WO2020170942A1 - ポンプ装置 - Google Patents

ポンプ装置 Download PDF

Info

Publication number
WO2020170942A1
WO2020170942A1 PCT/JP2020/005607 JP2020005607W WO2020170942A1 WO 2020170942 A1 WO2020170942 A1 WO 2020170942A1 JP 2020005607 W JP2020005607 W JP 2020005607W WO 2020170942 A1 WO2020170942 A1 WO 2020170942A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
pump device
magnet
hollow
blood
Prior art date
Application number
PCT/JP2020/005607
Other languages
English (en)
French (fr)
Inventor
森武寿
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2021501918A priority Critical patent/JP7422730B2/ja
Publication of WO2020170942A1 publication Critical patent/WO2020170942A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only

Definitions

  • the present invention relates to a pump device that causes a fluid to flow.
  • Japanese Unexamined Patent Application Publication No. 2018-61600 discloses a centrifugal pump device that rotates an impeller provided in a housing, draws blood into the housing by centrifugal force caused by the rotation, and discharges blood from the housing. Has been done.
  • the pump device disclosed in JP-A-2018-61600 forms a magnetic coupling between the motor chamber and the impeller, and rotates the impeller while attracting the driven magnet of the impeller downward. Further, in this pump device, the rotating shaft of the impeller is rotatably supported by bearings (lower bearing and upper bearing) provided in the housing.
  • the present invention has been made in relation to the technique of the above-described pump device, and even in a configuration having a bearing portion that axially supports the rotation of the impeller, it is possible to favorably suppress damage to the fluid and allow the fluid to flow satisfactorily. It is an object of the present invention to provide a pump device capable of
  • one aspect of the present invention is a pump device including an impeller, an internal space that houses the impeller, and a housing that has a bearing portion that rotatably supports the impeller.
  • the bearing portion includes a pin portion protruding from the housing, and the impeller has the pin portion inserted therein and a first space on one side of the impeller that constitutes a part of the internal space and the first space.
  • a flow gap is formed.
  • the pump device described above forms a gap between the hollow part of the impeller and the pin part of the bearing part, so that when the impeller is pivotally supported by the pin part and the impeller rotates, the fluid in the internal space passes through the hollow part. Will be done. Heat is generated in the bearing portion or the impeller around the bearing portion as the impeller rotates, but the bearing portion and the impeller are cooled by the flow of the fluid. As a result, it is possible to suppress the influence of the heat upon rotation of the impeller on the fluid (for example, when the fluid is blood, the generation of thrombus due to heat). Therefore, the pump device can suppress the retention of the fluid or the like due to the influence of heat, favorably flow the fluid, and stably maintain the pump function.
  • FIG. 2 is a sectional view taken along the line II-II of FIG. 1 showing a separated state of the pump body and the drive device of the pump device.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2. It is a side sectional view showing an important section of a pump device.
  • FIG. 5A is a side sectional view showing, in an enlarged manner, the sheath and the bearing portion of the impeller.
  • FIG. 5B is a side cross-sectional view showing the floating state of the sheath when the impeller rotates.
  • FIG. 6A is a sectional view taken along line VIA-VIA of FIG.
  • FIG. 6B is a cross-sectional view taken along line VIB-VIB of FIG. 4 showing the repulsion mechanism of the fixed-side repulsive magnet and the movable-side repulsive magnet.
  • It is a side sectional view which expands and shows a dynamic pressure bearing of an impeller and a housing. It is the perspective view which looked at the fixed side repulsion magnet from the lower side.
  • It is a side sectional view showing a flow of blood of the pump device when the impeller is rotated.
  • FIG. 14A is a side cross-sectional view showing the main parts of the pump device according to the sixth embodiment.
  • FIG. 14B is a side sectional view showing another form of the hollow portion of the impeller in the pump device according to the sixth embodiment.
  • the pump apparatus 10A is an artificial heart-lung machine 12 that assists the cardiopulmonary function of the patient (or substitutes for the heart lung), removes the blood of the patient outside the body, and sends the blood to the body. Used as a power source.
  • the pump device 10 ⁇ /b>A has an impeller 14 inside the device and is configured as a centrifugal pump that causes a fluid to flow by a centrifugal force that accompanies the rotation of the impeller 14.
  • the blood removal tube 16 and the blood supply tube 18 are connected to the pump device 10A to form a circulation circuit for circulating blood with the patient.
  • the blood removal tube 16 has a blood removal lumen 16a inside.
  • the distal end opening of the blood removal tube 16 is placed in an appropriate biological organ (for example, the left ventricle of the heart), so that the pump device 10A sucks the blood of the patient through the blood removal lumen 16a.
  • the blood supply tube 18 has a blood supply lumen 18a inside.
  • the distal end opening of the blood supply tube 18 is left in an appropriate biological organ (for example, the subclavian artery), so that the pump device 10A supplies blood to the patient through the blood supply lumen 18a.
  • the artificial heart-lung machine 12 may have a configuration in which a reservoir, an artificial lung, and the like (both not shown) other than the pump device 10A are connected to an intermediate position of the circulation circuit (blood removal tube 16 or blood supply tube 18). As a result, the artificial heart-lung machine 12 removes foreign matter and oxygenates the blood removed from the body, and returns the blood to the patient's body.
  • the pump device 10A includes a pump body 20 accommodating the impeller 14, a drive device 22 for rotating the impeller 14, and a control unit 24 (Controller) for controlling the drive of the drive device 22. Equipped with.
  • the housing 26 of the pump device 10 ⁇ /b>A is made of a resin material or the like, and includes a main body side housing 28 that forms the external appearance of the pump main body 20 and a drive side housing 30 that forms the external appearance of the drive device 22.
  • the body-side housing 28 and the drive-side housing 30 are configured to be detachable, and when assembled during use, the driving force of the drive device 22 can be transmitted to the impeller 14 of the pump body 20.
  • the pump body 20 is removed from the drive device 22 and discarded. That is, the pump body 20 is replaced with each use and is configured as a disposable type that is disposable or sterilized.
  • the drive device 22 is configured as a reuse type, and at the next use opportunity, a new pump main body 20 is attached to operate the impeller 14 of the pump main body 20.
  • the main body housing 28 of the pump main body 20 has an internal space 32 in which the impeller 14 is rotatably accommodated and blood is allowed to flow in and out.
  • the main body side housing 28 is formed in a substantially conical shape on the upper side and a substantially cylindrical shape on the lower side.
  • a blood inflow port 34 connected to the blood removal tube 16 is provided in the ceiling and center of the upper part of the main body side housing 28. Inside the blood inflow port 34, an inflow passage 34 a communicating with the internal space 32 is provided. The inflow passage 34a communicates with the opening 34a1 provided at the projecting end of the blood outflow port 36 and also with the inflow port 34a2 provided at the boundary with the internal space 32.
  • a blood outflow port 36 connected to the blood supply tube 18 is provided on the substantially cylindrical upper side of the main body side housing 28. As shown in FIG. 3, the blood outflow port 36 projects tangentially from the substantially cylindrical outer peripheral wall 40. Inside the blood outflow port 36, an outflow passage 36 a communicating with the internal space 32 is provided. The outflow passage 36a communicates with an opening 36a1 provided at the protruding end of the blood outflow port 36 and also with an outlet 36a2 provided at the boundary with the internal space 32.
  • the internal space 32 is formed in a shape corresponding to the outer shape of the main body side housing 28.
  • the fin portion 60 of the impeller 14 is arranged on the upper side of the internal space 32 (hereinafter referred to as the upper space 32a).
  • the upper space 32a is composed of the inner surface of the conical portion of the main body side housing 28 and the inner surface of the upper portion of the cylindrical portion.
  • the central portion on the lower side of the upper space 32a is configured by a shaft-shaped portion 38 that protrudes toward the inflow port 34a2 of the blood inflow port 34.
  • the substantially cylindrical portion of the main body housing 28 includes a cylindrical outer peripheral wall 40, a bottom wall 42 that constitutes a lower end portion of the main body housing 28, and the shaft-shaped portion 38 provided inside the outer peripheral wall 40. including.
  • the lower side of the internal space 32 (hereinafter referred to as the lower space 32b) is formed in a cylindrical shape, and rotatably accommodates the driven rotary structure portion 62 of the impeller 14 described later.
  • a fixed-side repulsion magnet 44 is installed near the bottom of the outer peripheral wall 40.
  • the fixed-side repulsion magnet 44 forms a repulsion mechanism 84A that repels each other with a movable-side repulsion magnet 76, which will be described later, provided on the impeller 14.
  • the configuration of the fixed-side repulsion magnet 44 will be described in detail later.
  • the shaft-shaped portion 38 has a cylindrical inner peripheral wall 48 and a chevron portion 50 connected to an upper end portion of the inner circumferential wall 48, and an insertion hole 52 is formed inside the inner circumferential wall 48 and the chevron portion 50. ..
  • the lower space 32b goes around the side of the insertion hole 52.
  • the insertion hole 52 is open at the lower end side, and the drive side housing 30 is inserted when the pump body 20 and the drive device 22 are assembled.
  • the chevron-shaped portion 50 of the shaft-shaped portion 38 has a conical shape, and a bearing portion 54 that rotatably supports the impeller 14 is provided at the center thereof.
  • the bearing portion 54 is made of a metal material, and has a base portion 56 fixed to the chevron portion 50, and a pin portion 58 protruding upward from the base portion 56 and formed thinner than the base portion 56.
  • the bearing 54 overlaps with the center of the inflow port 34a2 of the blood inflow port 34, and this shaft also serves as the shaft St of the main body side housing 28 (the shaft 38, the outer peripheral wall 40).
  • the impeller 14 is formed in a cylindrical shape, and is housed in the main body side housing 28 over both the upper space 32a and the lower space 32b.
  • the impeller 14 has a fin portion 60 in the upper portion and a driven rotary structure portion 62 in the lower portion. Inside the fin portion 60 and the driven rotary structure portion 62 is a space portion 64 in which the shaft portion 38 is arranged.
  • the fin portion 60 protrudes upward from the upper surface of the conical wall portion 66, the conical wall portion 66 connected to the upper end of the driven rotary structure portion 62, the sheath 68 pivotally supported by the bearing portion 54 at the center of the conical wall portion 66. And a plurality of projecting wall portions 70 that generate a centrifugal force in the upper space 32a during rotation.
  • a space surrounded by the conical wall portion 66 and the pair of protruding wall portions 70 serves as a flow passage 60a through which blood flows, and the flow passage 60a has an open upper portion.
  • the shape of the fin portion 60 is not limited to this, and for example, a shroud (not shown) may be provided above the protruding wall portion 70 to cover the flow passage 60a.
  • the conical wall portion 66 is steeper than the chevron portion 50 of the main body side housing 28, and the upper surface thereof is curved in an arc shape. Therefore, a gap (hereinafter, referred to as an upper gap 66a) is formed between the chevron portion 50 and the conical wall portion 66.
  • the conical wall portion 66 around the sheath 68 is provided with a plurality (three) of washout holes 67 (see also FIG. 3) penetrating the conical wall portion 66.
  • the washout hole 67 communicates the upper space 32a above the conical wall portion 66 with the upper gap 66a to allow blood to flow.
  • the sheath 68 is smoothly connected to the conical wall portion 66, and is formed in a conical shape that sharply inclines upward from the conical wall portion 66, so that the sheath 68 protrudes above the protruding wall portion 70.
  • the lower side of the sheath 68 is also a taper protruding portion 69 protruding in a taper shape toward the portion (base portion 56) where the pin portion 58 is fixed to the main body side housing 28.
  • the tapered protrusion 69 has a tapered end portion 69 a contacting the upper surface of the base portion 56 of the bearing portion 54 in a narrow range.
  • the tapered end portion 69a floats above the upper surface of the base portion 56.
  • a hollow portion 72 is formed in the central portion of the sheath 68 along the axial direction of the sheath 68.
  • the hollow portion 72 includes a first hollow 72a into which the pin portion 58 is inserted over the entire extension direction, and a second hollow 72b that communicates with the upper end of the first hollow 72a and has a larger cross-sectional area than the first hollow 72a.
  • a first hollow 72a into which the pin portion 58 is inserted over the entire extension direction
  • a second hollow 72b that communicates with the upper end of the first hollow 72a and has a larger cross-sectional area than the first hollow 72a.
  • the diameter of the first hollow 72a is designed to be slightly larger than the diameter of the pin portion 58 of the bearing portion 54. Therefore, a communication gap 59 is formed between the outer peripheral surface 58a of the pin portion 58 and the inner peripheral surface 68a of the sheath 68 (impeller 14) forming the first hollow 72a.
  • the diameter of the first hollow 72a is set in the range of 0.8 mm to 1 mm, while the diameter of the pin portion 58 is set in the range of 0.7 mm to 0.9 mm.
  • the distance between the outer peripheral surface 58a of the pin portion 58 and the inner peripheral surface 68a of the impeller 14 may be set in the range of 0.1 mm to 0.2 mm. As a result, blood can smoothly flow through the communication gap 59.
  • the communication gap 59 of the first hollow 72a connects the upper gap 66a inside the sheath 68 and the second hollow 72b. Further, the second hollow 72b extends to the opening at the upper end of the sheath 68. Therefore, the hollow portion 72 forms a slide bearing between the outer peripheral surface 58a of the pin portion 58 and the inner peripheral surface 68a of the sheath 68 when the impeller 14 rotates, and allows blood to flow.
  • the configurations of the bearing portion 54 and the hollow portion 72 of the impeller 14 are not limited to the above, and various configurations are possible.
  • a hydrophilic coating may be applied to at least one of the inner peripheral surface 68a of the impeller 14 and the outer peripheral surface 58a of the pin portion 58. As a result, blood easily enters the hollow portion 72 (communication gap 59).
  • the plurality of protruding wall portions 70 extend from a position near the outside of the washout hole 67 to a position near the outer edge of the conical wall portion 66.
  • Each of the projecting wall portions 70 extends in a slightly curved shape in a plan view, so that when the impeller 14 rotates, the blood that has entered the flow passage 60a smoothly flows radially outward.
  • the driven rotary structure portion 62 of the impeller 14 is connected to the conical wall portion 66 of the fin portion 60 and is formed into a cylindrical shape having a predetermined thickness in the radial direction of the impeller 14.
  • the diameter of the driven rotary structure portion 62 is set in the range of 20 mm to 50 mm, for example. In this embodiment, the impeller 14 having a diameter of 30 mm is applied.
  • the driven rotating structure 62 faces the side peripheral surface 63 (inner peripheral surface 63a, outer peripheral surface 63b) extending parallel to the axis Si of the impeller 14 and the bottom wall 42 of the main body housing 28 in a non-contact manner. And a lower end surface.
  • a driven magnet 74 and a movable-side repulsion magnet 76 are installed inside the driven rotation structure 62.
  • the driven magnet 74 is arranged at the same height position as the drive magnet 92 of the drive device 22 in the mounted state of the pump body 20 and the drive device 22, and forms the magnetic coupling mechanism 104 with the drive magnet 92. More specifically, the driven magnet 74 is fixed on the upper side of the driven rotating structure 62 toward the radially inner side (inner peripheral surface 63a). Further, the axial length (thickness) parallel to the axial center of the driven magnet 74 is designed to be substantially the same as the axial length of the drive magnet 92.
  • the driven magnet 74 is configured as a driven-side multi-pole magnetized ring magnet 75 that orbits the shaft center Si of the impeller 14 at a constant radius R1.
  • the driven multi-pole magnetized ring magnet 75 is magnetized so that a plurality of N poles and S poles are alternately arranged along the circumferential direction.
  • the number of polarities of the driven-side multi-pole magnetized ring magnet 75 is set to six (that is, three opposite poles) in FIG. 6A, but the number of polarities is not limited to this.
  • the driven magnet 74 (driven side multi-pole magnetized ring magnet 75), for example, a hard magnetic material such as alnico, ferrite, or neodymium can be used.
  • the driven magnet 74 is not limited to be configured as a multi-pole magnetized ring, and is formed in a ring shape by arranging a plurality of arc-shaped magnets having counter poles (N pole, S pole) in the circumferential direction. May be.
  • the movable-side repulsion magnet 76 is fixed to the lower side of the driven rotary structure portion 62 radially outward (outer peripheral wall 40 of the main body-side housing 28). That is, the radius R2 of the movable-side repulsion magnet 76 is longer than the radius R1 of the driven magnet 74. Further, the driven magnet 74 and the movable-side repulsive magnet 76 are largely separated vertically in the driven rotation structure portion 62 so that the influence of the mutual magnetic field is suppressed.
  • the movable-side repulsive magnet 76 is composed of a movable-side inner/outer peripheral single-pole magnetized ring magnet 77 that orbits at a position separated from the axial center Si of the impeller 14 by a predetermined distance.
  • the movable-side inner/outer circumference single-pole magnetized ring magnet 77 has a first polarity (S pole in FIG. 4) along the entire circumference of the outer circumference, and a second polarity opposite to the first polarity over the entire circumference of the inner circumference. It is a ring body magnetized so as to have (N pole in FIG. 4). That is, the outer peripheral surface of the movable side repulsive magnet 76 is a movable side repulsive surface 77a in which the first polarity is always present along the circumferential direction.
  • the material forming the movable-side repulsive magnet 76 (movable-side inner/outer peripheral single-pole magnetized ring magnet 77) is not particularly limited, and the materials mentioned for the driven magnet 74 can be applied.
  • the movable-side repulsive magnet 76 is not limited to being configured as a single-pole magnetized ring, and a plurality of arc-shaped magnets having counter poles on the inner peripheral portion and the outer peripheral portion are arranged in the circumferential direction to form a ring shape. It may be formed in.
  • the dynamic pressure bearing 78 is formed between the inner peripheral wall 48 and the facing surface 48 a.
  • the first gap 80 formed between the inner peripheral surface 63a and the facing surface 48a is defined by the outer peripheral surface 63b of the driven rotary structure portion 62 and the inner peripheral surface 40a of the outer peripheral wall 40 of the main body side housing 28. It is formed smaller than the second gap 82 formed between the two.
  • the interval I1 of the first gap 80 depends on the viscosity of the flowing fluid, but is set to a range of 0.05 mm to 0.2 mm when the fluid is blood, for example.
  • the inner peripheral surface 63a and the facing surface 48a are parallel to the shaft centers Si and St of the impeller 14 and the shaft-like portion 38, and thus the first gap 80 is formed over the range in which the inner peripheral surface 63a and the facing surface 48a face each other. It
  • the axial region where the inner peripheral surface 63a and the facing surface 48a face each other along the axial center Si of the impeller 14 is preferably set in the range of 10 mm to 100 mm.
  • the first gap 80 is set to have a size within the above range, buoyancy (dynamic pressure) is generated by the blood flowing between the inner peripheral surface 63a and the facing surface 48a when the impeller 14 rotates.
  • the dynamic pressure bearing 78 functions as a journal bearing that supports a load (radial load) in the radial direction orthogonal to the shaft center Si of the impeller 14.
  • the dynamic pressure bearing 78 ensures that the impeller 14 is not in contact with the shaft-like portion 38 by the blood flowing through the first gap 80 when the impeller 14 rotates at 3000 rpm or more.
  • the interval I2 of the second gap 82 is set in the range of 0.8 mm to 1.2 mm, for example.
  • the impeller 14 has a portion of the sheath 68 that is axially supported by the bearing portion 54 and a portion of the driven rotary structure portion 62 that is axially supported by the shaft-shaped portion 38. Accordingly, when the impeller 14 rotates, the shaft center Si of the impeller 14 is reliably suppressed from being inclined with respect to the shaft center St of the main body side housing 28 (shaft portion 38).
  • the fixed side repulsion magnet 44 is installed as described above. As shown in FIGS. 4 and 6B, the fixed-side repulsion magnet 44 is located radially outside and slightly above the movable-side repulsion magnet 76. That is, the fixed-side repulsive magnet 44 is arranged at a position farthest from the axial center St of the main body-side housing 28 (outer peripheral wall 40).
  • the fixed-side repulsive magnet 44 is configured as a fixed-side inner/outer peripheral single-pole magnetized ring magnet 45 that orbits at the longest radius R3 from the axial center St of the body-side housing 28.
  • the fixed-side inner/outer circumference single pole magnetized ring magnet 45 has a first polarity (N pole in FIG. 4) over the entire circumference of the outer circumference, and a second polarity opposite to the first polarity over the entire circumference of the inner circumference.
  • the ring body is magnetized so as to have (S pole in FIG. 4). That is, the inner peripheral surface of the fixed-side repulsive magnet 44 is a fixed-side repulsive surface 45a in which the same polarity as that of the movable-side repulsive magnet 76 always exists along the circumferential direction.
  • the material forming the fixed-side repulsion magnet 44 is not particularly limited, and the materials given for the driven magnet 74 can be applied.
  • the fixed-side repulsion magnet 44 is not limited to being configured as a single-pole magnetized ring, and a plurality of arc-shaped magnets having counter poles on the inner peripheral portion and the outer peripheral portion are arranged in the circumferential direction to form a ring shape. It may be formed in.
  • the repulsion mechanism 84A composed of the movable-side repulsion magnet 76 and the fixed-side repulsion magnet 44 has a repulsion force that pushes radially inward and downward from the outer peripheral wall 40 toward the impeller 14 (movable-side repulsion magnet 76).
  • Repulsive force That is, the impeller 14 is pressed against the bearing 54 by the repulsion mechanism 84A while being separated from the inflow port 34a2, and receives a force that is pressed radially inward in the entire circumferential direction.
  • the repulsive force of the repulsion mechanism 84A is set to be larger than the attractive force of the magnetic coupling mechanism 104.
  • the repulsion mechanism 84A produces different repulsion forces in the circumferential direction.
  • the fixed-side repulsion magnet 44 includes a main body portion 46 that extends annularly with a constant axial length along the axial center Sf of the fixed-side repulsion magnet 44, and a main body portion 46. It has a convex portion 47 protruding downward from a part. The convex portion 47 is arranged on the opposite side of the formation position of the outflow port 36a2 of the blood outflow port 36 communicating with the internal space 32 with the axis Sf therebetween (see also FIG. 3).
  • the vicinity of the outlet 36a2 of the blood outflow port 36 is the outflow side of the internal space 32 through which blood flows out from the internal space 32 to the blood outflow port 36.
  • the pressure on the outflow side becomes lower than that at other points due to the outflow of blood.
  • a large imbalance occurs in the pressure distribution in the internal space 32.
  • the outflow side of the rotating impeller is pushed downward, while the side opposite to the outflow side sandwiching the shaft center Si rises upward. And the rotation of the impeller becomes unstable.
  • the convex portion 47 of the fixed-side repulsion magnet 44 installed in the main body-side housing 28 is provided on the outflow side ( Hereinafter, it is arranged on the side opposite to the first region 86) (hereinafter referred to as the second region 88).
  • the ranges of the first region 86 and the second region 88 are the fixed side repulsive magnet 44 and the imaginary line L when the imaginary line L connecting the outflow port 36a2 and the impeller 14 and the shaft center Si, St of the main body side housing 28 is drawn.
  • the convex portion 47 of the fixed-side repulsion magnet 44 in the second area 88 is The second distance D2 from the rotating movable-side repulsion magnet 76 becomes shorter. Therefore, the repulsive force of the repulsive mechanism 84Ab in the peripheral portion of the second region 88 is larger than the repulsive force of the repulsive mechanism 84Aa in the peripheral portion of the first region 86.
  • the second region 88 of the impeller 14 is pushed downward more strongly than the other portion (the portion of the main body portion 46 where the convex portion 47 does not exist), so that the impeller 14 may have an inclined posture. Suppressed.
  • the amount of protrusion of the convex portion 47 from the main body portion 46 may be appropriately designed in consideration of the repulsive force of the repulsion mechanism 84Ab with respect to the repulsion mechanism 84Aa.
  • the thickness of the convex portion 47 with respect to the thickness of the main body portion 46 may be set to 0.1 to 1 times (that is, the thickness of the fixed-side repulsive magnet 44 in the second region 88 is fixed in the first region 86). It is set to 1.1 to 2 times the thickness of the side repulsion magnet 44).
  • the arc length of the convex portion 47 of the fixed-side repulsion magnet 44 is not particularly limited, but is about 1/4 to 1/8 of the circumferential length of the fixed-side repulsion magnet 44 formed in an annular shape. Good to have.
  • the lower end of the convex portion 47 has a movable-side repulsion when the impeller 14 is horizontal (the axial center Si of the impeller 14 matches the axial center St of the shaft-like portion 38). It is arranged below the upper end of the magnet 76.
  • the lower end of the main body portion 46 is arranged above the upper end of the movable-side repulsive magnet 76 when the impeller 14 is horizontal.
  • the drive device 22 of the pump device 10 ⁇ /b>A includes a drive side housing 30 and a motor mechanism 90 housed in the drive side housing 30. Further, the drive device 22 has a drive magnet 92 which is provided in the motor mechanism 90 and attracts the impeller 14.
  • the drive-side housing 30 includes an upper housing 30a having a cylindrical mounting groove 94 on the upper surface for mounting the pump body 20 (main body housing 28), and a lower housing 30b connected to the lower side of the upper housing 30a. It consists of and. A portion of the drive-side housing 30 that is radially inward of the mounting groove 94 is a central convex portion 96 that is inserted into the insertion hole 52 of the body-side housing 28.
  • the body-side housing 28 of the pump body 20 and the drive-side housing 30 of the drive device 22 have an engagement structure 98 that can be removably positioned and fixed to each other.
  • the engagement structure 98 inserts the central convex portion 96 into the insertion hole 52 of the main body housing 28, and inserts the bottom wall 42 of the main body housing 28 into the mounting groove 94, so that both devices are connected.
  • Engage It is needless to say that the engagement structure 98 may adopt various configurations.
  • a motor main body 90a of the motor mechanism 90 is provided inside the lower housing 30b, and the motor main body 90a rotates the shaft portion 100 at an appropriate rotation speed under the control of the control unit 24.
  • the shaft portion 100 projects from the motor main body 90a and is inserted into the projecting space inside the central projecting portion 96, and a disc-shaped rotating portion 102 that projects radially outward is provided at the upper end portion thereof.
  • the shaft center Si of the impeller 14 and the shaft center Ss of the shaft portion 100 overlap each other.
  • the rotating portion 102 has a holding portion 102a in which a radially outer peripheral surface is partially cut out in a side cross-sectional view, and the driving magnet 92 is held in the holding portion 102a. That is, the rotating portion 102 arranges the drive magnet 92 at a predetermined radial position and height position (in the central convex portion 96) within the drive side housing 30, and the drive magnet 92 is moved as the shaft portion 100 rotates. Rotate.
  • the drive magnet 92 is configured as a drive-side multi-pole magnetized ring magnet 93 that orbits with a radius R4 shorter than the driven magnet 74 with respect to the axis Ss of the shaft portion 100.
  • the drive-side multi-pole magnetized ring magnet 93 is magnetized so that a plurality of (six) polarities (N poles, S poles) are alternately arranged along the circumferential direction.
  • the drive magnet 92 is disposed inside the driven magnet 74 so as to face the driven magnet 74 in a mounted state of the pump body 20 and the drive device 22, thereby forming a magnetic coupling mechanism 104 between the driven magnet 74 and the driven magnet 74.
  • the materials mentioned for the driven magnet 74 can be appropriately selected.
  • the drive magnet 92 is not limited to be configured as a multi-pole magnetized ring, and is formed in a ring shape by arranging a plurality of arc-shaped magnets having counter poles (N pole, S pole) in the circumferential direction. May be.
  • control unit 24 of the pump device 10A is configured by a well-known computer having an input/output interface (not shown), a memory and a processor, and controls the drive of the motor mechanism 90.
  • a monitor, a speaker, operation buttons, etc. are provided on the outer surface of the control unit 24, and a user such as a doctor or a nurse operates the operation buttons to set the driving content of the pump device 10A.
  • the control unit 24 controls the supply of the electric power of the battery based on the user setting information to rotate the shaft unit 100 in the range of 0 to 10000 rpm, for example.
  • the pump device 10A according to the present embodiment is basically configured as described above, and its operation will be described below.
  • the artificial heart-lung machine 12 including the pump device 10A is constructed for a patient who assists the cardiopulmonary function.
  • the user connects the blood removal tube 16 to the blood inflow port 34 of the pump body 20 and connects the blood supply tube 18 to the blood outflow port 36 of the pump body 20.
  • the movable-side repulsion magnet 76 and the fixed-side repulsion magnet 44 of the pump body 20 constitute the repulsion mechanism 84A because the movable-side repulsion surface 77a and the fixed-side repulsion surface 45a having the same polarity are close to each other. doing.
  • the impeller 14 is pressed against the bottom wall 42 side of the main body side housing 28, and the sheath 68 of the impeller 14 can be prevented from coming off from the bearing portion 54 when the pump main body 20 is carried. Then, as shown in FIG. 2, by mounting the pump body 20 on the drive device 22, the pump device 10A is assembled. At this time, the engagement structure 98 positions and fixes the pump body 20 and the drive device 22 to each other.
  • the driven magnet 74 and the drive magnet 92 are arranged at the same height position.
  • the driven magnet 74 (driven side multi-pole magnetized ring magnet 75) and the drive magnet 92 (driving side multi-pole magnetized ring magnet 93) which are adjacent to each other in the radial direction have different polarities opposed to each other, and the magnetic coupling mechanism 104.
  • the driven-side multi-pole magnetized ring magnet 75 and the drive-side multi-pole magnetized ring magnet 93 generate a magnetic coupling force (magnetic coupling force), and the rotational force of the rotating portion 102 can be transmitted to the impeller 14.
  • magnetic coupling force magnetic coupling force
  • the blood that has flowed into the internal space 32 from the inflow passage 34a wraps around from the radially outer side of the upper space 32a to the lower space 32b.
  • the blood flows downward through the second gap 82 between the inner peripheral surface 40a of the outer peripheral wall 40 and the outer peripheral surface 63b of the driven rotary structure portion 62, the blood heads radially inward on the lower end side of the lower space 32b. Further, the blood flows upward in the first gap 80 between the facing surface 48a of the shaft-shaped portion 38 and the inner peripheral surface 63a of the driven rotary structure portion 62 to reach the upper gap 66a.
  • a part of the blood flowing in the upper gap 66a moves to the upper space 32a through the plurality of washout holes 67 of the impeller 14 (see FIG. 5B). Further, the other part of the blood moves to the upper space 32a through the hollow part 72 (first hollow 72a, second hollow 72b) of the sheath 68 floating from the bearing part 54. That is, the bearing portion 54 and the sheath 68 are kept in a non-contact state as much as possible during rotation, whereby the generation of frictional heat can be suppressed and blood can be satisfactorily flowed.
  • the movable-side repulsion magnet 76 (movable-side inner/outer circumference single-pole magnetized ring magnet 77) and the fixed-side repulsion magnet 44 (fixed-side inner/outer circumference single-pole magnetized ring magnet 45) of the pump body 20 are even in the entire circumferential direction. Apply repulsive force. Further, even when the impeller 14 tries to float toward the inlet 34a2 side due to the blood flowing around to the lower side of the impeller 14 when the impeller 14 rotates, the repulsive force of the repulsion mechanism 84A is received, so that the floating of the impeller 14 can be reliably suppressed. it can.
  • the fixed side repulsion magnet 44 having the convex portion 47 and the movable side repulsion magnet 76 cause the second region 88 of the rotating impeller 14 to rotate. Apply a strong repulsive force to. Therefore, the repulsion mechanism 84Ab suppresses the rise (inclination) of the impeller 14 on the second region 88 side even if the pressure on the outlet 36a2 side of the internal space 32 becomes low due to the outflow of blood from the outflow passage 36a. Therefore, the pump device 10A can stably rotate the impeller 14 while maintaining the non-contact state between the impeller 14 and the main body side housing 28, and allow the blood to flow well.
  • the first gap 80 between the facing surface 48a of the shaft-shaped portion 38 of the main body side housing 28 and the inner peripheral surface 63a of the impeller 14 receives a radial load during rotation of the impeller 14 (for example, at 3000 rpm or more).
  • the dynamic pressure bearing 78 is formed.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made according to the gist of the invention.
  • the positional relationship between the magnetic coupling mechanism 104 and the repulsion mechanism 84A is not particularly limited.
  • the repulsion mechanism 84A may be located above the magnetic coupling mechanism 104, or may be located radially inside the magnetic coupling mechanism 104.
  • the fixed-side repulsion magnet 44 may be provided not only in the pump body 20 (main-body-side housing 28) but also in the drive device 22 (drive-side housing 30).
  • the means for generating different repulsive forces in the repulsion mechanism 84A is not limited to providing the convex portion 47 on the fixed-side repulsion magnet 44.
  • the fixed-side repulsion magnet 44 is configured by the main body portion 46 without the convex portion 47, and by changing the material of the first region 86 and the material of the second region 88, the magnetic force of the first region 86 is set to be larger than that of the first region 86. The magnetic force of the second region 88 may be increased.
  • the fixed-side repulsion magnet 44 may be configured by the main body portion 46 without the convex portion 47, and a member that suppresses the magnetic force may be arranged at a circumferential position other than the second region 88, or the second region.
  • a magnetic force derivative such as a soft magnetic material may be arranged at 88.
  • the dynamic pressure bearing 78 forming the journal shaft may be formed in the second gap 82 (between the outer peripheral surface 63b of the impeller 14 and the inner peripheral surface 40a of the outer peripheral wall 40). Further, the dynamic pressure bearing 78 may increase the dynamic pressure by providing a concave portion (a groove, a notch, or the like) in one of the side peripheral surface 63 of the impeller 14 and the facing surface 48a of the housing 26.
  • the dynamic pressure bearing 78 is not limited to be formed on the entire surface facing the side peripheral surface 63 along the axis Si of the impeller 14, and may be formed, for example, near the lower portion of the side peripheral surface 63 of the impeller 14. Good.
  • the axial center Sf of the annular fixed-side repulsion magnet 44 is inclined with respect to the axial center St of the main body housing 28 (axial center Si of the impeller 14).
  • the repulsion mechanism 84B is configured to be different from the above pump device 10A.
  • the fixed-side repulsive magnet 44 includes only the annular main body portion 46 without the above-mentioned convex portion 47, and extends in the circumferential direction in a rectangular shape having a certain size in a sectional view.
  • the axial center Sf of the fixed-side repulsion magnet 44 is set so that the second region 88 side is lower in the outer wall 40 than the first region 86 side (the fixed-side repulsion magnet 44 is movable-side repulsion). It is slightly inclined (toward the magnet 76).
  • the inclination angle of the axis Sf of the fixed-side repulsion magnet 44 with respect to the axis St of the main body side housing 28 is preferably 5° or less, and more preferably set in the range of 0.5° to 3°. Good to be done.
  • the second distance D2 between the movable side repulsive magnet 76 on the second region 88 side and the fixed side repulsive magnet 44 is the movable side repulsive force on the first region 86 side.
  • the distance is shorter than the first distance D1 between the magnet 76 and the fixed-side repulsive magnet 44.
  • the repulsive force of the repulsion mechanism 84Bb in the second region 88 becomes larger than the repulsive force of the repulsion mechanism 84Ba in the first region 86 when the impeller 14 rotates. Therefore, the pump device 10B can stably make the axial center Si of the impeller 14 and the axial center St of the main body side housing 28 coincide with each other even when the pressure on the outflow side of the internal space 32 becomes low. Therefore, the pump device 10B has the same effects as the pump device 10A according to the first embodiment. Particularly, in the pump device 10B, the structure of the fixed-side repulsion magnet 44 is simplified, and the manufacturing cost can be suppressed.
  • the pump device 10C forms a repulsion mechanism 84C by offsetting the shaft center Sf of the annular fixed-side repulsion magnet 44 with respect to the shaft center St of the main body side housing 28. This is different from the pump devices 10A and 10B described above.
  • the fixed-side repulsion magnet 44 similarly to the second embodiment, includes only the annular main body portion 46 without the convex portion 47, and extends in the circumferential direction in a square shape having a constant size in a sectional view. There is.
  • the fixed-side repulsive magnet 44 is arranged so that its axial center Sf is displaced from the axial center St of the main body side housing 28 toward the first region 86 side.
  • the offset amount of the shaft center Sf of the fixed side repulsion magnet 44 with respect to the shaft center St of the main body side housing 28 is preferably 1.5 mm or less, and more preferably set in the range of 0.1 mm to 1 mm. Good.
  • the fixed-side repulsion surface 45a on the second region 88 side of the fixed-side repulsion surface 45a on the first region 86 side is arranged near the inner peripheral surface 40a (internal space 32) in the outer peripheral wall 40.
  • the second distance D2 between the movable side repulsive magnet 76 on the second region 88 side and the fixed side repulsive magnet 44 is also the same as the movable side repulsive magnet 76 on the first region 86 side. And becomes closer than the first distance D1 of the fixed-side repulsion magnet 44. Therefore, in the pump device 10C as well, when the impeller 14 rotates, the repulsive force of the repulsion mechanism 84Cb in the second region 88 becomes larger than the repulsive force of the repulsion mechanism 84Ca in the first region 86, so that the first and second embodiments. The same effects as the pump devices 10A and 10B according to the present invention are obtained.
  • the dynamic pressure bearing 78 is provided between the inner peripheral surface 63a of the impeller 14 and the facing surface 48a. It is different from the pump devices 10A to 10C in that it is not formed. That is, the pump device 10D can maintain the posture of the impeller 14 stably by appropriately setting the repulsive force of the repulsion mechanisms 84A to 84C without forming the dynamic pressure bearing 78.
  • the fixed-side repulsive magnet 44 is configured only by the annular main body portion 46, while the dynamic pressure bearing 78 suppresses the inclination of the impeller 14. It is different from the pump devices 10A to 10D in that That is, the fixed-side repulsion magnet 44 and the movable-side repulsion magnet 76 form a repulsion mechanism 84D that exerts a uniform repulsion force by being spaced at equal intervals D′ in the circumferential direction.
  • the pump device 10E stabilizes the posture of the impeller 14 by appropriately exerting the dynamic pressure of the dynamic pressure bearing 78 without changing the repulsive force in the circumferential direction of the impeller 14 by the repulsion mechanisms 84A to 84C. It is also possible to keep it as it is.
  • the pump device 10F has the above-described pump devices 10A to 10E in that the hollow portion 72 formed in the sheath 68 of the impeller 14 is provided with the convex portion 106 (feather). Different from The convex portion 106 of the hollow portion 72 gives a flowing force to the blood flowing in the hollow portion 72 when the impeller 14 rotates, so that the blood can flow more smoothly.
  • the structure for imparting a fluid force to blood in the hollow portion 72 is not limited to the convex portion 106, and may be a concave portion 108 (groove) as shown in FIG. 14B.
  • the formation of the spiral recess 108 allows blood to flow in the axial direction.
  • a gap (communication gap 59) is formed between the hollow portion 72 of the impeller 14 and the pin portion 58 of the bearing portion 54, so that the impeller 14 is rotated by being pivotally supported by the pin portion 58.
  • the fluid (blood) in the internal space 32 passes through the hollow portion 72.
  • heat is generated in the bearing 54 or the impeller 14 around the bearing 54 as the impeller 14 rotates, the bearing 54 and the impeller 14 are cooled by the flow of fluid.
  • the pump devices 10A to 10F can suppress the retention of the fluid and the like due to the influence of heat, favorably flow the fluid, and stably maintain the pump function.
  • the distance between the inner peripheral surface 68a of the impeller 14 and the outer peripheral surface 58a of the pin portion 58 is set within the range of 0.1 mm to 0.2 mm.
  • the diameter of the hollow portion 72 is set in the range of 0.8 mm to 1 mm
  • the diameter of the pin portion 58 is set in the range of 0.7 mm to 0.9 mm.
  • the hollow portion 72 includes a first hollow 72a into which the pin portion 58 is inserted over the entire extending direction, and a second hollow 72b that communicates with the first hollow 72a and has a larger cross-sectional area than the first hollow 72a. Including. In the pump devices 10A to 10F, since the hollow portion 72 includes the first hollow 72a and the second hollow 72b, the fluid passing between the pin portion 58 and the first hollow 72a is spread in the second hollow 72b, and the hollow portion is formed. The fluid in 72 can be made to flow more smoothly.
  • the impeller 14 has a taper protruding portion 69 protruding in a taper shape toward a portion where the pin portion 58 is fixed to the housing 26.
  • the pump devices 10A to 10F can reduce the contact range of the impeller 14 with the bearing 54 and the housing 26 around the bearing 54 as much as possible. Therefore, in the pump devices 10A to 10F, it is possible to suppress heat during rotation even when the impeller 14 does not rotate much and the impeller 14 is not floating.
  • the hollow portion 72 has a convex portion 106 or a concave portion 108 that gives a fluid force to the fluid flowing through the hollow portion 72. Thereby, the impeller 14 can make the fluid flow more smoothly in the hollow portion 72.
  • a hydrophilic coating is applied to at least one of the inner peripheral surface 68a of the impeller 14 and the outer peripheral surface 58a of the pin portion 58. Since the hydrophilic coating is applied in this manner, the fluid can be easily introduced into the hollow portion 72, and the heat of the bearing 54 and the impeller 14 around the bearing 54 can be favorably suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pulmonology (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

ポンプ装置(10A)は、インペラ(14)及び軸受部(54)を有するハウジング(26)を備える。軸受部(54)は、ハウジング(26)から突出するピン部(58)を備える。インペラ(14)は、ピン部(58)が挿入されると共に、インペラ(14)の一方面側の上空間(32a)と当該一方面と反対面側の上側隙間(66a)を連通する中空部(72)を有する。中空部(72)を構成するインペラ(14)の内周面(68a)とピン部(58)の外周面(58a)との間には、内部空間(32)の血液を流動させる連通用隙間(59)が形成される。

Description

ポンプ装置
 本発明は、流体を流動させるポンプ装置に関する。
 患者の血液(流体)を流動させる人工心肺装置において、ポンプ装置は血液循環の動力源として使用される。例えば、特開2018-61600号公報には、ハウジング内に設けられたインペラを回転させ、この回転に伴う遠心力によりハウジング内に血液を引き込むと共に、ハウジングから血液を吐出する遠心式ポンプ装置が開示されている。
 特開2018-61600号公報に開示のポンプ装置は、モータ室とインペラの間で磁気カップリングを形成して、インペラの従動磁石を下側に吸引しつつインペラを回転させる。また、このポンプ装置は、ハウジングに設けられた軸受部(下軸受け、上軸受け)によりインペラの回転軸が回転自在に軸支される。
 ところで、このように軸受部によりインペラを軸支する構成では、インペラの回転に伴い、軸受部又は軸受部周辺のインペラに熱が生じ、この熱により血液に血栓が生じる場合があった。すなわち、ポンプ装置では、インペラを軸支する軸受部を有する構成において、インペラの回転時の熱を抑制することが望まれている。
 本発明は、上記のポンプ装置の技術に関連してなされたものであり、インペラの回転を軸支する軸受部を有する構成でも、流体の損傷を良好に抑制して流体を良好に流動させることができるポンプ装置を提供することを目的とする。
 前記の目的を達成するために、本発明の一態様は、インペラと、前記インペラを収容する内部空間、及び前記インペラを回転自在に軸支する軸受部を有するハウジングとを備えるポンプ装置であって、前記軸受部は、前記ハウジングから突出するピン部を備え、前記インペラは、前記ピン部が挿入されると共に、前記内部空間の一部を構成する前記インペラの一方面側の第1空間と当該一方面と反対面側の第2空間を連通する中空部を有し、前記中空部を構成する前記インペラの内周面と前記ピン部の外周面との間には、前記内部空間の流体を流動させる隙間が形成される。
 上記のポンプ装置は、インペラの中空部と軸受部のピン部との間に隙間を形成することで、ピン部に軸支されてインペラが回転する際に、内部空間の流体が中空部を通過することになる。インペラの回転に伴って軸受部又は軸受部周辺のインペラには熱が生じるが、流体の流動によって軸受部やインペラが冷却されることになる。これによりインペラの回転時の熱による流体への影響(例えば、流体が血液の場合は熱による血栓の発生)を抑制することができる。従って、ポンプ装置は、熱の影響を受けることによる流体の滞留等を抑制して、流体を良好に流動させポンプ機能を安定的に維持することができる。
本発明の第1実施形態に係るポンプ装置の全体構成を示す斜視図である。 ポンプ装置のポンプ本体と駆動装置の分離状態を示す図1のII-II線断面図である。 図2のIII-III線断面図である。 ポンプ装置の要部を示す側面断面図である。 図5Aは、インペラのシース及び軸受部を拡大して示す側面断面図である。図5Bは、インペラの回転時のシースの浮上状態を示す側面断面図である。 図6Aは、駆動磁石と従動磁石の磁気カップリング機構を示す図4のVIA-VIA線断面図である。図6Bは、固定側反発磁石と可動側反発磁石の反発機構を示す図4のVIB-VIB線断面図である。 インペラとハウジングの動圧軸受を拡大して示す側面断面図である。 固定側反発磁石を下側から見た斜視図である。 インペラを回転した際のポンプ装置の血液の流動を示す側面断面図である。 第2実施形態に係るポンプ装置の要部を示す側面断面図である。 第3実施形態に係るポンプ装置の要部を示す側面断面図である。 第4実施形態に係るポンプ装置の要部を示す側面断面図である。 第5実施形態に係るポンプ装置の要部を示す側面断面図である。 図14Aは、第6実施形態に係るポンプ装置の要部を示す側面断面図である。図14Bは、第6実施形態に係るポンプ装置においてインペラの中空部の別形態を示す側面断面図である。
 以下、本発明について好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
〔第1実施形態〕
 本発明の第1実施形態に係るポンプ装置10Aは、患者の心肺機能を補助する(又は心肺を代替する)人工心肺装置12において、患者の血液を体外に脱血させ、また体内に送血する動力源として用いられる。図1に示すように、ポンプ装置10Aは、インペラ14を装置内に有し、インペラ14の回転に伴う遠心力によって流体を流動させる遠心ポンプに構成されている。
 人工心肺装置12は、脱血チューブ16及び送血チューブ18をポンプ装置10Aに接続して、患者との間で血液を循環する循環回路を形成している。脱血チューブ16は、脱血ルーメン16aを内部に有する。脱血チューブ16の先端開口が適宜の生体器官(例えば、心臓の左心室)に留置されることで、ポンプ装置10Aは、脱血ルーメン16aを通して患者の血液を吸引する。送血チューブ18は、送血ルーメン18aを内部に有する。送血チューブ18の先端開口が適宜の生体器官(例えば、鎖骨下動脈)に留置されることで、ポンプ装置10Aは、送血ルーメン18aを通して患者に血液を送血する。なお、人工心肺装置12は、ポンプ装置10Aの他にリザーバ、人工肺等(共に不図示)を循環回路(脱血チューブ16や送血チューブ18)の途中位置に接続した構成でもよい。これにより、人工心肺装置12は、体外に脱血した血液の異物の除去や酸素化等を行い、この血液を患者の体内に戻す。
 そして図2に示すように、ポンプ装置10Aは、上記のインペラ14を収容したポンプ本体20と、インペラ14を回転させる駆動装置22と、駆動装置22の駆動を制御する制御部24(Controller)とを備える。また、ポンプ装置10Aのハウジング26は、樹脂材料等により構成され、ポンプ本体20の外観を構成する本体側ハウジング28と、駆動装置22の外観を構成する駆動側ハウジング30とを含む。
 本体側ハウジング28と駆動側ハウジング30とは、着脱自在に構成され、使用時に相互に組み付けることで、駆動装置22の駆動力をポンプ本体20のインペラ14に伝達可能とする。そして使用後に、ポンプ本体20は駆動装置22から取り外されて廃棄される。つまり、ポンプ本体20は、1回の使用毎に取り替えられて、使い捨て又は滅菌処理されるディスポーザブルタイプに構成される。その一方で、駆動装置22は、リユースタイプに構成され、次の使用機会において、新たなポンプ本体20が取り付けられてこのポンプ本体20のインペラ14を動作させる。
 ポンプ本体20の本体側ハウジング28は、インペラ14が回転自在に収容されると共に、血液の流入及び流出がなされる内部空間32を有する。本体側ハウジング28は、上部側が略円錐状で、下部側が略円筒状に形成されている。
 本体側ハウジング28の上部側の天井部且つ中心には、脱血チューブ16に接続される血液流入ポート34が設けられる。血液流入ポート34の内部には、内部空間32に連通する流入路34aが設けられている。流入路34aは、血液流出ポート36の突出端に設けられた開口34a1に連通すると共に、内部空間32との境界に設けられた流入口34a2に連通する。
 また、本体側ハウジング28の略円筒状の上部側には、送血チューブ18に接続される血液流出ポート36が設けられている。図3に示すように、血液流出ポート36は、略円筒状の外周壁40から接線方向に突出している。血液流出ポート36の内部には、内部空間32に連通する流出路36aが設けられている。流出路36aは、血液流出ポート36の突出端に設けられた開口36a1に連通すると共に、内部空間32との境界に設けられた流出口36a2に連通する。
 図4に示すように、内部空間32は、本体側ハウジング28の外形に応じた形状に形成される。内部空間32の上部側(以下、上空間32aという)には、インペラ14のフィン部60が配置される。上空間32aは、本体側ハウジング28の円錐部分の内面と円筒部分の上側部分の内面とで構成される。また、上空間32aの下部側中心部は、血液流入ポート34の流入口34a2に向かって突出した軸状部38により構成される。
 本体側ハウジング28の略円筒状部分は、円筒状の外周壁40と、本体側ハウジング28の下端部を構成する底壁42と、外周壁40の内側に設けられた上記の軸状部38とを含む。これにより、内部空間32の下部側(以下、下空間32bという)は、円筒状に形成され、後述するインペラ14の従動回転構造部62を回転自在に収容する。
 外周壁40の下部寄りには、固定側反発磁石44が設置されている。固定側反発磁石44は、インペラ14に設けられた後記の可動側反発磁石76との間で相互に反発し合う反発機構84Aを形成する。この固定側反発磁石44の構成については、後に詳述する。
 軸状部38は、円筒状の内周壁48と、内周壁48の上端部に連結される山形部50とを有し、内周壁48及び山形部50の内側に挿入穴52を形成している。下空間32bは、この挿入穴52の側方を周回している。挿入穴52は、下端側が開口しており、ポンプ本体20と駆動装置22の組付け時に駆動側ハウジング30が挿入される。
 軸状部38の山形部50は、円錐状を呈し、その中心部にはインペラ14を回転自在に軸支する軸受部54が設けられている。軸受部54は、金属材料により構成され、山形部50に固定される基部56と、基部56から上方向に突出し基部56よりも細く形成されたピン部58とを有する。軸受部54は、その軸心を延長した場合に、血液流入ポート34の流入口34a2の中心と重なり、この軸心は本体側ハウジング28(軸状部38、外周壁40)の軸心Stとも一致する。すなわち、軸受部54に軸支されるインペラ14の軸心Siは、理想的には本体側ハウジング28の軸心Stと同一となる。
 図1及び図4に示すように、インペラ14は、円筒状に形成され、本体側ハウジング28内で、上空間32aと下空間32bの両方にわたって収容される。インペラ14は、フィン部60を上部に有すると共に、従動回転構造部62を下部に有する。フィン部60及び従動回転構造部62の内側は、軸状部38が配置される空間部64となっている。
 フィン部60は、従動回転構造部62の上端に連なる円錐壁部66と、円錐壁部66の中心で軸受部54に軸支されるシース68と、円錐壁部66の上面から上方向に突出する複数の突出壁部70とを備え、回転時に上空間32aに遠心力を生じさせる。円錐壁部66と一対の突出壁部70とで囲われる空間は、血液が流動する流通路60aとなり、この流通路60aは上部が開放している。なお、フィン部60の形状は、これに限定されず、例えば、突出壁部70の上部に図示しないシュラウドが設けられ、流通路60aが覆われる構成でもよい。
 図5A及び図5Bに示すように、円錐壁部66は、本体側ハウジング28の山形部50よりも急に傾斜し、且つその上面が弓形に湾曲している。そのため、山形部50と円錐壁部66の間には、隙間(以下、上側隙間66aという)が形成される。シース68の周囲の円錐壁部66には、円錐壁部66を貫通する複数(3つ)のウオッシュアウトホール67(図3も参照)が設けられている。ウオッシュアウトホール67は、円錐壁部66よりも上側の上空間32aと上側隙間66aとを連通して血液を流動させる。
 シース68は、円錐壁部66に滑らかに連なると共に、円錐壁部66よりも上方に向かって急激に傾斜する円錐状に形成されることで、突出壁部70よりも上側に突出している。シース68の下部側も、本体側ハウジング28にピン部58が固定される部分(基部56)に向かってテーパ状に突出するテーパ突出部69となっている。テーパ突出部69は、インペラ14の回転停止時に、その先細り端部69aが軸受部54の基部56の上面に狭い範囲で接触する。そしてインペラ14の回転時には、基部56の上面から先細り端部69aが浮上する。
 シース68の中心部には、シース68の軸方向に沿って中空部72が形成されている。中空部72は、ピン部58が挿入されると共に、インペラ14の一方面側の上空間32aと当該一方面と反対面側の上側隙間66aを連通する。
 中空部72は、ピン部58が延在方向全体にわたって挿入される第1中空72aと、第1中空72aの上端に連通すると共に第1中空72aよりも大きな断面積を有する第2中空72bとを有する。すなわち、ピン部58は、インペラ14の回転停止時に、第1中空72aよりも上方に突出している。
 第1中空72aの直径は、軸受部54のピン部58の直径よりも若干大径に設計されている。このため、ピン部58の外周面58aと、第1中空72aを構成するシース68(インペラ14)の内周面68aとの間には、連通用隙間59が形成される。詳細には、第1中空72aの直径が0.8mm~1mmの範囲に設定される一方で、ピン部58の直径が0.7mm~0.9mmの範囲に設定されることが好ましい。また、ピン部58の外周面58aとインペラ14の内周面68aとの間隔は、0.1mm~0.2mmの範囲に設定されるとよい。これにより、連通用隙間59を通して血液をスムーズに流動させることができる。
 第1中空72aの連通用隙間59は、シース68の内側の上側隙間66aと第2中空72bとを連通する。また、第2中空72bは、シース68の上端の開口まで延在する。従って、中空部72は、インペラ14の回転時に、ピン部58の外周面58aとシース68の内周面68aとの間にすべり軸受を形成し、血液を流動させることができる。
 なお、軸受部54とインペラ14の中空部72の構成は、上記に限定されず種々の構成をとり得る。例えば、インペラ14の内周面68aとピン部58の外周面58aのうち少なくとも一方には、親水性コーティングが施されていてもよい。これにより、血液が中空部72(連通用隙間59)に入り込み易くなる。
 図3及び図4に示すように、複数の突出壁部70は、ウオッシュアウトホール67の外側近傍位置から円錐壁部66の外縁付近まで延在している。各突出壁部70は、平面視で、若干湾曲して延在しており、これによりインペラ14の回転時には、流通路60aに入り込んだ血液を径方向外側にスムーズに流動させる。
 インペラ14の従動回転構造部62は、フィン部60の円錐壁部66に連なり、インペラ14の径方向に所定の厚みを有する円筒状に形成されている。インペラ14の平面視で、従動回転構造部62の直径は、例えば、20mm~50mmの範囲に設定される。本実施形態では、直径が30mmのインペラ14を適用している。
 従動回転構造部62は、インペラ14の軸心Siに平行に延在する側周面63(内周面63a、外周面63b)と、本体側ハウジング28の底壁42に対して非接触に対向する下端面とを有する。この従動回転構造部62の内部には、従動磁石74及び可動側反発磁石76が設置されている。
 従動磁石74は、ポンプ本体20と駆動装置22の装着状態で、駆動装置22の駆動磁石92と同一高さ位置に配置され、駆動磁石92との間で磁気カップリング機構104を形成する。より具体的には、従動磁石74は、従動回転構造部62の上部側で、径方向内側(内周面63a)寄りに固定される。また、従動磁石74の軸心に平行な軸方向長さ(厚み)は、駆動磁石92の軸方向長さと略同一に設計されている。
 図6Aに示すように、本実施形態に係る従動磁石74は、インペラ14の軸心Siに対し一定の半径R1で周回する従動側多極着磁リング磁石75に構成されている。従動側多極着磁リング磁石75は、複数のN極及びS極が周方向に沿って交互に並ぶように着磁される。従動側多極着磁リング磁石75の極性数は、図6A中において6つ(すなわち3つの対極)に設定されているが、これに限定されるものではない。
 従動磁石74(従動側多極着磁リング磁石75)を構成する材料としては、例えば、アルニコ、フェライト、ネオジム等の硬質磁性材料があげられる。なお、従動磁石74は、多極着磁リングとして構成されることに限定されず、対極(N極、S極)を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
 図4及び図6Bに示すように、可動側反発磁石76は、従動回転構造部62の下部側で、径方向外側(本体側ハウジング28の外周壁40)寄りに固定される。つまり、従動磁石74の半径R1に対し可動側反発磁石76の半径R2のほうが長い。また、従動磁石74と可動側反発磁石76とは、相互の磁界の影響が抑制されるように従動回転構造部62内で上下に大きく離間している。
 可動側反発磁石76は、インペラ14の軸心Siから所定距離離れた位置を周回する可動側内外周単極着磁リング磁石77に構成されている。可動側内外周単極着磁リング磁石77は、外周部の全周にわたって第1極性(図4中ではS極)を有し、内周部の全周にわたって第1極性と反対の第2極性(図4中ではN極)を有するように着磁されたリング体である。すなわち、可動側反発磁石76の外周面は、周方向に沿って第1極性が常に存在する可動側反発面77aとなっている。
 可動側反発磁石76(可動側内外周単極着磁リング磁石77)を構成する材料は、特に限定されず、従動磁石74であげた材料を適用し得る。なお、可動側反発磁石76も、単極着磁リングとして構成されることに限定されず、内周部と外周部とに対極を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
 また図7に示すように、ポンプ装置10Aは、インペラ14の回転時において、従動回転構造部62の内周面63aと、内周面63aと対向する本体側ハウジング28(軸状部38)の内周壁48の対向面48aとの間に動圧軸受78を形成する。具体的には、内周面63aと対向面48aとの間に形成される第1隙間80が、従動回転構造部62の外周面63bと本体側ハウジング28の外周壁40の内周面40aとの間に形成される第2隙間82よりも小さく形成されている。
 第1隙間80の間隔I1は、流動する流体の粘性にもよるが、例えば流体が血液の場合には0.05mm~0.2mmの範囲に設定される。内周面63a及び対向面48aは、インペラ14や軸状部38の軸心Si、Stに平行であり、従って第1隙間80は、内周面63aと対向面48aが対向する範囲にわたって形成される。インペラ14の軸心Siに沿って内周面63aと対向面48aが対向し合う軸方向の領域は、10mm~100mmの範囲に設定されることが好ましい。
 第1隙間80が上記の範囲内の寸法に設定されていることで、インペラ14が回転した場合に、内周面63aと対向面48aとの間を流動する血液により浮力(動圧力)が発生する。つまり動圧軸受78は、インペラ14の軸心Siと直交するラジアル方向の荷重(ラジアル荷重)を支えるジャーナル軸受として機能する。例えば、動圧軸受78は、インペラ14が3000rpm以上で回転した際の第1隙間80を流動する血液により、軸状部38に対しインペラ14を確実に非接触とする。一方、第2隙間82の間隔I2は、例えば0.8mm~1.2mmの範囲に設定される。
 このように、インペラ14は、シース68において軸受部54に軸支される箇所と、従動回転構造部62において軸状部38に軸支される箇所とを有する。これによりインペラ14の回転時に、インペラ14の軸心Siが本体側ハウジング28(軸状部38)の軸心Stに対して傾くことが確実に抑制される。
 そして、インペラ14の従動回転構造部62に対向する外周壁40には、上述したように固定側反発磁石44が設置される。図4及び図6Bに示すように、固定側反発磁石44は、可動側反発磁石76よりも径方向外側且つ若干上方に位置している。すなわち、固定側反発磁石44は、本体側ハウジング28(外周壁40)の軸心Stから最も離れた位置に配置されている。この固定側反発磁石44は、本体側ハウジング28の軸心Stから最も長い半径R3で周回する固定側内外周単極着磁リング磁石45に構成されている。
 固定側内外周単極着磁リング磁石45は、外周部の全周にわたって第1極性(図4中ではN極)を有し、内周部の全周にわたって第1極性と反対の第2極性(図4中ではS極)を有するように着磁されたリング体である。すなわち、固定側反発磁石44の内周面は、可動側反発磁石76の極性と同じ極性が周方向に沿って常に存在する固定側反発面45aとなっている。
 この固定側反発磁石44を構成する材料も特に限定されず、従動磁石74であげた材料を適用し得る。なお、固定側反発磁石44も、単極着磁リングとして構成されることに限定されず、内周部と外周部とに対極を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
 上記の可動側反発磁石76と固定側反発磁石44とで構成される反発機構84Aは、外周壁40からインペラ14(可動側反発磁石76)に向かって径方向内側且つ下方向に押し出す反発力(斥力)を生じさせる。つまりインペラ14は、反発機構84Aにより流入口34a2から離間して軸受部54に押しつけられると共に、周方向全体で径方向内側に押し付けられる力を受ける。反発機構84Aの反発力は、磁気カップリング機構104の引力よりも大きく設定されている。
 そして、本実施形態に係る反発機構84Aは、その周方向上において異なる反発力を生じさせる。詳細には図8に示すように、固定側反発磁石44は、固定側反発磁石44の軸心Sfに沿った軸方向長さが一定で環状に延在する本体部分46と、本体部分46の一部分から下側に突出する凸部分47とを有する。凸部分47は、内部空間32に連通する血液流出ポート36の流出口36a2の形成箇所に対し、軸心Sfを挟んで反対側に配置される(図3も参照)。
 ここで、血液流出ポート36の流出口36a2付近は、内部空間32から血液流出ポート36に血液を流出する内部空間32のアウトフロー側となる。既述したように、アウトフロー側は、血液が流出することで、その圧力が他の箇所よりも低くなる。特に内部空間32に血液が多量に流動すると、内部空間32の圧力分布に大きな不均衡が生じる。従来のポンプ装置では、このアウトフロー側の圧力低下に伴い、回転中のインペラのアウトフロー側が下方向に押し込まれる一方で、軸心Siを挟んだアウトフロー側と反対側が上方向に上がる傾斜姿勢となってしまい、インペラの回転が不安定になる。
 これに対し図3、図4及び図8に示すように、ポンプ装置10Aでは、本体側ハウジング28に設置される固定側反発磁石44の凸部分47を、軸心Siを挟んだアウトフロー側(以下、第1領域86という)と反対側(以下、第2領域88という)に配置している。第1領域86及び第2領域88の範囲は、流出口36a2とインペラ14、本体側ハウジング28の軸心Si、Stを結ぶ仮想線Lを引いた場合に、固定側反発磁石44と仮想線Lの交点を含み、交点から周方向両側に全周長の1/10程度にわたる範囲を言う。
 これにより、第1領域86の固定側反発磁石44の本体部分46と回転中の可動側反発磁石76との第1距離D1に対し、第2領域88の固定側反発磁石44の凸部分47と回転中の可動側反発磁石76との第2距離D2のほうが短くなる。そのため、第1領域86の周辺部における反発機構84Aaの反発力に対し、第2領域88の周辺部における反発機構84Abの反発力のほうが大きくなる。反発機構84Abによって、インペラ14の第2領域88は、他の箇所(凸部分47が存在しない本体部分46の箇所)よりも下方向に強く押されることで、インペラ14が傾斜姿勢となることが抑制される。
 凸部分47が本体部分46から突出する突出量は、反発機構84Aaに対する反発機構84Abの反発力を勘案して適切に設計されればよい。例えば、本体部分46の厚みに対する凸部分47の厚みは、0.1~1倍に設定されるとよい(すなわち、第2領域88の固定側反発磁石44の厚みは、第1領域86の固定側反発磁石44の厚みの1.1~2倍に設定される)。
 また、固定側反発磁石44の凸部分47の円弧長は、特に限定されるものではないが、環状に形成される固定側反発磁石44の周長の1/4~1/8程度の寸法であるとよい。さらにポンプ装置10Aの側面断面視で、凸部分47の下端は、インペラ14が水平の場合(インペラ14の軸心Siが軸状部38の軸心Stに一致している状態)の可動側反発磁石76の上端よりも下側に配置される。その一方で、本体部分46の下端は、インペラ14が水平の場合の可動側反発磁石76の上端よりも上側に配置される。
 図2及び図4に示すように、ポンプ装置10Aの駆動装置22は、駆動側ハウジング30と、駆動側ハウジング30内に収容されるモータ機構90とを備える。さらに、駆動装置22は、モータ機構90に設けられてインペラ14との間で引き合う駆動磁石92を有する。
 駆動側ハウジング30は、ポンプ本体20(本体側ハウジング28)を装着する円筒状の装着溝94を上面に有する上側筐体30aと、上側筐体30aの下側に連結される下側筐体30bとで構成されている。また、駆動側ハウジング30の装着溝94よりも径方向内側部分は、本体側ハウジング28の挿入穴52に挿入される中央凸部96となっている。
 そして、ポンプ本体20の本体側ハウジング28と、駆動装置22の駆動側ハウジング30とは、相互に着脱自在に位置決め固定可能な係合構造98を有する。本実施形態において、係合構造98は、本体側ハウジング28の挿入穴52に中央凸部96を挿入し、且つ本体側ハウジング28の底壁42を装着溝94に挿入することで、両装置を係合させる。なお、係合構造98は、種々の構成を採用してよいことは勿論である。
 下側筐体30bの内部には、モータ機構90のモータ本体90aが設けられ、モータ本体90aは、制御部24の制御下に軸部100を適宜の回転速度で回転させる。軸部100は、モータ本体90aから突出して中央凸部96内の突出空間に挿入され、その上端部には径方向外側に突出する円盤状の回転部102が設けられている。ポンプ本体20と駆動装置22の装着状態では、インペラ14の軸心Siと軸部100の軸心Ssが相互に重なる。
 回転部102は、側面断面視で、径方向外側の外周面を部分的に切り欠いた保持部102aを有し、この保持部102aに駆動磁石92を保持している。つまり、回転部102は、駆動側ハウジング30内で駆動磁石92を所定の径方向位置及び高さ位置(中央凸部96内)に配置して、軸部100の回転に連れて駆動磁石92を回転させる。
 図6Aに示すように、本実施形態に係る駆動磁石92は、軸部100の軸心Ssに対し従動磁石74よりも短い半径R4で周回する駆動側多極着磁リング磁石93に構成されている。駆動側多極着磁リング磁石93は、従動磁石74と同様に、複数(6つ)の極性(N極、S極)が周方向に沿って交互に並ぶように着磁されている。駆動磁石92は、ポンプ本体20と駆動装置22の装着状態で、従動磁石74の内側で従動磁石74と対向配置されることで、従動磁石74との間に磁気カップリング機構104を形成する。
 駆動磁石92を構成する材料は、従動磁石74であげた材料を適宜選択し得る。また、駆動磁石92も、多極着磁リングとして構成されることに限定されず、対極(N極、S極)を有する円弧状の磁石を、周方向に複数並べることでリング状に形成されていてもよい。
 図2に戻り、ポンプ装置10Aの制御部24(Controller)は、図示しない入出力インタフェース、メモリ及びプロセッサを有する周知のコンピュータにより構成され、モータ機構90の駆動を制御する。制御部24の外面には、図示しないモニタ、スピーカ、操作ボタン等が設けられており、医師や看護士等のユーザは、操作ボタンを操作することで、ポンプ装置10Aの駆動内容を設定する。制御部24は、ユーザの設定情報に基づき、バッテリの電力の供給を制御して、例えば0~10000rpmの範囲で軸部100を回転させる。
 本実施形態に係るポンプ装置10Aは、基本的には以上のように構成されるものであり、以下その動作について説明する。
 ポンプ装置10Aを含む人工心肺装置12は、心肺機能を補助する患者に対して構築される。人工心肺装置12の構築時に、ユーザは、ポンプ本体20の血液流入ポート34に脱血チューブ16を接続し、ポンプ本体20の血液流出ポート36に送血チューブ18を接続する。ここで、ポンプ本体20の可動側反発磁石76と固定側反発磁石44とは、同一極性の可動側反発面77aと固定側反発面45aが相互に近接していることで、反発機構84Aを構成している。このため、インペラ14は本体側ハウジング28の底壁42側に押し付けられ、ポンプ本体20の持ち運び時等にインペラ14のシース68が軸受部54から抜けることを抑制することができる。そして図2に示すように、駆動装置22に対しポンプ本体20を装着することで、ポンプ装置10Aが組み立てられる。この際、係合構造98はポンプ本体20と駆動装置22を相互に位置決め固定する。
 図4及び図6Aに示すように、装着状態では、従動磁石74、駆動磁石92が同一の高さ位置に配置される。径方向に隣接する従動磁石74(従動側多極着磁リング磁石75)と駆動磁石92(駆動側多極着磁リング磁石93)は、異なる極性同士を相互に対向させて磁気カップリング機構104を形成する。すなわち、従動側多極着磁リング磁石75と駆動側多極着磁リング磁石93は、磁気カップリング力(磁気的結合力)を生じさせ、回転部102の回転力をインペラ14に伝達可能とする。
 従って、駆動装置22のモータ機構90が、軸部100を回転させると従動回転構造部62が連れ回りして、本体側ハウジング28内でインペラ14を回転させることができる。そして、上空間32a内で回転するフィン部60は、遠心力を生じさせて血液を流動させる。
 図9に示すように、インペラ14の回転時に、流入路34aから内部空間32に流入した血液は、上空間32aの径方向外側から下空間32bに回り込む。そして、血液は、外周壁40の内周面40aと従動回転構造部62の外周面63bの第2隙間82を下方に流動すると、下空間32bの下端側で径方向内側に向かう。さらに血液は、軸状部38の対向面48aと従動回転構造部62の内周面63aとの間の第1隙間80を上方に流動して上側隙間66aに至る。
 上側隙間66aに流動した血液の一部は、インペラ14の複数のウオッシュアウトホール67を通って上空間32aに移動する(図5B参照)。さらに血液の他部は、軸受部54から浮上しているシース68の中空部72(第1中空72a、第2中空72b)を通って上空間32aに移動する。つまり軸受部54とシース68とは、回転時に非接触状態を可及的に保つことで、摩擦熱の発生を抑制して血液を良好に流動させることが可能となる。
 また、ポンプ本体20の可動側反発磁石76(可動側内外周単極着磁リング磁石77)と固定側反発磁石44(固定側内外周単極着磁リング磁石45)は、周方向全体で均等的に反発力をかける。さらに、インペラ14の回転時にインペラ14の下部側に回り込む血液によって、流入口34a2側にインペラ14が浮上しようとしても反発機構84Aの反発力を受けるので、インペラ14の浮上を確実に抑制することができる。
 特に、インペラ14の軸心Siが本体側ハウジング28の軸心Stと一致した状態では、凸部分47を有する固定側反発磁石44と可動側反発磁石76が回転中のインペラ14の第2領域88に強い反発力をかける。このため、流出路36aからの血液の流出に伴い、内部空間32の流出口36a2側が低い圧力になっても、反発機構84Abがインペラ14の第2領域88側の上昇(傾斜)を押さえ込む。よって、ポンプ装置10Aは、インペラ14と本体側ハウジング28との非接触状態を保ちつつインペラ14を安定的に回転させて、血液を良好に流動させることができる。
 また、本体側ハウジング28の軸状部38の対向面48aとインペラ14の内周面63aとの間の第1隙間80は、インペラ14の回転中に(例えば3000rpm以上で)、ラジアル荷重を受ける動圧軸受78を形成する。これによりインペラ14の回転姿勢をより安定的に保って、インペラ14の軸心Siを本体側ハウジング28の軸心Stに一致させることができ、軸受部54にかかる負担を軽減することが可能となる。
 なお、本発明は、上述の実施形態に限定されず、発明の要旨に沿って種々の改変が可能である。例えば、磁気カップリング機構104や反発機構84Aの位置関係は特に限定されるものではない。一例として、反発機構84Aは、磁気カップリング機構104の上側に位置していてもよく、また磁気カップリング機構104の径方向内側に位置していてもよい。固定側反発磁石44は、ポンプ本体20(本体側ハウジング28)に設けられるだけでなく、駆動装置22(駆動側ハウジング30)に設けられていてもよい。
 また、反発機構84Aにおいて異なる反発力を発生させる手段は、固定側反発磁石44に凸部分47を設けることに限定されるものではない。例えば、固定側反発磁石44は、凸部分47を備えずに本体部分46により構成され、第1領域86の材料と第2領域88の材料を変えることで、第1領域86の磁力よりも第2領域88の磁力が大きくなるように構成してもよい。また例えば、固定側反発磁石44は、凸部分47を備えずに本体部分46により構成され、第2領域88以外の周方向箇所に磁力を抑制する部材を配置してもよく、或いは第2領域88に軟磁性体等の磁力誘導体を配置してもよい。
 ジャーナル軸を構成する動圧軸受78は、第2隙間82(インペラ14の外周面63bと外周壁40の内周面40aの間)に形成されてもよい。また動圧軸受78は、インペラ14の側周面63とハウジング26の対向面48aのいずれか一方に凹部(溝、切り欠き等)を設けることで、動圧力を増加させてもよい。動圧軸受78は、インペラ14の軸心Siに沿った側周面63と対向面全体に形成されることに限定されず、例えば、インペラ14の側周面63の下部寄りに形成されてもよい。
 以下、他の実施形態について幾つか例示する。なお、以降の説明において、上述の実施形態と同じ構成又は同じ機能を有する要素には、同じ符号を付してその詳細な説明を省略する。
〔第2実施形態〕
 第2実施形態に係るポンプ装置10Bは、図10に示すように、本体側ハウジング28の軸心St(インペラ14の軸心Si)に対し環状の固定側反発磁石44の軸心Sfを傾斜させて反発機構84Bを構成している点で、上記のポンプ装置10Aと異なる。また、固定側反発磁石44は、上記の凸部分47を備えずに環状の本体部分46のみを備え、断面視で一定の大きさの方形状で周方向に延在している。
 具体的には、固定側反発磁石44の軸心Sfは、外周壁40内において第1領域86側よりも第2領域88側が下方側に低くなるように(固定側反発磁石44が可動側反発磁石76に近づく方向に)僅かに傾斜している。例えば、本体側ハウジング28の軸心Stに対する固定側反発磁石44の軸心Sfの傾斜角度は、5°以下であることが好適であり、より好ましくは0.5°~3°の範囲に設定されるとよい。このように固定側反発磁石44を傾斜して設置することでも、第2領域88側の可動側反発磁石76と固定側反発磁石44の第2距離D2は、第1領域86側の可動側反発磁石76と固定側反発磁石44の第1距離D1よりも短くなる。
 以上のように構成されたポンプ装置10Bは、インペラ14の回転時に、第1領域86の反発機構84Baの反発力よりも第2領域88の反発機構84Bbの反発力が大きくなる。このため、ポンプ装置10Bは、内部空間32のアウトフロー側の圧力が低くなっても、インペラ14の軸心Siと本体側ハウジング28の軸心Stとを安定的に一致させることができる。従って、ポンプ装置10Bは、第1実施形態に係るポンプ装置10Aと同様の効果が得られる。特に、このポンプ装置10Bは、固定側反発磁石44の構造が簡素化し、製造コストを抑制することが可能となる。
〔第3実施形態〕
 第3実施形態に係るポンプ装置10Cは、図11に示すように、本体側ハウジング28の軸心Stに対し、環状の固定側反発磁石44の軸心Sfをオフセットさせて反発機構84Cを構成している点で、上記のポンプ装置10A、10Bと異なる。また固定側反発磁石44は、第2実施形態と同様に、凸部分47を備えずに環状の本体部分46のみを備え、断面視で一定の大きさの方形状で周方向に延在している。
 具体的には、固定側反発磁石44は、その軸心Sfが本体側ハウジング28の軸心Stに対し第1領域86側に寄るようにずれて配置される。例えば、本体側ハウジング28の軸心Stに対する固定側反発磁石44の軸心Sfのオフセット量は、1.5mm以下であると好適であり、より好ましくは0.1mm~1mmの範囲に設定されるとよい。これにより、第1領域86側の固定側反発面45aよりも第2領域88側の固定側反発面45aが、外周壁40内の内周面40a(内部空間32)の近くに配置される。
 このように固定側反発磁石44を設置することでも、やはり第2領域88側の可動側反発磁石76と固定側反発磁石44の第2距離D2が、第1領域86側の可動側反発磁石76と固定側反発磁石44の第1距離D1よりも近くなる。従って、ポンプ装置10Cも、インペラ14の回転時に、やはり第1領域86の反発機構84Caの反発力よりも第2領域88の反発機構84Cbの反発力が大きくなるので、第1及び第2実施形態に係るポンプ装置10A、10Bと同様の効果が得られる。
〔第4実施形態〕
 第4実施形態に係るポンプ装置10Dは、図12に示すように、第1隙間80の間隔I1を長くすることで、インペラ14の内周面63aと対向面48aの間に動圧軸受78を形成しない構成としている点で、ポンプ装置10A~10Cと異なる。すなわちポンプ装置10Dは、動圧軸受78を形成しなくても、反発機構84A~84Cの反発力を適切に設定することによりインペラ14の姿勢を安定的に保つことが可能である。
〔第5実施形態〕
 第5実施形態に係るポンプ装置10Eは、図13に示すように、固定側反発磁石44を環状の本体部分46のみで構成する一方で、動圧軸受78によってインペラ14の傾斜を抑制する構成となっている点で、ポンプ装置10A~10Dと異なる。すなわち、固定側反発磁石44、可動側反発磁石76とは、周方向に等間隔D’に離間することで均等な反発力を働かせる反発機構84Dを構成している。このように、ポンプ装置10Eは、反発機構84A~84Cによりインペラ14の周方向上の反発力を変化させなくても、動圧軸受78の動圧力を適切に働かせることでインペラ14の姿勢を安定的に保つことも可能である。
〔第6実施形態〕
 第6実施形態に係るポンプ装置10Fは、図14Aに示すように、インペラ14のシース68に形成した中空部72に凸部106(羽体)を設けた点で、上記のポンプ装置10A~10Eと異なる。中空部72の凸部106は、インペラ14の回転時に中空部72を流動する血液に流動力を付与することで、血液をより円滑に流動させることができる。なお、中空部72において血液に流動力を付与する構成は、凸部106に限らず、図14Bに示すように、凹部108(溝)でもよい。例えば、螺旋状の凹部108が形成されていることで、血液を軸方向に流動させることができる。
 上述の実施形態から把握し得る技術的思想及び効果について、以下に記載する。
 ポンプ装置10A~10Fは、インペラ14の中空部72と軸受部54のピン部58との間に隙間(連通用隙間59)を形成することで、ピン部58に軸支されてインペラ14が回転する際に、内部空間32の流体(血液)が中空部72を通過することになる。インペラ14の回転に伴って軸受部54又は軸受部54周辺のインペラ14には熱が生じるが、流体の流動によって軸受部54やインペラ14が冷却されることになる。これによりインペラ14の回転時の熱による流体への影響(例えば、流体が血液の場合は熱による血栓の発生)を抑制することができる。従って、ポンプ装置10A~10Fは、熱の影響を受けることによる流体の滞留等を抑制して、流体を良好に流動させポンプ機能を安定的に維持することができる。
 また、インペラ14の内周面68aとピン部58の外周面58aとの間隔が、0.1mm~0.2mmの範囲に設定される。これにより、ポンプ装置10A~10Fは、ピン部58によるインペラ14の軸支を良好に行いつつ、中空部72を通して流体をスムーズに流動させることができる。
 また、中空部72の直径が0.8mm~1mmの範囲に設定され、ピン部58の直径が0.7mm~0.9mmの範囲に設定される。これにより、インペラ14とピン部58の対向し合う範囲が可及的に少なくなり、熱の発生を一層抑制することができる。
 また、中空部72は、ピン部58が延在方向全体にわたって挿入される第1中空72aと、第1中空72aに連通すると共に当該第1中空72aより大きな断面積を有する第2中空72bとを含む。ポンプ装置10A~10Fは、中空部72が第1中空72aと第2中空72bとを含むことで、ピン部58と第1中空72aの間を通った流体が第2中空72bで拡がり、中空部72内で流体をよりスムーズに流動させることができる。
 また、インペラ14は、ハウジング26にピン部58が固定される部分に向かってテーパ状に突出するテーパ突出部69を有する。このようにテーパ突出部69を有することで、ポンプ装置10A~10Fは、軸受部54や軸受部54周辺のハウジング26に対するインペラ14の接触範囲を可及的に減らすことができる。従って、ポンプ装置10A~10Fは、インペラ14の回転が少なくインペラ14が浮上していない段階でも回転時の熱を抑制することが可能となる。
 また、中空部72は、中空部72を流動する流体に流動力を付与する凸部106又は凹部108を有する。これにより、インペラ14は、中空部72において流体をより一層スムーズに流動させることができる。
 また、インペラ14の内周面68aとピン部58の外周面58aのうち少なくとも一方には、親水性コーティングが施されている。このように親水性コーティングが施されていることで、中空部72内に流体を容易に導くことができ、軸受部54や軸受部54周辺のインペラ14の熱を良好に抑制することができる。

Claims (7)

  1.  インペラと、
     前記インペラを収容する内部空間、及び前記インペラを回転自在に軸支する軸受部を有するハウジングとを備えるポンプ装置であって、
     前記軸受部は、前記ハウジングから突出するピン部を備え、
     前記インペラは、前記ピン部が挿入されると共に、前記内部空間の一部を構成する前記インペラの一方面側の第1空間と当該一方面と反対面側の第2空間を連通する中空部を有し、
     前記中空部を構成する前記インペラの内周面と前記ピン部の外周面との間には、前記内部空間の流体を流動させる隙間が形成される
     ポンプ装置。
  2.  請求項1記載のポンプ装置において、
     前記インペラの内周面と前記ピン部の外周面との間隔が、0.1mm~0.2mmの範囲に設定される
     ポンプ装置。
  3.  請求項2記載のポンプ装置において、
     前記中空部の直径が0.8mm~1mmの範囲に設定され、
     前記ピン部の直径が0.7mm~0.9mmの範囲に設定される
     ポンプ装置。
  4.  請求項1~3のいずれか1項に記載のポンプ装置において、
     前記中空部は、前記ピン部が延在方向全体にわたって挿入される第1中空と、前記第1中空に連通すると共に当該第1中空より大きな断面積を有する第2中空とを含む
     ポンプ装置。
  5.  請求項1~4のいずれか1項に記載のポンプ装置において、
     前記インペラは、前記ハウジングに前記ピン部が固定される部分に向かってテーパ状に突出するテーパ突出部を有する
     ポンプ装置。
  6.  請求項1~5のいずれか1項に記載のポンプ装置において、
     前記中空部は、前記中空部を流動する流体に流動力を付与する凸部又は凹部を有する
     ポンプ装置。
  7.  請求項1~6のいずれか1項に記載のポンプ装置において、
     前記インペラの内周面と前記ピン部の外周面のうち少なくとも一方には、親水性コーティングが施されている
     ポンプ装置。
PCT/JP2020/005607 2019-02-19 2020-02-13 ポンプ装置 WO2020170942A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021501918A JP7422730B2 (ja) 2019-02-19 2020-02-13 ポンプ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-027059 2019-02-19
JP2019027059 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020170942A1 true WO2020170942A1 (ja) 2020-08-27

Family

ID=72144912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005607 WO2020170942A1 (ja) 2019-02-19 2020-02-13 ポンプ装置

Country Status (2)

Country Link
JP (1) JP7422730B2 (ja)
WO (1) WO2020170942A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024434A (ja) * 2001-07-12 2003-01-28 National Institute Of Advanced Industrial & Technology 動圧軸受を備えた人工心臓ポンプ
WO2007063843A1 (ja) * 2005-11-29 2007-06-07 Japan Medical Materials Corporation 血液ポンプ
US20120089225A1 (en) * 2010-10-07 2012-04-12 EverHeart Systems LLC High efficiency blood pump
JP2013064327A (ja) * 2011-09-15 2013-04-11 Mitsubishi Heavy Ind Ltd 磁気カップリングポンプ及びこれを備えているポンプユニット
WO2016125313A1 (ja) * 2015-02-06 2016-08-11 株式会社サンメディカル技術研究所 血液ポンプのパージ液循環装置及び補助人工心臓システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024434A (ja) * 2001-07-12 2003-01-28 National Institute Of Advanced Industrial & Technology 動圧軸受を備えた人工心臓ポンプ
WO2007063843A1 (ja) * 2005-11-29 2007-06-07 Japan Medical Materials Corporation 血液ポンプ
US20120089225A1 (en) * 2010-10-07 2012-04-12 EverHeart Systems LLC High efficiency blood pump
JP2013064327A (ja) * 2011-09-15 2013-04-11 Mitsubishi Heavy Ind Ltd 磁気カップリングポンプ及びこれを備えているポンプユニット
WO2016125313A1 (ja) * 2015-02-06 2016-08-11 株式会社サンメディカル技術研究所 血液ポンプのパージ液循環装置及び補助人工心臓システム

Also Published As

Publication number Publication date
JP7422730B2 (ja) 2024-01-26
JPWO2020170942A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2020255499A1 (ja) ポンプ装置
US11686318B2 (en) Centrifugal blood pump device
US5055005A (en) Fluid pump with levitated impeller
EP3477103B1 (en) Rotary blood pump
AU712484B2 (en) Bearing and seal-free blood pump
US20140179983A1 (en) Stabilizing drive for contactless rotary blood pump impeller
JPH09313600A (ja) 遠心式液体ポンプ装置
JP2022545590A (ja) インターベンション式心室補助装置
WO2015098708A1 (ja) 遠心ポンプ
JP2005287599A (ja) 遠心式血液ポンプ装置
WO2015098710A1 (ja) 遠心ポンプ
WO2020170942A1 (ja) ポンプ装置
WO2020170941A1 (ja) ポンプ装置
JP7149875B2 (ja) ポンプ装置
JP7123059B2 (ja) ポンプ装置
JP7355502B2 (ja) ポンプ装置
JP7050534B2 (ja) ポンプ装置
WO2022019201A1 (ja) ポンプ装置
JP2019058442A (ja) ポンプ装置
AU2012261669A1 (en) Rotary blood pump
JP2605192B2 (ja) 血液ポンプ
JP2019154574A (ja) ポンプ装置
JP2003093500A (ja) 血液ポンプ
JP2023083012A (ja) マグネットカップリング式駆動装置並びにこれを用いた送風装置及びミスト発生装置
JP2003079720A (ja) 血液ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759547

Country of ref document: EP

Kind code of ref document: A1