WO2020173016A1 - 一种间苯二酚二苯甲醚衍生物及其用途 - Google Patents

一种间苯二酚二苯甲醚衍生物及其用途 Download PDF

Info

Publication number
WO2020173016A1
WO2020173016A1 PCT/CN2019/091193 CN2019091193W WO2020173016A1 WO 2020173016 A1 WO2020173016 A1 WO 2020173016A1 CN 2019091193 W CN2019091193 W CN 2019091193W WO 2020173016 A1 WO2020173016 A1 WO 2020173016A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
preparation
identification results
group
white solid
Prior art date
Application number
PCT/CN2019/091193
Other languages
English (en)
French (fr)
Inventor
陈建军
程斌斌
Original Assignee
南方医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方医科大学 filed Critical 南方医科大学
Publication of WO2020173016A1 publication Critical patent/WO2020173016A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/141,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
    • C07D319/161,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D319/18Ethylenedioxybenzenes, not substituted on the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to organic compounds, in particular to a resorcinol dianisole derivative, which can inhibit programmed cell death receptor 1/programmed cell death ligand 1 (PD-1/PD-L1) Combined with each other, it can be used to treat tumors.
  • a resorcinol dianisole derivative which can inhibit programmed cell death receptor 1/programmed cell death ligand 1 (PD-1/PD-L1) Combined with each other, it can be used to treat tumors.
  • Tumor immunotherapy is increasingly used in the field of cancer treatment.
  • the main drugs used in tumor immunotherapy are macromolecular biological antibodies.
  • PD-1/PD-L1 inhibitors also called immune checkpoint inhibitors
  • PD-1/PD-L1 has become one of the most attractive targets in the design of anti-tumor drugs, and it has also been listed as one of the most promising tumor treatment targets, so it has attracted much attention.
  • PD-1/PD-L1 antibody drugs have the advantages of target-specific specificity and high efficiency in terms of their pharmacodynamics.
  • the shortcomings of antibody drugs are also very obvious. Firstly, they have poor penetration into related tissues and tumor cells, long metabolic half-life, and low oral bioavailability.
  • antibody drugs are immunogenic. Therefore, serious adverse reactions will be caused, and the manufacturing, separation and purification process of antibody drugs is very complicated, resulting in very high production costs.
  • small molecule compounds have many advantages in terms of pharmacodynamics.
  • small molecule compounds have better oral bioavailability, high permeability to related tissues and tumor cells, reasonable half-life, etc.
  • small Molecular compounds have the advantages of low toxicity, high selectivity and effectiveness. Therefore, small molecule tumor immune drugs are expected to overcome the shortcomings of large molecule antibody drugs.
  • small molecule compounds can not only improve the existing deficiencies of antibody drugs, but also can play a synergistic effect with antibody drugs.
  • some highly effective small molecule compounds have been reported one after another, and some of these small molecule compounds have entered clinical research.
  • no small molecule tumor immune drug has been approved by the FDA for cancer-related treatments. Therefore, tumor immunotherapy based on small molecules is still one of the most worthy scientific areas of tumor immunotherapy.
  • the aforementioned PCT patent application discloses that the derivative can inhibit the mutual binding of programmed cell death receptor 1/programmed cell death ligand 1 (PD-1/PD-L1), and can be used to treat tumors.
  • PD-1/PD-L1 programmed cell death receptor 1/programmed cell death ligand 1
  • the inhibitory effect of the compound disclosed in the aforementioned PCT patent application on PD-1/PD-L1 is not ideal, and its IC50 detected by the HTRF method is only 146 nM. Therefore, it is of great significance to synthesize a compound with ideal inhibitory effect on PD-1/PD-L1.
  • the technical problem to be solved by the present invention is to provide a resorcinol dimethyl ether derivative which can inhibit programmed cell death receptor 1/programmed cell death ligand 1 (PD-1/PD-L1) The combination of each other, and the effect is remarkable.
  • R 1 is 2-methylalanine group, 3-hydroxyazetidinyl group, aminoacetoxy group, (R)-pyrrolidine-3-carboxylic acid group, (R)-3-pyrrole Alkanol group, (S)-pyrrolidin-3-carboxylate, (S)-3-pyrrolidinol group, azetidine-3-carboxylate, (3R,5S)-5-hydroxymethyl -3-pyrrolidinol, trans-4-fluoro-3-hydroxypyrrolidinyl, 3-methyl-3-azetidinol, 4-(hydroxymethyl)pyrrolidin-3-ol , 3-hydroxypyrrolidinyl, 2-methylalanine, 3-hydroxyazetidinyl, D-piperidine-2-carboxylic acid, cis-4-hydroxy-D-proline, D- For serine, R 2 is phenyl, 1,4-benzodioxanyl, 3-pyridyl, 4-pyridyl,
  • the resorcinol dimethyl ether derivative of the present invention is preferably one of the following compounds:
  • the preparation method of the above-mentioned resorcinol dimethyl ether derivative includes the following steps:
  • the preparation method of a resorcinol dimethyl ether derivative of the present invention has two synthetic routes, among which,
  • Route one includes the following steps: firstly compound VII and compound VI are reacted to produce compound V; then compound V and compound IV are subjected to a nucleophilic substitution reaction to produce compound III; finally compound III and compound II undergo reductive amination reaction to produce compound I .
  • Reaction reagents and conditions (a) VI, PPh 3 , DIAD, THF, 0°C ⁇ 25°C, 10hrs, 16% ⁇ 20%; (b) 3-cyanobenzyl bromide, DMF, Na 2 CO 3 , 80°C, 30min, 70% ⁇ 80%; (c) HR 1 , DMF, AcOH, NaBH 3 CN, 80°C, 2hrs, 15% ⁇ 25%.
  • Route 2 includes the following steps: firstly, compound VII and compound m5 are subjected to nucleophilic substitution reaction to form compound 10; then compound 10 and compound IV are subjected to nucleophilic substitution reaction to form compound 11; compound 11 and m6 are subjected to Suzuki coupling reaction to form compound 12 ; Finally, compound 12 and compound HR 1 undergo reductive amination to generate compound TM.
  • Reaction reagents and conditions (a) m5, NaHCO 3 , DMF, 60°C, 2hrs, 40%; (b) 3-cyanobenzyl bromide, DMF, Na 2 CO 3 , 80°C, 30min, 60%; (c) m6,Pd(PPh 3 ) 4 ,DMSO,H 2 O,100°C,12hrs,25% ⁇ 30%; (d)HR 1 ,DMF,AcOH,NaBH 3 CN,80°C,2hrs,15% ⁇ 25% .
  • R 1 is 2-methylalanine group, 3-hydroxyazetidinyl group, aminoacetoxy group, (R)-pyrrolidine-3-carboxylic acid group, (R)-3-pyrrole Alkanol group, (S)-pyrrolidin-3-carboxylate, (S)-3-pyrrolidinol group, azetidine-3-carboxylate, (3R,5S)-5-hydroxymethyl -3-pyrrolidinol, trans-4-fluoro-3-hydroxypyrrolidinyl, 3-methyl-3-azetidinol, 4-(hydroxymethyl)pyrrolidin-3-ol , 3-hydroxypyrrolidinyl, 2-methylalanine, 3-hydroxyazetidinyl, D-piperidine-2-carboxylic acid, cis-4-hydroxy-D-proline, D- For serine, R 2 is phenyl, 1,4-benzodioxanyl, 3-pyridyl, 4-pyridyl,
  • the above-mentioned resorcinol dimethyl ether derivative can inhibit the binding of programmed cell death receptor 1/programmed cell death ligand 1 (PD-1/PD-L1) and can be used to prepare PD-1/ PD-L1 inhibitor, the inhibitor has a significant anti-tumor effect.
  • the PD-1/PD-L1 inhibitor is composed of the resorcinol dimethyl ether derivative and medically acceptable excipients.
  • HTRF homogeneous time-resolved fluorescence
  • Figure 1 is a graph of evaluating the anti-tumor effect of the resorcinol dimethyl ether derivative of the present invention, where Figure A is a bar graph comparing the weight of tumors in 4 groups, and Figure B is a graph comparing the weight changes of mice in 4 groups Figure.
  • the compound prepared in this embodiment is the compound shown in C1, and the preparation method consists of the following steps:
  • reaction solution was poured into 100 mL of water, extracted with ethyl acetate (100 mL ⁇ 5), and allowed to stand for liquid separation. They were washed with 5% sodium bicarbonate (NaHCO 3 ) (80 mL ⁇ 3) and saturated brine (80 mL ⁇ 3), then dried over anhydrous magnesium sulfate, filtered with suction, and removed the ethyl acetate under reduced pressure.
  • NaHCO 3 sodium bicarbonate
  • brine 80 mL ⁇ 3
  • the obtained white solid compound V was identified by nuclear magnetic resonance spectroscopy and mass spectrometry techniques, and the identification results were: 13 C NMR (101MHz, CDCl3) ⁇ 193.65,162.90,160.93,143.04,142.65,142.46,134.99,134.11,133.95,133.43, 131.60,130.42,127.18,125.59,122.52,118.19,116.84,114.99,114.80,101.55,70.31,64.39,16.14.
  • the compound prepared in this example is the compound shown in C2, and the specific preparation method is the same as in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound shown in C3, and the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this embodiment is the compound represented by C4.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this embodiment is the compound represented by C5.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C6.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C7.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C8.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C9.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this example is a compound represented by C10, and the preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this embodiment is the compound represented by C11.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this embodiment is a compound represented by C12, and its preparation method consists of the following steps:
  • Step 2 3-((4-Chloro-2-formyl-5-((2-methyl-[1,1'-biphenyl]-3-yl)methoxy)phenoxy)methyl)
  • the resulting white solid product is 3-((4-chloro-2-formyl-5-((2-methyl-[1,1'-biphenyl]-3-yl)methoxy)phenoxy)methane Base) benzonitrile.
  • the compound prepared in this example is the compound represented by C13, and the specific preparation method is the same as that in Example 12.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C14, and the specific preparation method is the same as that in Example 12.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C15.
  • the specific preparation method is the same as that in Example 12.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C16, and the specific preparation method is the same as that in Example 12.
  • the reaction formula is as follows:
  • the compound prepared in this example is the compound represented by C17, and the specific preparation method is the same as that in Example 12.
  • the reaction formula is as follows:
  • the compound prepared in this example is a compound represented by C18.
  • the specific preparation method is the same as that in Example 12.
  • the reaction formula is as follows:
  • the compound prepared in this example is a compound represented by C19.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the compound prepared in this example is a compound represented by C20.
  • the specific preparation method is the same as that in Example 1.
  • the reaction formula is as follows:
  • the structural formula of the compound prepared in this example is The preparation method of the compound is shown in Route 2 described in the Summary of the Invention.
  • the structural formula of the compound prepared in this example is The preparation method of the compound is shown in Route 2 described in the Summary of the Invention.
  • the structural formula of the compound prepared in this example is The preparation method of the compound is shown in Route 2 described in the Summary of the Invention.
  • the structural formula of the compound prepared in this example is The preparation method of the compound is shown in Route 2 described in the Summary of the Invention.
  • the structural formula of the compound prepared in this example is The preparation method of the compound is shown in Route 2 described in the Summary of the Invention.
  • Example 27 Research on the inhibitory effect of a resorcinol dimethyl ether derivative of the present invention on PD-1/PD-L1
  • the inhibitory effect of the compound of the present invention on PD-1/PD-L1 was tested by the following method.
  • the compound of the present invention has a significant inhibitory effect on PD-1/PD-L1, and it can be used to treat cancer, especially metastatic non-small cell lung cancer, urothelial cancer, and head and neck squamous cell carcinoma.
  • the specific test method is as follows:
  • HTRF homogeneous time-resolved fluorescence detection technology is a high-throughput drug screening technology based on two major technical principles of time-resolved fluorescence (TRF) and fluorescence resonance energy transfer (FRET).
  • TRF time-resolved fluorescence
  • FRET fluorescence resonance energy transfer
  • Fluorescence resonance energy transfer means that in two different fluorophores, if the emission spectrum of one fluorophore (Donor) overlaps with the absorption spectrum of the other group (Acceptor), When the distance between these two fluorophores is appropriate (generally less than ), you can observe the phenomenon of fluorescence energy transfer from the donor to the acceptor, that is, when the excitation wavelength of the former group is excited, the fluorescence emitted by the latter group can be observed. Simply put, it is the process of energy transfer from the donor to the acceptor mediated by a pair of dipoles in the excited state of the donor group.
  • the conditions for effective energy transfer between the energy donor-acceptor (D-A) pair are harsh, including: (1) The emission spectrum of the energy donor and the absorption spectrum of the energy acceptor must overlap; (2) Energy The fluorescent chromophores of the donor and the energy acceptor must be arranged in an appropriate way; (3) The energy donor and the energy acceptor must be close enough so that the probability of energy transfer will be high.
  • HTRF uses a chelate and marker of europium (Eu) element with a cavernous structure as an energy donor (Donor) and XL665 (modified allophycocyanin) as an energy acceptor (Acceptor), based on Eu
  • TRF time-resolved fluorescence
  • FRET fluorescence resonance energy transfer
  • the donor containing Eu will induce the XL665 acceptor to emit fluorescence for a long time, and the fluorescence produced by the acceptor can last for a longer time, so that the short-lived itself can be distinguished by time resolution. Scatter the fluorescence, so that the FRET signal can be easily distinguished from the short-lived fluorescent background.
  • the emission wavelength is 620nm; the other part of the energy is transferred to the acceptor, the emission wavelength is 665nm .
  • the emission light at 665 nm is only produced by FRET caused by the donor (Donor).
  • the energy donor of Eu cryptate can specifically bind to PD-L1 protein, and the XL665 energy receptor can specifically bind to PD-1 protein to form a complex of four substances. Shorten the distance between Donor and Acceptor, energy can be transferred from Donor to Acceptor, making Acceptor produce fluorescence; if the test compound can block the combination of the two, as the concentration of test compound increases, the ratio of 665nm/620nm will decrease; After the detection system is stabilized, the change in the fluorescence value can quantify the potency IC 50 of the blocking agent; the detection is the two fluorescence 665nm and 620nm of HTRF, namely time-resolved fluorescence (TRF), when the ratio of 665nm/620nm decreases, the blocking The higher the effect of the agent.
  • the HTRF detection kit is a high-throughput detection technology with high sensitivity, rapid no-washing, and low background, which is developed by comprehensively utilizing the specific binding reaction of anti
  • the inhibition rate (Inibition)% (1-(665nm/620nm signal value of each well-average value of low control group)/(average value of high control group-average value of low control group)) *100.
  • the high control group had no compound treatment, and only the same concentration of DMSO solution was added to the reaction system group; the low control group had no PD-1 mixture, and only the same amount of detection detection mixture was added. In this detection system, the final concentration of DMSO is 0.5%.
  • the methyl ether derivative of resorcinol containing substituted biphenyls of the present invention can inhibit programmed cell death receptor 1/programmed cell death ligand 1 (PD- 1/PD-L1), and the effect is significantly better than the compound 1-( ⁇ 3-bromo-4-[(2-methyl-3-phenyl) disclosed in the PCT patent application with publication number WO2015/034820A1 )Methoxy))phenyl ⁇ -methyl)piperidine-2-carboxylic acid.
  • Example 28 In vivo pharmacodynamic study of a resorcinol dimethyl ether derivative of the present invention
  • the method of subcutaneous transplantation tumor is as follows: the cultured mouse B16-F10 tumor cells are digested, and the cells are collected by centrifugation, washed twice with sterile PBS, and counted. The cell concentration is adjusted to 2.0*10 6 /mL with sterile PBS, and 0.2mL The cell suspension was inoculated into the right armpit of Bablc mice. The animals were randomly grouped the next day after inoculation and divided into 4 groups, including the control group, the dose of 100mg/kg, 50mg/kg, 25g/kg dose group, weighed and administered, the test compound according to the dose of 100mg/ Kg, 50mg/kg, 25g/kg were administered once a day for 15 consecutive days.
  • mice After 15 days, the mice were sacrificed and the animal experiment was terminated. The tumor tissue, thymus tissue and spleen tissue were removed and weighed separately. Finally, the tumor inhibition rate is calculated, and the intensity of the anti-tumor effect is evaluated by the tumor inhibition rate.
  • the drug efficacy evaluation index is shown in Figure 1.
  • the TGI value of the compound at the 15th time at the dose of 100 mg/kg, 50 mg/kg, and 25 g/kg are 85.08%, 82.62%, and 69.8%, respectively, indicating that it is effective for melanoma transplantation. It has a significant inhibitory effect, and the body weight of each group of mice changes steadily without significant difference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种间苯二酚二苯甲醚衍生物,该化合物的化学结构如下式(I)所示。本发明所述的化合物能够抑制程序性细胞死亡受体1/程序性细胞死亡配体1(PD-1/PD-L1)的相互结合,可用于制备PD-1/PD-L1抑制剂,该抑制剂的抗肿瘤效果显著。

Description

一种间苯二酚二苯甲醚衍生物及其用途 技术领域
本发明涉及有机化合物,具体涉及一种间苯二酚二苯甲醚衍生物,该衍生物能够抑制程序性细胞死亡受体1/程序性细胞死亡配体1(PD-1/PD-L1)的相互结合,可用于治疗肿瘤。
背景技术
肿瘤免疫疗法被越来越多的运用在癌症治疗领域。目前,肿瘤免疫治疗主要运用的药物是大分子生物抗体。其中PD-1/PD-L1的抑制剂(也被称为免疫检查点抑制剂)对多种肿瘤有效。因此,近年来,PD-1/PD-L1成为抗肿瘤药物设计中最吸引人的一个靶标,同时也已被列为最具前景的肿瘤治疗靶点之一,因而备受关注。
PD-1/PD-L1抗体药物就其药效动力学而言具有靶点专属特异性和高效性等方面的优点。然而就其药代动力学而言,抗体药物的缺点也非常明显,首先,对相关组织和肿瘤细胞穿透性差,代谢半衰期长,口服生物利用度低等,其次,抗体药物具有免疫原性,因此会引起严重的不良反应,而且,抗体药物制造和分离纯化过程很复杂,导致其生产成本非常高昂。与大分子抗体药物相反,小分子化合物在药效动力学方面具有很多优势,例如,小分子化合物具有较好的口服生物利用度,对相关组织和肿瘤细胞渗透率高,半衰期合理等,而且小分子化合物具有毒性低,较高的选择性和有效性等优点,因此,小分子肿瘤免疫类药物有望克服大分子抗体药物存在的缺点。在肿瘤免疫治疗领域,小分子化合物既可以完善现有的抗体药物存在的不足,也可以与抗体药物共同使用发挥协同作用。随着科研人员在小分子肿瘤免疫药物研究中作出的巨大努力,一些高效的小分子化合物陆续被报道,其中有些小分子化合物已经进入临床研究。然而,迄今为止,没有一款小分子肿瘤免疫药物被FDA批准用于癌症相关治疗。因此,以小分子为基础的肿瘤免疫疗法仍然是肿瘤免疫治疗最值得的关注的科学领域之一。
公开号为WO2015/034820 A1的PCT专利申请公开了名称为1-({3-溴-4-[(2-甲基-3-苯基)甲氧基))苯基}-甲基)哌啶-2-羧酸结构式如下的间苯二酚二苯甲醚衍生物(见该专利申请的实施例8):
Figure PCTCN2019091193-appb-000001
上述PCT专利申请公开了所述衍生物能够抑制程序性细胞死亡受体1/程序性细胞死亡配体1(PD-1/PD-L1)的相互结合,可用于治疗肿瘤。但是,上述PCT专利申请所公开的化合物对PD-1/PD-L1的抑制效果还不理想,其采用HTRF方法检测的IC50仅为146nM。因此,合成一种对PD-1/PD-L1抑制效果理想的化合物具有重要意义。
发明内容
本发明所要解决的技术问题是提供一种间苯二酚二苯甲醚衍生物,该衍生物能够抑制程序性细胞死亡受体1/程序性细胞死亡配1(PD-1/PD-L1)的相互结合,且效果显著。
本发明解决上述技术问题的方案如下:
一种间苯二酚二苯甲醚衍生物,该衍生物的化学结构如下式(I)所示,
Figure PCTCN2019091193-appb-000002
式(I)中,R 1是2-甲基丙氨酸基、3-羟基氮杂环丁基、氨基乙酸基、(R)-吡咯烷-3-甲酸基、(R)-3-吡咯烷醇基、(S)-吡咯烷-3-甲酸基、(S)-3-吡咯烷醇基、氮杂环丁烷-3-羧酸基、(3R,5S)-5-羟基甲基-3-吡咯烷醇基、反式-4-氟-3-羟基吡咯烷基、3-甲基-3-氮杂环丁醇基、4-(羟甲基)吡咯烷-3-醇基、3-羟基吡咯烷基、2-甲基丙氨酸基、3-羟基氮杂环丁基、D-哌啶-2-甲酸、顺式-4-羟基-D-脯氨酸、D-丝氨酸,R 2是苯基、1,4-苯并二恶烷基、3-吡啶基、4-吡啶基、5-嘧啶基。
本发明所述的一种间苯二酚二苯甲醚衍生物优选下述化合物之一:
Figure PCTCN2019091193-appb-000003
Figure PCTCN2019091193-appb-000004
上述一种间苯二酚二苯甲醚衍生物的制备方法包括以下步骤:
本发明的一种间苯二酚二苯甲醚衍生物的制备方法,该制备方法有两条合成路线,其中,
路线一包括以下步骤:首先将化合物VII和化合物VI进行光延反应生成化合物V;然后将化合物V和化合物IV进行亲核取代反应生成化合物III;最后化合物III和化合物II进行还原胺化反应生成化合物I。
上述方法的反应式如下所示:
Figure PCTCN2019091193-appb-000005
α反应试剂和条件:(a)VI,PPh 3,DIAD,THF,0℃~25℃,10hrs,16%~20%;(b)3-cyanobenzyl bromide,DMF,Na 2CO 3,80℃,30min,70%~80%;(c)H-R 1,DMF,AcOH,NaBH 3CN,80℃,2hrs,15%~25%.
路线二包括以下步骤:首先将化合物VII和化合物m5进行亲核取代反应生成化合物10;然后将化合物10和化合物IV进行亲核取代反应生成化合物11;化合物11和m6进行铃木偶联反应生成化合物12;最后化合物12和化合物H-R 1进行还原胺化反应生成化合物TM。
Figure PCTCN2019091193-appb-000006
α反应试剂和条件:(a)m5,NaHCO 3,DMF,60℃,2hrs,40%;(b)3-cyanobenzyl bromide,DMF,Na 2CO 3,80℃,30min,60%;(c)m6,Pd(PPh 3) 4,DMSO,H 2O,100℃,12hrs,25%~30%;(d)H-R 1,DMF,AcOH,NaBH 3CN,80℃,2hrs,15%~25%.
式(I)中,R 1是2-甲基丙氨酸基、3-羟基氮杂环丁基、氨基乙酸基、(R)-吡咯烷-3-甲酸基、(R)-3-吡咯烷醇基、(S)-吡咯烷-3-甲酸基、(S)-3-吡咯烷醇基、氮杂环丁烷-3-羧酸基、(3R,5S)-5-羟基甲基-3-吡咯烷醇基、反式-4-氟-3-羟基吡咯烷基、3-甲基-3-氮杂环丁醇基、4-(羟甲基)吡咯烷-3-醇基、3-羟基吡咯烷基、2-甲基丙氨酸基、3-羟基氮杂环丁基、D-哌啶-2-甲酸、顺式-4-羟基-D-脯氨酸、D-丝氨酸,R 2是苯基、1,4-苯并二恶烷基、3-吡啶基、4-吡啶基、5-嘧啶基。
上述一种间苯二酚二苯甲醚衍生物能够抑制程序性细胞死亡受体1/程序性细胞死亡配体1(PD-1/PD-L1)的相互结合,可用于制备PD-1/PD-L1抑制剂,该抑制剂的抗肿瘤效果显著。所述的PD-1/PD-L1抑制剂由所述的一种间苯二酚二苯甲醚衍生物和医学上可接受的辅料组成。
采用HTRF(均相时间分辨荧光)技术标准操作程序测定本发明所述的一种间苯二酚二苯甲醚衍生物对PD-1/PD-L1的抑制效果,结果显示该化合物对PD-1/PD-L1抑制效果显著优于现有技术。
以下结合具体实施方式对本发明作进一步说明。
附图说明
图1为评价本发明所述间苯二酚二苯甲醚衍生物抗肿瘤效果图,其中,A图为4组肿瘤重量比较的条形图,B图为4组小鼠体重变化比较的曲线图。
具体实施方式
实施例1(制备C1)
本实施例所制备的化合物为C1所示的化合物,制备方法由以下步骤组成:
步骤一:化合物V的制备
Figure PCTCN2019091193-appb-000007
将4g 5-氯-2,4-二羟基苯甲醛(化合物VII)和5g(3-(2,3-二氢苯并[b][1,4]二恶己环-6-基)-2-甲基苯基)甲醇(化合物VI),8.4g三苯基磷(PPh 3)加入50ml无水四氢呋喃中,搅拌15分钟,将8.2mL偶氮二甲酸二异丙酯(DIAD)分批次少量滴入反应液中,反应10小时,薄层色谱(TLC)监测,反应结束后,将反应液倾入100mL水中,用乙酸乙酯(100mL×5)萃取,静置分液,有机相分别用5%的碳酸氢钠(NaHCO 3)(80mL×3)、饱和食盐水(80mL×3)洗涤,然后用无水硫酸镁干燥,抽滤,减压除去乙酸乙酯,之后进行柱层析V(石油醚):V(乙酸乙酯)=10:1得白色固体5-氯-4-(3-(2,3-二氢苯并[b][1,4]二恶己环-6-基)-2-甲基苄基)氧基)-2-羟基苯甲醛(化合物V)6g。将所得到的白色固体化合物V采用核磁共振谱、质谱技术进行鉴定,鉴定结果为: 13C NMR(101MHz,CDCl3)δ193.65,162.90,160.93,143.04,142.65,142.46,134.99,134.11,133.95,133.43,131.60,130.42,127.18,125.59,122.52,118.19,116.84,114.99,114.80,101.55,70.31,64.39,16.14. 1H NMR(400MHz,CDCl3)δ10.34(s,1H),7.93(s,1H),7.74(s,1H),7.70(d,J=7.8Hz,2H),7.57(d,J=7.7Hz,1H),7.41(s,1H),7.28(s,1H),7.27(d,J=1.8Hz,1H),6.94(d,J=8.2Hz,1H),6.84(d,J=1.9Hz,1H),6.81–6.77(m,1H),6.63(s,1H),5.22(s,2H),5.20(s,2H),4.33(s,4H),2.30(s,3H).ESI-MS:m/z=409.1[M-1] -由上述鉴定结果可知,所得白色固体为化合物V。
步骤二:化合物III的制备
Figure PCTCN2019091193-appb-000008
将6g化合物V和3.5g 3-溴甲基苯氰(化合物IV),3g碳酸钾(K 2CO 3)加入30ml无水DMF中,搅拌,加热至80℃,反应4小时,TLC监测,反应结束后,将反应物倾入100mL水中,用乙酸乙酯(100mL×3)萃取,静置分液,有机相分别用5%的NaHCO 3(20mL×3)、饱和食盐水(20mL×3)洗涤,然后用无水硫酸镁干燥,抽滤,减压除去乙酸乙酯,之后进行柱层析V(石油醚):V(乙酸乙酯)=2:1得白色固体化合物III 5g。将所得到的化合物III采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,CDCl3)δ10.34(s,1H),7.93(s,1H),7.74(s,1H),7.70(d,J=7.8Hz,2H),7.57(d,J=7.7Hz,1H),7.41(s,1H),7.28(s,1H),7.27(d,J=1.8Hz,1H),6.94(d,J=8.2Hz,1H),6.84(d,J=1.9Hz,1H),6.81–6.77(m,1H),6.63(s,1H),5.22(s,2H),5.20(s,2H),4.33(s,4H),2.30(s,3H). 13C NMR(101MHz,CDCl3)δ186.55,160.47,159.88,143.08,142.73,142.62,137.10,134.83,134.14,133.48,132.12,131.32,130.52,130.21,129.73,127.25,125.63,122.44,119.37,118.14,117.04,116.91,113.13,98.72,70.48,69.80,64.40,16.25.由上述鉴定结果可知,所得白色固体产物为化合物III。
步骤三:化合物C1的制备
Figure PCTCN2019091193-appb-000009
将40mg化合物III和60mg甘氨酸,2滴冰醋酸加入5ml无水甲醇中,搅拌,加热至60℃,反应4小时,然后加入42mg氰基硼氢化钠(NaBH 3CN),室温反应12小时,TLC监测,反应结束后,旋干溶剂,将反应物倾入100mL水中,用乙酸乙酯(20mL×3)萃取,静置分液,有机相分别用5%的NaHCO 3(20mL×3)、饱和食盐水(20mL×3)洗涤,然后用无水硫酸镁干燥,抽滤,减压除去乙酸乙酯,之后进行柱层析V(二氯甲烷):V(甲醇)=20:1得白色固体化合物C1 6mg。将所得到的C1采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.89(s,1H),7.81–7.72(m,2H),7.56(t,J=7.8Hz,1H),7.42(d,J=7.4Hz,1H),7.37(s,1H),7.22(d,J=7.6Hz,1H),7.17(d,J=7.7Hz,1H),7.02(s,1H),6.92(d,J=8.1Hz,1H),6.77(s,1H),6.75(d,J=7.9Hz,1H),5.24(s,2H),5.18(s,2H),4.29(s,4H),3.77(s,2H),3.51(s,2H),2.22(s,3H).由上述鉴定结果可知,所得白色固体产物为化合物C1。
实施例2(制备C2)
本实施例所制备的化合物为C2所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000010
将所得到的C2采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.83(dd,J=7.8,4.3Hz,2H),7.63(t,J=7.8Hz,1H),7.46(d,J=6.6Hz,1H),7.33(s,1H),7.24(d,J=7.6Hz,1H),7.18(d,J=6.5Hz,1H),7.09(s,1H),6.93(d,J=8.2Hz,1H),6.79(d,J=2.0Hz,1H),6.77–6.70(m,1H),5.29(s,2H),5.22(s,2H),4.29(s,4H),3.56(s,2H),3.00–2.86(m,2H),2.68(s,2H),2.25(s,3H),2.05–1.91(m,3H).由上述鉴定结果可知,所得白色固体产物为C2。
实施例3(制备C3)
本实施例所制备的化合物为C3所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000011
将所得到的C3采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.84(t,J=7.2Hz,2H),7.64(t,J=7.8Hz,1H),7.46(d,J=7.3Hz,1H),7.33(s,1H),7.25(t,J=7.6Hz,1H),7.18(d,J=7.3Hz,1H),7.08(s,1H),6.93(d,J=8.2Hz,1H),6.79(d,J=1.9Hz,1H),6.76(dd,J=8.2,2.0Hz,1H),5.29(s,2H),5.22(s,2H),4.70(s,1H),4.29(s,4H),4.20(s,1H),3.60–3.50(m,2H),2.68(s,1H),2.58(s,1H),2.42(s,1H),2.34(s,1H),2.25(s,3H),2.01–1.96(m,1H),1.55(s,1H).由上述鉴定结果可知,所得白色固体产物为C3。
实施例4(制备C4)
本实施例所制备的化合物为C4所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000012
将所得到的C4采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.83(s,2H),7.63(t,J=7.7Hz,1H),7.46(d,J=7.3Hz,1H),7.33(s,1H),7.24(d,J=7.5Hz,1H),7.18(d,J=6.5Hz,1H),7.09(s,1H),6.93(d,J=8.2Hz,1H),6.79(d,J=2.0Hz,1H),6.76(dd,J=8.2,2.1Hz,1H),5.29(s, 2H),5.22(s,2H),4.29(s,4H),3.56(s,2H),2.92(d,J=7.7Hz,2H),2.68(s,2H),2.24(s,3H),2.02–1.92(m,3H).由上述鉴定结果可知,所得白色固体产物为C4。
实施例5(制备C5)
本实施例所制备的化合物为C5所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000013
将所得到的C5采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.84(t,J=7.1Hz,2H),7.64(t,J=7.7Hz,1H),7.46(d,J=7.3Hz,1H),7.33(s,1H),7.25(t,J=7.4Hz,1H),7.18(d,J=7.6Hz,1H),7.08(s,1H),6.93(d,J=8.1Hz,1H),6.79(s,1H),6.76(d,J=8.2Hz,1H),5.28(s,2H),5.22(s,2H),4.68(s,1H),4.29(s,4H),4.20(s,1H),3.58–3.50(m,2H),2.68(s,1H),2.59(s,1H),2.43(s,1H),2.34(s,1H),2.25(s,3H),2.02–1.97(m,1H),1.54(s,1H).由上述鉴定结果可知,所得白色固体产物为C5。
实施例6(制备C6)
本实施例所制备的化合物为C6所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000014
将所得到的C6采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.98(s,1H),7.91–7.79(m,2H),7.64(t,J=7.7Hz,1H),7.44(d,J=7.1Hz,1H),7.25(d,J=4.7Hz,1H),7.23(s,1H),7.18(d,J=7.6Hz,1H),7.07(s,1H),6.93(d,J=8.2Hz,1H),6.78(s,1H),6.76(d,J=7.9Hz,1H),5.29(s,2H),5.21(s,2H),4.29(s,4H),3.51(s,4H),3.39(s,2H),3.20(s,1H),2.24(s,3H).由上述鉴定结果可知,所得白色固体产物为C6。
实施例7(制备C7)
本实施例所制备的化合物为C7所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000015
将所得到的C7采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.97(s,1H),7.83(d,J=6.3Hz,2H),7.63(t,J=7.8Hz,1H),7.45(d,J=6.8Hz,1H),7.34(s,1H),7.25(t,J=7.5Hz,1H),7.18(d,J=6.7Hz,1H),7.07(s,1H),6.93(d,J=8.2Hz,1H),6.79(d,J=2.0Hz,1H),6.76(dd,J=8.2,2.1Hz,1H),5.77(s,1H),5.28(d,J=6.5Hz,2H),5.22(s,2H),4.67(s,1H),4.33(s,1H),4.29(s,4H),4.10(s,1H),3.92(d,J=13.5Hz,1H),3.42(s,1H),3.26(s,1H),3.01(dd,J=9.1,5.6Hz,1H),2.80(d,J=4.9Hz,1H),2.24(s,3H),2.16–2.08(m,1H),1.72(dd,J=15.8,9.2Hz,2H).由上述鉴定结果可知,所得白色固体产物为C7。
实施例8(制备C8)
本实施例所制备的化合物为C8所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000016
将所得到的C8采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.95(s,1H),7.84(t,J=7.8Hz,2H),7.63(t,J=7.7Hz,1H),7.46(d,J=7.3Hz,1H),7.32(s,1H),7.26(t,J=7.6Hz,1H),7.18(d,J=7.8Hz,1H),7.10(s,1H),6.93(d,J=8.1Hz,1H),6.79(s,1H),6.76(d,J=8.2Hz,1H),5.29(d,J=6.1Hz,2H),5.23(s,2H),4.87–4.73(dd,J=53.2,5.4Hz,1H),4.29(s,4H),4.16(dd,J=24.4,5.4Hz,1H),3.58(d,J=10.0Hz,1H),3.52(d,J=6.3Hz,2H),3.07–3.01(m,1H),2.85–2.76(m,1H),2.64(dd,J=11.5,5.4Hz,1H),2.29(d,J=35.2Hz,3H),2.18(dd,J=9.4,5.5Hz,1H).由上述鉴定结果可知,所得白色固体产物为C8。
实施例9(制备C9)
本实施例所制备的化合物为C9所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000017
将所得到的C9采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.97(s,1H),7.84(d,J=8.0Hz,2H),7.64(t,J=7.8Hz,1H),7.44(d,J=6.8Hz,1H),7.25(s,1H),7.18(d,J=6.6Hz,1H),7.07(s,1H),6.93(d,J=8.2Hz,1H),6.78(d,J=2.0Hz,1H),6.76(dd,J=8.2,2.1Hz,1H),5.28(s,2H),5.22(s,2H),4.29(s,4H),3.53(d,J=14.7Hz,2H),3.25–3.11(m,2H),2.90(s,2H),2.24(s,3H),1.37(s,3H).由上述鉴定结果可知,所得白色固体产物为C9。
实施例10(制备C10)
本实施例所制备的化合物为C10所示的化合物,制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000018
将所得到的C10采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.95(d,J=6.6Hz,1H),7.84(t,J=7.6Hz,2H),7.64(t,J=7.7Hz,1H),7.46(d,J=7.4Hz,1H),7.33(s,1H),7.25(t,J=7.6Hz,1H),7.18(d,J=6.5Hz,1H),7.08(s,1H),6.93(d,J=8.2Hz,1H),6.79(d,J=2.0Hz,1H),6.76(dd,J=8.2,2.1Hz,1H),5.28(s,2H),5.22(s,2H),4.73(s,1H),4.54(s,1H),4.29(s,4H),4.21(s,1H),3.82(s,1H),3.60(d,J=6.0Hz,1H),3.51(s,2H),3.45(dd,J=10.5,5.8Hz,1H),3.26(s,1H),2.68(s,1H),2.34(s,1H),2.25(s,3H),2.03–1.96(m,1H).由上述鉴定结果可知,所得白色固体产物为C10。
实施例11(制备C11)
本实施例所制备的化合物为C11所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000019
将所得到的C11采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.84(t,J=7.2Hz,2H),7.64(t,J=7.8Hz,1H),7.46(d,J=7.3Hz,1H),7.33(s,1H),7.25(t,J=7.6Hz,1H),7.18(d,J=7.4Hz,1H),7.08(s,1H),6.93(d,J=8.2Hz,1H),6.79(d,J=1.9Hz,1H),6.76(dd,J=8.2,1.9Hz,1H),5.28(s,2H),5.22(s,2H),4.69(s,1H),4.29(s,4H),4.20(s,1H),3.61–3.51(m,2H),2.68(s,1H),2.59(s,1H),2.43(s,1H),2.33(s,1H),2.25(s,3H),2.01–1.97(m,1H),1.55(s,1H).由上述鉴定结果可知,所得白色固体产物为C11。
实施例12(制备C12)
本实施例所制备的化合物为C12所示的化合物,其制备方法由以下步骤组成:
步骤一:5-氯-2-羟基-4-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯甲醛的制备
Figure PCTCN2019091193-appb-000020
将4g 5-氯-2,4-二羟基苯甲醛和5g 2-甲基-3-苯基苯甲醇,8.2g三苯基磷(PPh 3)加入50ml无水四氢呋 喃中,搅拌15分钟,将8.2mL偶氮二甲酸二异丙酯(DIAD)分批次少量滴入反应液中,反应10小时,薄层色谱(TLC)监测,反应结束后,将反应液倾入100mL水中,用乙酸乙酯(100mL×5)萃取,静置分液,有机相分别用5%的碳酸氢钠(NaHCO 3)(80mL×3)、饱和食盐水(80mL×3)洗涤,然后用无水硫酸镁干燥,抽滤,减压除去乙酸乙酯,之后进行柱层析V(石油醚):V(乙酸乙酯)=10:1得5-氯-2-羟基-4-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯甲醛5.5g。将所得到的白色固体采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,CDCl3)δ11.47(s,1H),9.73(s,1H),7.58(s,1H),7.50(dd,J=6.8,2.1Hz,1H),7.46(t,J=7.2Hz,2H),7.41–7.37(m,1H),7.35(d,J=1.5Hz,1H),7.33(s,1H),7.33–7.29(m,2H),7.28(s,1H),6.66(s,1H),5.24(s,2H),2.28(s,3H). 13C NMR(101MHz,CDCl3)δ193.73,162.90,160.90,143.00,141.59,133.98,133.46,130.40,129.35,128.09,127.35,126.93,125.68,114.97,114.77,101.53,70.27,16.15.由上述鉴定结果可知,所得白色固体为5-氯-2-羟基-4-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯甲醛。
步骤二:3-((4-氯-2-甲酰-5-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯氧基)甲基)苯甲腈的制备
Figure PCTCN2019091193-appb-000021
将5.5g 5-氯-2-羟基-4-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯甲醛和3.2g 3-溴甲基苯氰,3g碳酸钾(K 2CO 3)加入30ml无水DMF中,搅拌,加热至80℃,反应4小时,TLC监测,反应结束后,将反应物倾入100mL水中,用乙酸乙酯(100mL×3)萃取,静置分液,有机相分别用5%的NaHCO 3(20mL×3)、饱和食盐水(20mL×3)洗涤,然后用无水硫酸镁干燥,抽滤,减压除去乙酸乙酯,之后进行柱层析V(石油醚):V(乙酸乙酯)=2:1得白色固体化合物3-((4-氯-2-甲酰-5-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯氧基)甲基)苯甲腈4.8g。将所得到的3-((4-氯-2-甲酰-5-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯氧基)甲基)苯甲腈采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,CDCl3)δ10.35(s,1H),7.94(s,1H),7.75(s,1H),7.72(s,1H),7.70(s,1H),7.57(t,J=7.8Hz,1H),7.46(t,J=7.2Hz,3H),7.40(d,J=7.1Hz,1H),7.33(d,J=9.7Hz,3H),7.28(s,1H),6.65(s,1H),5.24(s,2H),5.22(s,2H),2.29(s,3H).由上述鉴定结果可知,所得白色固体产物为3-((4-氯-2-甲酰-5-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯氧基)甲基)苯甲腈。
步骤三:化合物C12的制备
Figure PCTCN2019091193-appb-000022
将40mg 3-((4-氯-2-甲酰-5-((2-甲基-[1,1'-联苯]-3-基)甲氧基)苯氧基)甲基)苯甲腈和60mg甘氨酸,2滴冰醋酸加入5ml无水甲醇中,搅拌,加热至60℃,反应4小时,然后加入42mg氰基硼氢化钠(NaBH 3CN),室温反应12小时,TLC监测,反应结束后,旋干溶剂,将反应物倾入100mL水中,用乙酸乙酯(20mL×3)萃取,静置分液,有机相分别用5%的NaHCO 3(20mL×3)、饱和食盐水(20mL×3)洗涤,然后用无水硫酸镁干燥,抽滤,减压除去乙酸乙酯,之后进行柱层析V(二氯甲烷):V(甲醇)=20:1得白色固体化合物C12 6mg。将所得到的C12采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.03(s,1H),7.89(d,J=7.5Hz,1H),7.84(d,J=8.1Hz,1H),7.66–7.61(m,1H),7.48(dd,J=13.9,6.7Hz,3H),7.40(d,J=7.2Hz,1H),7.30(dd,J=16.0,7.2Hz,3H),7.25–7.19(m,2H),7.13(s,1H),5.33(s,2H),5.28(s,2H),3.96(s,2H),3.51(s,2H),2.24(s,3H).由上述鉴定结果可知,所得白色固体产物为化合物C1。
实施例13(制备C13)
本实施例所制备的化合物为C13所示的化合物,具体制备方法同实施例12,反应式如下:
Figure PCTCN2019091193-appb-000023
将所得到的C13采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.87–7.81(m,2H),7.64(d,J=7.9Hz,1H),7.48(dd,J=14.0,7.3Hz,3H),7.40(d,J=7.1Hz,1H),7.31(dd,J=16.0,7.9Hz,4H),7.22(d,J=7.7Hz,1H),7.10(s,1H),5.29(s,2H),5.25(s,2H),3.57(s,2H),2.98–2.86(m,2H),2.68(s,2H),2.36–2.29(m,1H),2.24(s,3H),1.99(d,J=5.8Hz,2H).由上述鉴定结果可知,所得白色固体产物为C13。
实施例14(制备C14)
本实施例所制备的化合物为C14所示的化合物,具体制备方法同实施例12,反应式如下:
Figure PCTCN2019091193-appb-000024
将所得到的C14采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.84(t,J=7.5Hz,2H),7.64(t,J=7.8Hz,1H),7.48(dd,J=13.9,7.2Hz,3H),7.40(d,J=7.2Hz,1H),7.31(dd,J=15.4,7.3Hz,4H),7.22(d,J=7.6Hz,1H),7.10(s,1H),5.29(s,2H),5.25(s,2H),4.69(s,1H),4.20(s,1H),3.55(d,J=10.3Hz,2H),2.68(s,1H),2.59(s,1H),2.43(s,1H),2.34(s,1H),2.24(s,3H),2.00(d,J=7.1Hz, 1H),1.55(s,1H).由上述鉴定结果可知,所得白色固体产物为C14。
实施例15(制备C15)
本实施例所制备的化合物为C15所示的化合物,具体制备方法同实施例12,反应式如下:
Figure PCTCN2019091193-appb-000025
将所得到的C15采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.97(s,1H),7.83(d,J=5.8Hz,2H),7.64(d,J=8.0Hz,1H),7.48(dd,J=13.7,7.0Hz,3H),7.40(d,J=6.9Hz,1H),7.31(dd,J=15.7,7.8Hz,4H),7.21(s,1H),7.11(s,1H),5.30(s,2H),5.25(s,2H),3.59(s,2H),2.93(s,2H),2.68(s,2H),2.34(s,1H),2.24(s,3H),1.99(d,J=4.6Hz,2H).由上述鉴定结果可知,所得白色固体产物为C15。
实施例16(制备C16)
本实施例所制备的化合物为C16所示的化合物,具体制备方法同实施例12,反应式如下:
步骤一:C16的制备
Figure PCTCN2019091193-appb-000026
将所得到的C16采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.96(s,1H),7.84(t,J=7.6Hz,2H),7.65(d,J=7.8Hz,1H),7.48(dd,J=13.9,7.2Hz,3H),7.40(d,J=7.2Hz,1H),7.31(dd,J=15.7,7.8Hz,4H),7.22(d,J=7.5Hz,1H),7.10(s,1H),5.29(s,2H),5.25(s,2H),4.70(s,1H),4.20(s,1H),3.56(d,J=9.2Hz,2H),2.68(s,1H),2.60(s,1H),2.43(s,1H),2.33(s,1H),2.24(s,3H),2.00(d,J=7.3Hz,1H),1.55(s,1H).由上述鉴定结果可知,所得白色固体产物为C16。
实施例17(制备C17)
本实施例所制备的化合物为C17所示的化合物,具体制备方法同实施例12,反应式如下:
Figure PCTCN2019091193-appb-000027
将所得到的C17采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.99(s,1H), 7.84(t,J=7.0Hz,2H),7.64(t,J=7.7Hz,1H),7.47(t,J=7.7Hz,3H),7.38(d,J=7.5Hz,1H),7.30(dd,J=17.7,8.0Hz,4H),7.22(d,J=7.5Hz,1H),7.09(s,1H),5.29(s,2H),5.24(s,2H),3.52(s,2H),3.40(s,2H),3.21(s,2H),3.17(s,1H),2.23(s,3H).由上述鉴定结果可知,所得白色固体产物为C17。
实施例18(制备C18)
本实施例所制备的化合物为C18所示的化合物,具体制备方法同实施例12,反应式如下:
Figure PCTCN2019091193-appb-000028
将所得到的C18采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.04(s,1H),7.90(d,J=7.8Hz,1H),7.84(d,J=7.8Hz,1H),7.63(t,J=7.8Hz,1H),7.57(s,1H),7.47(t,J=7.4Hz,3H),7.39(t,J=7.3Hz,1H),7.36–7.24(m,3H),7.22(d,J=6.6Hz,1H),7.12(s,1H),5.30(s,4H),3.87(s,2H),2.24(s,3H),1.27(s,6H).由上述鉴定结果可知,所得白色固体产物为化合物C18。
实施例19(制备C19)
本实施例所制备的化合物为C19所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000029
将所得到的C19采用核磁共振谱、质谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.03(s,1H),7.89(d,J=7.3Hz,1H),7.84(d,J=7.5Hz,1H),7.64(d,J=7.7Hz,1H),7.55(s,1H),7.44(d,J=7.4Hz,1H),7.25(t,J=7.4Hz,1H),7.18(d,J=7.8Hz,1H),7.11(s,1H),6.93(d,J=8.0Hz,1H),6.78(s,1H),6.75(d,J=8.2Hz,1H),5.29(s,2H),5.27(s,2H),4.29(s,4H),3.86(s,2H),2.25(s,3H),1.27(s,6H).由上述鉴定结果可知,所得白色固体产物为化合物C19。
实施例20(制备C20)
本实施例所制备的化合物为C20所示的化合物,具体制备方法同实施例1,反应式如下:
Figure PCTCN2019091193-appb-000030
将所得到的C20采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ7.98(s,1H),7.83(d,J=7.8Hz,2H),7.65(d,J=7.6Hz,1H),7.44(d,J=7.5Hz,1H),7.28–7.21(m,2H),7.18(d,J=7.6Hz,1H),7.07(s,1H),6.93(d,J=8.1Hz,1H),6.78(s,1H),6.76(d,J=8.3Hz,1H),5.28(s,2H),5.22(s,2H),4.29(s,4H),4.21(dd,J=12.4,6.1Hz,1H),3.53(d,J=10.3Hz,4H),2.81(s,2H),2.24(s,3H).由上述鉴定结果可知,所得白色固体产物为C20。
实施例21(制备C21)
本实施例所制备的化合物的结构式为
Figure PCTCN2019091193-appb-000031
该化合物的制备方法由发明内容中所述路线二所示。将所得到的C21采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.61(s,1H),8.56(s,1H),7.96(s,1H),7.83(s,2H),7.78(s,1H),7.63(s,1H),7.55(d,J=7.1Hz,1H),7.51(s,1H),7.43(s,1H),7.33(d,J=7.3Hz,1H),7.27(d,J=7.5Hz,1H),7.10(s,1H),5.28(d,J=12.7Hz,4H),3.75(s,1H),3.62(s,1H),3.17(s,1H),2.91(s,1H),2.33(s,1H),2.25(s,3H),1.77(d,J=20.8Hz,2H),1.49(s,3H),1.39(s,1H).由上述鉴定结果可知,所得白色固体产物为C21。
实施例22(制备C22)
本实施例所制备的化合物的结构式为
Figure PCTCN2019091193-appb-000032
该化合物的制备方法由发明内容中所述路线二所示。将所得到的C22采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.76(d,J=6.9Hz,1H),8.61(d,J=5.1Hz,1H),8.55(s,1H),8.40(d,J=7.3Hz,1H),7.98(s,1H),7.89(d,J=7.7Hz,1H),7.81(d,J=13.0Hz,1H),7.64(d,J=6.4Hz,1H),7.53(d,J =10.5Hz,1H),7.39–7.33(m,1H),7.28(d,J=3.7Hz,1H),7.20(s,1H),6.65(s,1H),5.31(d,J=25.6Hz,4H),4.90(s,1H),4.22(s,1H),3.96(d,J=12.0Hz,1H),3.81(d,J=11.3Hz,1H),3.51(s,2H),2.95(d,J=15.4Hz,1H),2.75(s,1H),2.25(s,3H),1.87(s,1H),1.45(s,1H).由上述鉴定结果可知,所得白色固体产物为C22。
实施例23(制备C23)
本实施例所制备的化合物的结构式为
Figure PCTCN2019091193-appb-000033
该化合物的制备方法由发明内容中所述路线二所示。将所得到的C23采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.76(s,1H),8.63(d,J=20.1Hz,1H),8.55(s,1H),8.39(s,1H),8.02(s,1H),7.91(d,J=7.5Hz,1H),7.84(d,J=7.6Hz,1H),7.63(s,1H),7.52(s,1H),7.34(s,1H),7.28(s,1H),7.13(s,1H),6.66(s,1H),5.30(d,J=11.3Hz,4H),3.97(s,2H),3.70(s,1H),3.63(s,1H),3.51(s,1H),2.25(s,3H).由上述鉴定结果可知,所得白色固体产物为C23。
实施例24(制备C24)
本实施例所制备的化合物的结构式为
Figure PCTCN2019091193-appb-000034
该化合物的制备方法由发明内容中所述路线二所示。将所得到的C24采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.76(s,1H),8.63(d,J=11.9Hz,1H),8.55(s,1H),8.38(s,1H),8.03(s,1H),7.90(d,J=8.3Hz,1H),7.83(d,J=7.6Hz,1H),7.64(d,J=8.2Hz,1H),7.55(d,J=13.8Hz,1H),7.36(d,J=17.8Hz,1H),7.27(d,J=7.0Hz,1H),7.13(s,1H),6.66(s,1H),5.31(d,J=10.4Hz,4H),3.87(s,2H),2.25(s,3H),1.24(s,6H).由上述鉴定结果可知,所得白色固体产物为C24。
实施例25(制备C25)
本实施例所制备的化合物的结构式为
Figure PCTCN2019091193-appb-000035
该化合物的制备方法由发明内容中 所述路线二所示。将所得到的C25采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.21(s,1H),8.07(s,1H),7.85(d,J=7.4Hz,1H),7.62(d,J=8.3Hz,2H),7.49(d,J=7.5Hz,2H),7.45(s,1H),7.37(s,1H),7.18(s,1H),7.11(s,1H),6.66(s,1H),5.33(s,1H),5.26(s,3H),3.85(d,J=10.9Hz,1H),3.74(s,1H),3.51(s,1H),3.17(s,1H),2.92(d,J=5.7Hz,1H),2.42(s,3H),2.36(s,1H),1.83(d,J=11.5Hz,1H),1.71(d,J=6.0Hz,1H),1.49(s,3H),1.34(s,1H).由上述鉴定结果可知,所得白色固体产物为C25。
实施例26(制备C26)
本实施例所制备的化合物的结构式为
Figure PCTCN2019091193-appb-000036
该化合物的制备方法由发明内容中所述路线二所示。将所得到的C26采用核磁共振谱技术进行鉴定,鉴定结果为: 1H NMR(400MHz,DMSO)δ8.75(s,1H),8.67(s,1H),8.02(s,1H),7.90(s,1H),7.84(d,J=8.9Hz,1H),7.64(d,J=7.7Hz,1H),7.56(s,1H),7.38(s,1H),7.34(s,1H),7.27(s,1H),7.20(s,1H),7.12(s,1H),6.66(s,1H),5.34(s,2H),5.30(s,2H),3.86(s,2H),2.26(s,3H),1.26(s,6H).由上述鉴定结果可知,所得白色固体产物为C26。
实施例27、本发明所述的一种间苯二酚二苯甲醚衍生物对PD-1/PD-L1的抑制效果研究
本发明化合物的对PD-1/PD-L1的抑制效果采用如下方法测试所证明。
这些效果表明本发明化合物对PD-1/PD-L1的抑制效果明显,其可用于治疗癌症,特别是治疗转移性非小细胞肺癌、尿路上皮癌和头颈部鳞状细胞癌。具体测试方法如下:
一、实验目的及原理
参考公开号为CN108593615A专利申请说明书第[0016]、[0017]和[0034]段所述方法,采用HTRF方法快速高效检测实施例1~47所制备的化合物(编号依次为C1~C26)对PD-1/PD-L1的抑制效果。HTRF(均相时间分辨荧光)检测技术是基于时间分辨荧光(TRF)和荧光共振能量转移(FRET)两大技术原理开通的高通量药物筛选技术。时间分辨荧光(TRF)利用稀土元素中镧系元素半衰期长,荧光比普通荧光持续时间长的特性,通过延迟50-100微秒排除背景,从而反映样品实际情况。荧光共振能量转移(FRET)是指在两个不同的荧光基团中,如果一个荧光基团(供体Donor)的发射光谱与另一个基团(受体Acceptor)的吸收光谱有一定的重叠,当这两个荧光基团间的距离合适时(一般小于
Figure PCTCN2019091193-appb-000037
),就可观察到荧光能量由供体向受体转移的现象,即以前一种基团的激发波长激发时,可观察到后一个基团发射的荧光。简单地说,就是在供体基团的激发状态下由一对偶极子介导的能量从供体向受体转移的过程。能量供给体-接受 体(D–A)对之间发生有效能量转移的条件是苛刻的,主要包括:(1)能量供体的发射光谱与能量受体的吸收光谱必须重叠;(2)能量供体与能量受体的荧光生色团必须以适当的方式排列;(3)能量供体、能量受体之间必须足够接近,这样发生能量转移的几率才会高。HTRF是利用了具有穴状结构的铕(Eu)元素的螯和标记物作为一个能量供体(Donor)和XL665(改良过的别藻蓝蛋白)作为一个能量受体(Acceptor),是基于Eu穴状化合物的供体与XL665受体(第二荧光标记物)之间的时间分辨荧光(TRF)和荧光共振能量转移(FRET)特性开通的高通量药物筛选技术。在荧光共振能量转移中,受体发射荧光的寿命等同与供体的发射荧光的寿命。因为Eu的荧光衰减周期较长,所以含Eu的供体会诱导XL665受体长时间地发射荧光,受体激发后产生的荧光便能持续较长时间,这样通过时间分辨就可以区分短寿命的自身散射荧光,这样从短寿命荧光背景中就很容易区分出FRET信号。当由于生物分子相互作用导致两个荧光基团接近时,在激发时被Eu穴状化合物捕获的部分能量释放,发射波长为620nm;另一部分能量转移到受体(Acceptor)上,发射波长为665nm。665nm的发射光仅由供体(Donor)引起的FRET产生。在HTRF检测试剂盒中,Eu穴状化合物的能量供体能够特异性的结合PD-L1蛋白,XL665能量受体能够特异性的结合PD-1蛋白,从而形成四个物质聚合的复合物。拉近Donor和Acceptor的距离,能量能够从Donor上转移到Acceptor上,使Acceptor产生荧光;若测试化合物能够阻断二者结合,则随着测试化合物浓度的增加,665nm/620nm的比值降低;待检测体系稳定后测定荧光值的变化便可量化阻断剂的效价IC 50;检测的为HTRF两个荧光665nm和620nm,即时间分辨荧光(TRF),当665nm/620nm的比值降低,阻断剂的效应越高。HTRF检测试剂盒,就是综合利用抗原抗体的特异性结合反应,受体供体间能量共振转移而开发的,高灵敏度,快速免洗,低背景的高通量检测技术。
二、试剂基本信息
Figure PCTCN2019091193-appb-000038
三、实验试剂准备
Figure PCTCN2019091193-appb-000039
Figure PCTCN2019091193-appb-000040
四、实验过程
(1)向96孔板中每孔加入2μl的化合物稀释液,1000rpm离心1min.
(2)向每孔加入4μl(2.5X)PD-1混合液,1000rpm离心1min.
(3)向每孔加入4ul(2.5X)PD-L1混合液,1000rpm离心1min,室温孵育15min.
(4)每孔加入10μl(2X)测试混合液,1000rpm离心1min.
(5)室温孵育120min,使用Tecan酶标仪读取荧光值(Ex:320nM;Em:620 and 665nM).
(6)按下列公式计算抑制率,抑制率(Inibition)%=(1-(各孔665nm/620nm信号值-低对照组平均值)/(高对照组平均值-低对照组平均值))*100。其中高对照组为没有加化合物处理,仅用等量浓度DMSO溶液加入反应体系组;低对照组为没有PD-1混合液,只加入等量detection检测混合液。该检测体系中,DMSO终浓度为0.5%。
下表列出了在PD-1/PD-L1均相时间分辨荧光(HTRF)结合测定中测量的本发明的实施例1-实施例47的IC 50。化合物的IC 50在100nM到10nM之间被标示为+;化合物的IC 50在10nM到1nM之间被标示为++。具体见下表:
Figure PCTCN2019091193-appb-000041
化合物C1~C26对PD-1/PD-L1的抑制效果
根据上述体外实验结果,我们可以得出本发明所述的一种含取代联苯的间苯二酚甲醚衍生物能够抑制程序性细胞死亡受体1/程序性细胞死亡配体1(PD-1/PD-L1)的相互结合,且效果显著优于公开号为WO2015/034820A1的PCT专利申请所公开的化合物1-({3-溴-4-[(2-甲基-3-苯基)甲氧基))苯基}-甲基)哌啶-2-羧酸。
实施例28、本发明所述的一种间苯二酚二苯甲醚衍生物体内药效学研究
皮下移植瘤方法如下:将培养的鼠源B16-F10肿瘤细胞消化后离心收集细胞,用无菌PBS清洗二遍后计数,用无菌PBS调整细胞浓度为2.0*10 6/mL,将0.2mL细胞混悬液接种到Bablc小鼠右侧腋下。接种后次日动物随机分组,分为4组,分包括对照组,给药剂量100mg/kg,50mg/kg,25g/kg剂量组,称重后给药,待测化合物按照给药剂量100mg/kg,50mg/kg,25g/kg每天给药1次,连续给药15天,15天后处死小鼠,终止动物实验,剥取肿瘤组织、胸腺组织和脾脏组织并分别称重。最后计算肿瘤抑制率,以肿瘤抑制率评价抗肿瘤作用强度。
药效评价指标如图1所示实施化合物在第15时,给药剂量100mg/kg,50mg/kg,25g/kg的TGI值分别为85.08%,82.62%,69.8%,表示其对黑色素移植瘤具有显著的抑制作用,同时各组小鼠体重变化平稳,无显著差异。

Claims (4)

  1. 一种间苯二酚二苯甲醚衍生物,该衍生物的化学结构如下式(I)所示,
    Figure PCTCN2019091193-appb-100001
    式(I)中,R 1是2-甲基丙氨酸基、3-羟基氮杂环丁基、氨基乙酸基、(R)-吡咯烷-3-甲酸基、(R)-3-吡咯烷醇基、(S)-吡咯烷-3-甲酸基、(S)-3-吡咯烷醇基、氮杂环丁烷-3-羧酸基、(3R,5S)-5-羟基甲基-3-吡咯烷醇基、反式-4-氟-3-羟基吡咯烷基、3-甲基-3-氮杂环丁醇基、4-(羟甲基)吡咯烷-3-醇基、3-羟基吡咯烷基、2-甲基丙氨酸基、3-羟基氮杂环丁基、D-哌啶-2-甲酸、顺式-4-羟基-D-脯氨酸、D-丝氨酸,R 2是苯基、1,4-苯并二恶烷基、3-吡啶基、4-吡啶基、5-嘧啶基。
  2. 根据权利要求1所述的一种间苯二酚二苯甲醚衍生物,其特征在于,所述的一种间苯二酚二苯甲醚衍生物为下述化合物中的一种:
    Figure PCTCN2019091193-appb-100002
    Figure PCTCN2019091193-appb-100003
  3. 权利要求1或者2所述的一种间苯二酚二苯甲醚衍生物在制备PD-1/PD-L1抑制剂中的应用。
  4. 根据权利要求3所述的应用,其特征在于,所述的PD-1/PD-L1抑制剂由权利要求1所述的一种间苯二酚二苯甲醚衍生物和医学上可接受的辅料组成。
PCT/CN2019/091193 2019-02-25 2019-06-14 一种间苯二酚二苯甲醚衍生物及其用途 WO2020173016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910136927.0A CN109761952A (zh) 2019-02-25 2019-02-25 一种含取代联苯的间苯二酚甲醚衍生物及其用途
CN201910136927.0 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020173016A1 true WO2020173016A1 (zh) 2020-09-03

Family

ID=66457231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091193 WO2020173016A1 (zh) 2019-02-25 2019-06-14 一种间苯二酚二苯甲醚衍生物及其用途

Country Status (2)

Country Link
CN (1) CN109761952A (zh)
WO (1) WO2020173016A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283523A1 (en) * 2021-07-06 2023-01-12 Bristol-Myers Squibb Company 2,3-dihydrobenzo[b][l,4]dioxin-6-yl containing compounds useful as immunomodulators
WO2024088036A1 (zh) * 2022-10-26 2024-05-02 西安新通药物研究股份有限公司 一种非对称性联苯衍生物及其制备方法与医药用途

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761952A (zh) * 2019-02-25 2019-05-17 南方医科大学 一种含取代联苯的间苯二酚甲醚衍生物及其用途
CN111978287A (zh) * 2019-05-23 2020-11-24 中国科学院上海有机化学研究所 一类免疫检查点小分子抑制剂及其制备方法和用途
WO2020244518A1 (zh) * 2019-06-04 2020-12-10 中国科学院上海药物研究所 一种具有苄氧基芳环结构的化合物,其制备方法和用途
CN113943330A (zh) * 2020-07-17 2022-01-18 中国科学院上海药物研究所 一类含糖结构化合物、其制备方法、药物组合物和用途
CN113307779B (zh) * 2021-05-25 2023-04-21 中国药科大学 杂环取代联苯类化合物、制备方法及用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536515A (zh) * 2014-04-14 2017-03-22 百时美施贵宝公司 用作免疫调节剂的化合物
CN109219592A (zh) * 2016-05-23 2019-01-15 中国医学科学院药物研究所 苄苯醚类衍生物、 及其制法和药物组合物与用途
CN109305934A (zh) * 2018-08-07 2019-02-05 成都海博锐药业有限公司 苯醚类衍生物及可药用盐、医药上的用途
CN109503546A (zh) * 2019-01-10 2019-03-22 南方医科大学 一种间苯二酚二苯甲醚及其应用
CN109761952A (zh) * 2019-02-25 2019-05-17 南方医科大学 一种含取代联苯的间苯二酚甲醚衍生物及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536515A (zh) * 2014-04-14 2017-03-22 百时美施贵宝公司 用作免疫调节剂的化合物
CN109219592A (zh) * 2016-05-23 2019-01-15 中国医学科学院药物研究所 苄苯醚类衍生物、 及其制法和药物组合物与用途
CN109305934A (zh) * 2018-08-07 2019-02-05 成都海博锐药业有限公司 苯醚类衍生物及可药用盐、医药上的用途
CN109503546A (zh) * 2019-01-10 2019-03-22 南方医科大学 一种间苯二酚二苯甲醚及其应用
CN109761952A (zh) * 2019-02-25 2019-05-17 南方医科大学 一种含取代联苯的间苯二酚甲醚衍生物及其用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283523A1 (en) * 2021-07-06 2023-01-12 Bristol-Myers Squibb Company 2,3-dihydrobenzo[b][l,4]dioxin-6-yl containing compounds useful as immunomodulators
WO2024088036A1 (zh) * 2022-10-26 2024-05-02 西安新通药物研究股份有限公司 一种非对称性联苯衍生物及其制备方法与医药用途

Also Published As

Publication number Publication date
CN109761952A (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2020173016A1 (zh) 一种间苯二酚二苯甲醚衍生物及其用途
WO2016206615A1 (en) Aie luminogens for visualization and treatment of cancer
CN109438263A (zh) 一种含取代联苯的萘及其应用
JP2003535812A (ja) 発光マーカーとして用いるためのサリチルアミド−ランタニド錯体
CN109503546A (zh) 一种间苯二酚二苯甲醚及其应用
CN110746410B (zh) 一种亮氨酸氨肽酶和单胺氧化酶激活的近红外荧光探针、合成方法及生物应用
CN111303122A (zh) 一种泊马度胺衍生物及其用途
CN102146284B (zh) 一种比率型荧光探针及其应用
CN109336857A (zh) 一种含取代联苯的黄酮及其应用
JP2002533329A (ja) 固相および液相スクリーニング用の蛍光色素
CN107118586A (zh) 含氮杂环基取代的烯类化合物的用途
CN111848633B (zh) 一类香豆素-Tröger’s base类Fe3+荧光探针及其制备方法
CN111592482B (zh) 一种pH可逆激活型光热/光动力/荧光一体化探针分子
CN106947467A (zh) 一种检测精氨酸的上转换发光纳米传感材料及在精氨酸检测中的应用
Safir Filho et al. Visualization of intracellular lipid droplets using lipophilic benzothiazole-based push-pull fluorophores at ultralow concentration
CN111793371B (zh) 一种3,5位不对称修饰bodipy类近红外荧光染料及其制备方法
Zhang et al. A series of novel NIR fluorescent dyes: Synthesis, theoretical calculations and fluorescence imaging applications in living cells
Zhou et al. Synthesis, biological evaluation and cellular localization study of fluorescent derivatives of Jiyuan Oridonin A
CN115160327B (zh) 一种靶向μ阿片受体的小分子荧光探针及其制备和应用
WO2023097820A1 (zh) 黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用
TWI641601B (zh) 用於細胞器特異性分子成像之鑭系元素工具箱
CN108290841B (zh) 具有荧光性的类视黄醇x受体结合性分子及其用途
CN115636827A (zh) 聚集诱导发光材料的制备及在光动力治疗和生物成像中的应用
CN115403510B (zh) 一种pd-l1/cxcl12双靶点抑制剂、制备方法和用途
CN110669350B (zh) 一种哌啶基bodipy类红光荧光染料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917412

Country of ref document: EP

Kind code of ref document: A1