽度不小于0.5mm,不大于高频波段的最高频率波长的1/8。
  8. 根据权利要求5所述的辐射元件,其特征在于,所述第三迹线、第四迹线的宽度小于所述辐射臂的宽度。
  9. 根据权利要求5所述的辐射元件,其特征在于,所述辐射元件工作于低频波段;在四象限坐标系的坐标轴方向上,所述辐射元件的最大尺寸不大于低频波段的中心频率波长的1/3。
  10. 根据权利要求5所述的辐射元件,其特征在于,所述辐射臂包括第一辐射臂、第二辐射臂以及第三辐射臂;其中,所述第一辐射臂、第二辐射臂之间设置有所述分流滤波器,所述第二辐射臂、第三辐射臂之间设置有所述分流滤波器。
  11. 根据权利要求10所述的辐射元件,其特征在于,所述第一辐射臂、第三辐射臂位于所述介质板的一侧,所述第二辐射臂位于介质板的另一侧。
  12. 根据权利要求10所述的辐射元件,其特征在于,所述第一辐射臂、第二辐射臂、第三辐射臂位于所述介质板的同侧。
  13. 根据权利要求10所述的辐射元件,其特征在于:所述第一辐射臂、第二辐射臂、第三辐射臂中的至少一个的宽度不大于高频波段的最高频率波 长的1/8。
  14. 根据权利要求1所述的辐射元件,其特征在于,每个辐射区还设置有镂空部;所述馈电部、辐射臂围设形成所述镂空部。
  15. 根据权利要求1所述的辐射元件,其特征在于,每个馈电部还设置有电桥。
  16. 根据权利要求15所述的辐射元件,其特征在于,所述电桥的长度不大于高频波段的最高频率波长的1/4。
  17. 一种天线,其特征在于,包括:
    第一辐射单元,所述第一辐射单元包括若干如权利要求1-16中任意一项所述的辐射元件;
    第二辐射单元,所述第二辐射单元包括若干高频振子,所述高频振子的工作频率高于所述辐射元件的工作频率;以及
    反射板,所述第一辐射单元、第二辐射单元安装在所述反射板上;
    其中,在垂直于所述反射板的方向上,所述辐射元件、高频振子至少部分重叠。
  18. 根据权利要求17所述的天线,其特征在于:在所述反射板的横向上,所述辐射元件的至少一侧与至少一个高频振子重叠。
  19. 根据权利要求17所述的天线,其特征在于:在所述反射板的横向上,所述辐射元件的两侧分别与两个高频振子至少部分重叠。
  20. 根据权利要求17所述的天线,其特征在于:所述辐射元件工作于低 频波段;其中,当所述天线在纵向上具有两列辐射元件,四列高频振子时,所述反射板在横向上的宽度不大于低频波段的最低频率波长。
  21. 根据权利要求17所述的天线,其特征在于:所述高频振子工作于高频波段;其中,在反射板的横向上,相邻高频振子的中心间距不大于高频波段的最高频率的波长。
  22. 根据权利要求17所述的天线,其特征在于:所述高频振子工作于高频波段;其中,在反射板的纵向上,相邻高频振子的中心间距不大于高频波段的最高频率波长的3/4。
  23. 根据权利要求17所述的天线,其特征在于:所述高频振子工作于高频波段,高频波段的中心频率波长为λ;其中,在反射板的横向上,相邻高频振子的中心间距位于0.6λ和λ之间。
PCT/CN2022/077197 2021-08-27 2022-02-22 一种辐射元件以及天线 WO2023024458A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22859817.3A EP4395076A1 (en) 2021-08-27 2022-02-22 Radiation element and antenna
US18/588,620 US20240204408A1 (en) 2021-08-27 2024-02-27 Radiation element and attenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110996693.4A CN113690592B (zh) 2021-08-27 2021-08-27 一种辐射元件以及天线
CN202110996693.4 2021-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/588,620 Continuation US20240204408A1 (en) 2021-08-27 2024-02-27 Radiation element and attenna

Publications (1)

Publication Number Publication Date
WO2023024458A1 true WO2023024458A1 (zh) 2023-03-02

Family

ID=78583653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077197 WO2023024458A1 (zh) 2021-08-27 2022-02-22 一种辐射元件以及天线

Country Status (4)

Country Link
US (1) US20240204408A1 (zh)
EP (1) EP4395076A1 (zh)
CN (2) CN113690592B (zh)
WO (1) WO2023024458A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12021315B2 (en) 2019-03-22 2024-06-25 Commscope Technologies Llc Dual-polarized radiating elements for base station antennas having built-in common-mode rejection filters that block common mode radiation parasitics
CN113690592B (zh) * 2021-08-27 2023-03-14 普罗斯通信技术(苏州)有限公司 一种辐射元件以及天线
WO2024179682A1 (en) * 2023-03-02 2024-09-06 Telefonaktiebolaget Lm Ericsson (Publ) Antenna, mobile communication base station as well as user device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104106179A (zh) * 2012-01-17 2014-10-15 萨博公司 组合天线、天线阵列以及使用该阵列天线的方法
CN110741508A (zh) * 2017-05-03 2020-01-31 康普技术有限责任公司 具有交叉偶极子辐射元件的多频带基站天线
WO2020197849A1 (en) * 2019-03-22 2020-10-01 Commscope Technologies Llc Dual-polarized radiating elements for base station antennas having built-in stalk filters that block common mode radiation parasitics
CN111864367A (zh) * 2020-07-27 2020-10-30 摩比天线技术(深圳)有限公司 低频辐射单元及基站天线
CN112821044A (zh) * 2020-12-31 2021-05-18 京信通信技术(广州)有限公司 辐射单元、天线及基站
WO2021133577A1 (en) * 2019-12-24 2021-07-01 Commscope Technologies Llc Radiating element, antenna assembly and base station antenna
WO2021136187A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种阵列天线及通信设备
CN113690592A (zh) * 2021-08-27 2021-11-23 罗森伯格技术有限公司 一种辐射元件以及天线

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205282655U (zh) * 2015-12-17 2016-06-01 京信通信系统(广州)有限公司 一种双频天线及双极化双频天线
CN106129596A (zh) * 2016-07-27 2016-11-16 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
CN106450691B (zh) * 2016-08-10 2020-07-03 京信通信技术(广州)有限公司 低频辐射单元、天线及多频共用天线
CN107086365B (zh) * 2017-06-15 2023-11-28 苏州立讯技术有限公司 一种双极化天线及天线阵列
CN109768373A (zh) * 2017-11-09 2019-05-17 安弗施无线射频系统(上海)有限公司 一种辐射单元和带宽延伸结构
CN110233343A (zh) * 2019-07-02 2019-09-13 京信通信技术(广州)有限公司 双频双极化天线及辐射单元
CN112787079A (zh) * 2019-11-07 2021-05-11 罗森伯格技术有限公司 一种小型化直流接地的辐射单元及天线
CN111129750B (zh) * 2019-12-20 2022-07-12 京信通信技术(广州)有限公司 5g天线及其辐射单元
CN213366800U (zh) * 2020-07-03 2021-06-04 华为技术有限公司 多频段共口径天线和通信设备
CN112582784B (zh) * 2020-11-23 2022-03-15 华南理工大学 一种基于环加载和开槽的宽带基站天线及无线通信设备
CN213989193U (zh) * 2020-12-31 2021-08-17 京信通信技术(广州)有限公司 辐射单元、天线及基站

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104106179A (zh) * 2012-01-17 2014-10-15 萨博公司 组合天线、天线阵列以及使用该阵列天线的方法
CN110741508A (zh) * 2017-05-03 2020-01-31 康普技术有限责任公司 具有交叉偶极子辐射元件的多频带基站天线
WO2020197849A1 (en) * 2019-03-22 2020-10-01 Commscope Technologies Llc Dual-polarized radiating elements for base station antennas having built-in stalk filters that block common mode radiation parasitics
WO2021133577A1 (en) * 2019-12-24 2021-07-01 Commscope Technologies Llc Radiating element, antenna assembly and base station antenna
WO2021136187A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种阵列天线及通信设备
CN111864367A (zh) * 2020-07-27 2020-10-30 摩比天线技术(深圳)有限公司 低频辐射单元及基站天线
CN112821044A (zh) * 2020-12-31 2021-05-18 京信通信技术(广州)有限公司 辐射单元、天线及基站
CN113690592A (zh) * 2021-08-27 2021-11-23 罗森伯格技术有限公司 一种辐射元件以及天线

Also Published As

Publication number Publication date
CN113690592B (zh) 2023-03-14
CN115799814A (zh) 2023-03-14
CN113690592A (zh) 2021-11-23
US20240204408A1 (en) 2024-06-20
EP4395076A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
WO2023024458A1 (zh) 一种辐射元件以及天线
US11575197B2 (en) Multi-band antenna having passive radiation-filtering elements therein
CN100517863C (zh) 宽带内置天线
TWI511378B (zh) 多頻多天線系統及其通訊裝置
CN108039590B (zh) 双频双馈入天线结构
WO2020173294A1 (zh) 共体天线及电子设备
US11095033B2 (en) Antenna apparatus and terminal
CN213753059U (zh) 多频低sar天线及电子设备
CN110676575B (zh) 一种小型化的高增益双频wifi天线
US10965018B2 (en) Antenna device
US20080174505A1 (en) Ultra-wideband shorted dipole antenna
TW201517381A (zh) 具有雙調整機制之小型化天線
JP6624650B2 (ja) アンテナ
US20240178564A1 (en) Dual-polarized radiation unit for antenna, antenna, and antenna system
JP2005020266A (ja) 多周波アンテナ装置
EP1530258B1 (en) A small antenna and a multiband antenna
CN110931961A (zh) 一种基于连接线的紧凑型mimo天线系统
CN113131194B (zh) 一种阵列天线及通信设备
TWM599482U (zh) 多頻天線裝置
CN110504526B (zh) 天线装置和终端
US11387567B1 (en) Multiband antenna with dipole resonant structures
EP3893328A1 (en) Multi-band antenna having passive radiation-filtering elements therein
CN210723352U (zh) 一种基于连接线的紧凑型mimo天线系统
CN106058434B (zh) 一种应用于移动终端的天线
JP3742331B2 (ja) モノポールアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022859817

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022859817

Country of ref document: EP

Effective date: 20240327