WO2020170964A1 - 蓄電装置、抵抗器の温度調整方法 - Google Patents

蓄電装置、抵抗器の温度調整方法 Download PDF

Info

Publication number
WO2020170964A1
WO2020170964A1 PCT/JP2020/005799 JP2020005799W WO2020170964A1 WO 2020170964 A1 WO2020170964 A1 WO 2020170964A1 JP 2020005799 W JP2020005799 W JP 2020005799W WO 2020170964 A1 WO2020170964 A1 WO 2020170964A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power storage
resistor
storage device
secondary battery
Prior art date
Application number
PCT/JP2020/005799
Other languages
English (en)
French (fr)
Inventor
清浩 藤田
剛之 白石
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2021501938A priority Critical patent/JPWO2020170964A1/ja
Publication of WO2020170964A1 publication Critical patent/WO2020170964A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device.
  • One of the methods for measuring the current of the storage element is to use a resistor such as a shunt resistor.
  • the resistor generates a voltage according to the current. Current can be measured from the voltage of the resistor.
  • Patent Document 1 has the following description.
  • a Peltier effect causes a temperature difference between the two current terminals. Since the heat of the current terminal is conducted to the voltage terminal, a temperature difference may also occur at the voltage terminal, which may cause a current measurement error.
  • the branch is provided at the voltage terminal to suppress heat conduction from the current terminal to the voltage terminal. Further, it is described that an insulating heat transfer sheet is arranged between the branches to improve heat uniformity between the voltage terminals.
  • the power storage device may estimate the state of the power storage element based on the current. In order to improve the state estimation accuracy, it is desired to improve the current measurement accuracy.
  • the first electrode of the resistor for measuring the current is connected to the external terminal and the second electrode is connected to the power storage element, the first electrode is affected by the ambient temperature of the power storage device, and the second electrode is the power storage element. Affected by temperature.
  • a temperature difference may occur between the first electrode and the second electrode, which may reduce the current measurement accuracy.
  • the present invention aims to suppress current measurement error.
  • the power storage device includes a resistor having a first electrode and a second electrode, an external terminal electrically connected to the first electrode, a power storage element electrically connected to the second electrode, and the resistor.
  • An estimation unit that estimates the state of the storage element based on the current measured by, and a temperature adjustment unit that adjusts the temperatures of the first electrode and the second electrode.
  • This technology can be applied to the temperature adjustment method of resistors.
  • Battery perspective view Figure showing the internal structure of the battery Plan view of secondary battery Sectional view taken along the line CC of FIG. Top view of assembled battery Sectional view taken along the line AA of FIG. Sectional view taken along the line BB of FIG. Side view of vehicle with battery Battery block diagram Graph showing SOC-OCV characteristics Vertical cross section of battery Vertical cross section of battery Vertical cross section of battery Perspective view showing connection structure between secondary battery and external terminals Plan view of secondary battery Exploded perspective view of laminated secondary battery Perspective view of laminated battery pack Perspective view of heat exchange panel 18 is a sectional view taken along line DD of FIG. Exploded perspective view of the battery
  • the power storage device estimates the state of the power storage element based on the current. In order to improve the state estimation accuracy, it is desired to improve the current measurement accuracy. As a result of earnest studies to improve the current measurement accuracy of the power storage element, the inventors have found that when the first electrode of the resistor is connected to the external terminal and the second electrode is connected to the power storage element, We have found that current measurement error may occur due to the temperature difference between the temperature and the ambient temperature of the power storage device.
  • the power storage device includes a resistor having a first electrode and a second electrode, an external terminal electrically connected to the first electrode, a power storage element electrically connected to the second electrode, and the resistor.
  • An estimation unit that estimates the state of the storage element based on the current measured by, and a temperature adjustment unit that adjusts the temperatures of the first electrode and the second electrode.
  • the temperature adjustment unit adjusts the temperature of the first electrode and the temperature of the second electrode, it is possible to reduce the temperature difference between the first electrode and the second electrode and suppress the current measurement error. By suppressing the current measurement error, the estimation accuracy of the state of the storage element can be improved.
  • the estimating unit may estimate the SOC of the power storage element from the integrated value of the current.
  • the estimation accuracy of the state deteriorates when the measurement takes a long time.
  • the power storage element has a first region in which the rate of change of OCV with respect to SOC is equal to or less than a predetermined value, and the estimation unit estimates the SOC of the power storage device using the integrated value of the current in the first region.
  • the SOC estimation includes a current integration method and an OCV method.
  • the current integration method is a method of estimating SOC using the integrated value of current.
  • the OCV method is a method of estimating SOC by utilizing the correlation between SOC and OCV.
  • the rate of change of OCV with respect to SOC is equal to or lower than a predetermined value, and the SOC estimation accuracy by the OCV method is low.
  • the current integration method may be used in the first region. When the current integration method is used, even a minute current measurement error accumulates a current measurement error and reduces the SOC estimation accuracy. By suppressing the current measurement error, the accumulation of the current measurement error in the first region can be reduced and the SOC estimation accuracy can be increased.
  • the temperature adjustment unit includes a first member having a larger heat capacity than the resistor, a first thermal connection unit that thermally connects the first electrode and the first member, the second electrode and the first member. And a second thermal connection part that thermally connects the member.
  • the first thermal connection part and the second thermal connection part may be made of a material (substance) having a thermal conductivity [W/mk] (watt/meter/kelvin) of at least higher than that of air.
  • the first member may be the storage element.
  • the temperature of the power storage element changes, the temperature of the electrode that exchanges heat with the power storage element changes.
  • a temperature change in the power storage element causes a temperature difference between the first electrode and the second electrode, which deteriorates current measurement accuracy.
  • Both the first electrode and the second electrode exchange heat with the storage element to reduce the temperature difference between the first electrode and the second electrode regardless of the temperature change of the storage element, thereby improving the current measurement accuracy. Can be done.
  • the first thermal connection unit includes a first bus bar that electrically connects the first electrode and the external terminal, and a third thermal connection unit that thermally connects the first bus bar and the storage element.
  • the second thermal connection portion may be a second bus bar that electrically connects the second electrode and the storage element.
  • the third thermal connection part may be a material (substance) having a thermal conductivity [W/mk] (watts per meter per kelvin) at least higher than that of air.
  • the entire temperature including the first electrode, the second electrode, the first bus bar, and the second bus bar is uniform. Can be converted. Therefore, the temperature difference between the first electrode and the second electrode can be reduced, and the current measurement accuracy can be further improved.
  • the third heat connection portion may be located on the heat transfer path of the first bus bar from the external terminal to the first electrode.
  • the third heat connection part exchanges heat transferred from the external terminal to the first bus bar with the power storage element. Since the first electrode is less likely to be affected by the ambient temperature, the temperature difference from the second electrode is small.
  • the temperature adjusting unit may be a connecting member that thermally connects the first electrode and the second electrode.
  • the connecting member may be made of a material having a thermal conductivity [W/mk] (watt/meter/kelvin) of at least higher than that of air. In this configuration, the two electrodes exchange heat via the connecting member, so that the temperatures of the two electrodes can be made uniform and the temperature difference can be reduced.
  • the temperature adjustment unit may be a heat exchange panel that exchanges heat with the first electrode and the second electrode of the resistor.
  • the heat exchange between the resistor and the heat exchange panel may be performed via the heat transfer layer or may be performed directly. With this configuration, by exchanging heat with the heat exchange panel, the temperatures of the two electrodes of the resistor can be made uniform with the temperature of the heat exchange panel, and the temperature difference can be reduced.
  • the battery 30A is an example of a power storage device.
  • the battery 30A has a substantially box-shaped battery case 35, as shown in FIG.
  • the battery case 35 is made of resin.
  • the battery 30A has a pair of external terminals 36 and external terminals 37 on the upper surface of the battery case 35.
  • the external terminal 36 and the external terminal 37 are terminals for connecting a charger and a load.
  • the external terminal 36 is a positive external terminal
  • the external terminal 37 is a negative external terminal.
  • FIG. 2 is a diagram showing the internal structure of the battery 30A.
  • the battery case 35 is shown by an imaginary line, and parts such as a circuit board are omitted.
  • the battery 30A includes an assembled battery 50.
  • the assembled battery 50 has four secondary batteries 60A, a secondary battery 60B, a secondary battery 60C, and a secondary battery 60D.
  • the secondary battery 60A, the secondary battery 60B, the secondary battery 60C, and the secondary battery 60D are examples of “electric storage element”.
  • the four rechargeable batteries 60A, rechargeable batteries 60B, rechargeable batteries 60C, and rechargeable batteries 60D are collectively referred to as rechargeable batteries 60.
  • the secondary battery 60 has an electrode body 83 housed in a case 82 together with a non-aqueous electrolyte.
  • the case 82 has a rectangular parallelepiped shape made of metal, and has a case body 84 and a lid 85 that closes the case body 84.
  • the electrode body 83 has a porous structure between the negative electrode element in which the base material made of copper foil is coated with the active material and the positive electrode element in which the base material made of aluminum foil is coated with the active material.
  • a separator made of a resin film is arranged. These are all band-shaped and are wound in a flat shape so that they can be accommodated in the case main body 84 in a state where the negative electrode element and the positive electrode element are displaced from each other on the opposite sides in the width direction with respect to the separator. ..
  • the electrode body 83 is covered with an insulating cover (not shown) and is insulated from the case 82.
  • a positive electrode terminal 87 is connected to the positive electrode element via a positive electrode current collector 86, and a negative electrode terminal 89 is connected to the negative electrode element via a negative electrode current collector 88.
  • Each of the positive electrode current collector 86 and the negative electrode current collector 88 includes a pedestal portion 90 having a flat plate shape and a leg portion 91 extending from the pedestal portion 90. The leg portion 91 is connected to the positive electrode element or the negative electrode element.
  • the positive electrode terminal 87 and the negative electrode terminal 89 are composed of a terminal main body portion 92 and a shaft portion 93 protruding downward from the central portion of the lower surface thereof.
  • the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally formed of aluminum (single material).
  • the terminal body 92 is made of aluminum and the shaft 93 is made of copper, and these are assembled.
  • the terminal main body portions 92 of the positive electrode terminal 87 and the negative electrode terminal 89 are arranged on both ends of the lid 85 via gaskets 94 made of an insulating material, and are exposed to the outside from the gaskets 94.
  • gaskets 94 made of an insulating material, and are exposed to the outside from the gaskets 94.
  • FIG. 5 is a plan view of the battery pack 50.
  • the secondary battery 60A, the secondary battery 60B, the secondary battery 60C, and the secondary battery 60D are arranged such that the polarities of the electrode terminals 87 and 89 are opposite between the adjacent batteries.
  • the secondary battery 60A, the secondary battery 60B, the secondary battery 60C, and the secondary battery 60D are connected in series by connecting the positive electrode terminal 87 and the negative electrode terminal 89 with the metal conductive plate 55 between adjacent batteries. Has been done.
  • the battery 30A has a resistor 100, a first bus bar 110A, and a second bus bar 130.
  • the resistor 100 is a rectangular metal plate that is long in one direction.
  • the resistor 100 includes a first electrode 105A, a second electrode 105B, and a resistor 101.
  • the resistor 101 is an alloy having a small rate of change in electric resistance with temperature (an example is an alloy of copper, manganese, and nickel: manganin).
  • the resistor 101 generates a voltage proportional to the current flowing through the resistor 100.
  • the first electrode 105A and the second electrode 105B are, for example, a metal such as copper or aluminum.
  • the first electrode 105A and the second electrode 105B are located on both sides of the resistor 101 and are joined to the resistor 101 by welding. Electron beam welding or resistance welding may be used as the welding method.
  • the first bus bar 110A and the second bus bar 130 are metal plates.
  • the first bus bar 110A and the second bus bar 130 are made of copper, for example, and are long in the long side direction (X direction) of the secondary battery 60.
  • the width (length in the Y direction in FIG. 2) of the first bus bar 110A and the second bus bar 130 is slightly smaller than the width of the secondary battery 60A.
  • the first bus bar 110A and the second bus bar 130 are located above the secondary battery 60A.
  • the positive electrode external terminal 36 is connected to the end portion 111 of the first bus bar 110A by welding or the like, and the first electrode 105A is connected to the end portion 113 of the first bus bar 110A by welding or the like.
  • the first bus bar 110A electrically connects the positive electrode external terminal 36 and the first electrode 105A.
  • the 110 A of 1st bus-bars have the opposing part 115 in the approximate center part of the X direction.
  • the width of the facing portion 115 (the length in the Y direction in FIG. 2) is equal to the width of the first bus bar 110A.
  • the facing portion 115 projects downward from the plate surface of the first bus bar 110A and faces the upper surface of the secondary battery 60A.
  • the facing portion 115 makes surface contact with the upper surface of the case of the secondary battery 60A, that is, the upper surface of the lid 85, with the insulating sheet 120 interposed therebetween.
  • the insulating sheet 120 is, for example, an insulating resin sheet.
  • the insulating sheet 120 may be attached to the lower surface of the facing portion 115 so as not to shift its position.
  • the facing portion 115 is an example of a third heat connecting portion that thermally connects the first bus bar 110A and the secondary battery 60A.
  • the second electrode 105B is connected to the end 131 of the second bus bar 130 by welding or the like, and the positive electrode of the battery pack 50, that is, the positive electrode terminal 87 of the secondary battery 60A is connected to the end 133 of the second bus bar 130. It is connected by welding or the like.
  • the second bus bar 130 electrically connects the second electrode 105B and the positive electrode terminal 87 of the secondary battery 60A.
  • the second bus bar 130 is located at a predetermined distance from the upper surface of the case of the secondary battery 60A, that is, the upper surface of the lid 85.
  • the second bus bar 130 has a gap with the upper surface of the case of the secondary battery 60A.
  • the positive electrode external terminal 36 is electrically connected to the positive electrode of the assembled battery 50, that is, the positive electrode terminal 87 of the secondary battery 60A by the first bus bar 110A, the resistor 100, and the second bus bar 130.
  • the battery 30A has a third bus bar 150, as shown in FIGS. 2 and 7.
  • the third bus bar 150 is a metal plate.
  • the third bus bar 150 is, for example, made of copper and has a shape that is long in the long side direction (X direction) of the secondary battery 60.
  • the third bus bar 150 is located above the secondary battery 60D.
  • the third bus bar 130 is a member that electrically connects the negative external terminal 37 and the negative electrode of the assembled battery 50, that is, the negative electrode terminal 89 of the secondary battery 60D.
  • the negative external terminal 37 of the battery 30A is connected to the end 151 of the third bus bar 150 by welding or the like.
  • the negative electrode terminal 89 of the secondary battery 60D is connected to the end 153 of the third bus bar 150 by welding or the like.
  • the third bus bar 150 is located at a predetermined distance from the upper surface of the case of the secondary battery 60D, that is, the upper surface of the lid 85.
  • the third bus bar 150 has a gap with the upper surface of the case of the secondary battery 60D.
  • the battery 30A can be mounted on the vehicle 10 and used as shown in FIG.
  • the battery 30A may be for starting the engine 20 mounted on the vehicle 10. That is, it may be the power source of the starting motor 21 that starts the engine 20.
  • the first electrode 105A is connected to the external terminal 36 and the second electrode 105B is connected to the secondary battery 60A.
  • the temperature of the external terminal 36 is affected by the ambient temperature of the battery 30A.
  • a temperature difference may occur between the first electrode 105A and the second electrode 105B.
  • the temperature difference between the first electrode 105A and the second electrode 105B When there is a temperature difference between the first electrode 105A and the second electrode 105B, a voltage is generated across the resistor 101 due to the Seebeck effect, and a current measurement error occurs. In order to suppress the current measurement error, it is preferable to make the temperature difference between the first electrode 105A and the second electrode 105B smaller than in the original state.
  • the battery 30A has a temperature adjusting unit 70A.
  • the temperature adjusting unit 70A includes a first bus bar 110A, a second bus bar 130, and a secondary battery 60A.
  • the first bus bar 110A and the second bus bar 130 are metal plates and have thermal conductivity. Gap such as void is heat insulating and does not have thermal conductivity.
  • the facing portion 115 makes surface contact with the upper surface of the secondary battery 60A via the insulating sheet 120. By bringing the facing portion 115 into surface contact, heat conduction becomes possible between the first bus bar 110A and the secondary battery 60A.
  • the first bus bar 110A is a first thermal connection portion that thermally connects the secondary battery 60A and the first electrode 105A.
  • the second bus bar 130 connects the end 131 to the second electrode 105B and connects the end 133 to the positive electrode terminal 87.
  • the second bus bar 130 is a second thermal connection portion that thermally connects the second electrode 105B and the secondary battery 60A.
  • the secondary battery 60A and the resistor 100 have different heat capacities C [J/K] as shown in the following equation (1), and the heat capacity C1 of the secondary battery 60A is greater than the heat capacity C2 of the resistor 100. large.
  • the heat capacity C1 of the secondary battery 60A is 10 times or more the heat capacity C2 of the resistor 100.
  • the temperature difference can be made smaller than the original state before heat exchange.
  • F1 in FIG. 6 shows the transfer of cold heat from the secondary battery 60A to the first electrode 105A
  • F2 shows the transfer of cold heat from the secondary battery 60A to the second electrode 105B.
  • the heat of the external terminal 36 is transmitted to the first electrode 105A through the heat conduction path L on the first bus bar 110A. As shown in FIG. 6, since the facing portion 115 is located on the heat conduction path L, the heat transferred from the external terminal 36 can be exchanged with the secondary battery 60A.
  • FIG. 9 is a block diagram of the battery 30A.
  • the battery 30A includes an assembled battery 50, a resistor 100, a current interrupting device 160, a circuit board 170, and a temperature sensor 180 that detects the temperature of the assembled battery 50.
  • the starting motor 21 is connected to the battery 30A via a switch 23.
  • the battery pack 50, the current interrupt device 160, and the resistor 100 are connected in series via the power line 55P and the power line 55N.
  • the power line 55P and the power line 55N are examples of current paths.
  • the power line 55P is a power line that connects the external terminal 36 of the positive electrode and the positive electrode of the assembled battery 50.
  • the power line 55N is a power line that connects the negative external terminal 37 and the negative electrode of the assembled battery 50.
  • the resistor 100 is located on the positive electrode of the battery pack 50 and is provided on the positive power line 55P.
  • the current interrupt device 160 is located on the negative side of the assembled battery 50 and is provided on the negative power line 55N.
  • the current interruption device 160 is a semiconductor switch such as a FET or a relay.
  • the current of the battery 30A can be interrupted by opening the current interrupt device 160.
  • the current breaker 160 is normally closed.
  • a management unit 171, a current detection unit 173, and a voltage detection unit 175 are mounted on the circuit board 170.
  • the circuit board 170 can be arranged above the assembled battery 50 in the battery case 35. In FIG. 7, the circuit board 170 is shown by a dashed line.
  • the current detector 173 detects the current I of the battery pack 50 from the voltage Vr across the resistor 100.
  • the voltage detection unit 175 detects the voltage V of each secondary battery 60 and the total voltage of the assembled battery 50.
  • the management unit 171 includes a CPU 171A and a memory 171B.
  • the management unit 171 performs the monitoring process of the battery 30A based on the outputs of the current detection unit 173, the voltage detection unit 175, and the temperature sensor 180.
  • the monitoring process is constantly executed at a predetermined measurement cycle.
  • the management unit 171 calculates the SOC of the battery pack 50.
  • SOC state of charge
  • SOC is the ratio of the remaining capacity to the full charge capacity (actual capacity) and can be defined by the following equation (2).
  • SOC can be calculated by two methods, the OCV method and the current integration method.
  • the management unit 171 is an example of an estimation unit that estimates the SOC (state) of the battery pack 50.
  • the secondary battery 60A, the secondary battery 60B, the secondary battery 60C, and the secondary battery 60D are lithium-ion secondary batteries as an example.
  • FIG. 10 shows the SOC-OCV correlation characteristics of the lithium-ion secondary battery, where the horizontal axis represents SOC [%] and the vertical axis represents OCV [V].
  • OCV open circuit voltage
  • the open circuit voltage of the secondary battery 60 can be acquired by measuring the voltage of the secondary battery 60 in a state in which there is no current or no current.
  • the OCV method is a method that uses the correlation between SOC and OCV.
  • OCV is OCV1
  • SOC is SOC1 due to the correlation between SOC and OCV.
  • the secondary battery 60 has a plateau region H where the graph is almost flat in the SOC range of approximately 31% to 97%.
  • the plateau region H is a region in which the amount of change in OCV with respect to the amount of change in SOC is 2 [mV/%] or less.
  • the plateau region H is a first region in which the rate of change of OCV with respect to SOC is not more than a predetermined value.
  • the range in which the SOC is 31% or less, and the range in which the SOC is 97% or more is a high change region in which the change amount of OCV with respect to the change amount of SOC is larger than the plateau region H.
  • the management unit 171 determines whether it is the plateau region H or the other region based on the SOC value, and in the plateau region H, the SOC is calculated using the current integration method. In other regions, the SOC may be calculated by the current integration method or the SOC may be calculated by the OCV method.
  • the current integration method calculates the SOC from the integrated value of the current I.
  • the management unit 171 calculates the SOC of the battery pack 50 based on the integral value of the current I measured by the resistor 100 with respect to time, as shown in the following equation (2).
  • the charge is + and the discharge is ⁇ .
  • SOC SOCo+100 ⁇ ( ⁇ Idt)/Co (2)
  • SOCo is an initial value of SOC, and I is a current.
  • the assembled battery 50 may not be controlled near full charge, and may be controlled so that the SOC becomes about 70%. Since the SOC 70% is in the plateau region H, the period for estimating the SOC by the current integration method may be long.
  • Effect Battery 30A has a temperature adjusting unit 70A.
  • the temperature adjusting unit 70A adjusts the temperature at both ends of the resistor 100. That is, by exchanging heat with the secondary battery 60A, the temperature difference between the first electrode 105A and the second electrode 105B is made smaller than in the original state before heat exchange. By reducing the temperature difference, the current measurement error due to the Seebeck effect can be suppressed.
  • the second electrode 105B is thermally connected to the secondary battery 60A via the second bus bar 130 and exchanges heat with the secondary battery 60A.
  • the temperature of the second electrode 105B also changes.
  • the temperature change of the secondary battery 60A causes a temperature difference between the first electrode 105A and the second electrode 105B, which deteriorates the current measurement accuracy.
  • the first electrode 105A is thermally connected to the secondary battery 60A via the first bus bar 110A and the facing portion 115, and exchanges heat with the secondary battery 60A. Both the first electrode 105A and the second electrode 105B exchange heat with the secondary battery 60A to reduce the temperature difference between the first electrode 105A and the second electrode 105B regardless of the temperature change of the secondary battery 60A. Therefore, the current measurement accuracy can be improved. Since the secondary battery 60A is used to adjust the temperatures of the first electrode 105A and the second electrode 105B, the number of parts can be reduced as compared with the case where a temperature adjusting member is provided exclusively.
  • the secondary battery 60A has a larger heat capacity than the resistor 100, the temperatures of the first electrode 105A and the second electrode 105B are stable to the temperature of the secondary battery 60A, and a temperature difference or temperature change is unlikely to occur. Therefore, it is suitable for improving the current measurement accuracy of the resistor 100.
  • At least a part of the heat transferred from the external terminal 36 to the first bus bar 110A is heat-exchanged with the secondary battery 60A by the facing portion 115, so that the heat of the external terminal 36 is less likely to be transferred to the first electrode 105A. Therefore, even if there is a temperature difference between the temperature of the secondary battery 60A and the ambient temperature of the battery 30, the temperature difference between the first electrode 105A and the second electrode 105B can be reduced. If the temperature difference is originally small, the difference can be further reduced by heat exchange with the secondary battery 60A, which is suitable for improving the current measurement accuracy of the resistor 100.
  • the battery 30B of the second embodiment differs from the battery 30A of the first embodiment in the thermal connection structure of the secondary battery 60A and the first electrode 105A.
  • the battery 30B of the second embodiment has a temperature adjusting unit 70B.
  • the temperature adjusting unit 70B includes a first bus bar 110B, an insulating heat conductive sheet 125, a second bus bar 130, and a secondary battery 60A.
  • the heat conductive sheet 125 is a sheet having an insulating layer on the surface of a sheet base material having excellent heat conductivity such as aluminum.
  • the heat conductive sheet 125 is located between the lower surface of the first bus bar 110B and the upper surface of the secondary battery 60A, and is in surface contact with the lower surface of the first bus bar 110B and the upper surface of the secondary battery 60A, respectively.
  • the heat conductive sheet 125 is a third heat connecting portion that thermally connects the first bus bar 110B and the secondary battery 60A.
  • the heat conduction sheet 125 and the first bus bar 110B are a first heat connection portion that thermally connects the first electrode 105A and the secondary battery 60A.
  • the second bus bar 130 is a second thermal connection portion that thermally connects the second electrode 105B and the secondary battery 60A, similarly to the battery 30A of the first embodiment.
  • the battery 30B of the second embodiment can adjust the temperature at both ends of the resistor 100 by exchanging heat with the secondary battery 60A. That is, compared to the original state before heat exchange with the secondary battery 60A, the temperature difference between the first electrode 105A and the second electrode 105B can be reduced, and the current measurement error due to the Seebeck effect can be suppressed.
  • the battery 30C of the third embodiment is different from the battery 30A of the first embodiment in a thermal connection structure between the secondary battery 60A and the first electrode 105A and a thermal connection structure between the secondary battery 60A and the second electrode 105B. Is different.
  • the battery 30C of the third embodiment has a temperature adjusting unit 70C.
  • the temperature adjusting unit 70C includes a first enclosing unit 200A, a second enclosing unit 200B, and a secondary battery 60A.
  • the first surrounding portion 200A is made of an insulating resin material.
  • the first surrounding portion 200A may be an adhesive.
  • the first surrounding portion 200A surrounds the connecting portion between the first electrode 105A and the first bus bar 110C.
  • the first surrounding portion 200A fills a gap between the lower surface of the first bus bar 110C and the upper surface of the secondary battery 60A, and is in surface contact with the upper surface of the secondary battery 60A.
  • the first surrounding section 200A is a first thermal connection section that thermally connects the secondary battery 60A and the first electrode 105A.
  • the first surrounding portion 200A is preferably made of a resin material having high thermal conductivity.
  • the second surrounding portion 200B is made of an insulating resin material.
  • the second surrounding portion 200B may be an adhesive.
  • the second surrounding portion 200B surrounds the connecting portion between the second electrode 105B and the second bus bar 130.
  • the second surrounding portion 200B fills a gap between the lower surface of the second bus bar 130 and the upper surface of the secondary battery 60A, and is in surface contact with the upper surface of the secondary battery 60A.
  • the second surrounding portion 200B is a second thermal connection portion that thermally connects the secondary battery 60A and the second electrode 105B.
  • the second surrounding portion 200B is preferably made of a resin material having high thermal conductivity.
  • the first electrode 105A can transfer heat with the secondary battery 60A via the first surrounding portion 200A
  • the second electrode 105B can transfer heat with the secondary battery 60A via the second surrounding portion 200B. Can transfer heat.
  • the temperature of both ends of the resistor 100 can be adjusted by exchanging heat with the secondary battery 60A. That is, compared to the original state before heat exchange with the secondary battery 60A, the temperature difference between the first electrode 105A and the second electrode 105B can be reduced, and the current measurement error due to the Seebeck effect can be suppressed.
  • the battery 30D of the fourth embodiment has a third surrounding portion 300, as shown in FIG.
  • the third surrounding portion 300 is made of an insulating resin material.
  • the third surrounding portion 300 may be an adhesive.
  • the third surrounding portion 300 surrounds the entire resistor 100, that is, the first electrode 105A, the resistor 101, and the second electrode 105B.
  • the third surrounding portion 300 is preferably made of a resin material having high thermal conductivity.
  • the third surrounding portion 300 has a gap with the upper surface of the secondary battery 62, and is thermally separated from the secondary battery 60A.
  • the third surrounding portion 300 is a member that thermally connects the first electrode 105A and the second electrode 105B.
  • the third surrounding portion 300 enables heat exchange between the first electrode 105A and the second electrode 105B.
  • the third surrounding portion 300 can adjust the temperature of the first electrode 105A and the second electrode 105B so as to reduce the temperature difference compared to the original state. For example, the same temperature can be adjusted. Therefore, the current measurement error due to the Seebeck effect can be suppressed.
  • the secondary battery 60 is illustrated as an example of the power storage element.
  • the power storage element is not limited to the secondary battery 60 and may be a capacitor.
  • the secondary battery 60 is not limited to the lithium ion secondary battery, and may be another non-aqueous electrolyte secondary battery. It is also possible to use a lead storage battery or the like.
  • the storage elements are not limited to the case where a plurality of power storage elements are connected in series/parallel, but may be connected in series or may have a single cell configuration.
  • the resistor 100 is arranged at the positive electrode of the assembled battery 50, but it may be arranged at the negative electrode.
  • the first electrode 105A of the resistor 100 is electrically connected to the negative external terminal 37
  • the second electrode 105B of the resistor 100 is connected to the negative electrode of the assembled battery 50, that is, the negative electrode of the secondary battery 60D. To do.
  • the management unit 171 estimates the SOC of the battery pack 50 based on the current I measured by the resistor 100.
  • the management unit 171 may estimate the remaining capacity Cr and the capacity maintenance rate (maintenance rate of the full charge capacity) of the assembled battery 50 based on the current I measured by the resistor 100. SOC, remaining capacity Cr, and capacity retention rate are examples of the state of the assembled battery 50.
  • the temperatures of the first electrode 105A and the second electrode 105B are adjusted by exchanging heat with the assembled battery 50.
  • the member for heat exchange may be the battery case 35. That is, the first electrode 105A and the second electrode 105B are thermally connected to the battery case 35, respectively, so that the temperature difference between the first electrode 105A and the second electrode 105B is smaller than that in the original state before heat exchange.
  • the temperature of 105B may be adjusted.
  • the heat capacity of the battery case 35 may be larger than the heat capacity of the resistor.
  • the assembled battery 50 and the battery case 35 are an example of a first member having a larger heat capacity than the resistor 100.
  • the resistor 100 is arranged above the secondary battery 60A.
  • the resistor 100 may be arranged beside the secondary battery 60A.
  • the external terminal 36 and the first electrode 105A are electrically connected by the first bus bar 410, and the second electrode 105B and the positive electrode terminal. 87 may be electrically connected to the second bus bar 430.
  • the first bus bar 410 may be provided with a facing portion 415 that faces the side surface 65 (side surface of the metal case 82) of the secondary battery 60A. Heat may be exchanged by bringing the facing portion 415 into surface contact with the side surface 65 of the secondary battery 60A via the insulating sheet 420.
  • the first electrode 105A and the second electrode 105B are thermally connected by the third surrounding portion 300.
  • the first electrode 105A and the second electrode 105B may be thermally connected by a connection plate 350 having thermal conductivity.
  • the connection plate 350 may be an insulating resin plate or the like.
  • the outer casing of the secondary battery 60 is the metal case 82.
  • the exterior body may be a laminated film (laminated film).
  • the secondary battery 510 in FIG. 16 includes a stacked body 520 which is an electrode body, a pair of positive and negative terminals 521 and terminals 522 provided on the stacked body 520, and an exterior body 530.
  • the outer package 530 is composed of a pair of a laminated film 531 and a laminated film 532. The outer periphery of the film is sealed to accommodate the laminated body 520 and the electrolytic solution.
  • the laminate film 531 and the laminate film 532 have insulating resin layers on both surfaces of an aluminum base material, and are insulated from the laminate 520 and the electrolytic solution housed inside.
  • the laminated secondary battery 510 can be stacked and arranged, which is suitable for downsizing.
  • the assembled battery 500 of FIG. 17 has four secondary batteries 510A, a secondary battery 510B, a secondary battery 510C, and a secondary battery 510D that are stacked.
  • the secondary battery 510A, the secondary battery 510B, the secondary battery 510C, and the secondary battery 510D are connected in series by joining a pair of terminals 521 and 522 protruding from the exterior body 530 between vertically adjacent batteries. You can connect.
  • the first electrode 105A of the resistor 100 may be connected to the positive external terminal 36 by the first bus bar 610.
  • the second electrode 105B of the resistor 100 may be connected to the positive electrode of the assembled battery 500, that is, the positive electrode terminal 521 of the secondary battery 510A by the second bus bar 630.
  • the first bus bar 610 may have a facing portion 615 that makes surface contact with the outer surface of the secondary battery 510A in order to exchange heat with the secondary battery 510A. Since the exterior body 530 of the secondary battery 510A has an insulating resin layer on the surface, the facing portion 615 directly comes into surface contact with the outer surface of the secondary battery 510 without an insulating sheet. May be.
  • the usage of the battery 30A, the battery 30B, the battery 30C, and the battery 30D is not limited to a specific usage.
  • the battery 30A, the battery 30B, the battery 30C, and the battery 30D are used for various purposes such as for moving bodies (for vehicles, ships, AGVs, etc.) and for stationary (power storage devices for uninterruptible power supply systems and solar power generation systems). Can be used.
  • the third thermal connection portion that thermally connects the first bus bar 110C and the storage element 60A is not limited to the insulating sheet 120 or the heat conductive sheet 125, but may be an insulating adhesive.
  • the temperature adjustment unit may be a heat exchange panel 700 that holds the resistor 100 and exchanges heat with the first electrode 105A and the second electrode 105B.
  • the heat capacity of the heat exchange panel 700 may be greater than the heat capacity of the resistor.
  • the heat exchange panel 700 is made of an insulating resin such as PP (polypropylene) or PE (polyethylene).
  • the heat exchange panel 700 has a housing groove 710 as shown in FIG.
  • the resistor 100 is housed in the housing groove 710 with the heat conduction layer 720 sandwiched therebetween. As shown in FIG. 19, the resistor 100 is held (fixed) in the housing groove 710 by, for example, vis or an adhesive.
  • the heat conduction layer 720 is, for example, an adhesive or a sheet-shaped member.
  • the thermal conductivity [720] of the heat conductive layer 720 is higher than that of at least air.
  • the heat conduction layer 720 is provided on the entire resistor 100 including the first electrode 105A and the second electrode 105B. By exchanging heat with the heat exchange panel 700 via the heat conduction layer 720, the temperatures of the first electrode 105A and the second electrode 105B are made uniform, and the temperature difference between the two electrodes 105A and 105B is the same as before the heat exchange. It can be smaller than the state.
  • the heat conducting layer 720 may be provided on at least two electrodes 105A and 105B, but by providing it on the entire resistor 100, the temperature of the entire resistor can be made uniform.
  • first bus bar 750 and the second bus bar 760 are housed in the housing groove 710 together with the resistor 100 in a state where the ends are overlapped with the electrodes 105A and 105B of the resistor 100.
  • the first bus bar 750 electrically connects the first electrode 105A of the resistor 100 to the external terminal 36
  • the second bus bar 760 connects the second electrode 105B of the resistor 100 to the secondary battery via the relay bus bar 770. It is electrically connected to the terminal of 60.
  • the heat conduction layer 720 may overlap not only the resistor 100 but also the first bus bar 750 and the second bus bar 760.
  • both bus bars 750 and 760 can exchange heat with the heat exchange panel 700 via the heat conduction layer 720, it is possible to reduce the temperature difference between the three members of the resistor 100, the first bus bar 750, and the second bus bar 760. I can. By reducing the temperature difference between the three members 100, 750, and 760, it becomes difficult for the first electrode 105A and the second electrode 105B to have a temperature difference. If the two electrodes 105A and 105B of the resistor 100 are brought into surface contact with the heat exchange panel 700, heat can be directly conducted between the two, so that the heat conduction layer 720 can be omitted.
  • FIG. 20 is a perspective view of the battery 30E.
  • the battery 30E includes an assembled battery 50, a component panel 850, and a container 800.
  • the container 800 includes a main body case 810 made of a synthetic resin material and a lid 820.
  • the lid 820 closes the upper surface opening 815 of the main body case 810.
  • the positive external terminal 821 is fixed to one corner of the front portion of the lid 820, and the negative external terminal 822 is fixed to the other corner.
  • the container 800 houses the assembled battery 50 and the component panel 850.
  • the assembled battery 50 has 12 secondary batteries 60. Twelve secondary batteries 60 are connected in 3 parallels and 4 series.
  • the component panel 850 is arranged above the assembled battery 50.
  • the component panel 850 is an insulating resin panel.
  • a circuit board 860 and a plurality of electronic components 870 are held on the upper surface of the component panel 850.
  • the electronic component 870 may include a bus bar and a resistor.
  • the component panel 850 or a part thereof can be used as the heat exchange panel 700 shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

蓄電装置30は、第1電極105Aと第2電極105Bを有する抵抗器100と、前記第1電極105Aに電気的に接続された外部端子36と、前記第2電極105Bに電気的に接続された蓄電素子60と、前記抵抗器100により計測した電流に基づいて、前記蓄電素子60の状態を推定する推定部171と、前記1電極105Aと第2電極、105Bの温度を調整する温度調整部70Aを有する。

Description

蓄電装置、抵抗器の温度調整方法
 本発明は、蓄電装置に関する。
 蓄電素子の電流計測方法の一つに、シャント抵抗などの抵抗器を利用する方法がある。抵抗器は、電流に応じた電圧を発生する。抵抗器の電圧から電流が計測できる。
 下記特許文献1には、次の記載がある。シャント抵抗に電流が流れると、ペルチェ効果により2つの電流端子間に温度差が生じる。電流端子の熱は、電圧端子に熱伝導することから、電圧端子にも温度差が生じて、電流の計測誤差を生じさせる場合がある。電圧端子にブランチを設けることで、電流端子から電圧端子への熱伝導を抑制する点が記載されている。また、ブランチ間に絶縁性の伝熱シートを配置し、電圧端子間で熱均等性を高める点が記載されている。
特開2011-047721号公報
 蓄電装置は、蓄電素子の状態を電流に基づいて、推定する場合がある。状態の推定精度を高めるには、電流計測精度を向上させることが望まれる。電流を計測する抵抗器の第1電極が外部端子に接続され、第2電極が蓄電素子に接続されている場合、第1電極は蓄電装置の周囲温度の影響を受け、第2電極は蓄電素子の温度の影響を受ける。蓄電装置の周囲温度と蓄電素子の温度に温度差がある場合、第1電極と第2電極に温度差が生じて、電流計測精度が低下する場合がある。
 本発明は、電流計測誤差を抑制することを目的とする。
 蓄電装置は、第1電極と第2電極を有する抵抗器と、前記第1電極に電気的に接続された外部端子と、前記第2電極に電気的に接続された蓄電素子と、前記抵抗器により計測した電流に基づいて、前記蓄電素子の状態を推定する推定部と、前記第1電極と前記第2電極の温度を調整する温度調整部と、を有する。
 本技術は、抵抗器の温度調整方法に適用することが出来る。
 電流の計測誤差を抑制することが出来る。
バッテリの斜視図 バッテリの内部構造を示す図 二次電池の平面図 図3のC-C線断面図 組電池の平面図 図1のA-A線断面図 図1のB-B線断面図 バッテリを搭載した車両の側面図 バッテリのブロック図 SOC-OCV特性を示すグラフ バッテリの垂直断面図 バッテリの垂直断面図 バッテリの垂直断面図 二次電池と外部端子の接続構造を示す斜視図 二次電池の平面図 ラミネート式の二次電池の分解斜視図 ラミネート式の組電池の斜視図 熱交換パネルの斜視図 図18のD-D線断面図 バッテリの分解斜視図
 蓄電装置は、蓄電素子の状態を電流に基づいて推定する。状態の推定精度を高めるには、電流計測精度を向上させることが望まれる。発明者らは、蓄電素子の電流計測精度を向上させることを鋭意検討した結果、抵抗器の第1電極が外部端子に接続され、第2電極が蓄電素子に接続されている場合、蓄電素子の温度と蓄電装置の周囲温度の温度差により、電流計測誤差が生じる場合がある、ことを突き止めた。
 蓄電装置は、第1電極と第2電極を有する抵抗器と、前記第1電極に電気的に接続された外部端子と、前記第2電極に電気的に接続された蓄電素子と、前記抵抗器により計測した電流に基づいて、前記蓄電素子の状態を推定する推定部と、前記第1電極と前記第2電極の温度を調整する温度調整部と、を有する。
 温度調整部が、第1電極の温度と第2電極の温度を調整するため、第1電極と第2電極の温度差を小さくして、電流計測誤差を抑えることが出来る。電流計測誤差を抑えることで、蓄電素子の状態の推定精度を高めることが出来る。
 前記推定部は、前記電流の積算値により、前記蓄電素子のSOCを推定してもよい。電流積算法は、電流計測誤差が蓄積することから、計測が長期間になると、状態の推定精度が低下する。電流計測誤差を抑えることで、電流計測誤差の蓄積を小さくして、状態の推定精度を高くすることが出来る。
 前記蓄電素子は、SOCに対するOCVの変化率が所定値以下の第1領域を有し、前記推定部は、前記第1領域で、前記電流の積算値を用いて、前記蓄電素子のSOCを推定してもよい。SOCの推定には、電流積算法やOCV法がある。電流積算法は、電流の積算値を用いてSOCを推定する方法である。OCV法は、SOCとOCVの相関性を利用してSOCを推定する方法である。第1領域は、SOCに対するOCVの変化率が所定値以下であり、OCV法によるSOCの推定精度が低い。第1領域では、電流積算法が用いられることがある。電流積算法を用いた場合、微小な電流計測誤差であっても、電流計測誤差が蓄積して、SOCの推定精度を低下させる。電流計測誤差を抑えることで、第1領域内での、電流計測誤差の蓄積を小さくして、SOCの推定精度を高くすることが出来る。
 前記温度調整部は、前記抵抗器よりも熱容量が大きい第1部材と、前記第1電極と前記第1部材とを熱的に接続する第1熱接続部と、前記第2電極と前記第1部材とを熱的に接続する第2熱接続部と、を備えてもよい。第1熱接続部と第2熱接続部は、熱伝導率[W/mk](ワット毎メートル毎ケルビン)が、少なくとも空気より高い材料(物質)であればよい。
 抵抗器に比べて熱容量が大きい第1部材と熱交換するため、第1電極と第2電極を、温度差の小さい状態に安定させることが出来る。
 前記第1部材は、前記蓄電素子であってもよい。蓄電素子が温度変化した場合、蓄電素子と熱交換する電極は温度変化する。第1電極と第2電極のうち、いずれかの電極のみ蓄電素子と熱交換する場合、蓄電素子の温度変化により、第1電極と第2電極に温度差が生じて電流計測精度が悪化する。第1電極と第2電極の双方とも、蓄電素子と熱交換することで、蓄電素子の温度変化によらず、第1電極と第2電極の温度差を小さくして、電流計測精度を高めることが出来る。
 前記第1熱接続部は、前記第1電極と前記外部端子とを電気的に接続する第1バスバーと、前記第1バスバーと前記蓄電素子とを熱的に接続する第3熱接続部とを含み、前記第2熱接続部は、前記第2電極と前記蓄電素子とを電気的に接続する第2バスバーでもよい。
第3熱接続部は、熱伝導率[W/mk](ワット毎メートル毎ケルビン)が、少なくとも空気より高い材料(物質)であればよい。
 第1電極と第2電極だけでなく、第1バスバーと第2バスバーも、蓄電素子と熱交換するため、第1電極、第2電極、第1バスバー及び第2バスバーを含む全体の温度を均一化できる。そのため、第1電極と第2電極の温度差を小さくして、電流計測精度をより向上させることが出来る。
 前記第3熱接続部は、前記外部端子から前記第1電極に至る前記第1バスバーの熱伝達経路上に位置してもよい。
 第3熱接続部は、外部端子から第1バスバーに伝わる熱を、蓄電素子と熱交換する。第1電極が周囲温度の影響を受け難くなることから、第2電極との温度差が小さくなる。
 温度調整部は、前記第1電極と前記第2電極とを、熱的に接続する接続部材でもよい。接続部材は、熱伝導率[W/mk](ワット毎メートル毎ケルビン)が、少なくとも空気より高い材料(物質)であればよい。この構成では、2つの電極が接続部材を介して熱交換することで、2つの電極の温度を均一化して、温度差を小さくすることが出来る。
 温度調整部は、前記抵抗器の前記第1電極及び前記第2電極と熱交換する熱交換パネルでもよい。抵抗器と熱交換パネルとの熱交換は、熱伝達層を介してもいいし、直接行ってもよい。この構成では、熱交換パネルと熱交換することで、抵抗器の2つの電極の温度を、熱交換パネルの温度に均一化して、温度差を小さくすることが出来る。
 <実施形態1>
1.バッテリの説明
 バッテリ30Aは、蓄電装置の一例である。バッテリ30Aは、図1に示すように、概ね箱型のバッテリケース35を有する。バッテリケース35は、樹脂製である。バッテリ30Aは、バッテリケース35の上面に一対の外部端子36と外部端子37とを有している。外部端子36と外部端子37は、充電器や負荷を接続する端子である。外部端子36は正極の外部端子であり、外部端子37は、負極の外部端子である。
 図2は、バッテリ30Aの内部構造を示す図である。図2は、バッテリケース35を想像線で示し、回路基板等の部品は省略している。図2に示すように、バッテリ30Aは、組電池50を備える。組電池50は、4つの二次電池60A、二次電池60B、二次電池60C、二次電池60Dを有する。二次電池60A、二次電池60B、二次電池60C、二次電池60Dは、「蓄電素子」の一例である。
 以下、4つの二次電池60A、二次電池60B、二次電池60C、二次電池60Dを総称して、二次電池60とする。二次電池60は、図3及び図4に示すように、ケース82に、電極体83を非水電解質と共に収容したものである。ケース82は、金属製の直方体形状であり、ケース本体84と、ケース本体84を閉じる蓋85と、を有している。
 電極体83は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。電極体83は、絶縁カバー(図略)で覆われており、ケース82と絶縁されている。
 正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。脚部91は正極要素又は負極要素に接続されている。
 正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。
 負極端子89は、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。二次電池60B、二次電池60C及び二次電池60Dの構造も同様である。
 図5は、組電池50の平面図である。二次電池60A、二次電池60B、二次電池60C及び二次電池60Dは、隣り合う電池間で、電極端子87と電極端子89の極性が逆向きになるように配置されている。二次電池60A、二次電池60B、二次電池60C及び二次電池60Dは、隣り合う電池間で、正極端子87と負極端子89を金属製の導電板55で接続することで、直列に接続されている。
 バッテリ30Aは、図2に示すように、抵抗器100と、第1バスバー110Aと、第2バスバー130を有している。抵抗器100は一方向に長い長方形状の金属板である。抵抗器100は、第1電極105Aと、第2電極105Bと、抵抗体101と、を備える。
 抵抗体101は、電気抵抗の温度変化率の小さい合金(一例として、銅、マンガン、ニッケルの合金:マンガニン)である。抵抗体101は、抵抗器100に流れる電流に比例した電圧を発生する。
 第1電極105Aと第2電極105Bは、例えば、銅やアルミニウムなどの金属である。第1電極105Aと第2電極105Bは、抵抗体101の両側に位置しており、抵抗体101に対して溶接により接合されている。溶接方法は、電子ビーム溶接や抵抗溶接などを用いてもよい。
 第1バスバー110Aと第2バスバー130は、金属板である。第1バスバー110Aと第2バスバー130は、一例として銅製であり、二次電池60の長辺方向(X方向)に長い形状である。第1バスバー110Aと第2バスバー130の幅(図2のY方向長さ)は、二次電池60Aの幅より、やや小さい。
 図2、図6に示すように、第1バスバー110Aと第2バスバー130は、二次電池60Aの上方に位置している。
 第1バスバー110Aの端部111には、正極の外部端子36が溶接等により接続され、第1バスバー110Aの端部113には、第1電極105Aが溶接等により接続されている。第1バスバー110Aは、正極の外部端子36と第1電極105Aを電気的に接続する。
 第1バスバー110Aは、X方向の概ね中央部に、対向部115を有している。対向部115の幅(図2のY方向長さ)は、第1バスバー110Aの幅と等しい。対向部115は、第1バスバー110Aの板面から下方に突出し、二次電池60Aの上面と対向する。
 対向部115は、二次電池60Aのケース上面、つまり蓋85の上面に対して絶縁シート120を介在して面接触する。絶縁シート120は、例えば、絶縁性の樹脂シートである。絶縁シート120は、位置がずれないように、対向部115の下面に貼着してもよい。対向部115は、第1バスバー110Aと二次電池60Aを熱的に接続する第3熱接続部の一例である。
 第2バスバー130の端部131には、第2電極105Bが溶接等により接続され、第2バスバー130の端部133には、組電池50の正極、つまり、二次電池60Aの正極端子87が溶接等により接続されている。第2バスバー130は、第2電極105Bと二次電池60Aの正極端子87を電気的に接続する。
 第2バスバー130は、二次電池60Aのケース上面、つまり蓋85の上面から所定距離離れて位置している。第2バスバー130は、二次電池60Aのケース上面との間にギャップを有している。
 正極の外部端子36は、第1バスバー110A、抵抗器100、第2バスバー130によって、組電池50の正極、つまり二次電池60Aの正極端子87に電気的に接続される。
 バッテリ30Aは、図2、図7に示すように、第3バスバー150を有している。第3バスバー150は、金属板である。第3バスバー150は、一例として、銅製であり、二次電池60の長辺方向(X方向)に長い形状である。第3バスバー150は、二次電池60Dの上方に位置している。
 第3バスバー130は、負極の外部端子37と、組電池50の負極、つまり、二次電池60Dの負極端子89を電気的に接続する部材である。
 第3バスバー150の端部151には、バッテリ30Aの負極の外部端子37が溶接等により接続されている。第3バスバー150の端部153には、二次電池60Dの負極端子89が溶接等により接続されている。
 図7に示すように、第3バスバー150は、二次電池60Dのケース上面、つまり蓋85の上面から所定距離離れて位置している。第3バスバー150は、二次電池60Dのケース上面との間にギャップを有している。
 バッテリ30Aは、図8に示すように、車両10に搭載して使用することが出来る。バッテリ30Aは、車両10に搭載されたエンジン20の始動用でもよい。つまり、エンジン20を始動する始動モータ21の電源でもよい。
 2.抵抗器100の温度調整
 抵抗器100は、第1電極105Aを外部端子36に接続し、第2電極105Bを二次電池60Aに接続する。外部端子36の温度は、バッテリ30Aの周囲温度の影響を受ける。バッテリ30Aの周囲温度と二次電池60Aの温度に温度差がある場合、第1電極105Aと第2電極105Bに温度差が生じることがある。
 第1電極105Aと第2電極105Bに温度差がある場合、ゼーベック効果により、抵抗体101の両端に電圧が発生し、電流計測誤差が生じる。電流計測誤差を抑制するには、第1電極105Aと第2電極105Bの温度差を、元の状態よりも、小さくすることが好ましい。
 バッテリ30Aは、温度調整部70Aを有する。温度調整部70Aは、第1バスバー110Aと、第2バスバー130と、二次電池60Aと、からなる。
 第1バスバー110Aと第2バスバー130は金属板であり、熱伝導性を有している。空隙等のギャップは、断熱性であり、熱伝導性を有していない。
 対向部115は、絶縁シート120を介して、二次電池60Aの上面に面接触する。対向部115を面接触させることで、第1バスバー110Aと二次電池60Aとの間で熱伝導が可能となる。
 第1バスバー110Aは、二次電池60Aと第1電極105Aとを熱的に接続する第1熱接続部である。
 第2バスバー130は、第2電極105Bに端部131を接続し、正極端子87に端部133を接続する。第2バスバー130は、第2電極105Bと二次電池60Aを熱的に接続する第2熱接続部である。
 二次電池60Aと抵抗器100は、下記の(1)式で示すように、熱容量C[J/K]が相違しており、二次電池60Aの熱容量C1は、抵抗器100の熱容量C2より大きい。二次電池60Aの熱容量C1は、抵抗器100の熱容量C2の10倍以上である。
 C1>C2   (1)式
 第1電極105Aと第2電極105Bを、それぞれ二次電池60Aと熱的に接続することで、二次電池60Aとの間で熱交換が可能となる。二次電池60Aと熱交換することで、第1電極105Aと第2電極105Bの温度を調整できる。つまり、熱交換前の元の状態に比べて、温度差を小さくすることが出来る。
 例えば、二次電池60Aに比べて、抵抗器100が高温である場合、図6に示すように、二次電池60Aから第1バスバー110Aを経由して第1電極105Aに冷熱が伝わり、第2バスバー130を経由して第2電極105Bに冷熱が伝わる。
 冷熱の伝達により、第1電極105Aと第2電極105Bは、冷やされて温度が下がり、二次電池60Aの温度に調整される。つまり、第1電極105Aと第2電極105Bの温度は、温度差が生じないように、常に同じ温度に調整される。図6のF1は、二次電池60Aから第1電極105Aへの冷熱の移動を示し、F2は、二次電池60Aから第2電極105Bへの冷熱の移動を示す。
 外部端子36は、第1電極105Aに対して、第1バスバー110Aで接続されているため、外部端子36の熱は、第1バスバー110A上の熱伝導経路Lで、第1電極105Aに伝わる。図6に示すように、対向部115は、熱伝導経路L上に位置するため、外部端子36から伝わる熱を二次電池60Aと熱交換することが出来る。
 図9は、バッテリ30Aのブロック図である。バッテリ30Aは、組電池50と、抵抗器100と、電流遮断装置160と、回路基板170と、組電池50の温度を検出する温度センサ180と、を備える。バッテリ30Aには、スイッチ23を介して始動モータ21が接続されている。
 組電池50、電流遮断装置160及び抵抗器100は、パワーライン55P、パワーライン55Nを介して、直列に接続されている。パワーライン55P、パワーライン55Nは電流経路の一例である。
 パワーライン55Pは、正極の外部端子36と組電池50の正極とを接続するパワーラインである。パワーライン55Nは、負極の外部端子37と組電池50の負極とを接続するパワーラインである。
 抵抗器100は、組電池50の正極に位置し、正極側のパワーライン55Pに設けられている。
 電流遮断装置160は、組電池50の負側に位置し、負極側のパワーライン55Nに設けられている。電流遮断装置160は、FETなどの半導体スイッチ又はリレーである。電流遮断装置160をオープンすることで、バッテリ30Aの電流を遮断することが出来る。電流遮断装置160は、正常時、クローズに制御される。
 回路基板170には、管理部171と、電流検出部173と、電圧検出部175が搭載されている。回路基板170は、バッテリケース35内において、組電池50の上方に配置することが出来る。図7に、回路基板170を一点鎖線で示す。
 電流検出部173は、抵抗器100の両端電圧Vrから、組電池50の電流Iを検出する。電圧検出部175は、各二次電池60の電圧Vと、組電池50の総電圧を検出する。
 管理部171は、CPU171Aと、メモリ171Bとを備える。管理部171は、電流検出部173、電圧検出部175、温度センサ180の出力に基づいて、バッテリ30Aの監視処理を行う。監視処理は、所定の計測周期で常時実行される。
 管理部171は、組電池50のSOCを算出する。SOC(state of charge)は、組電池50の充電状態である。SOCは満充電容量(実容量)に対する残存容量の比率であり、下記の(2)式にて定義することが出来る。SOCは、OCV法と電流積算法との2つの方法で算出できる。管理部171は、組電池50のSOC(状態)を推定する推定部の一例である。
 SOC[%]=(Cr/Co)×100   (2)
 Coは二次電池の満充電容量、Crは二次電池の残存容量である。
 二次電池60A、二次電池60B、二次電池60C及び二次電池60Dは、一例としてリチウムイオン二次電池である。図10は横軸をSOC[%]、縦軸をOCV[V]とした、リチウムイオン二次電池のSOC-OCV相関特性である。
 OCV(open circuit voltage:開放電圧)は、二次電池60の開放電圧である。二次電池60の開放電圧は、無電流又は無電流とみなせる状態において、二次電池60の電圧を計測することにより、取得できる。
 OCV法は、SOCとOCVの相関性を利用する方法である。OCVがOCV1である場合、SOCとOCVの相関性から、SOCはSOC1である。
 二次電池60は、図10に示すように、SOCが概ね31%から97%の範囲は、グラフがほぼ平坦なプラトー領域Hである。プラトー領域Hは、SOCの変化量に対するOCVの変化量が2[mV/%]以下の領域である。プラトー領域Hは、SOCに対するOCVの変化率が所定値以下の第1領域である。
 SOCが31%以下の範囲、97%以上の範囲は、SOCの変化量に対するOCVの変化量が、プラトー領域Hよりも大きい高変化領域である。
 プラトー領域Hは、SOCの変化量に対するOCVの変化量が小さいため、OCV法によるSOCの推定精度が低い。管理部171は、SOCの値からプラトー領域Hかそれ以外の領域かを判断し、プラトー領域Hでは電流積算法を用いて、SOCを算出する。それ以外の領域では、電流積算法でSOCを算出してもいいし、OCV法でSOCを算出してもよい。
 電流積算法は、電流Iの積算値により、SOCを算出する。管理部171は、下記の(2)式で示すように、抵抗器100により計測される電流Iの時間に対する積分値に基づいて、組電池50のSOCを算出する。電流Iについて、充電は+、放電は-である。
 SOC=SOCo+100×(∫Idt)/Co   (2)
 SOCoは、SOCの初期値、Iは電流である。
 バッテリ30Aの用途がエンジン始動の場合、エンジン始動時に数百A、時には1000A以上のクランキング電流を流す必要がある。また、車両が減速した時の回生エネルギーを受け入れる必要がある。そのため、組電池50は満充電付近では制御されず、SOCが約70%になるように制御される場合がある。SOC70%はプラトー領域Hであるから、SOCを電流積算法で推定する期間が長くなる場合がある。
 3.効果
 バッテリ30Aは、温度調整部70Aを有している。温度調整部70Aは、抵抗器100の両端温度を調整する。つまり、二次電池60Aと熱交換することで、熱交換前の元の状態に比べて、第1電極105Aと第2電極105Bの温度差を小さくする。温度差を小さくすることで、ゼーベック効果による電流計測誤差を抑制することが出来る。
 プラトー領域Hでは、SOCの推定に電流積算法が用いられるため、電流計測誤差が蓄積して、SOCの推定精度を低下させる。電流計測誤差を抑えることで、プラトー領域H内での電流計測誤差の蓄積を小さくすることが出来、SOCの推定精度を高くすることが出来る。
 第2電極105Bは、第2バスバー130を介して二次電池60Aに熱的に接続されており、二次電池60Aと熱交換する。二次電池60Aの温度が変化すると、第2電極105Bも温度変化する。第2電極105Bのみ二次電池60Aと熱交換する場合、二次電池60Aの温度変化により、第1電極105Aと第2電極105Bに温度差が生じて、電流計測精度が悪化する。
 第1電極105Aは、第1バスバー110Aと対向部115を介して、二次電池60Aに熱的に接続されており、二次電池60Aと熱交換する。第1電極105Aと第2電極105Bの双方とも、二次電池60Aと熱交換することで、二次電池60Aの温度変化によらず、第1電極105Aと第2電極105Bの温度差を小さくして、電流計測精度を高めることが出来る。二次電池60Aを利用して、第1電極105Aと第2電極105Bの温度を調整するから、温度調整用の部材を専用に設ける場合に比べて、部品点数を削減できる。
 二次電池60Aは、抵抗器100に比べて熱容量が大きいから、第1電極105Aと第2電極105Bの温度が、二次電池60Aの温度に安定し、温度差や温度変化が生じ難い。そのため、抵抗器100の電流計測精度の向上に好適である。
 また、抵抗器100と二次電池60Aとの間の熱交換を、第1バスバー110Aと第2バスバー130を用いて行うから、第1電極105Aと第2電極105Bの温度だけでなく、第1バスバー110Aと第2バスバー130の温度も、二次電池60Aの温度と等しくなる。そのため、第1電極105Aと第2電極105Bの温度差を小さくでき、電流計測精度をより向上させることが出来る。
 外部端子36から第1バスバー110Aに伝わる熱の少なくとも一部は、対向部115により二次電池60Aと熱交換されるため、外部端子36の熱が第1電極105Aに伝わり難くなる。そのため、二次電池60Aの温度とバッテリ30の周囲温度に温度差がある場合でも、第1電極105Aと第2電極105Bとの間に生じる温度差を小さくすることが出来る。温度差が元から小さければ、二次電池60Aとの熱交換により、その差を更に小さくすることが出来るので、抵抗器100の電流計測精度の向上に好適である。
 <実施形態2>
 図11に示すように、実施形態2のバッテリ30Bは、実施形態1のバッテリ30Aに対して、二次電池60Aと第1電極105Aの熱的な接続構造が相違している。
 実施形態2のバッテリ30Bは、温度調整部70Bを有している。温度調整部70Bは、第1バスバー110B、絶縁性の熱伝導シート125、第2バスバー130、二次電池60Aと、からなる。熱伝導シート125は、例えば、アルミニウムなど熱伝導性に優れるシート基材の表面に絶縁層を有するシートである。熱伝導シート125は、第1バスバー110Bの下面と二次電池60Aの上面との間に位置し、第1バスバー110Bの下面と二次電池60Aの上面にそれぞれ面接触している。熱伝導シート125は、第1バスバー110Bと二次電池60Aとを熱的に接続する第3熱接続部である。
 熱伝導シート125及び第1バスバー110Bは、第1電極105Aと二次電池60Aとを熱的に接続する第1熱接続部である。
 第2バスバー130は、実施形態1のバッテリ30Aと同様に、第2電極105Bと二次電池60Aとを熱的に接続する第2熱接続部である。
 実施形態2のバッテリ30Bは、バッテリ30Aと同様に、二次電池60Aと熱交換することで、抵抗器100の両端温度を調整できる。つまり、二次電池60Aと熱交換する前の元の状態に比べて、第1電極105Aと第2電極105Bの温度差を小さくして、ゼーベック効果による電流計測誤差を抑制することが出来る。
 <実施形態3>
 実施形態3のバッテリ30Cは、実施形態1のバッテリ30Aに対して、二次電池60Aと第1電極105Aの熱的な接続構造、及び二次電池60Aと第2電極105Bの熱的な接続構造が相違する。
 実施形態3のバッテリ30Cは、温度調整部70Cを有している。温度調整部70Cは、図12に示すように、第1包囲部200Aと、第2包囲部200Bと、二次電池60Aとからなる。
 第1包囲部200Aは、絶縁性の樹脂材料からなる。第1包囲部200Aは接着剤でもよい。第1包囲部200Aは、第1電極105Aと第1バスバー110Cとの接続部を囲んでいる。第1包囲部200Aは、第1バスバー110Cの下面と二次電池60Aの上面との間の隙間を埋めており、二次電池60Aの上面に面接触している。第1包囲部200Aは、二次電池60Aと第1電極105Aとを熱的に接続する第1熱接続部である。第1包囲部200Aは、熱伝導性の高い樹脂材料が好ましい。
 第2包囲部200Bは、絶縁性の樹脂材料からなる。第2包囲部200Bは接着剤でもよい。第2包囲部200Bは、第2電極105Bと第2バスバー130との接続部を囲んでいる。第2包囲部200Bは、第2バスバー130の下面と二次電池60Aの上面との間の隙間を埋めており、二次電池60Aの上面に面接触している。第2包囲部200Bは、二次電池60Aと第2電極105Bとを熱的に接続する第2熱接続部である。第2包囲部200Bは、熱伝導性の高い樹脂材料が好ましい。
 第1電極105Aは、第1包囲部200Aを介して、二次電池60Aとの間で熱伝達でき、第2電極105Bは、第2包囲部200Bを介して、二次電池60Aとの間で熱伝達できる。
 そのため、二次電池60Aと熱交換して、抵抗器100の両端温度を調整できる。つまり、二次電池60Aと熱交換する前の元の状態に比べて、第1電極105Aと第2電極105Bの温度差を小さくして、ゼーベック効果による電流計測誤差を抑制することが出来る。
 <実施形態4>
 実施形態1~3のバッテリ30A~30Cは、二次電池60Aと熱交換することで、第1電極105Aと第2電極105Bの温度を調整した。
 実施形態4のバッテリ30Dは、図13に示すように、第3包囲部300を有する。第3包囲部300は、絶縁性の樹脂材料からなる。第3包囲部300は、接着剤でもよい。
 第3包囲部300は、抵抗器100の全体、つまり、第1電極105Aと、抵抗体101と、第2電極105Bを囲んでいる。第3包囲部300は、熱伝導性の高い樹脂材料が好ましい。
 第3包囲部300は、二次電池62の上面との間に、ギャップを有しており、二次電池60Aとは熱的に切り離されている。
 第3包囲部300は、第1電極105Aと、第2電極105Bを熱的に接続部材である。第3包囲部300により、第1電極105Aと第2電極105Bは、熱交換が可能となる。第3包囲部300は、元の状態と比べて温度差を小さくするように、第1電極105Aと第2電極105Bを温度調整できる。例えば、同じ温度に調整できる。そのため、ゼーベック効果による電流計測誤差を抑制することが出来る。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記実施形態1~4では、蓄電素子の一例として、二次電池60を例示した。蓄電素子は、二次電池60に限らず、キャパシタでもよい。二次電池60は、リチウムイオン二次電池に限らず他の非水電解質二次電池でもよい。鉛蓄電池などを使用することも出来る。蓄電素子は複数を直並列に接続する場合に限らず、直列の接続や、単セルの構成でもよい。
 (2)上記実施形態1~4では、抵抗器100を、組電池50の正極に配置したが、負極に配置してもよい。この場合、抵抗器100の第1電極105Aを、負極の外部端子37と電気的に接続し、抵抗器100の第2電極105Bを、組電池50の負極、つまり二次電池60Dの負極と接続する。
 (3)上記実施形態1~4では、管理部171は、抵抗器100により計測した電流Iに基づいて、組電池50のSOCを推定した。管理部171は、抵抗器100により計測した電流Iに基づいて、組電池50の残存容量Crや容量維持率(満充電容量の維持率)を推定してもよい。SOC、残存容量Cr、容量維持率は、組電池50の状態の一例である。
 (4)上記実施形態1~3では、組電池50と熱交換することにより、第1電極105Aと第2電極105Bの温度を調整した。熱交換する部材は、バッテリケース35でもよい。つまり、第1電極105A、第2電極105Bをバッテリケース35とそれぞれ熱的に接続して、熱交換前の元の状態に比べて温度差が小さくなるように、第1電極105Aと第2電極105Bの温度を調整してもよい。バッテリケース35の熱容量は、抵抗器の熱容量よりも大きくてもよい。組電池50やバッテリケース35は、抵抗器100よりも熱容量が大きい第1部材の一例である。
 (5)上記実施形態1では、抵抗器100を二次電池60Aの上方に配置した。抵抗器100を二次電池60Aの側方に配置してもよい。抵抗器100を二次電池60Aの側方に配置する場合、図14に示すように、外部端子36と第1電極105Aを第1バスバー410で電気的に接続し、第2電極105Bと正極端子87とを第2バスバー430で電気的に接続してもよい。第1バスバー410に対して、二次電池60Aの側面65(金属製のケース82の側面)に対向する対向部415を設けてもよい。対向部415を二次電池60Aの側面65に絶縁シート420を介して面接触させることにより、熱交換してもよい。
 (6)上記実施形態4では、第1電極105Aと第2電極105Bを、第3包囲部300で熱的に接続した。図15に示すように、第1電極105Aと第2電極105Bを、熱伝導性を有する接続板350で熱的に接続してもよい。接続板350は、絶縁性を有す樹脂板などよい。
 (7)上記実施形態1では、二次電池60の外装体を金属製のケース82とした。外装体は、ラミネートフィルム(積層フィルム)でもよい。図16の二次電池510は、電極体である積層体520と、積層体520に設けられた正負一対の端子521、端子522と、外装体530とを含む。外装体530は、一対のラミネートフィルム531、ラミネートフィルム532から構成されており、フィルム外周を封止することで、積層体520と電解液を収容する。ラミネートフィルム531とラミネートフィルム532は、アルミ基材の両面に絶縁性の樹脂層を有しており、内部に収容される積層体520や電解液と絶縁されている。ラミネート式の二次電池510は、積層配置が可能であり、コンパクト化に適している。図17の組電池500は、4つの二次電池510A、二次電池510B、二次電池510C及び二次電池510Dを積層配置している。二次電池510A、二次電池510B、二次電池510C及び二次電池510Dは、外装体530から突出する一対の端子521、端子522を、上下に隣接する電池間で接合することにより、直列に接続出来る。
 図17に示す組電池500は、抵抗器100の第1電極105Aを、第1バスバー610により正極の外部端子36に接続してもよい。また、抵抗器100の第2電極105Bを、第2バスバー630により、組電池500の正極、つまり二次電池510Aの正極端子521に接続してもよい。第1バスバー610は、二次電池510Aと熱交換するため、二次電池510Aの外面に面接触する対向部615を有してもよい。二次電池510Aの外装体530は、表面に絶縁性の樹脂層を有しているため、対向部615は、絶縁シートを介すことなく、二次電池510の外面に直接的に面接触してもよい。
 (8)バッテリ30A、バッテリ30B、バッテリ30C及びバッテリ30Dの使用用途は、特定の用途に限定されない。バッテリ30A、バッテリ30B、バッテリ30C及びバッテリ30Dは、移動体用(車両用や船舶用、AGVなど)や、定置用(無停電電源システムや太陽光発電システムの蓄電装置)など、種々の用途に使用することが出来る。
 (9)第1バスバー110Cと蓄電素子60Aとを熱的に接続する第3熱接続部は、絶縁シート120や熱伝導シート125に限らず、絶縁性の接着剤でもよい。
 (10)温度調整部は、抵抗器100を保持し、第1電極105A及び第2電極105Bと熱交換する熱交換パネル700でもよい。熱交換パネル700の熱容量は、抵抗器の熱容量より大きくてもよい。熱交換パネル700は、例えば、PP(ポリプロピレン)、PE(ポリエチレン)など絶縁性の樹脂製である。この例では、熱交換パネル700は、図18に示すように、収容溝710を有している。収容溝710には、熱伝導層720を間に挟んで、抵抗器100が収容されている。図19に示すように、抵抗器100は、例えば、ビズや接着剤により、収容溝710に保持(固定)されている。熱伝導層720は、例えば、接着剤やシート状の部材である。熱伝導層720は、熱伝導率[W/mk]が少なくとも空気より高い。熱伝導層720は、第1電極105Aと第2電極105Bを含む抵抗器100の全体に設けられている。熱伝導層720を介して熱交換パネル700と熱交換することで、第1電極105Aと第2電極105Bの温度を均一化し、2つの電極105A、105Bの温度差を、熱交換前の元の状態に比べて小さくすることが出来る。熱伝導層720は、少なくとも2つの電極105A、105Bに対して設けられていればよいが、抵抗器100の全体に設けることで、抵抗器全体の温度を均一化することが出来る。
 また、第1バスバー750と第2バスバー760は、抵抗器100の各電極105A、105Bに端部を重ねた状態で、抵抗器100と共に収容溝710に収容されている。第1バスバー750は、抵抗器100の第1電極105Aを外部端子36に電気的に接続し、第2バスバー760は、抵抗器100の第2電極105Bを、中継バスバー770を介して二次電池60の端子に電気的に接続する。
 熱伝導層720は、図19に示すように、抵抗器100だけでなく、第1バスバー750と第2バスバー760に対して重なってもよい。両バスバー750、760が熱伝導層720を介して、熱交換パネル700と熱交換可能となるため、抵抗器100、第1バスバー750、第2バスバー760の3部材の温度差を小さくすることが出来る。3部材100、750、760の温度差を小さくすることで、第1電極105Aと第2電極105Bに温度差が生じ難くなる。抵抗器100の2つの電極105A、105Bを熱交換パネル700に面接触させるようにすれば、両間で直接熱伝導が可能となることから、熱伝導層720を廃止することも可能である。
 図20は、バッテリ30Eの斜視図である。バッテリ30Eは、組電池50と、部品パネル850と、収容体800を備える。収容体800は、合成樹脂材料からなる本体ケース810と蓋体820とを備えている。蓋体820は、本体ケース810の上面開口815を閉止する。蓋体820の前部のうち、一方の隅部に正極の外部端子821が固定され、他方の隅部に負極の外部端子822が固定されている。
 収容体800は、組電池50と部品パネル850を収容する。組電池50は12個の二次電池60を有する。12個の二次電池60は、3並列で4直列に接続されている。部品パネル850は、組電池50の上部に配置されている。部品パネル850は、絶縁性の樹脂パネルである。部品パネル850の上面には、回路基板860や複数の電子部品870が保持されている。電子部品870はバスバーや抵抗器を含んでもよい。部品パネル850又はその一部を、図18に示す熱交換パネル700として用いることが出来る。
 30A、30B、30C、30D バッテリ
 50 組電池
 60A、60B、60C、60D 二次電池(蓄電素子)
 70A、70B、70C 温度調整部
 100 抵抗器
 101 抵抗体
 105A 第1電極
 105B 第2電極
 110A 、110B、110C 第1バスバー(第1熱接続部)
 115 対向部(第3熱接続部)
 120 絶縁シート
 130 第2バスバー(第2熱接続部)
 171 管理部(推定部)

Claims (11)

  1.  蓄電装置であって、
     第1電極と第2電極を有する抵抗器と、
     前記第1電極に電気的に接続された外部端子と、
     前記第2電極に電気的に接続された蓄電素子と、
     前記抵抗器により計測した電流に基づいて、前記蓄電素子の状態を推定する推定部と、
     前記第1電極と前記第2電極の温度を調整する温度調整部と、を有する、蓄電装置。
  2.  請求項1に記載の蓄電装置であって、
     前記推定部は、前記電流の積算値により、前記蓄電素子のSOCを推定する、蓄電装置。
  3.  請求項2に記載の蓄電装置であって、
     前記蓄電素子は、SOCに対するOCVの変化率が所定値以下の第1領域を有し、
     前記推定部は、前記第1領域で、前記電流の積算値を用いて、前記蓄電素子のSOCを推定する、蓄電装置。
  4.  請求項1~請求項3のいずれか一項に記載の蓄電装置であって、
     前記温度調整部は、
     前記抵抗器よりも熱容量が大きい第1部材と、
     前記第1電極と前記第1部材とを熱的に接続する第1熱接続部と、
     前記第2電極と前記第1部材とを熱的に接続する第2熱接続部と、を備える、蓄電装置。
  5.  請求項4に記載の蓄電装置であって、
     前記第1部材は、前記蓄電素子である、蓄電装置。
  6.  請求項4又は請求項5に記載の蓄電装置であって、
     前記第1熱接続部は、
     前記第1電極と前記外部端子とを電気的に接続する第1バスバーと、
     前記第1バスバーと前記蓄電素子とを熱的に接続する第3熱接続部とを含み、
     前記第2熱接続部は、
     前記第2電極と前記蓄電素子とを電気的に接続する第2バスバーである、蓄電装置。
  7.  請求項6に記載の蓄電装置であって、
     前記第3熱接続部は、前記外部端子から前記第1電極に至る前記第1バスバーの熱伝達経路上に位置する、蓄電装置。
  8.  請求項1~請求項3のいずれか一項に記載の蓄電装置であって、
     前記温度調整部は、前記第1電極と前記第2電極を、熱的に接続する接続部材である、蓄電装置。
  9.  請求項1~請求項3のいずれか一項に記載の蓄電装置であって、
     前記温度調整部は、前記抵抗器を保持し、前記第1電極及び前記第2電極と熱交換する熱交換パネルである、蓄電装置。
  10.  抵抗器の温度調整方法であって、
     前記抵抗器は、外部端子に接続された第1電極と、蓄電素子に接続された第2電極とを有し、
     前記第1電極の温度と前記第2電極の温度を調整する調整ステップを有する、抵抗器の温度調整方法。
  11.  請求項10に記載の抵抗器の温度調整方法であって、
     前記調整ステップでは、前記抵抗器よりも熱容量が大きい第1部材からの熱伝導により、前記1電極の温度と前記第2電極の温度を調整する、抵抗器の温度調整方法。
PCT/JP2020/005799 2019-02-18 2020-02-14 蓄電装置、抵抗器の温度調整方法 WO2020170964A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021501938A JPWO2020170964A1 (ja) 2019-02-18 2020-02-14 蓄電装置、抵抗器の温度調整方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019026408 2019-02-18
JP2019-026408 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020170964A1 true WO2020170964A1 (ja) 2020-08-27

Family

ID=72145084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005799 WO2020170964A1 (ja) 2019-02-18 2020-02-14 蓄電装置、抵抗器の温度調整方法

Country Status (2)

Country Link
JP (1) JPWO2020170964A1 (ja)
WO (1) WO2020170964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209343A1 (ja) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 残量通知装置、残量通知方法、および残量通知プログラム

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236134A (ja) * 2001-02-07 2002-08-23 Yokogawa Electric Corp 電流検出方法及び電流検出装置並びに電流検出装置を備えた測定機器
JP2002319501A (ja) * 2001-01-15 2002-10-31 Matsushita Electric Works Ltd シャント抵抗並びにその抵抗値の調整方法
JP2011047721A (ja) * 2009-08-25 2011-03-10 Sanyo Electric Co Ltd シャント抵抗及びシャント抵抗を備える車両用の電源装置並びに車両
JP2014056951A (ja) * 2012-09-13 2014-03-27 Daikin Ind Ltd 電子回路装置
JP2014062826A (ja) * 2012-09-21 2014-04-10 Furukawa Electric Co Ltd:The バッテリ用内部抵抗測定装置
JP2014135180A (ja) * 2013-01-09 2014-07-24 Mitsubishi Heavy Ind Ltd 電池モジュール
JP2015115190A (ja) * 2013-12-11 2015-06-22 三菱自動車工業株式会社 組電池
JP2015197974A (ja) * 2014-03-31 2015-11-09 株式会社Gsユアサ 蓄電素子及び蓄電装置
JP2016115834A (ja) * 2014-12-16 2016-06-23 ダイキン工業株式会社 電子回路装置
CN106872755A (zh) * 2017-03-24 2017-06-20 江苏省计量科学研究院 用于测量感性负载中低频电流的监测装置
WO2017122758A1 (ja) * 2016-01-15 2017-07-20 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
JP2018037218A (ja) * 2016-08-30 2018-03-08 株式会社豊田自動織機 電池モジュール
US20180238970A1 (en) * 2017-02-23 2018-08-23 K2 Energy Solutions, Inc. Current Shunt For Measuring Battery Current
WO2018199222A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025446A (ja) * 2016-08-09 2018-02-15 日立オートモティブシステムズ株式会社 電流検出装置
JP2018055909A (ja) * 2016-09-28 2018-04-05 株式会社Gsユアサ 蓄電装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319501A (ja) * 2001-01-15 2002-10-31 Matsushita Electric Works Ltd シャント抵抗並びにその抵抗値の調整方法
JP2002236134A (ja) * 2001-02-07 2002-08-23 Yokogawa Electric Corp 電流検出方法及び電流検出装置並びに電流検出装置を備えた測定機器
JP2011047721A (ja) * 2009-08-25 2011-03-10 Sanyo Electric Co Ltd シャント抵抗及びシャント抵抗を備える車両用の電源装置並びに車両
JP2014056951A (ja) * 2012-09-13 2014-03-27 Daikin Ind Ltd 電子回路装置
JP2014062826A (ja) * 2012-09-21 2014-04-10 Furukawa Electric Co Ltd:The バッテリ用内部抵抗測定装置
JP2014135180A (ja) * 2013-01-09 2014-07-24 Mitsubishi Heavy Ind Ltd 電池モジュール
JP2015115190A (ja) * 2013-12-11 2015-06-22 三菱自動車工業株式会社 組電池
JP2015197974A (ja) * 2014-03-31 2015-11-09 株式会社Gsユアサ 蓄電素子及び蓄電装置
JP2016115834A (ja) * 2014-12-16 2016-06-23 ダイキン工業株式会社 電子回路装置
WO2017122758A1 (ja) * 2016-01-15 2017-07-20 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
JP2018037218A (ja) * 2016-08-30 2018-03-08 株式会社豊田自動織機 電池モジュール
US20180238970A1 (en) * 2017-02-23 2018-08-23 K2 Energy Solutions, Inc. Current Shunt For Measuring Battery Current
CN106872755A (zh) * 2017-03-24 2017-06-20 江苏省计量科学研究院 用于测量感性负载中低频电流的监测装置
WO2018199222A1 (ja) * 2017-04-28 2018-11-01 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209343A1 (ja) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 残量通知装置、残量通知方法、および残量通知プログラム

Also Published As

Publication number Publication date
JPWO2020170964A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP4937915B2 (ja) バッテリーパックにおける電池の電圧および温度の測定用部材
JP5061698B2 (ja) 蓄電装置
KR101560217B1 (ko) 냉각 효율이 향상된 전지모듈
US9831535B2 (en) Power supply device and vehicle including power supply device
TWI530980B (zh) 開關板及包括此開關板之電池模組和電池組
JP6046864B1 (ja) 2つの異なるバッテリセルの2つのセル電流の差分を測定する装置を備えた、複数の電気化学的なバッテリセルを有するバッテリパック
WO2018025965A1 (ja) 蓄電素子状態推定装置及び蓄電素子状態推定方法
JP2012033709A (ja) 蓄電モジュール
KR20130123901A (ko) 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈
US20150228954A1 (en) Battery pack
CN107634169B (zh) 电池组电池、电池组模块以及用于制造的方法
KR102332343B1 (ko) 전지 모듈
JP6904547B2 (ja) 二次電池状態推定装置及びこれを含むバッテリーパック
KR20130105578A (ko) 절연물질이 코팅된 파우치형 2차전지
TW201830764A (zh) 電池單元及電池組
KR20140062603A (ko) 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리
WO2020170964A1 (ja) 蓄電装置、抵抗器の温度調整方法
JP6396812B2 (ja) 充電率推定システム
US20200335832A1 (en) Battery pack
JP6153798B2 (ja) 板状組電池およびこれらを複数個組み合わせて構成される板状組電池群
KR20170095040A (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
CN110176645B (zh) 二次电池以及包括该二次电池的电池组
US11050100B2 (en) Assembled battery
CN209859989U (zh) 具有改进的二次电池状态估计功能的端子壳体及其电池组
JP2012248354A (ja) 電池冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759673

Country of ref document: EP

Kind code of ref document: A1