WO2020170984A1 - エンジンの排気系構造 - Google Patents

エンジンの排気系構造 Download PDF

Info

Publication number
WO2020170984A1
WO2020170984A1 PCT/JP2020/005864 JP2020005864W WO2020170984A1 WO 2020170984 A1 WO2020170984 A1 WO 2020170984A1 JP 2020005864 W JP2020005864 W JP 2020005864W WO 2020170984 A1 WO2020170984 A1 WO 2020170984A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
pressure
pressure stage
low
passage portion
Prior art date
Application number
PCT/JP2020/005864
Other languages
English (en)
French (fr)
Inventor
大智 澁谷
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN202080015524.1A priority Critical patent/CN113454318A/zh
Publication of WO2020170984A1 publication Critical patent/WO2020170984A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust system structure of an engine, and particularly to an exhaust system structure of an engine including a supercharger.
  • Patent Document 1 discloses a two-stage supercharging system in which a high-pressure supercharger and a low-pressure supercharger are arranged and attached vertically on the side of an exhaust manifold.
  • exhaust system devices such as exhaust manifolds and turbochargers attached to the engine compact in terms of space restrictions in the engine room and improving mountability.
  • the high-pressure supercharger and the low-pressure supercharger are arranged in a substantially vertical direction, and bypass passages and valves that bypass the high-pressure supercharger between the upper and lower sides of each supercharger. Is provided. Therefore, the exhaust system structure including the high-pressure supercharger and the low-pressure supercharger becomes long in the vertical direction, which may cause interference with peripheral parts and deterioration of mountability.
  • the purpose of the present disclosure is to provide a compact exhaust system structure.
  • the exhaust system structure of the present disclosure includes an exhaust manifold having a passage portion for circulating exhaust gas discharged from an engine, a high-pressure supercharger having a high-pressure stage housing for taking the exhaust gas from the passage portion, the high-pressure stage housing, and the A low-pressure supercharger having a low-pressure stage housing that takes in exhaust gas from at least one of the passage portions, the high-pressure stage housing being arranged laterally on the opposite side of the exhaust manifold from the engine.
  • the low-pressure stage housing is arranged above or below the passage portion between the high-pressure stage housing and the engine.
  • a flange portion for mounting the high-pressure stage housing is provided at the outlet end of the passage portion, and the flange portion is arranged with respect to the axial center of the passage portion so that the flange surface faces obliquely downward or obliquely upward. It is preferable that they are inclined.
  • bypass passage portion that extends from the passage portion and merges with a scroll passage in the low pressure stage housing so that exhaust gas flowing through the passage portion bypasses the high pressure stage housing.
  • the bypass passage portion is provided with a valve capable of opening and closing the flow passage of the bypass passage portion, and an actuator for operating the valve is arranged closer to the engine than the bypass passage portion. ..
  • the exhaust manifold and the low-pressure stage housing are integrally formed.
  • FIG. 1 is a schematic overall configuration diagram showing an intake system and an exhaust system of an engine according to an embodiment.
  • FIG. 2 is a schematic perspective view showing the exhaust manifold according to the embodiment.
  • FIG. 3 is a schematic side view of a state in which the high-pressure stage turbine housing is attached to the fixed flange portion of the exhaust manifold according to the embodiment, viewed from the longitudinal direction of the exhaust gas collecting portion.
  • FIG. 1 is a schematic overall configuration diagram showing an intake system and an exhaust system of an engine 10 according to this embodiment.
  • the engine 10 mainly includes an engine body 11 including a cylinder block and a cylinder head CH and the like provided above the cylinder block.
  • a plurality of cylinders C that partition the combustion chamber are provided in series in the longitudinal direction of the engine 10.
  • the cylinder head CH is provided with an intake port 12 for introducing intake air into the cylinder C and an exhaust port 13 for exhausting exhaust gas from the cylinder C.
  • the engine 10 is not limited to the illustrated in-line multi-cylinder engine, and may be a single-cylinder engine. Further, the engine 10 may be a V-type engine, a horizontally opposed engine, or the like.
  • An intake manifold 20 that distributes intake air to each intake port 12 is provided on the intake side of the cylinder head CH.
  • the intake manifold 20 includes an air cleaner 21, a first intake pipe 22, a low-pressure compressor housing 45 of the low-pressure supercharger 40, a second intake pipe 23, and a high-pressure compressor of the high-pressure supercharger 60 in order from the intake upstream side.
  • the housing 80 and the third intake pipe 24 are connected.
  • the third intake pipe 24 is provided with an intercooler 25 that cools intake air.
  • An exhaust manifold 30 is provided on the exhaust side of the cylinder head CH.
  • the exhaust manifold 30 includes a plurality of exhaust introduction passages 31 (a part of the passages) connected to the outlets of the exhaust ports 13, and an exhaust collecting portion 32 (one of the passages) where the exhaust introduction passages 31 merge. Section) and an exhaust derivation passage section 33 (a part of the passage section) that guides the exhaust gas from the exhaust collecting section 32. Further, the exhaust manifold 30 is integrally provided with a low pressure turbine housing 34 of the low pressure supercharger 40.
  • the low-pressure supercharger 40 includes a low-pressure turbine 41, a low-pressure compressor 42, a rotary shaft 43 that connects the low-pressure turbine 41 and the low-pressure compressor 42, and a bearing (not shown) that pivotally supports the rotary shaft 43. It has and.
  • the low-pressure turbine 41 is housed in a low-pressure turbine housing 34 (low-pressure housing of the present disclosure) formed integrally with the exhaust manifold 30.
  • the low pressure compressor 42 is housed in a low pressure compressor housing 45.
  • a bearing housing 46 that accommodates bearings is provided between the low-pressure turbine housing 34 and the low-pressure compressor housing 45.
  • the low pressure supercharger 40 is not limited to the conventional type shown in the figure, and may be a variable capacity type having variable blades.
  • the low-pressure compressor housing 45 is provided with a low-pressure intake scroll passage 47 that extends circumferentially around the low-pressure compressor 42. Further, the low pressure stage compressor housing 45 is provided with a low pressure stage suction passage portion 48 for sucking intake air into the low pressure stage intake scroll passage 47. Further, the low pressure stage compressor housing 45 is provided with a low pressure stage discharge passage portion 49 that discharges intake air from the low pressure stage intake scroll passage 47.
  • the first intake pipe 22 is connected to the low pressure stage intake passage portion 48, and the second intake pipe 23 is connected to the low pressure stage discharge passage portion 49.
  • a low-pressure stage turbine housing 34 formed integrally with the exhaust manifold 30 is provided with a low-pressure stage exhaust scroll passage 35 extending circumferentially around the low-pressure stage turbine 41. Further, the exhaust manifold 30 is provided with a low pressure stage exhaust introduction passage portion 36 for introducing exhaust gas into the low pressure stage exhaust scroll passage 35. Further, the exhaust manifold 30 is provided with a low-pressure stage exhaust lead-out passage portion 37 that leads the exhaust gas from the low-pressure stage exhaust scroll passage 35.
  • An exhaust pipe 27 is connected to the low-pressure stage exhaust derivation passage portion 37, and a casing 29 of an exhaust purification device 28 and the like are connected to the exhaust pipe 27. In the casing 29, for example, an oxidation catalyst, a particulate filter, a NOx catalyst, etc. are accommodated.
  • the exhaust manifold 30 has a bypass passage portion 38 that connects the exhaust collecting portion 32 and the low pressure exhaust scroll passage 35 so that the exhaust gas discharged from the exhaust collecting portion 32 bypasses the high pressure supercharger 60. It is provided.
  • the bypass passage portion 38 is provided with a bypass valve 90 capable of opening and closing the flow passage of the bypass passage portion 38.
  • the bypass valve 90 is operated by an actuator 91 (for example, a diaphragm type or electromagnetic type actuator).
  • the bypass valve 90 may be either a valve whose opening can be adjusted linearly or an ON/OFF valve.
  • the low pressure supercharger 40 configured as described above has a low pressure stage when the exhaust gas is introduced into the low pressure stage exhaust scroll passage 35 from at least one of the low pressure stage exhaust introduction passage portion 36 and the bypass passage portion 38.
  • the low pressure stage compressor 42 As the turbine 41 rotates, the low pressure stage compressor 42 is driven to rotate.
  • intake air is taken into the low-pressure intake scroll passage 47 from the first intake pipe 22 via the low-pressure intake passage portion 48, so that the intake air pressurized by the low-pressure compressor 42 is reduced in pressure.
  • the stage discharge passage portion 49 is configured to be pressure-fed to the second intake pipe 23.
  • the high pressure supercharger 60 includes a high pressure turbine 61, a high pressure compressor 62, a rotary shaft 63 connecting the high pressure turbine 61 and the high pressure compressor 62, and a bearing (not shown) that pivotally supports the rotary shaft 63. It has and.
  • the high-pressure turbine 61 is housed in a high-pressure turbine housing 70 (high-pressure housing of the present disclosure).
  • the high pressure compressor 62 is housed in a high pressure compressor housing 80.
  • a bearing housing 88 that accommodates a bearing is provided between the high pressure turbine housing 70 and the high pressure compressor housing 80.
  • the high pressure supercharger 60 is not limited to the conventional type shown in the drawing, but may be a variable capacity type having variable blades.
  • the high-pressure compressor housing 80 is provided with a high-pressure intake scroll passage 81 extending circumferentially around the high-pressure compressor 62. Further, the high-pressure stage compressor housing 80 is provided with a high-pressure stage suction passage portion 82 that sucks intake air into the high-pressure stage intake scroll passage 81. Further, the high pressure stage compressor housing 80 is provided with a high pressure stage discharge passage portion 83 for discharging intake air from the high pressure stage intake scroll passage 81.
  • the second intake pipe 23 is connected to the high pressure stage intake passage portion 82, and the third intake pipe 24 is connected to the high pressure stage discharge passage portion 83.
  • the high-pressure stage turbine housing 70 is provided with a high-pressure stage exhaust scroll passage 71 extending circumferentially around the high-pressure stage turbine 61. Further, the high pressure stage turbine housing 70 is provided with a high pressure stage exhaust introduction passage portion 72 for introducing exhaust gas into the high pressure stage exhaust scroll passage 71. Further, the high-pressure stage turbine housing 70 is provided with a high-pressure stage exhaust derivation passage portion 73 that guides exhaust gas from the high-pressure stage exhaust scroll passage 71.
  • the high-pressure stage exhaust introduction passage portion 72 is connected to the exhaust derivation passage portion 33 of the exhaust manifold 30.
  • the low pressure stage exhaust introduction passage portion 36 of the exhaust manifold 30 is connected to the high pressure stage exhaust gas outlet passage portion 73.
  • the high pressure turbine 71 when exhaust gas is introduced into the high pressure exhaust scroll passage 71 from the exhaust outlet passage 33 through the high pressure exhaust introduction passage 72, the high pressure turbine 71 is installed. Is rotated, the high-pressure compressor 72 is driven to rotate. When the high-pressure compressor 72 is rotationally driven, the intake air is taken into the high-pressure intake scroll passage 81 from the second intake pipe 23 via the high-pressure intake passage portion 82, so that the intake pressure pressurized by the high-pressure compressor 62 becomes high.
  • the stage discharge passage 83 is configured to be pressure-fed to the third intake pipe 24.
  • FIG. 2 is a schematic perspective view showing the exhaust manifold 30 according to the present embodiment.
  • the exhaust manifold 30 has a plurality of exhaust introduction passage portions 31, an exhaust collecting portion 32, an exhaust derivation passage portion 33, and a low-pressure stage exhaust scroll passage 35 (see FIG. 1) formed therein.
  • the low-pressure stage turbine housing 34, the low-pressure stage exhaust introduction passage portion 36, the low-pressure stage exhaust discharge passage portion 37, and the bypass passage portion 38 are integrally provided.
  • the exhaust introduction passage portions 31 are provided in the number corresponding to the number of cylinders of the engine 10, and extend in the direction (lateral direction) orthogonal to the cylinder arrangement direction of the engine 10.
  • a fixed flange portion 31A which is fastened and fixed to a side portion of the cylinder head CH by a bolt or the like (not shown), is provided at an inlet end of each exhaust introduction passage portion 31. Further, the flange surface of the fixed flange portion 31A is provided with a first exhaust introduction port 31B that opens toward the exhaust port 13 (see FIG. 1) of the cylinder head CH.
  • the exhaust collecting portion 32 extends parallel to the cylinder arrangement direction of the engine 10, and the outlet ends of the exhaust introducing passage portions 31 join together. That is, the exhaust gas introduced from each exhaust port 13 (see FIG. 1) of the engine 10 into the exhaust gas introduction passage portion 31 flows in the exhaust gas collecting portion 32 in the longitudinal direction to join together.
  • the exhaust gas outlet passage portion 33 branches from the exhaust gas collecting portion 32 and extends laterally on the side opposite to the exhaust gas inlet passage portion 31.
  • a low pressure turbine housing 34 is provided immediately above the exhaust gas outlet passage portion 33.
  • a fixed flange portion 39 for mounting the high-pressure turbine housing 70 (see FIG. 1) is provided at the outlet end of the exhaust gas outlet passage portion 33.
  • a first exhaust outlet 33B is provided on the flange surface 39A of the fixed flange 39 so as to face the high pressure exhaust introduction passage 72 (see FIG. 1) of the high pressure turbine housing 70. That is, the exhaust flowing from the exhaust collecting portion 32 into the exhaust gas outlet passage portion 33 is configured to be introduced into the high pressure stage exhaust gas inlet passage portion 72 (see FIG. 1) via the first exhaust gas outlet port 33B. ..
  • the fixed flange portion 39 is provided so as to be inclined at a predetermined angle with respect to the axial center of the exhaust lead-out passage portion 33 so that the flange surface 39A faces obliquely downward. That is, the high-pressure turbine housing 70 (see FIG. 1) is arranged obliquely below the low-pressure turbine housing 34 above the exhaust derivation passage portion 33. On the flange surface 39A of the fixed flange portion 39, a second exhaust introduction port 36B for introducing the exhaust from the high pressure stage exhaust lead-out passage portion 73 (see FIG. 1) is formed above the first exhaust lead-out port 33B. ing.
  • the low-pressure stage exhaust introduction passage portion 36 extends obliquely upward from the second exhaust introduction port 36B of the fixed flange portion 39 toward the low-pressure stage turbine housing 34.
  • the outlet end of the low-pressure turbine housing 34 joins the low-pressure exhaust scroll passage 35 (see FIG. 1) in the low-pressure turbine housing 34.
  • the low-pressure stage turbine housing 34 is provided with a low-pressure stage exhaust lead-out passage portion 37 that leads out exhaust gas from the low-pressure stage exhaust scroll passage 35.
  • a low-pressure stage flange portion 37A for fixing an exhaust pipe or the like (not shown) is provided at the outlet end of the low-pressure stage exhaust outlet passage portion 37, and the second exhaust outlet port 37B is provided on the flange surface of the low-pressure stage flange portion 37A. Is formed with an opening.
  • the exhaust manifold 30 includes a plurality of first exhaust gas inlet ports 31B for directly introducing exhaust gas from the engine 10, and a first exhaust gas outlet port 33B for discharging exhaust gas to the high-pressure turbine housing 70 (see FIG. 1).
  • a second exhaust gas inlet 36B for introducing exhaust gas that rotationally drives the high-pressure turbine 61 (see FIG. 1) and a second exhaust gas outlet port that exhausts exhaust gas for rotationally driving the low-pressure turbine 41 (see FIG. 1) 37B is provided.
  • the exhaust manifold 30 includes the first exhaust gas inlet 31B for introducing the high temperature exhaust gas discharged from the engine 10 and the second exhaust gas inlet 36B for introducing the exhaust gas whose temperature is lowered by the high pressure supercharger 60.
  • the exhaust manifold 30 includes a first exhaust gas outlet 33B for discharging the high temperature exhaust gas discharged from the engine 10 and a second exhaust gas outlet 37B for discharging the exhaust gas whose temperature is lowered by the low pressure supercharger 40. Two types of exhaust outlets are provided.
  • the bypass passage portion 38 extends obliquely upward from the exhaust collecting portion 32 toward the low-pressure stage turbine housing 34 in the opposite direction to the low-pressure stage exhaust introduction passage portion 36. That is, when the exhaust manifold 30 is viewed laterally from the cylinder arrangement direction of the engine 10 (longitudinal direction of the exhaust collecting portion 32 ), the exhaust outlet passage portion 33 extending laterally from the exhaust collecting portion 32 and diagonally above the fixed flange portion 39.
  • the low-pressure stage exhaust introduction passage 36 and the bypass passage 38 extending obliquely upward from the exhaust collecting portion 32 form a substantially triangular exhaust passage structure with the low-pressure turbine housing 34 as an apex. As a result, the exhaust collecting portion 32 and the low-pressure turbine housing 34 can be connected by the relatively short bypass passage portion 38, and the exhaust manifold 30 as a whole can be made compact.
  • the bypass passage portion 38 is provided with a bypass valve 90 (see FIG. 1) capable of opening and closing the flow passage of the bypass passage portion 38.
  • the actuator 91 that operates the bypass valve 90 is provided immediately above the exhaust gas collecting portion 32 on the cylinder head CH side of the low pressure stage turbine housing 34. That is, by accommodating the actuator 91 on the cylinder head CH side of the low-pressure turbine housing 34, it is possible to effectively prevent interference with peripheral components in the engine room.
  • the low pressure stage turbine housing 34 is provided above the exhaust derivation passage portion 33 extending laterally from the exhaust collecting portion 32, and the outlet end of the exhaust derivation passage portion 33 is provided.
  • the low pressure stage exhaust gas introduction passage portion 36 extends obliquely upward from the fixed flange portion 39 toward the low pressure stage turbine housing 34, and the bypass passage portion 38 extends obliquely upward from the exhaust gas collecting portion 32 toward the low pressure stage turbine housing 34.
  • the respective passage portions 33, 36, 38 form an exhaust passage structure having a substantially triangular shape.
  • the distance between the high-pressure turbine housing 70 and the low-pressure turbine housing 34 attached to the fixed flange portion 39 is relatively short, and the exhaust collecting portion 32 and the low-pressure turbine housing 34 are relatively short bypass passage portions 38.
  • the exhaust system structure including the exhaust manifold 30 and the high pressure turbine housing 70 can be made compact. In addition, the compactness can be effectively prevented from interfering with the peripheral parts in the engine room, and the mountability can be surely improved.
  • the actuator 91 that operates the bypass valve 90 can be housed closer to the cylinder head CH than the low pressure turbine housing 34. Therefore, it is possible to effectively prevent the actuator 91 from interfering with the peripheral parts in the engine room.
  • the low pressure stage turbine housing 34 is formed integrally with the exhaust manifold 30, it is possible to omit the step of assembling the low pressure stage turbine housing 34 during assembly, and it is possible to reliably improve the assemblability.
  • the exhaust manifold 30 when the exhaust manifold 30 is assembled to the cylinder head CH, the work can be performed in a state where the high-pressure stage turbine housing 70 is not attached to the fixed flange portion 39, so a bolting tool or the like can be easily inserted up to the fixed flange portion 31A. Therefore, the workability of assembling can be surely improved.
  • FIG. 3 is a schematic side view of a state in which the high-pressure turbine housing 70 is attached to the fixed flange portion 39 of the exhaust manifold 30, as viewed from the longitudinal direction of the exhaust collecting portion 32.
  • the high-pressure stage turbine housing 70 includes a high-pressure stage flange portion 77 integrally provided at the inlet end of the high-pressure stage exhaust introduction passage portion 72 and the outlet end of the high-pressure stage exhaust discharge passage portion 73. ..
  • the high-pressure stage turbine housing 70 is attached by fixing the high-pressure stage flange portion 77 to the fixed flange portion 39 of the exhaust manifold 30, preferably by interposing a gasket (not shown) between them and fastening them with bolts and nuts. ..
  • the fixed flange portion 39 is provided so that its flange surface 39A is inclined obliquely downward, and the high pressure step flange portion 77 is inclined so that its flange surface 77A is obliquely upward.
  • the joint surface M of each of the flange portions 39 and 77 is configured to be inclined at a predetermined angle with respect to the vertical direction.
  • the high-pressure stage exhaust introduction passage portion 72 extends laterally from the high-pressure stage flange portion 77 so as to extend substantially on the same straight line as the exhaust discharge passage portion 33. That is, the acute angle ⁇ formed by the flow path axis X1 of the exhaust gas outlet passage portion 33 and the joint surface M of the flange portions 39, 77, the flow path axis X2 of the high pressure stage exhaust gas introduction passage portion 72, and the flanges.
  • An acute angle ⁇ formed by the joint surfaces M of the portions 39 and 77 is substantially equal to each other.
  • the high-pressure stage exhaust derivation passage portion 73 extends obliquely upward from the substantially central portion of the high-pressure stage turbine housing 70 toward the high-pressure stage flange portion 77 so as to extend substantially on the same straight line as the low-pressure stage exhaust introduction passage portion 36. ing. That is, the flow path axis X3 of the high-pressure stage exhaust introduction passage portion 73 and the flow path axis X4 of the low-pressure stage exhaust introduction passage portion 36 are configured to be substantially orthogonal to the joint surface M of the flange portions 39 and 77. There is.
  • the high-pressure stage exhaust derivation passage portion 73 and the low-pressure stage exhaust introduction passage portion 36 are obliquely extended on substantially the same straight line, so that the high-pressure stage exhaust scroll passage 71 flows into the high-pressure stage exhaust derivation passage portion 73.
  • the exhaust gas is smoothly taken into the low pressure stage exhaust gas introduction passage portion 36, and the pressure loss of the exhaust gas can be effectively suppressed.
  • the high-pressure stage turbine housing 70 configured as described above is attached to the exhaust manifold 30, the high-pressure stage turbine housing 70 is in a substantially lateral direction on the side opposite to the engine 10 with respect to the exhaust gas collecting portion 32, and in the low-pressure stage. It is arranged obliquely below the turbine housing 34. That is, when viewed in the longitudinal direction of the exhaust gas collecting portion 32, the exhaust gas collecting portion 32, the high-pressure turbine housing 70, and the low-pressure turbine housing 34 are arranged in a substantially triangular shape with the low-pressure turbine housing 34 as an apex. Has been done.
  • the vertical arrangement height of each of the housings 70, 34 can be effectively suppressed, and the exhaust gas
  • the entire system structure can be made compact. Further, by suppressing the height of the entire exhaust system structure in the vertical direction, it is possible to effectively prevent interference with peripheral parts arranged above or below the housings 70 and 34 in the engine room, The mountability can be surely improved.
  • the joint surfaces M of the flange portions 39, 77 are oriented in the vertical direction, in other words, as compared with the structure in which the housings 70, 34 are arranged side by side, the high pressure stage.
  • the lateral projection of the turbine housing 70 is effectively suppressed.
  • the low-pressure stage turbine housing 34 has been described as being arranged obliquely above the high-pressure stage turbine housing 70 and the exhaust gas collection unit 32.
  • it may be arranged diagonally downward.
  • the fixed flange portion 39 may be provided so as to be inclined obliquely upward.
  • low pressure turbine housing 34 has been described as being formed integrally with the exhaust manifold 30, but these may be configured separately.
  • the exhaust system device attached to the fixed flange portion 39 of the exhaust manifold 30 is not limited to the high pressure supercharger 60, and may be another exhaust system device such as an exhaust purification device, an exhaust brake device, an exhaust gas recirculation device, or the like. May be.
  • the exhaust system structure of the present disclosure is useful in terms of making the structure compact.

Abstract

エンジン10から排出される排気を流通させる通路部31,32,33を有する排気マニホールド30と、通路部33から排気を取り込む高圧段ハウジング70を有する高圧段過給機60と、高圧段ハウジング70及び通路部32の少なくともいずれか一方から排気を取り込む低圧段ハウジング34を有する低圧段過給機40と、を備え、高圧段ハウジング70が、排気マニホールド30に対してエンジン10とは反対側の横方向に配されると共に、低圧段ハウジング34が、高圧段ハウジング70とエンジン10との間の通路部33の上方又は下方に配されている。

Description

エンジンの排気系構造
 本開示は、エンジンの排気系構造に関し、特に、過給機を備えるエンジンの排気系構造に関する。
 エンジンの高出力化を図る技術として、排気により駆動するタービン及び該タービンと同軸に設けられて吸気を圧送するコンプレッサを備える過給機が広く用いられている。例えば、特許文献1には、排気マニホールドの側部に、高圧段過給機及び低圧段過給機を鉛直方向の上下に配置して取り付けた二段過給システムが開示されている。
日本国特開2012-12988号公報
 一般に、エンジンに取り付けられる排気マニホールドや過給機等の排気系装置は、エンジンルーム内のスペース上の制約や搭載性向上の観点から、これらのコンパクト化を図ることが望まれる。
 上記特許文献1記載の構造では、高圧段過給機及び低圧段過給機を略鉛直方向に配置すると共に、各過給機の上下間に高圧段過給機を迂回するバイパス通路やバルブ等を設けている。このため、これら高圧段過給機及び低圧段過給機を含めた排気系構造が上下方向に長くなり、周辺部品との干渉や搭載性の悪化を招く可能性がある。
 本開示の目的は、コンパクトな排気系構造を提供することである。
 本開示の排気系構造は、エンジンから排出される排気を流通させる通路部を有する排気マニホールドと、前記通路部から排気を取り込む高圧段ハウジングを有する高圧段過給機と、前記高圧段ハウジング及び前記通路部の少なくともいずれか一方から排気を取り込む低圧段ハウジングを有する低圧段過給機と、を備え、前記高圧段ハウジングが、前記排気マニホールドに対して前記エンジンとは反対側の横方向に配されると共に、前記低圧段ハウジングが、前記高圧段ハウジングと前記エンジンとの間の前記通路部の上方又は下方のに配されている。
 また、前記通路部の出口端に前記高圧段ハウジングを取り付けるフランジ部が設けられており、該フランジ部は、そのフランジ面が斜め下方又は斜め上方を向くように、前記通路部の軸心に対して傾斜して設けられていることが好ましい。
 また、前記通路部を流れる排気が前記高圧段ハウジングを迂回するように、前記通路部から延びると共に、前記低圧段ハウジング内のスクロール通路に合流するバイパス通路部をさらに備えることが好ましい。
 また、前記バイパス通路部に、該バイパス通路部の流路を開閉可能なバルブが設けられており、該バルブを作動させるアクチュエータが前記バイパス通路部よりも前記エンジン側に配されていることが好ましい。
 また、前記排気マニホールド及び前記低圧段ハウジングが一体に形成されていることが好ましい。
 本開示の技術によれば、排気系構造のコンパクト化を図ることができる。
図1は、一実施形態に係るエンジンの吸気系及び排気系を示す模式的な全体構成図である。 図2は、一実施形態に係る排気マニホールドを示す模式的な斜視図である。 図3は、一実施形態に係る排気マニホールドの固定フランジ部に高圧段タービンハウジングが取り付けられた状態を排気集合部の長手方向から視た模式的な側面図である。
 以下、添付図面に基づいて、一実施形態に係るエンジンの排気系構造を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 [全体構成]
 図1は、本実施形態に係るエンジン10の吸気系及び排気系を示す模式的な全体構成図である。
 エンジン10は、主としてシリンダブロック及びシリンダブロックの上部に設けられるシリンダヘッドCH等を含むエンジン本体部11を備えている。シリンダブロックには、燃焼室を区画する複数のシリンダCがエンジン10の長手方向に直列に設けられている。シリンダヘッドCHには、シリンダC内に吸気を導入する吸気ポート12及びシリンダCから排気を導出する排気ポート13が設けられている。なお、エンジン10は、図示例の直列多気筒エンジンに限定されず、単気筒エンジンであってもよい。また、エンジン10は、V型エンジン或は水平対向型エンジン等であってもよい。
 シリンダヘッドCHの吸気側の側部には、各吸気ポート12に吸気を分配する吸気マニホールド20が設けられている。吸気マニホールド20には、吸気上流側から順に、エアクリーナ21、第1吸気管22、低圧段過給機40の低圧段コンプレッサハウジング45、第2吸気管23、高圧段過給機60の高圧段コンプレッサハウジング80、第3吸気管24が接続されている。第3吸気管24には、吸気を冷却するインタークーラ25が設けられている。
 シリンダヘッドCHの排気側の側部には、排気マニホールド30が設けられている。排気マニホールド30は、各排気ポート13の出口部に接続された複数の排気導入通路部31(通路部の一部)と、排気導入通路部31がそれぞれ合流する排気集合部32(通路部の一部)と、排気集合部32から排気を導出する排気導出通路部33(通路部の一部)とを備えている。また、排気マニホールド30には、低圧段過給機40の低圧段タービンハウジング34が一体に設けられている。
 低圧段過給機40は、低圧段タービン41と、低圧段コンプレッサ42と、これら低圧段タービン41と低圧段コンプレッサ42とを連結する回転軸43と、回転軸43を軸支する不図示の軸受とを備えている。低圧段タービン41は、排気マニホールド30と一体に形成された低圧段タービンハウジング34(本開示の低圧段ハウジング)内に収容されている。低圧段コンプレッサ42は、低圧段コンプレッサハウジング45内に収容されている。これら低圧段タービンハウジング34と低圧段コンプレッサハウジング45との間には、軸受を収容する軸受ハウジング46が設けられている。なお、低圧段過給機40は、図示例のコンベンショナルタイプに限定されず、可変翼を備える可変容量型タイプであってもよい。
 低圧段コンプレッサハウジング45には、低圧段コンプレッサ42の周囲を周方向に延びる低圧段吸気スクロール通路47が設けられている。また、低圧段コンプレッサハウジング45には、低圧段吸気スクロール通路47に吸気を吸入する低圧段吸入通路部48が設けられている。さらに、低圧段コンプレッサハウジング45には、低圧段吸気スクロール通路47から吸気を吐出する低圧段吐出通路部49が設けられている。低圧段吸入通路部48には第1吸気管22が接続され、低圧段吐出通路部49には第2吸気管23が接続されている。
 排気マニホールド30と一体に形成された低圧段タービンハウジング34には、低圧段タービン41の周囲を周方向に延びる低圧段排気スクロール通路35が設けられている。また、排気マニホールド30には、低圧段排気スクロール通路35に排気を導入する低圧段排気導入通路部36が設けられている。また、排気マニホールド30には、低圧段排気スクロール通路35から排気を導出する低圧段排気導出通路部37が設けられている。低圧段排気導出通路部37には、排気管27が接続され、排気管27には、排気浄化装置28のケーシング29等が接続されている。ケーシング29内には、例えば、酸化触媒やパティキュレイトフィルタ、NOx触媒等が収容されている。
 さらに、排気マニホールド30には、排気集合部32から排出される排気が高圧段過給機60を迂回するように、排気集合部32と低圧段排気スクロール通路35とを接続するバイパス通路部38が設けられている。バイパス通路部38には、バイパス通路部38の流路を開閉可能なバイパスバルブ90が設けられている。バイパスバルブ90は、アクチュエータ91(例えば、ダイヤフラム式又は、電磁式アクチュエータ)により作動される。バイパスバルブ90は、開度をリニアに調整可能なバルブ、或は、ON/OFFバルブの何れであってもよい。
 以上のように構成された低圧段過給機40は、低圧段排気導入通路部36及びバイパス通路部38の少なくともいずれか一方から低圧段排気スクロール通路35内に排気が導入されると、低圧段タービン41が回転することで、低圧段コンプレッサ42を回転駆動させる。低圧段コンプレッサ42が回転駆動すると、第1吸気管22から低圧段吸入通路部48を介して低圧段吸気スクロール通路47内に吸気が取り込まれることで、低圧段コンプレッサ42により加圧した吸気を低圧段吐出通路部49から第2吸気管23に圧送するように構成されている。
 高圧段過給機60は、高圧段タービン61と、高圧段コンプレッサ62と、これら高圧段タービン61と高圧段コンプレッサ62とを連結する回転軸63と、回転軸63を軸支する不図示の軸受とを備えている。高圧段タービン61は、高圧段タービンハウジング70(本開示の高圧段ハウジング)内に収容されている。高圧段コンプレッサ62は、高圧段コンプレッサハウジング80内に収容されている。これら高圧段タービンハウジング70と高圧段コンプレッサハウジング80との間には、軸受を収容する軸受ハウジング88が設けられている。なお、高圧段過給機60は、図示例のコンベンショナルタイプに限定されず、可変翼を備える可変容量型タイプであってもよい。
 高圧段コンプレッサハウジング80には、高圧段コンプレッサ62の周囲を周方向に延びる高圧段吸気スクロール通路81が設けられている。また、高圧段コンプレッサハウジング80には、高圧段吸気スクロール通路81に吸気を吸入する高圧段吸入通路部82が設けられている。さらに、高圧段コンプレッサハウジング80には、高圧段吸気スクロール通路81から吸気を吐出する高圧段吐出通路部83が設けられている。高圧段吸入通路部82には第2吸気管23が接続され、高圧段吐出通路部83には第3吸気管24が接続されている。
 高圧段タービンハウジング70には、高圧段タービン61の周囲を周方向に延びる高圧段排気スクロール通路71が設けられている。また、高圧段タービンハウジング70には、高圧段排気スクロール通路71に排気を導入する高圧段排気導入通路部72が設けられている。また、高圧段タービンハウジング70には、高圧段排気スクロール通路71から排気を導出する高圧段排気導出通路部73が設けられている。高圧段排気導入通路部72には、排気マニホールド30の排気導出通路部33が接続されている。高圧段排気導出通路部73には、排気マニホールド30の低圧段排気導入通路部36が接続されている。
 以上のように構成された高圧段過給機60は、排気導出通路部33から高圧段排気導入通路部72を介して高圧段排気スクロール通路71内に排気が導入されると、高圧段タービン71が回転することで、高圧段コンプレッサ72を回転駆動させる。高圧段コンプレッサ72が回転駆動すると、第2吸気管23から高圧段吸入通路部82を介して高圧段吸気スクロール通路81内に吸気が取り込まれることで、高圧段コンプレッサ62により加圧した吸気を高圧段吐出通路部83から第3吸気管24に圧送するように構成されている。
 [排気マニホールド]
 図2は、本実施形態に係る排気マニホールド30を示す模式的な斜視図である。
 図2に示すように、排気マニホールド30は、複数本の排気導入通路部31と、排気集合部32と、排気導出通路部33と、内部に低圧段排気スクロール通路35(図1参照)が形成された低圧段タービンハウジング34と、低圧段排気導入通路部36と、低圧段排気導出通路部37と、バイパス通路部38とを一体に備えている。
 排気導入通路部31は、エンジン10の気筒数に応じた本数で設けられており、エンジン10の気筒配列方向と直交する方向(横方向)に延設されている。各排気導入通路部31の入口端には、シリンダヘッドCHの側部に不図示のボルト等で締結固定される被固定フランジ部31Aがそれぞれ設けられている。また、被固定フランジ部31Aのフランジ面には、シリンダヘッドCHの排気ポート13(図1参照)に臨んで開口する第1排気導入口31Bがそれぞれ設けられている。
 排気集合部32は、エンジン10の気筒配列方向と平行に延設されており、各排気導入通路部31の出口端が合流する。すなわち、エンジン10の各排気ポート13(図1参照)から排気導入通路部31内にそれぞれ導入された排気が、排気集合部32内を長手方向に流れることで合流するように構成されている。
 排気導出通路部33は、排気集合部32から分岐して排気導入通路部31とは反対側に横方向に延設されている。排気導出通路部33の直上方には、低圧段タービンハウジング34が設けられている。また、排気導出通路部33の出口端には、高圧段タービンハウジング70(図1参照)を取り付けるための固定フランジ部39が設けられている。固定フランジ部39のフランジ面39Aには、高圧段タービンハウジング70の高圧段排気導入通路部72(図1参照)に臨んで開口する第1排気導出口33Bが設けられている。すなわち、排気集合部32から排気導出通路部33内に流れ込んだ排気が、第1排気導出口33Bを介して高圧段排気導入通路部72(図1参照)に導入されるように構成されている。
 本実施形態において、固定フランジ部39は、そのフランジ面39Aが斜め下方に向くように、排気導出通路部33の軸心に対して所定の角度で傾斜して設けられている。すなわち、排気導出通路部33よりも上方の低圧段タービンハウジング34に対して、高圧段タービンハウジング70(図1参照)が斜め下方に配置されるようになっている。固定フランジ部39のフランジ面39Aには、高圧段排気導出通路部73(図1参照)から排気を導入する第2排気導入口36Bが、第1排気導出口33Bよりも上方側に開口形成されている。
 低圧段排気導入通路部36は、固定フランジ部39の第2排気導入口36Bから低圧段タービンハウジング34に向けて斜め上方に延設されている。低圧段タービンハウジング34の出口端は、低圧段タービンハウジング34内の低圧段排気スクロール通路35(図1参照)に合流する。また、低圧段タービンハウジング34には、低圧段排気スクロール通路35から排気を導出する低圧段排気導出通路部37が設けられている。低圧段排気導出通路部37の出口端には、不図示の排気管等を固定する低圧段フランジ部37Aが設けられており、低圧段フランジ部37Aのフランジ面には、第2排気導出口37Bが開口形成されている。
 すなわち、排気マニホールド30には、エンジン10から直接的に排気を導入する複数の第1排気導入口31Bと、高圧段タービンハウジング70(図1参照)に排気を導出する第1排気導出口33Bと、高圧段タービン61(図1参照)を回転駆動させた排気を導入する第2排気導入口36Bと、低圧段タービン41(図1参照)を回転駆動させた排気を導出する第2排気導出口37Bが設けられている。言い換えれば、排気マニホールド30には、エンジン10から排出される高温排気を導入する第1排気導入口31B及び高圧段過給機60で温度を低下させた排気を導入する第2排気導入口36Bの計2種類の排気導入口が設けられている。また、排気マニホールド30には、エンジン10から排出される高温排気を導出する第1排気導出口33B及び低圧段過給機40で温度を低下させた排気を導出する第2排気導出口37Bの計2種類の排気導出口が設けられている。
 バイパス通路部38は、排気集合部32から低圧段タービンハウジング34に向けて、低圧段排気導入通路部36とは逆向きに斜め上方に延設されている。すなわち、排気マニホールド30をエンジン10の気筒配列方向(排気集合部32の長手方向)から側方視すると、排気集合部32から横方向に延びる排気導出通路部33と、固定フランジ部39から斜め上方に延びる低圧段排気導入通路部36と、排気集合部32から斜め上方に延びるバイパス通路部38とにより、低圧段タービンハウジング34を頂点とした略三角形状をなす排気通路構造が形成されている。これにより、排気集合部32と低圧段タービンハウジング34とを、比較的短いバイパス通路部38で接続することが可能となり、排気マニホールド30全体のコンパクト化が図られるようになっている。
 バイパス通路部38には、バイパス通路部38の流路を開閉可能なバイパスバルブ90(図1参照)が設けられている。本実施形態において、バイパスバルブ90を作動させるアクチュエータ91は、低圧段タービンハウジング34よりもシリンダヘッドCH側において、排気集合部32の直上方に位置して設けられている。すなわち、アクチュエータ91を低圧段タービンハウジング34よりもシリンダヘッドCH側に収容することで、エンジンルーム内の周辺部品との干渉を効果的に防止できるようになっている。
 以上詳述した本実施形態の排気マニホールド30によれば、排気集合部32から横方向に延びる排気導出通路部33の上方に低圧段タービンハウジング34を設けると共に、排気導出通路部33の出口端の固定フランジ部39から低圧段タービンハウジング34に向けて低圧段排気導入通路部36を斜め上方に延設し、排気集合部32から低圧段タービンハウジング34に向けてバイパス通路部38を斜め上方に延設することで、これら各通路部33,36,38により略三角形状をなす排気通路構造が構成されている。
 これにより、固定フランジ部39に取り付けられる高圧段タービンハウジング70と低圧段タービンハウジング34との距離を比較的短くしつつ、排気集合部32と低圧段タービンハウジング34とを比較的短いバイパス通路部38で接続することが可能となり、排気マニホールド30及び高圧段タービンハウジング70を含めた排気系構造全体をコンパクト化することができる。また、コンパクト化が図られることで、エンジンルーム内の周辺部品との干渉を効果的に防止しつつ、搭載性も確実に向上することができる。
 また、バイパス通路部38を固定フランジ部39よりも排気集合部32側に設けることで、バイパスバルブ90を作動させるアクチュエータ91を低圧段タービンハウジング34よりもシリンダヘッドCH側に収容することが可能となり、アクチュエータ91がエンジンルーム内の周辺部品と干渉することを効果的に防止することができる。
 また、排気マニホールド30に低圧段タービンハウジング34を一体に形成したことで、組み立て時には低圧段タービンハウジング34を組み付ける工程を省略することが可能となり、組み立て性を確実に向上することができる。
 また、排気マニホールド30をシリンダヘッドCHに組み付ける際は、固定フランジ部39に高圧段タービンハウジング70が取り付けられていない状態で作業を行えるため、ボルト締め工具等を被固定フランジ部31Aまで容易に挿入することが可能となり、組み付け作業性も確実に向上することができる。
 [排気系構造]
 図3は、排気マニホールド30の固定フランジ部39に高圧段タービンハウジング70が取り付けられた状態を排気集合部32の長手方向から視た模式的な側面図である。
 図3に示すように、高圧段タービンハウジング70は、高圧段排気導入通路部72の入口端及び高圧段排気導出通路部73の出口端に一体に設けられた高圧段フランジ部77を備えている。高圧段タービンハウジング70は、高圧段フランジ部77を排気マニホールド30の固定フランジ部39に、好ましくは、これらの間に不図示のガスケットを介装させてボルトナットで締結することにより取り付けられている。
 本実施形態において、固定フランジ部39は、そのフランジ面39Aが斜め下方を向くように傾斜して設けられており、高圧段フランジ部77は、そのフランジ面77Aが斜め上方を向くように傾斜して設けられている。すなわち、これら各フランジ部39,77の接合面Mが、鉛直方向に対して所定の角度で傾斜するように構成されている。
 高圧段排気導入通路部72は、排気導出通路部33と略同一直線上を延びるように、高圧段フランジ部77から横方向に向けて延設されている。すなわち、排気導出通路部33の流路軸心X1と各フランジ部39,77の接合面Mとのなす鋭角側の角度θと、高圧段排気導入通路部72の流路軸心X2と各フランジ部39,77の接合面Mとのなす鋭角側の角度θとが、互いに略等しい角度となるように構成されている。このように、排気導出通路部33及び高圧段排気導入通路部72を略同一直線上に横方向に延設することで、排気導出通路部33内を流れる排気が高圧段排気導入通路部72内に円滑に取り込まれるようになり、排気の圧力損失を効果的に抑制できるようになっている。
 高圧段排気導出通路部73は、低圧段排気導入通路部36と略同一直線上を延びるように、高圧段タービンハウジング70の略中心部から高圧段フランジ部77に向けて斜め上方に延設されている。すなわち、高圧段排気導出通路部73の流路軸心X3及び低圧段排気導入通路部36の流路軸心X4が、各フランジ部39,77の接合面Mに略直交するように構成されている。このように、高圧段排気導出通路部73及び低圧段排気導入通路部36を略同一直線上に斜めに延設することで、高圧段排気スクロール通路71から高圧段排気導出通路部73内に流れ出た排気が、低圧段排気導入通路部36内に円滑に取り込まれるようになり、排気の圧力損失を効果的に抑制できるようになっている。
 以上のように構成された高圧段タービンハウジング70を、排気マニホールド30に取り付けると、高圧段タービンハウジング70は、排気集合部32に対してエンジン10とは反対側の略横方向、且つ、低圧段タービンハウジング34に対して斜め下方に配置される。すなわち、排気集合部32の長手方向視において、これら排気集合部32、高圧段タービンハウジング70及び低圧段タービンハウジング34が、低圧段タービンハウジング34を頂点とした略三角形状に配置されるように構成されている。
 これにより、高圧段タービンハウジング70及び低圧段タービンハウジング34を鉛直方向の上下に配置する構造に比べ、これら各ハウジング70,34の上下方向の配置高さを効果的に抑えることが可能となり、排気系構造全体をコンパクト化することができる。また、排気系構造全体の上下方向の高さが抑えられることで、エンジンルーム内に各ハウジング70,34に対して上方又は下方に配される周辺部品との干渉を効果的に防止しつつ、搭載性も確実に向上することができる。
 また、各フランジ部39,77の接合面Mを斜めにすることで、これらの接合面Mを鉛直方向に向ける構造、言い換えれば、各ハウジング70,34を横方向に並べる構造に比べ、高圧段タービンハウジング70の横方向への突出量が効果的に抑えられるように構成されている。これにより、エンジンルーム内に高圧段タービンハウジング70に対して横方向に配される周辺部品との干渉を効果的に防止することが可能となり、この点においても、搭載性を確実に向上することができる。
 [その他]
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜に変形して実施することが可能である。
 例えば、上記実施形態において、低圧段タービンハウジング34は、高圧段タービンハウジング70及び排気集合部32に対して斜め上方に配されるものとして説明したが、高圧段タービンハウジング70及び排気集合部32に対して斜め下方に配されるように構成してもよい。この場合は、固定フランジ部39を斜め上方に向けて傾斜させるように設ければよい。
 また、低圧段タービンハウジング34は、排気マニホールド30と一体に形成されるものとして説明したが、これらを別体に構成してもよい。
 また、排気マニホールド30の固定フランジ部39に取り付けられる排気系装置は、高圧段過給機60に限定されず、排気浄化装置や排気ブレーキ装置、排気再循環装置等の他の排気系装置であってもよい。
 本出願は、2019年2月20日付で出願された日本国特許出願(特願2019-028389)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の排気系構造は、構造のコンパクト化といった点において有用である。
 10 エンジン
 CH シリンダヘッド
 13 排気ポート
 30 排気マニホールド
 31 排気導入通路部(通路部)
 32 排気集合部(通路部)
 33 排気導出通路部(通路部)
 34 低圧段タービンハウジング(低圧段ハウジング)
 35 低圧段排気スクロール通路
 36 低圧段排気導入通路部
 37 低圧段排気導出通路部
 38 バイパス通路部
 39 固定フランジ部(フランジ部)
 40 低圧段過給機
 41 低圧段タービン
 42 低圧段コンプレッサ
 45 低圧段コンプレッサハウジング
 47 低圧段吸気スクロール通路
 48 低圧段吸入通路部
 49 低圧段吐出通路部
 60 高圧段過給機
 61 高圧段タービン
 62 高圧段コンプレッサ
 70 高圧段タービンハウジング(高圧段ハウジング)
 71 高圧段排気スクロール通路
 72 高圧段排気導入通路部
 73 高圧段排気導出通路部
 80 高圧段コンプレッサハウジング
 81 高圧段吸気スクロール通路
 82 高圧段吸入通路部
 83 高圧段吐出通路部
 90 バイパスバルブ(バルブ)
 91 アクチュエータ

Claims (5)

  1.  エンジンから排出される排気を流通させる通路部を有する排気マニホールドと、
     前記通路部から排気を取り込む高圧段ハウジングを有する高圧段過給機と、
     前記高圧段ハウジング及び前記通路部の少なくともいずれか一方から排気を取り込む低圧段ハウジングを有する低圧段過給機と、を備え、
     前記高圧段ハウジングが、前記排気マニホールドに対して前記エンジンとは反対側の横方向に配されると共に、前記低圧段ハウジングが、前記高圧段ハウジングと前記エンジンとの間の前記通路部の上方又は下方に配されている
     ことを特徴とするエンジンの排気系構造。
  2.  前記通路部の出口端に前記高圧段ハウジングを取り付けるフランジ部が設けられており、該フランジ部は、そのフランジ面が斜め下方又は斜め上方を向くように、前記通路部の軸心に対して傾斜して設けられている
     請求項1に記載のエンジンの排気系構造。
  3.  前記通路部を流れる排気が前記高圧段ハウジングを迂回するように、前記通路部から延びると共に、前記低圧段ハウジング内のスクロール通路に合流するバイパス通路部をさらに備える
     請求項1又は2に記載のエンジンの排気系構造。
  4.  前記バイパス通路部に、該バイパス通路部の流路を開閉可能なバルブが設けられており、該バルブを作動させるアクチュエータが前記バイパス通路部よりも前記エンジン側に配されている
     請求項3に記載のエンジンの排気系構造。
  5.  前記排気マニホールド及び前記低圧段ハウジングが一体に形成されている
     請求項1から4の何れか一項に記載のエンジンの排気系構造。
PCT/JP2020/005864 2019-02-20 2020-02-14 エンジンの排気系構造 WO2020170984A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080015524.1A CN113454318A (zh) 2019-02-20 2020-02-14 引擎的排气系统结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-028389 2019-02-20
JP2019028389A JP2020133510A (ja) 2019-02-20 2019-02-20 エンジンの排気系構造

Publications (1)

Publication Number Publication Date
WO2020170984A1 true WO2020170984A1 (ja) 2020-08-27

Family

ID=72143709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005864 WO2020170984A1 (ja) 2019-02-20 2020-02-14 エンジンの排気系構造

Country Status (3)

Country Link
JP (1) JP2020133510A (ja)
CN (1) CN113454318A (ja)
WO (1) WO2020170984A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648119Y2 (ja) * 1988-10-19 1994-12-07 トヨタ自動車株式会社 二段ターボエンジン
JP2000274238A (ja) * 1999-03-25 2000-10-03 Hitachi Metals Ltd タービンハウジング一体排気マニホールド及びその製造方法
JP2003221639A (ja) * 2002-01-31 2003-08-08 Aisin Takaoka Ltd タービンハウジング一体型排気マニホルド及びその製造方法
JP2010261362A (ja) * 2009-05-07 2010-11-18 Toyota Motor Corp エンジンの過給装置
JP2017125431A (ja) * 2016-01-13 2017-07-20 日野自動車株式会社 二段過給システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875586B2 (ja) * 2007-10-12 2012-02-15 三菱重工業株式会社 2段過給式排気ターボ過給機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648119Y2 (ja) * 1988-10-19 1994-12-07 トヨタ自動車株式会社 二段ターボエンジン
JP2000274238A (ja) * 1999-03-25 2000-10-03 Hitachi Metals Ltd タービンハウジング一体排気マニホールド及びその製造方法
JP2003221639A (ja) * 2002-01-31 2003-08-08 Aisin Takaoka Ltd タービンハウジング一体型排気マニホルド及びその製造方法
JP2010261362A (ja) * 2009-05-07 2010-11-18 Toyota Motor Corp エンジンの過給装置
JP2017125431A (ja) * 2016-01-13 2017-07-20 日野自動車株式会社 二段過給システム

Also Published As

Publication number Publication date
JP2020133510A (ja) 2020-08-31
CN113454318A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JPS5847226Y2 (ja) 2段過給式往復ピストン内燃機関
US8844285B2 (en) Two-stage supercharging exhaust turbocharger
JP4495120B2 (ja) 多段過給式排気ターボ過給機
JP4496248B2 (ja) Egr装置付き過給エンジン
EP3179079B1 (en) Engine system
JP2004092646A (ja) 内燃機関用過給装置
WO2013073052A1 (ja) 過給機付き内燃機関
EP3438429B1 (en) Engine with turbo supercharger
KR20110115580A (ko) 2단 과급기 조립체
WO2008005382A1 (en) Exhaust gas recirculation system
JP2010261362A (ja) エンジンの過給装置
WO2020170984A1 (ja) エンジンの排気系構造
WO2020170975A1 (ja) 排気マニホールド
US20130104539A1 (en) Turbine for and exhaust gas turbocharger
EP2148061B1 (en) A two-stage turbocharged combustion engine
JP2017057823A (ja) 過給機付エンジンの排気装置
EP3306049A1 (en) Engine system
JP4710725B2 (ja) 過給機付きエンジン
CN110603376B (zh) 多级增压器
JP2017214872A (ja) ターボ過給機付エンジン
JP5670170B2 (ja) 過給式多気筒エンジン
JP4499961B2 (ja) 多気筒過給機関
JP5115648B2 (ja) 2ターボ過給システムにおけるタービンハウジングの取付構造
JP2017190715A (ja) エンジン装置
JPH041422A (ja) マリンエンジンにおける複合過給方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758683

Country of ref document: EP

Kind code of ref document: A1