WO2007063843A1 - 血液ポンプ - Google Patents

血液ポンプ Download PDF

Info

Publication number
WO2007063843A1
WO2007063843A1 PCT/JP2006/323708 JP2006323708W WO2007063843A1 WO 2007063843 A1 WO2007063843 A1 WO 2007063843A1 JP 2006323708 W JP2006323708 W JP 2006323708W WO 2007063843 A1 WO2007063843 A1 WO 2007063843A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
blood pump
group
hydrophilic group
polymer film
Prior art date
Application number
PCT/JP2006/323708
Other languages
English (en)
French (fr)
Inventor
Noriyuki Shintani
Michihiro Yokokawa
Hikaru Nakanishi
Original Assignee
Japan Medical Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Medical Materials Corporation filed Critical Japan Medical Materials Corporation
Priority to JP2007547947A priority Critical patent/JP5130052B2/ja
Publication of WO2007063843A1 publication Critical patent/WO2007063843A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0467Spherical bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/825Contact bearings, e.g. ball-and-cup or pivot bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/845Constructional details other than related to driving of extracorporeal blood pumps
    • A61M60/849Disposable parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the present invention relates to an improvement in a blood pump for acting or assisting the blood circulation function of a heart in an oxygenator.
  • Centrifugal blood pumps are used in blood pumps in artificial heart-lung machines.
  • An example is shown in Fig. 1.
  • the centrifugal blood pump 1 is rotatably supported by an impeller 2 in a pump casing 10, and the impeller 2 has a conical rotor 21 and its rotating shaft 20, and the inner surface of the casing is disposed on the conical surface of the rotor.
  • a plurality of fins 22 facing toward the side are planted in the centrifugal direction.
  • a blood inlet 41 communicating with the top of the rotor 21 is connected near the top of the casing 10, and a blood outlet 42 leading to the bottom of the rotor 2 is disposed on the outer peripheral side of the bottom 3 of the casing.
  • the inflow port 41 and the outflow port 42 are connected to different blood pipes.
  • Some centrifugal pumps employ a system in which a rotor is driven to rotate by a rotating magnetic field generated by rotation of a magnet 51 outside the pump.
  • the magnet 5 is fixed near the bottom of the rotor, and the impeller 2 is rotated by the magnetic force between the external rotating magnet 51 and the magnet 5.
  • this external magnetic field drive method there is no need to extend the rotor shaft out of the casing, so the rotor 21 is rotatably held by bearings 61 fixed at the upper and lower ends of the shaft inside the casing.
  • Such a centrifugal blood pump is continuously accelerated from the outlet 42 by being accelerated in the centrifugal direction of the rotor by the rotation of the fins 22 on the rotor 21 of the blood force impeller 2 sucked from the inlet 41. Are exhausted.
  • the rotor receives a pressure pushing the inflow side, that is, the top side, so A force is received between the top end of the shaft 62 and the bearing portion 61 on the top side.
  • the rotor 21 exerts a downward force due to the attractive force between the rotating magnet 51 and the magnet 5 of the rotor. Therefore, the pressure received on the upper end side of the shaft 62 on the top side of the casing is canceled out. If this magnetic force is sufficiently large, the shaft 62 and the bearing 61 are connected to the pivot 6b on the casing bottom 3 side. (See Fig. 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-102604
  • this type of blood pump is a disposable type that is used only once and needs to be manufactured at a low cost as much as possible.
  • the bearing unit manufactured by ultra high molecular weight polyethylene is only expensive. There is a difficulty in the processability.
  • the blood pump shown in FIG. 4 has a large contact area for the purpose of reducing the pressure between the shaft and the bearing surface in order to reduce the amount of wear on the shaft. That is, the curvature of the shaft and the bearing is 1.5 or less (R ⁇ 1.5r), the bearing is made into a deep dish shape, In this case, the contact area between the shaft and the bearing surface is designed to be large. However, simply increasing the contact area is likely to help increase blood cell damage. Means for solving the problem
  • the present invention has a pump casing and a rotor that is rotatably supported in the casing via a shaft, and a plurality of fins facing the casing inner surface side of the rotor are arranged in the centrifugal direction.
  • a disposable blood pump characterized in that it is made of polyethylene and at least a sliding surface thereof is coated with a polymer film having a hydrophilic group.
  • the high-density polyethylene used in the present invention has a density in the range of 0.948-0. 980 gZcm 3 , preferably 0.9952 g / cm 3 or more. % Or less.
  • the polymer film having a hydrophilic group used in the present invention is selected from the group consisting of carboxyl group, sulfonic acid group, phosphoric acid group, amino group, phospholipid polar group, amide group, polyalcohol and polyether force. Those having a hydrophilic group formed are preferred.
  • a polymer film having a hydrophilic group is a polymer film having a functional group that supplies a wettable property that is compatible with water.
  • Contact angle of water contact angle of water
  • the initial torque will be 1. ONm or less, and the deformation after 2 weeks will be below the limit value that will hinder.
  • a wear-resistant bearing part and a shaft shaft comparable to ultra-high molecular weight polyethylene can be formed.
  • An inexpensive and durable disposable blood pump can be manufactured. Since the bearing portion for bearing the shaft shaft of the impeller can be formed with a curvature between the shaft and the bearing in the range of 1.6 to 25, blood damage can be suppressed.
  • either the shaft or the bearing member thereof can be formed of a hard metal or a ceramic material. Further, both of them can be constituted by the high-density polyethylene and a polymer film having a hydrophilic group.
  • the blood pump of the present invention has a weight average molecular weight of 5 to 80 10 4 , preferably 10 to 30 10 4 , and a density of 0.948 to 0 on the shaft or bearing portion of the pivot that supports the impeller.
  • 9 80 gZcm 3 preferably 0.9952 g / cm 3 or more, formed with high-density polyethylene with the deformation amount being 1.8% or less, and covered with a polymer film having a hydrophilic group at the sliding part Therefore, the bearing life can be improved under the special condition that the hydrophilicity of the polymer film is in the blood, the failure caused by the bearing during use of the pump can be prevented, and the reliability of the blood pump can be improved. it can.
  • the other member of the pivot is made of a hard material such as metal or ceramics and has the required hardness and surface roughness, it is compatible with a polymer film having a hydrophilic group and has improved wear resistance. Effective in reducing the coefficient of friction, and effective in increasing the bearing life of blood pumps Brief Description of Drawings
  • FIG. 1 shows a cross-sectional view of a centrifugal blood pump.
  • FIG. 2 is a partial sectional view of a pivot used in the centrifugal blood pump of the present invention.
  • FIG. 3 is a schematic diagram showing a system for blood pump performance test.
  • FIG. 4 shows a partial cross-sectional view of a conventional centrifugal blood pump pivot.
  • the high-density polyethylene has a weight average molecular weight of 5 to 80 ⁇ 10 4 , preferably 10 to 30 ⁇ 10 4 , and a force S, a melting force (.C). 130—137, density 0.9952—0.965 g / cm 3 , tensile modulus (GPa) O. 4-4.0, tensile yield strength (MPa) 26—33, tensile breaking strength (MPa) 22—31 Tensile elongation at break (%) 10-1200, Izod impact strength 21-21-4, crystallinity (%) 60-80 can be advantageously used.
  • This high-density polyethylene has a creep deformation amount of 1.8% in accordance with ASTM D621.
  • the amount of creep deformation required for polyethylene materials refers to the amount of deformation when 90 min elapses after unloading while holding a static compressive stress of 7 MPa for 24 hours.
  • the amount of deformation is set to 1.8% or less because the contact area between the shaft and the bearing becomes large, and blood cell damage is likely to occur in a material whose deformation amount exceeds 1/8%. It is.
  • this material preferably has an ASTM D621 deformation of 1.5% or less.
  • the high-density polyethylene has a weight average molecular weight of 5 to 80 X 10 4 , preferably 10 to 30 X 10 4 , and its density force of 0.948 to A material having a range of 980 g / cm 3 and a deformation amount of 1.8% or less is employed. High density polyethylene having such characteristics is particularly excellent in terms of deformation resistance.
  • High-density polyethylene can be further strengthened by making it a cross-linked polyethylene formed by irradiation with radiation, and can improve creep resistance. Polyethylene by radiation cross-linking has less creep deformation and wear resistance. Will improve. Cross-linking by radiation is done by irradiation with radiation doses of 25 kGy or more, particularly preferably by gamma rays. Radiation exposure
  • the bearing or shaft formed in advance in the required shape with high-density polyethylene may be directly applied under conditions that block oxygen in the air. It is also planned.
  • the sliding surface of the bearing portion or the shaft shaft is made of a polymer film having a hydrophilic group, thereby obtaining a sliding effect with high wear resistance.
  • the specific chemical structure of the polymer membrane having alkenyl group is not specified, but from the group consisting of carboxynole group, sulfonic acid group, phosphoric acid group, amino group, phospholipid polar group, amide group, polyalcohol and polyether.
  • a polymer membrane having a selected hydrophilic group is desirable.
  • hyaluronic acid polybulal alcohol, polybulurpyrrolidone, polyethylene oxide, polyalginic acid, phospholipid-like polymer, hydroxyethyl methacrylate, and methacrylic acid are particularly desirable.
  • a method of imparting a polymer having a hydrophilic group to the surface of high-density polyethylene a method of directly polymerizing a monomer and grafting, a method of previously synthesizing and imparting a polymer having a hydrophilic group
  • a method of previously synthesizing a polymer having a hydrophilic group having a crosslinking ability covering the substrate, and then immobilizing it on the surface by a crosslinking reaction.
  • the method of bonding a polymerizable monomer having a property can modify only the surface of a polymer material without degrading the performance such as strength of the high molecular material, and the bonding portion is chemically stable.
  • a hydrophilic group can be formed on the sliding surface of the blood pump to sufficiently hold the lubricating liquid.
  • a monomer having a phospholipid polar group as shown in the following chemical formula 1 is preferable.
  • Examples include 2-methacryloyloxyethyl phosphorylcholine, 2-ataryloxyxetyl phosphorylcholine, 4-methacryloyloxybutyl phosphorylcholine, 6-methacryloyloxyhexylphosphorylcholine, ⁇ -methacryloyloxyethylene phosphorylcholine, 4 Styryloxybutylphospho Rylcholine and the like can be mentioned.
  • 2_metataloyloxychetyl phosphorylcholine represented by the following chemical formula 1 is particularly preferable because it is composed of a hydrophilic group and a polymerizable methacrylic acid unit and can easily obtain a high molecular weight polymer by radical polymerization. .
  • These polymer substances can be bonded to the sliding surface of the bearing portion to form a polymer having a hydrophilic group on the sliding surface of the blood pump.
  • the surface on which the polymer having a hydrophilic group is formed can hold the lubricating liquid sufficiently to suppress friction, and has low reactivity with biological components and cells.
  • a polymer material having a hydrophilic group other vinyl compounds and the like may coexist in the graft polymerization to form a copolymer having a hydrophilic group. It is more preferable to introduce a group.
  • CH 2 C (CH 2) 2 C0OC H is preferred.
  • the sliding surface of the bearing member formed of a polymer substance is made of a polymer having a hydrophilic group
  • the polymer substance has a single weight of a hydrophilic group-containing compound. Examples thereof include those coated with a polymer or a copolymer.
  • a polymer having a hydrophilic group selected from a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group, a phospholipid polar group, an amide group, a polyalcohol, and a polyether as the hydrophilic group-containing polymer.
  • hyanorelonic acid, polybulol alcohol, polyvinyl pyrrolidone, polyethylene oxide, polyalginic acid, phospholipid-like polymer, polyhydroxyethyl methacrylate, and copolymers containing these are preferred.
  • a copolymer obtained by dissolving a copolymer with hexyl, styrene or the like in a solvent such as ethanol, propanol or tetrahydrofuran can be applied to the surface of the polymer material by coating or dipping. Furthermore, a crosslinking treatment can also be performed.
  • both the shaft of the pivot and the bearing portion can be formed of the above-described high-density polyethylene or crosslinked polyethylene.
  • either one of the shaft and the bearing portion can be formed of the above high-density polyethylene and the hydrophilic group-containing compound, and the other can be made of a hard material such as metal or ceramics.
  • a combination of the bearing portion of the high density polyethylene + hydrophilic group-containing compound and the shaft of the hard material is possible.
  • the metal or ceramic as the hard material is exposed to the blood, so it must be harmless to the living body, and these materials have a Vickers hardness on the sliding surface.
  • Hardness of Hvl50 or higher and surface roughness of Ral / im or lower are required.
  • the reason why the Vitzkers hardness Hvl of the member facing the polyethylene is 50 or more is to provide wear resistance on the sliding surface, and the surface roughness of Ral ⁇ m or less is on the sliding surface. This is to reduce friction and prevent wear of the other bearing member.
  • a corrosion-resistant alloy steel such as stainless steel (for example, JIS SUS316 steel) or Co—Cr—Mo steel is used.
  • stainless steel for example, JIS SUS316 steel
  • Co—Cr—Mo steel is used for hard metals.
  • titanium, dinoleconium and their alloys are also used because they are extremely harmful to living organisms.
  • ceramics alumina, zirconium oxide, carbide, nitride nitride can be used.
  • Fig. 2 shows a force S indicating a pivot 6 'used in a centrifugal blood pump, a tip end spherical shaft 62 fixed to the rotor, and a tip end of the shaft abutting to have a spherical concave surface.
  • both the pivots at both ends of the rotor are made of high-density polyethylene 63 and hydrophilic group-containing polymer film 64 (2-methacryloyloxychetyl phosphorylcholine).
  • the other shaft 62 is made of stainless steel SUS316.
  • Such a pivot is attached to a blood pump evaluation system (according to ASTM F184 1) as shown in Fig. 3, and water is used in place of blood to conduct a continuous supply test for 2 weeks.
  • a pivot life test was conducted.
  • the test conditions were: the shaft spherical radius r and the concave surface radius R 'of the bearing 61' were 1.5mm and 3. Omm, respectively, the rotation speed was 4000i "pm, the flow rate was 6.0L / min, and the inlet 41 and The differential pressure between the outlet 42 was 670 mmHg.
  • the high-density polyethylene 63 of the pivot bearing 61 ' has a weight average molecular weight of 20 X 10 4 , density of 0.9962 gZcm 3 , elongation of 900%, yield strength of 30 MPa, ASTM D621 deformation of 1.2%. Then, 2-methacryloyloxychetyl phosphorylcholine (MPC resin) was used as the coating 64 of the sliding portion, and graft polymerization was performed.
  • Example 1 The hydrophilic group-containing compound used in Example 1 was changed to a 2-methacryloyloxychetyl phosphorylcholine-butyl methacrylate copolymer, and high-density polyethylene 63 was slid by an immersion method. A blood pump was formed in the same manner except that the coating 64 was formed on the part.
  • the molded high-density polyethylene is immersed for 1 minute in a 2-methacryloyloxystill phosphorylcholine monobutyl methacrylate copolymer solution containing 30% of 2-methacryloyloxystill phosphorylcholine unit, and in an ethanol atmosphere. It was naturally dried for a period of time, and then sufficiently dried in a vacuum environment. After drying, the high-density polyethylene was immersed in distilled water to form hydrophilic groups on the surface layer, thereby forming a hydrophilic group-containing polymer film on the surface of the high-density polyethylene.
  • a 2-methacryloyloxychetyl phosphorylcholine monobutyl methacrylate copolymer solution containing 50%, 70%, and 90% of 2-methacryloyloxychetyl phosphorylcholine was used in the same manner as in Production Example 1.
  • a hydrophilic group-containing polymer film was formed on the surface of high-density polyethylene.
  • the bearing portion was molded using a high density polyethylene resin.
  • a pivot using the same stainless steel (SUS316) was similarly tested.
  • the bearing portion was molded using a polycarbonate resin.
  • a pivot using the same stainless steel (SUS316) was similarly tested.
  • a bearing made of high-density polyethylene bearing 61 and coated with a resin having a hydrophilic group shows little wear on the polyethylene even in a two-week continuous wear test, and the axial displacement of the impeller is negligible. It has become clear that it can withstand full use.
  • the bearing part using high density polyethylene of Comparative Example 1 was subjected to a continuous test for 2 days, and the bearing part using Polycarbonate of Comparative Example 2 was subjected to a continuous test for 5 hours. It was found that the hole penetrated the part and could not be used for a long time operation.
  • Example 1 In the bearing manufactured in Example 1 in which the bearing portion 61 made of high-density polyethylene is coated with a resin having a hydrophilic group, the water contact angle of the sliding portion shows 30 °, which is less than 50 °. The sliding part of Comparative Example 1 showed 90 ° exceeding 50 °.
  • the bearing manufactured by Example 1 with a high-density polyethylene bearing 61 coated with a resin having a hydrophilic group shows an initial torque of 0.8 Nm, which is less than 1. ONm, and no change in torque is observed. No deformation was seen after 2 weeks. However, in Comparative Example 1, the initial torque exceeded 1. ONm, showed 1.2 Nm, the torque increased, and deformation was observed after 2 weeks.
  • the bearing of the blood pump excellent in wear resistance can be provided by the high-density polyethylene excellent in workability, it is possible to provide an inexpensive blood pump suitable for the disposable type.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 心臓の血液循環機能を代行又は補助するための血液ポンプのディスポタイプに関して、安価な材料を用い、耐久性を向上させる。血液ポンプ1内部に配置されたインペラ2のシャフト20と該シャフト20を軸承する軸受部62との少なくとも一方を、分子量が5~80×104の高密度ポリエチレンで成形し、その摺動部に親水基を有する高分子膜64で被覆する。親水基を有する高分子膜64は水の接触角が50°以下であって、初期トルクが1.0Nm以下であるのが好ましい。

Description

明 細 書
血液ポンプ
技術分野
[0001] 本発明は、人工心肺装置において、心臓の血液循環機能を代行又は補助するた めの血液ポンプの改良に関する。
背景技術
[0002] 遠心型血液ポンプは、人工心肺装置における送血ポンプなどに使用される。その 一例を図 1に示す。遠心型血液ポンプ 1は、ポンプケーシング 10内にインペラ 2が回 転可能に軸支され、インペラ 2は、円錐状ロータ 21とその回転軸 20を有し、このロー タの円錐面にはケーシング内面側に向けた複数のフィン 22が遠心方向に植設され て構成されている。ケーシング 10の頂部付近にはロータ 21の頂部に連通する血液 の流入口 41が接続されて、他方、ケーシングの底部 3の外周側に、ロータ 2の底部に 通じる血液の流出口 42が配置され、流入口 41と流出口 42とは、それぞれ別の血液 配管に接続される。
[0003] 遠心型ポンプは、ポンプ外の磁石 51の回転により発生する回転磁場によりロータを 回転駆動する方式が採用されたものがある。この方式では、ロータの底部付近に磁 石 5が固定されて、外部回転磁石 51と磁石 5との間の磁気力によりインペラ 2を回転 させる。この外部磁場駆動方式では、ロータのシャフトをケーシング外に延長させる 必要がないので、ロータ 21は、そのシャフトの両端をケーシング内の上下に固定され た軸受部 61により回転自在に保持されてレ、る。
[0004] このような遠心型血液ポンプは、流入口 41より吸引された血液力 インペラ 2のロー タ 21上のフィン 22の回転により、ロータの遠心方向に加速されて、流出口 42より連 続的に排出される。この際、フィンによる血液の放出力の反作用により、即ち、流入口 と流出口との血液の圧力差により、ロータが流入側、即ち、頂部側に押す圧力を受け て、ケーシング頂部側のピボット 6aのシャフト 62の先端には、頂部側の軸受部 61と の間に力を受けることになる。
[0005] さらに、ロータ 21は、回転磁石 51とロータの磁石 5との間の引力により下方に力を 受けるので、ケーシング頂部側のシャフト 62の上端部側の受ける圧力は相殺される 力 この磁力が十分に大きい場合には、ケーシング底部 3側のピボット 6bには、シャ フト 62が、軸受部 61との間に圧力を受けることになる(図 4参照)。
[0006] ポンプ作動時のロータの回転数は、 5000rpmにも達し、これにより、ピボット 6のシ ャフト 62又は軸受部 61にかかる荷重は lOkgfにも及び、長時間の使用においては、 シャフトと軸受部との摺動面の摩耗が問題となる。そこで、従来の血液ポンプは、上 記シャフト 62または軸受部に金属またはアルミナ質のセラミックスを使用している。し 力しながら、この種材料の摩耗粉が血液中に混入すると問題がある。また、軸受部 6 1には、低密度ポリエチレンやポリカーボネートなどのポリマー材料を使用した力 長 期使用による軸受部の摩耗損失が大きぐ血液ポンプとしての寿命が低かった。
[0007] その理由は、一般に、血液ポンプの回転は、 1000〜5000rpm程度と高速であり、 インペラは血流からの反作用力を軸方向に受けるが、その力により、シャフトの先端 又はその軸受部の摺動面に使用されたポリマー材料は、弾性変形と共にクリープ変 形を生じ、さらに、摺動に伴う摩耗損失が生ずるためである。
[0008] そのため、血液ポンプのロータを軸承するシャフト及びその軸受部との摺動面にお ける耐摩耗性を改善して、長寿命の血液ポンプを提供しようとし、重量平均分子量が 3 X 105以上で、その密度が 0. 925〜0. 965g/cm3の範囲にあり、且つ、 ASTM D621に準拠した変形量が 2%以下である高分子量ポリエチレンで形成することが提 案された (特許文献 1)。
特許文献 1:特開 2000— 102604号公報
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、この種の血液ポンプは 1回限り使用されるディスポ型であり、できるだ け、安価に製造する必要があるが、超高分子量ポリエチレンにより製造される軸受部 は高価なだけでなぐ加工性に難点がある。
また、図 4に示す血液ポンプでは、軸の磨耗量を減少させるために、軸と軸受け面 との圧力の低下を目的として、接触面積を広くとっている。すなわち、シャフトと軸受 けの曲率を 1. 5以下(Rく 1. 5r)にして軸受けを深さの深い皿状にし、荷重がかかつ た際に、軸と軸受け面との接触面積が大きくなるように設計されている。しかしながら 、単に接触面積を増加させることは、血球損傷の増加を助長する可能性が高い。 課題を解決するための手段
[0010] そこで、鋭意研究の結果、加工性の解決策として成形性に優れた高分子材料のみ を使用することは、問題点があつたが、親水基を有する高分子を摺動面被膜として使 用してみると、ハウジング材料として使用されているポリカーボネート、その他成形性 に優れた低密度ポリエチレン、ポリエチレンテレフタレートなどのポリマー材料に対し ては耐摩擦損失の向上は見られないものの、高密度ポリエチレンに対して優れた耐 摩耗性を付与できるだけでなぐ高密度ポリエチレンの荷重に対する耐変形性を有 効利用できることを見出した。
[0011] すなわち、本発明は、ポンプケーシングと、該ケーシング内にシャフトを介して回転 可能に軸支されるロータを有し、このロータのケーシング内面側に向けた複数のフィ ンが遠心方向に植設されて構成されているインペラと、上記ケーシングの頂部付近 には血液の流入口、上記ケーシングの底部外周側に、血液の流出口が配置され、ポ ンプ外の磁石の回転により発生する回転磁場によりロータを回転駆動する血液ボン プであって、上記ロータは、そのシャフトの両端および/または軸受部力 重量平均分 子量5〜80 104、好ましくは 10〜30 X 104の高密度ポリエチレンで形成され、その 少なくとも摺動面に親水基を有する高分子膜を被覆してなることを特徴とするディス ポ型の血液ポンプである。
[0012] 本発明で用いる、上記高密度ポリエチレンは、密度が 0. 948-0. 980gZcm3の 範囲、好ましくは 0. 952g/cm3以上にあるのが好ましぐその変形量が 1. 8%以下 とすることができる。
[0013] 他方、本発明で用いる親水基を有する高分子膜は、カルボキシル基、スルホン酸 基、リン酸基、アミノ基、リン脂質極性基、アミド基、ポリアルコール及びポリエーテル 力 なる群から選択された親水基を有するものが好ましい。ここで、親水基を有する 高分子膜とは、水に馴染む濡れ易い性質を供給する官能基を有する高分子膜のこと で、該高分子膜を材料表面へ処理した際に、材料表面の静的接触角(水の接触角) 力 0° 、好ましくは 40° 以下を示すようにすることのできる高分子膜のことをいう。こ れらの親水基を有する高分子膜は、血液ポンプの摺動面に対し、耐摩耗性を与える のに役立つ。また、初期トルクが 1. ONm以下を有するものとなり、 2週間後の変形が 支障を来す限界値以下となる。
[0014] 本発明によれば、高密度ポリエチレンと親水基を有する高分子膜との相乗効果によ り、超高分子ポリエチレンに匹敵する耐摩耗性のある軸受部およびシャフト軸を形成 できるので、安価にして耐久性のあるディスポ型血液ポンプを製造することができる。 上記インペラのシャフト軸を軸承する軸受部をシャフトと軸受けとの曲率を 1. 6〜25 の範囲で形成できるので、血液損傷を抑制できる。
[0015] 本発明においては、シャフトおよびその軸受部材のいずれか一方は、硬質の金属 又はセラミックス材料により形成することができる。また、双方を上記高密度ポリエチレ ンと親水基を有する高分子膜とにより構成することもできる。
発明の効果
[0016] 本発明の血液ポンプは、インペラを軸支するピボットのシャフト又は軸受部に、重量 平均分子量が5〜80 104、好ましくは10〜30 104で、その密度が0. 948〜0. 9 80gZcm3、好ましくは 0. 952g/cm3以上の範囲にあり、上記変形量が 1. 8%以下 である高密度ポリエチレンで形成し、摺動部に親水基を有する高分子膜で被覆した ので、高分子膜の親水性が血液中という特殊条件で軸受寿命を向上することができ 、ポンプ使用中の軸受に起因する障害を防止することができ、血液ポンプの信頼性 を高めることができる。
[0017] さらに、ピボットの他方の部材を金属又はセラミックスなどの硬質材料で所要の硬度 と表面粗さでもって構成すれば、親水基を有する高分子膜と適合し、耐摩耗性の向 上と摩擦係数の低下に有効であり、血液ポンプの軸受寿命を高めるのに有効である 図面の簡単な説明
[0018] [図 1]遠心型血液ポンプの断面図を示す。
[図 2]本発明の遠心型血液ポンプに使用されるピボットの部分断面図を示す。
[図 3]血液ポンプの性能試験用のシステムを示す概要図である。
[図 4]従来の遠心型血液ポンプのピボットの部分断面図を示す。 符号の説明
[0019] 1 遠心型血液ポンプ
11 ケーシング
2 インペラ
20 回転軸
21 ロータ
5 磁石
51 外部磁石
6 ピボット
61 軸受部
62 シャフト
64 高分子膜
発明を実施するための最良の形態
[0020] 本発明において、高密度ポリエチレンは、重量平均分子量が 5〜80 X 104、好まし く ίま 10〜30 X 104のものを用レヽる力 S、融^ ; (。C) 130— 137、密度 0. 952— 0. 965g /cm3,引張り弾性率(GPa) O. 4-4. 0、引張り降伏強度(MPa) 26— 33、引張り破 断強度(MPa) 22— 31、引張り破断伸び (%)10— 1200,アイゾット衝撃強度 21—21 4、結晶化度(%) 60— 80であるものが有利に使用できる。
[0021] この高密度ポリエチレンは、 ASTM D621に準拠したクリープ変形量が 1. 8%であ る。ポリエチレン材料に要求されるクリープ変形量は、 7MPaの静的圧縮応力をかけ て 24h保持して徐荷後 90min経過したときの変形量を言う。本発明においてこの変 形量を 1. 8%以下とするのは、変形量が 1 · 8%を超えるような材質では、シャフトと軸 受けとの接触面積が大きくなり、血球損傷が生じやすいためである。特に、この材料 は、 ASTM D621変形量が 1. 5%以下であるのが好ましい。
[0022] 好ましレ、実施態様にぉレ、ては、上記高密度ポリエチレンは、重量平均分子量が 5 〜80 X 104、好ましく ίま 10〜30 X 104、その密度力 0. 948〜0. 980g/cm3の範囲 にあり、且つ、上記変形量が 1. 8%以下のものが採用される。このような特性を有す る高密度ポリエチレンは、耐変形性の点で特に優れる。 [0023] 高密度ポリエチレンは、放射線を照射して成る架橋型ポリエチレンとすることにより、 さらに強化でき、耐クリープ性を高めることができ、放射線架橋によるポリエチレンは 、クリープ変形が少なくなり、耐摩耗性が向上する。放射線による架橋は、 25kGy以 上の線量の放射線、特に、好ましくは、 γ線の照射によってなされる。放射線照射は
、予め高密度ポリエチレンで所要の形状に形成した軸受部又はシャフトに対して、空 気中の酸素を遮断する条件下で直接なされてもよぐ特に、すべり面に照射してその 強ィ匕を図ることもなされる。
[0024] 本発明においては、軸受部又はシャフト軸の摺動面を、親水基を有する高分子膜 で構成することによって、高い耐摩耗性に優れた摺動効果を得たもので、親水基を 有する高分子膜の具体的化学構造まで規定するものではないが、カルボキシノレ基、 スルホン酸基、リン酸基、アミノ基、リン脂質極性基、アミド基、ポリアルコール及びポリ エーテルからなる群から選択された親水基を有する高分子膜が望ましい。その中で も特にヒアルロン酸、ポリビュルアルコール、ポリビュルピロリドン、ポリエチレンォキシ ド、ポリアルギン酸、リン脂質類似ポリマー、メタクリル酸ヒドロキシェチル、メタクリル酸 が望ましい。
[0025] この様に、親水基を有する高分子を高密度ポリエチレン表面に付与する方法として は、モノマーを直接重合してグラフトイヒする方法、親水基を有する高分子を予め合成 し、付与させる方法、架橋能を持つ親水基を有する高分子を予め合成し、基材に被 覆した後、架橋反応により表面に固定化する方法が挙げられるが、その中でも特に、 グラフト重合で高分子物質に親水基を有する重合性単量体を結合させる方法が、高 分子物質の有する強度等の性能を劣化させることなく高分子物質表面のみを修飾す ること力 Sでき、かつ結合部分が化学的に安定し、更に、親水基を血液ポンプの摺動 面に形成して潤滑液を十分に保持することができるので好ましい。
[0026] 親水基を有しグラフト重合に適する重合性単量体として、下記化学式 1に示すよう なリン脂質極性基を有する単量体が好ましい。その例として、 2—メタクリロイルォキシ ェチルホスホリルコリン、 2—アタリロイルォキシェチルホスホリルコリン、 4—メタクリロ ィルォキシブチルホスホリルコリン、 6—メタクリロイルォキシへキシルホスホリルコリン 、 ω—メタクリロイルォキシエチレンホスホリルコリン、 4ースチリルォキシブチルホスホ リルコリン等を挙げることができる。その中でも特に、下記化学式 1に示す 2_メタタリ ロイルォキシェチルホスホリルコリンは、親水基と重合性のメタクリル酸ユニットからな り、ラジカル重合で容易に高分子量の重合体を得ることができるので好ましい。
[0027] これらの高分子物質は軸受部の摺動面に結合させて、親水基を有するポリマーを 血液ポンプの摺動面に形成させることができる。そして親水基を有するポリマーの形 成された表面は、潤滑液を十分に保持して摩擦を抑制することができ、かつ生体成 分や細胞との反応性も小さレヽ。
[0028] 尚、本発明では、親水基を有する高分子材料として前記グラフト重合の際に他のビ ニル化合物等を共存させ、親水基を有する共重合体となっていても差し支えないが、 疎水基を導入するのがより好ましい。
[0029] [化 1]
R
Figure imgf000009_0001
ここで Riま、 CH C (CH ) COOC H、 CH CHCOOC H、 CH C (CH ) COOC
2 3 2 4 2 2 4 2 3 3
H、又は CH C (CH ) C〇OC Hが好ましい。
6 2 3 4 8
[0030] 本発明では、高分子物質で形成される軸受部材の摺動面が親水基を有する高分 子からなる場合のその他の態様として、前記高分子物質に親水基含有化合物の単 独重合体または共重合体がコーティングされたものが挙げられる。
[0031] この場合も、親水基含有高分子として、カルボキシル基、スルホン酸基、リン酸基、 アミノ基、リン脂質極性基、アミド基、ポリアルコール、ポリエーテルから選ばれる親水 基を有する高分子が挙げられるが、特に、ヒアノレロン酸、ポリビュルアルコール、ポリ ビニルピロリドン、ポリエチレンォキシド、ポリアルギン酸、リン脂質類似ポリマー、ポリ メタクリル酸ヒドロキシェチル、及びこれらを含む共重合体が好ましレ、。
[0032] この様な親水基含有化合物の単独重合体、又はビニル化合物、メタクリル酸エステ ル、アクリル酸エステルまたはスチレン誘導体等との共重合体、具体的にはメタクリノレ 酸ブチル、メタクリル酸 2—ェチルへキシル、アクリル酸ブチル、アクリル酸 2 _ェチル へキシル、スチレン等との共重合体を、例えばエタノール、プロパノール、テトラヒドロ フラン等の溶媒に溶解させたものを高分子物質表面に塗布、浸漬等の方法でコーテ イングして得ること力できる。さらに架橋処理を行うこともできる。
[0033] 本発明においては、特に、ピボットのシャフトと軸受部の両方を、上記の高密度ポリ エチレンや架橋ポリエチレンで形成することができる。また、シャフトと軸受部のいず れか一方を、上記の高密度ポリエチレンと親水基含有化合物で形成し、他方は、金 属又はセラミックスなどの硬質材料を利用することもできる。例えば、上記高密度ポリ エチレン +親水基含有化合物の軸受部と、上記の硬質材料のシャフトの組み合わせ が可能である。
[0034] このため、硬質材料としての金属又はセラミックスは、血液中に曝されるので、生体 に対する為害性のないことが必要であり、また、これらの材料は、摺動面においては 、ヴッカース硬度 Hvl50以上の硬さと、 Ral /i m以下の表面粗さが要求される。ポリ エチレンに対置される部材のヴイツカース硬度 Hvl 50以上の硬さとするのは、摺動 面における耐摩耗性を付与するためであり、 Ral μ m以下の表面粗さとするのは、摺 動面における摩擦を減じて、相手方の軸受部材の摩耗を防止するためである。
[0035] 特に、硬質材料としての金属には、ステンレス鋼(例えば、 JIS SUS316鋼)や Co — Cr— Mo鋼などの耐食性の合金鋼が利用される。硬質の金属には、例えば、チタ ン、ジノレコニゥムとそれらの合金も、生体に対する為害性が極めて少ないので利用さ れる。またセラミックスには、アルミナ、ジルコユア、炭化ケィ素、窒化ケィ素が利用で きる。
実施例 1
[0036] 図 2に、遠心型血液ポンプに使用されるピボット 6 'を示す力 S、ロータに固定した先 端球面状のシャフト 62と、シャフト先端が当接されて球面状の凹み面を有する軸受 部 61 'とからなっており、この例では、ロータの両端部のピボットとも、軸受部 61 'を高 密度ポリエチレン 63と親水基含有高分子膜 64(2-メタクリロイルォキシェチルホスホリ ルコリン)で形成し、他方のシャフト 62をステンレス鋼 SUS316により形成してある。特 に、軸受部の曲率はシャフト軸先端の曲率の 2. 0 (R' = 2. Or以上)に形成してある [0037] このようなピボットを、図 3に示すような血液ポンプ評価用のシステム(ASTM F184 1に準拠)に取り付けて、血液に代えて水を使用して、 2週間の連続供給試験を行い 、ピボットの寿命試験を行った。試験条件は、シャフト球面半径 rと軸受部 61 'の凹み 面の半径 R'は、それぞれ 1. 5mmと 3. Ommとし、回転数 4000i"pm、流量 6. 0L/ 分で、流入口 41と流出口 42との間の差圧は 670mmHgであつた。
[0038] ピボットの軸受部 61 'の高密度ポリエチレン 63は、重量平均分子量 20 X 104、密度 0. 962gZcm3、伸び 900%、降伏強度 30MPa、 ASTMの D621変形量 1. 2%の ものを使用し、摺動部の被覆 64として 2—メタクリロイルォキシェチルホスホリルコリン (MPC樹脂)を使用し、グラフト重合した。他方のシャフト 62は、ステンレス鋼 SUS31 6であり、摺動面は、表面粗さ Ra = 0. 05 /i mに研磨された。
実施例 2
[0039] 実施例 1で使用した親水基含有化合物を、 2 -メタクリロイルォキシェチルホスホリルコ リン—ブチルメタタリレート共重合体に変更し、浸積方法にて高密度ポリエチレン 63 の、摺動部に被覆 64を形成する以外は同様にして、血液ポンプを形成した。
(製造例 1)
成型した高密度ポリエチレンを、 2-メタクリロイルォキシェチルホスホリルコリンのュ ニットを 30%含む 2-メタクリロイルォキシェチルホスホリルコリン一ブチルメタクリレー ト共重合体溶液に 1分浸漬し、エタノール雰囲気下で 24時間自然乾燥させ、その後 、真空環境で十分に乾燥を行った。乾燥後、高密度ポリエチレンを蒸留水の中に浸 漬して表層に親水基を形成することにより、高密度ポリエチレンの表面に親水基含有 高分子膜を形成した。
(製造例 2)
2-メタクリロイルォキシェチルホスホリルコリンのユニットを 50%、 70%、 90%を含 む 2-メタクリロイルォキシェチルホスホリルコリン一ブチルメタタリレート共重合体溶液 を用レ、、製造例 1と同様にして高密度ポリエチレンの表面に親水基含有高分子膜を 形成した。
2-メタクリロイルォキシェチルホスホリルコリンのユニットの濃度が 30%では、水接触 角は低ぐ濃度が高くなるにつれて、接触角も大きくなつたが、 90%でも 50° 以下で あった。また、初期トルクも、 2 -メタクリロイルォキシェチルホスホリルコリンのユニット の濃度が 30%では、低ぐ濃度が高くなるにつれて、初期トノレクも大きくなつたが、 90 %でも 1. ONm以下であった。
実施例 3
[0040] 実施例 1の 2—メタクリロイルォキシェチルホスホリルコリンに代えて、メタクリル酸、メタ クリル酸ヒドロキシェチルを使用し、グラフト重合により、ピボットの軸受部 61 'の高密 度ポリエチレン 63の、摺動部の被覆 64を形成した。
[0041] (比較例 1)
第 1の比較例として、軸受部に高密度ポリエチレン樹脂を使用して成形した。シャフ トには、同様のステンレス鋼(SUS316)を使用したピボットを同様に試験した。
[0042] (比較例 2)
第 2の比較例として、軸受部にポリカーボネート樹脂を使用して成形した。シャフト には、同様のステンレス鋼(SUS316)を使用したピボットを同様に試験した。
[0043] 高密度ポリエチレン製の軸受部 61に親水基を有する樹脂を被覆した軸受は、 2週 間の連続摩耗試験によっても上記ポリエチレンの摩耗は少な インペラの軸方向の 変位量はごくわずかであり、十分に使用に耐えることが明らかになった。これに対して 、比較例 1の高密度ポリエチレンを使用した軸受部は 2日間の連続試験で、また比較 例 2のポリカーボネートを使用した軸受け部は 5時間の連続試験で、それぞれ摩耗の 為に軸受部に孔が貫通してしまい、長時間の動作には使用できないことが判った。
[0044] 実施例 1で製造した、高密度ポリエチレン製の軸受部 61に親水基を有する樹脂を 被覆した軸受は、摺動部の水の接触角度は 50° を下回る 30° を示すのに対し、比 較例 1の摺動部は 50° を上回る 90° を示した。
他方、実施例 1で製造した、高密度ポリエチレン製の軸受部 61に親水基を有する 樹脂を被覆した軸受は、初期トルクが 1. ONmを下回る 0. 8Nmを示し、トルクの変化 が見られず、 2週間後の変形等も見られなかった。し力 ながら、比較例 1では初期ト ルクが 1. ONmを上回り、 1. 2Nmを示し、トルクが高くなり、 2週間後に変形が見られ た。
[0045] 高密度ポリエチレンの変形と耐摩耗性について、ポリエチレンの放射線照射による 架橋硬化の耐クリープ性に及ぼす影響を調べた。高密度ポリエチレンとして、重量平 均分子量 20 X 104のポリエチレン試料に、放射線として γ線を 0〜150kGyの範囲 で照射して改質し、 γ線を照射した試料のクリープ試験を行レ、、変形量を求めた。ク リーブ試験は、 ASTM D621に準拠して試料に 7MPaの圧縮荷重を 24時間加えて 、徐荷後に 90minのクリープ変形を求めた。照射 γ線量 25kGy以上でクリープ変形 防止の効果が認められ、クリープ変形量は、 1. 8%以下が得られることが判った。 産業上の利用可能性
本発明によれば、加工性に優れた高密度ポリエチレンにより耐摩耗性に優れた血 液ポンプの軸受を提供できるので、ディスポ型に適する安価な血液ポンプを提供す ること力 Sできる。

Claims

請求の範囲
[1] ポンプケーシングと、該ケーシング内にシャフトを介して回転可能に軸支されるロー タを有し、該ロータのケーシング内面側に向けた複数のフィンが遠心方向に植設され て構成されているインペラと、上記ケーシングの頂部付近には血液の流入口、上記ケ 一シングの底部外周側に、血液の流出口が配置され、ポンプ外の磁石の回転により 発生する回転磁場によりロータを回転駆動する血液ポンプであって、
上記ロータは、そのシャフトの両端および/または軸受部を重量平均分子量が 5〜8 0 X 104の高密度ポリエチレンで形成され、その少なくとも摺動面に親水基を有する 高分子膜を被覆してなることを特徴とするディスポ型血液ポンプ。
[2] シャフトの両端および/または軸受部の摺動面を被覆する親水基を有する高分子 膜が水の接触角が 50° 以下である請求項 1記載のディスポ型血液ポンプ。
[3] 親水基を有する高分子膜でシャフトの両端および/または軸受部の摺動面を被覆し たときの初期トルクが 1. ONm以下である請求項 1記載のディスポ型血液ポンプ
[4] 上記シャフトの両端および/または軸受部を形成する高密度ポリエチレンの重量平 均分子量が 10〜30 X 104である請求項 1記載のディスポ型血液ポンプ。
[5] 上記高密度ポリエチレンの密度が 0. 948〜0. 980gZcm3の範囲にある請求項 4 に記載のディスポ型血液ポンプ。
[6] 上記親水基を有する高分子膜が、カルボキシノレ基、スルホン酸基、リン酸基、ァミノ 基、リン脂質極性基、アミド基、ポリアルコール及びポリエーテルからなる群から選択 された親水基を有する請求項 1乃至 3のいずれかに記載のディスポ型血液ポンプ。
[7] 上記親水基を有する高分子膜が、ヒアノレロン酸、ポリビュルアルコール、ポリビュル ピロリドン、ポリエチレンォキシド、ポリアルギン酸、リン脂質類似ポリマー及びポリメタ クリル酸ヒドロキシェチルからなる群から選択された高分子から成る請求項 1乃至 4の いずれか 1項に記載のディスポ型血液ポンプ。
[8] 上記親水基を有する高分子膜が、疎水性の高分子との共重合体を形成してレ、る請 求項 1乃至 5のレ、ずれ力ゝ 1項に記載のディスポ型血液ポンプ。
[9] 親水基を有する高分子膜が、疎水性の高分子との共重合体を形成し、疎水性高分 子カ^タクリル酸ブチル、メタクリル酸 2—ェチルへキシル、アクリル酸ブチル、アタリ ル酸 2—ェチルへキシル、およびスチレンからなる群から選ばれる請求項 8に記載の ディスポ型血液ポンプ。
[10] 上記のインペラのシャフト軸を軸承する軸受部の曲率がシャフト軸曲率の 1. 6〜25 である請求項 1乃至 6のいずれか 1項に記載のディスポ型血液ポンプ。
[11] 上記のインペラのシャフト軸を軸承する軸受部の曲率がシャフト軸曲率の 1. 8以上 である請求項 7に記載のディスポ型血液ポンプ。
PCT/JP2006/323708 2005-11-29 2006-11-28 血液ポンプ WO2007063843A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007547947A JP5130052B2 (ja) 2005-11-29 2006-11-28 血液ポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-344266 2005-11-29
JP2005344266 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063843A1 true WO2007063843A1 (ja) 2007-06-07

Family

ID=38092176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323708 WO2007063843A1 (ja) 2005-11-29 2006-11-28 血液ポンプ

Country Status (2)

Country Link
JP (1) JP5130052B2 (ja)
WO (1) WO2007063843A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074238A1 (ja) * 2008-12-25 2010-07-01 日本メディカルマテリアル株式会社 ポリマー摺動材料、人工関節部材、医療器具及びその製造方法
RU2450167C2 (ru) * 2010-05-14 2012-05-10 Закрытое акционерное общество "ОПТИМА" Рабочее колесо центробежного насоса
JP2012152315A (ja) * 2011-01-25 2012-08-16 Kyocera Medical Corp 遠心血液ポンプ
WO2013141120A1 (ja) * 2012-03-23 2013-09-26 テルモ株式会社 遠心ポンプおよび遠心ポンプの製造方法
CN103671131A (zh) * 2012-09-12 2014-03-26 E.G.O.电气设备制造股份有限公司
WO2015098710A1 (ja) * 2013-12-27 2015-07-02 テルモ株式会社 遠心ポンプ
WO2015098708A1 (ja) * 2013-12-27 2015-07-02 テルモ株式会社 遠心ポンプ
JPWO2015098711A1 (ja) * 2013-12-27 2017-03-23 テルモ株式会社 遠心ポンプ
WO2020170942A1 (ja) * 2019-02-19 2020-08-27 テルモ株式会社 ポンプ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099429A (ja) * 1996-10-02 1998-04-21 Jms Co Ltd ターボ式血液ポンプ
JP2000102604A (ja) * 1998-09-29 2000-04-11 Kyocera Corp 遠心型血液ポンプ
JP2003097558A (ja) * 2001-09-26 2003-04-03 Kiyo Kuroda 潤滑装置
JP2004132403A (ja) * 2002-10-08 2004-04-30 Ntn Corp 流体軸受装置
JP2005024094A (ja) * 2003-06-10 2005-01-27 Ntn Corp すべり軸受
JP2005054156A (ja) * 2003-08-07 2005-03-03 Nippon Steel Chem Co Ltd 潤滑油、潤滑グリース及びそれを用いたトルクリミッタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4156945B2 (ja) * 2002-02-19 2008-09-24 株式会社神戸製鋼所 高分子材料製人工関節部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099429A (ja) * 1996-10-02 1998-04-21 Jms Co Ltd ターボ式血液ポンプ
JP2000102604A (ja) * 1998-09-29 2000-04-11 Kyocera Corp 遠心型血液ポンプ
JP2003097558A (ja) * 2001-09-26 2003-04-03 Kiyo Kuroda 潤滑装置
JP2004132403A (ja) * 2002-10-08 2004-04-30 Ntn Corp 流体軸受装置
JP2005024094A (ja) * 2003-06-10 2005-01-27 Ntn Corp すべり軸受
JP2005054156A (ja) * 2003-08-07 2005-03-03 Nippon Steel Chem Co Ltd 潤滑油、潤滑グリース及びそれを用いたトルクリミッタ

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775694B2 (ja) * 2008-12-25 2015-09-09 京セラメディカル株式会社 ポリマー摺動材料、人工関節部材、医療器具及びその製造方法
WO2010074238A1 (ja) * 2008-12-25 2010-07-01 日本メディカルマテリアル株式会社 ポリマー摺動材料、人工関節部材、医療器具及びその製造方法
US8765265B2 (en) 2008-12-25 2014-07-01 Kyocera Medical Corporation Polymer sliding material, artificial joint member, medical appliance, and manufacturing method therefor
RU2450167C2 (ru) * 2010-05-14 2012-05-10 Закрытое акционерное общество "ОПТИМА" Рабочее колесо центробежного насоса
JP2012152315A (ja) * 2011-01-25 2012-08-16 Kyocera Medical Corp 遠心血液ポンプ
JPWO2013141120A1 (ja) * 2012-03-23 2015-08-03 テルモ株式会社 遠心ポンプおよび遠心ポンプの製造方法
WO2013141120A1 (ja) * 2012-03-23 2013-09-26 テルモ株式会社 遠心ポンプおよび遠心ポンプの製造方法
EP2708754A3 (de) * 2012-09-12 2015-01-07 E.G.O. ELEKTRO-GERÄTEBAU GmbH Pumpe
CN103671131A (zh) * 2012-09-12 2014-03-26 E.G.O.电气设备制造股份有限公司
EP3088740A4 (en) * 2013-12-27 2017-08-02 Terumo Kabushiki Kaisha Centrifugal pump
WO2015098710A1 (ja) * 2013-12-27 2015-07-02 テルモ株式会社 遠心ポンプ
WO2015098708A1 (ja) * 2013-12-27 2015-07-02 テルモ株式会社 遠心ポンプ
JPWO2015098710A1 (ja) * 2013-12-27 2017-03-23 テルモ株式会社 遠心ポンプ
JPWO2015098708A1 (ja) * 2013-12-27 2017-03-23 テルモ株式会社 遠心ポンプ
EP3088015A4 (en) * 2013-12-27 2017-08-09 Terumo Kabushiki Kaisha Centrifugal pump
EP3088747A4 (en) * 2013-12-27 2017-08-09 Terumo Kabushiki Kaisha Centrifugal pump
US10143787B2 (en) 2013-12-27 2018-12-04 Terumo Kabushiki Kaisha Impeller shaft to bearing interface for centrifugal blood pump
US10145376B2 (en) 2013-12-27 2018-12-04 Terumo Kabushiki Kaisha Impeller shaft to bearing interface for centrifugal blood pump
US10260528B2 (en) 2013-12-27 2019-04-16 Terumo Kabushiki Kaisha Centrifugal pump
JPWO2015098711A1 (ja) * 2013-12-27 2017-03-23 テルモ株式会社 遠心ポンプ
JP7422730B2 (ja) 2019-02-19 2024-01-26 テルモ株式会社 ポンプ装置
WO2020170942A1 (ja) * 2019-02-19 2020-08-27 テルモ株式会社 ポンプ装置

Also Published As

Publication number Publication date
JP5130052B2 (ja) 2013-01-30
JPWO2007063843A1 (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5130052B2 (ja) 血液ポンプ
Ngo et al. Protein resistant polymeric biomaterials
US6769871B2 (en) Blood pump and ventricular assist device
US20210085846A1 (en) Ventricle assist device
JP2000102604A (ja) 遠心型血液ポンプ
EP0834326B1 (en) Turbo blood pump
JP4083158B2 (ja) 血液ポンプおよび血液ポンプ用部品
Nishinaka et al. The DuraHeart VAD, a Magnetically Levitated Centrifugal Pump The University of Vienna Bridge-to-Transplant Experience
EP1655354B1 (en) A biological substance absorption preventing coating composition, an article coated therewith and a method of using the same
CA2402774A1 (en) Microsphere hydrogel biomedical articles
EP3088747B1 (en) Centrifugal pump
CN114215792B (zh) 一种带全封闭清洗液循环系统的微型泵
WO2015098708A1 (ja) 遠心ポンプ
EP3569265A1 (en) Laminate material to be used in lubricative member for medical use, lubricative member for medical use, and medical device
US20130102834A1 (en) Slide device, mechanical seal, rotary device, pump and auxiliary artificial heart system
WO2015098710A1 (ja) 遠心ポンプ
AU675450B2 (en) Artificial heart components with improved biocompatible coating
JP4100452B1 (ja) 医用材料の処理液および医用材料
Kannojiya et al. Comparative assessment of different versions of axial and centrifugal LVADs: A review
US5549667A (en) Mechanical heart with wear resistant coatings of reduced thrombogenicity
JP5623203B2 (ja) 遠心式血液ポンプおよび遠心式血液ポンプ装置
JPH07136247A (ja) 血液用遠心ポンプ
CN220070479U (zh) 一种人工心脏泵泵壳
Loforte et al. Durable Continuous-Flow Mechanical Circulatory Support: State of the Art. Hearts 2021, 2, 10
JP2022159148A (ja) ヘキサフルオロイソプロパノール基を含む医療用樹脂組成物

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007547947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833512

Country of ref document: EP

Kind code of ref document: A1