WO2020170707A1 - 光学素子および画像表示装置 - Google Patents

光学素子および画像表示装置 Download PDF

Info

Publication number
WO2020170707A1
WO2020170707A1 PCT/JP2020/002300 JP2020002300W WO2020170707A1 WO 2020170707 A1 WO2020170707 A1 WO 2020170707A1 JP 2020002300 W JP2020002300 W JP 2020002300W WO 2020170707 A1 WO2020170707 A1 WO 2020170707A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffraction grating
optical element
incident
angle
Prior art date
Application number
PCT/JP2020/002300
Other languages
English (en)
French (fr)
Inventor
洋一 尾形
隆延 豊嶋
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2020170707A1 publication Critical patent/WO2020170707A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present disclosure relates to an optical element and an image display device, and particularly to an optical element and an image display device using a diffraction grating.
  • instrument panels that light and display icons have been used as devices that display various types of information in vehicles. Further, as the amount of information to be displayed increases, it has been proposed to embed an image display device in the instrument panel or to configure the entire instrument panel with the image display device.
  • HUD Head Up Display
  • an optical device for projecting an image on a wide area of the windshield is required, and downsizing and weight saving of the optical device are desired.
  • a head-mounted HUD having a spectacle shape is known (for example, see Patent Document 2).
  • the light emitted from the light source is directly applied to the eyes of the viewer to project an image on the retina of the viewer.
  • FIG. 9 is a schematic diagram showing the structure of an optical element used in a conventional head-mounted HUD.
  • An optical element including a waveguide section 1, a diffraction grating section 2, and reflecting films 3a and 3b is housed in the head mounted HUD.
  • the waveguide section 1 is formed with an inclined end surface 1a, a back surface 1b and a front surface 1c, and a diffraction grating section 2 is provided inside. Further, reflective films 3a and 3b are formed on the back surface 1b and the front surface 1c.
  • the diffraction grating portion 2 is a blazed grating that is made of a material having a refractive index different from that of the waveguide portion 1 and has irregularities formed at predetermined intervals.
  • incident light Lin emitted from a light source section is incident on the waveguide section 1 and then reflected by the inclined end surface 1a.
  • the incident light Lin reflected by the inclined end surface 1a travels inside the waveguide portion 1, is repeatedly reflected by the reflection films 3a and 3b on the back surface 1b and the front surface 1c, and reaches the diffraction grating portion 2.
  • the light that has reached the diffraction grating portion 2 is emitted as outgoing light Lout in a direction determined by the diffraction condition of the diffraction grating portion 2.
  • the diffraction condition of the diffraction grating section 2 is determined by the wavelength of light, the pitch of the diffraction grating section 2, the refractive index difference between the waveguide section 1 and the diffraction grating section 2, the angle at which the light reaches the diffraction grating section 2, and the like. To be done.
  • the divergence angle of the outgoing light Lout is small because the outgoing direction of the light is determined by the diffraction condition of the diffraction grating section 2.
  • the emitted light Lout having a small divergence angle is suitable for image projection onto a small area such as the retina, it is not possible to magnify light onto a wide area such as a vehicle HUD to project an image. It was difficult.
  • the present disclosure aims to provide an optical element and an image display device capable of irradiating light at a wide angle even when a diffraction grating is used.
  • the optical element of the present disclosure has a main surface, a plurality of side surfaces perpendicular to the main surface, and a light guide section having a back surface facing the main surface, and the main surface.
  • the diffraction grating portion formed above is provided, and the back surface is inclined by an angle ⁇ 1 with respect to the main surface.
  • the back surface is inclined by the angle ⁇ 1 with respect to the main surface, the path of light repeatedly reflected on the main surface, the side surface, and the back surface changes, and reaches the diffraction grating portion.
  • the position of the incident light and the incident angle are different.
  • light is extracted from the diffraction grating portion in a plurality of angular directions, and it becomes possible to irradiate light at a wide angle.
  • the plurality of side surfaces include at least a first side surface and a facing side surface that is opposed to the first side surface at an angle of ⁇ 2 .
  • a reflective film is formed on the side surface and the back surface.
  • an entrance opening is formed in one of the reflection films formed on the side surface.
  • a prism is arranged so as to cover the entrance opening, and a gap is provided between the prism and the reflection film in which the entrance opening is formed.
  • the diffraction grating section is made of a dielectric material having a refractive index different from that of the light guide section.
  • the image display device of the present disclosure includes the optical element according to any one of the above, and a light source unit that irradiates the optical element with light, and the main surface is provided through one of the side surfaces.
  • the light source section emits light.
  • FIG. 6 is a diagram showing a simulation result of light vertically incident on the diffraction grating portion 12.
  • 2A shows the electric field distribution of the emitted light
  • FIG. 2B shows the electric field distribution of the light inside and outside the diffraction grating portion 12.
  • FIG. 6 is a diagram showing a simulation result of light vertically incident on the diffraction grating portion 12.
  • 3A shows the imaginary part of the electric field inside the diffraction grating portion 12
  • FIG. 3B shows the electric field inside and outside the diffraction grating portion 12.
  • FIG. 6 is a diagram showing a simulation result of light obliquely incident on the diffraction grating portion 12.
  • FIG. 4A shows the electric field distribution of emitted light
  • FIG. 4B shows the electric field distribution of light inside and outside the diffraction grating portion 12.
  • 6 is a diagram showing a simulation result of light obliquely incident on the diffraction grating portion 12.
  • FIG. 5A shows the imaginary part of the electric field inside the diffraction grating portion 12, and
  • FIG. 5B shows the electric field inside and outside the diffraction grating portion 12.
  • 6 is a graph showing the angle dependence of the electric field in the diffraction grating portion 12. It is a schematic diagram which shows the structure of the optical element 20 in 2nd Embodiment.
  • FIG. 3 is a schematic diagram showing an optical path of an optical element 20.
  • FIG. 8A is a view as seen from the side surface direction
  • FIG. 8B is a view as seen from the top surface. It is a schematic diagram which shows the structure of the optical element used for the head mounted type HUD of a prior art.
  • FIG. 1 is a schematic diagram showing a structure and an optical path of an optical element 10 according to this embodiment.
  • the optical element 10 includes a light guide section 11, a diffraction grating section 12, a reflective film 13, a prism 14, and a gap 15.
  • FIG. 1 schematically shows the structure of the optical element 10, and the dimensions and angles in the figure do not show the actual dimensions of the optical element 10.
  • the light guide portion 11 is a substantially plate-shaped portion made of a material that transmits light, and includes a side surface 11a, a main surface 11b, a side surface 11c, and a back surface 11d.
  • the material forming the light guide section 11 is not limited, but it is preferable to use, for example, glass containing SiO 2 as a main component and having a refractive index of about 1.5.
  • the side surface 11a is a flat surface on which light from a light source arranged outside the optical element 10 is incident, and is formed substantially perpendicular to the main surface 11b.
  • the main surface 11b is a flat surface on which the diffraction grating portion 12 is formed, and faces the back surface 11d.
  • the side surface 11c is a flat surface facing the side surface 11a, and is formed substantially perpendicular to the main surface 11b.
  • the back surface 11d is a flat surface facing the main surface 11b and is formed to be inclined with respect to the main surface 11b by an angle ⁇ 1 .
  • the range of the angle ⁇ 1 is preferably 1 degree or more and 5 degrees or less.
  • the diffraction grating portion 12 is a substantially plate-shaped portion formed on the main surface 11b, and is made of a material having a refractive index different from that of the light guide portion 11.
  • a plurality of convex portions 12a and concave portions 12b are periodically formed on the surface of the diffraction grating portion 12 to form a diffraction grating.
  • the convex portions 12a and the concave portions 12b of the diffraction grating portion 12 are formed by extending in stripes in the depth direction of the paper.
  • the material forming the diffraction grating section 12 is not limited, but it is preferable to use a material having a large difference in refractive index from the light guide section 11, for example, a dielectric material containing TiO 2 as a main component and having a refractive index of about 2.5 is used. It is preferable.
  • the size of the diffraction grating portion 12 is not particularly limited, but it is preferable that the diffraction grating portion 12 has a thickness capable of guiding light also in the in-plane direction.
  • the diffraction grating portion 12 can be formed by a known method, and for example, a nanoimprint technology, an EBL (Electron Beam Lithography) technology, or the like can be used.
  • the reflective film 13 is a film having a high reflectance formed so as to cover the side surfaces 11a and 11c and the back surface 11d.
  • An entrance opening 13a is formed in a part of the side surface 11a of the reflective film 13, and light is allowed to enter the light guide section 11 through the entrance opening 13a.
  • the material forming the reflective film 13 is not limited, it is preferably formed by vapor deposition of a high-reflectance metal such as silver.
  • the prism 14 is an optical element arranged in the vicinity of the side surface 11a and having a triangular cross section, and is arranged so as to cover the entrance opening 13a formed in the reflection film 13.
  • a gap 15 is provided between the reflective film 13 and the prism 14, and an air layer is interposed between the reflective film 13 and the prism 14.
  • the material forming the prism 14 is not limited, it is preferable that the prism 14 and the light guide section 11 have approximately the same refractive index in order to efficiently enter the light from the light source into the light guide section 11. It is preferable to use the same material as the part 11.
  • the gap 15 is a space provided between the reflection film 13 formed on the side surface 11 a and the prism 14.
  • the width of the gap 15 is preferably about the wavelength of light.
  • an air layer is interposed in the gap 15.
  • a transparent contact liquid having a refractive index close to that of the light guide section 11 is used. May be filled in the gap 15.
  • FIG. 1 shows an example in which the prism 14 is arranged with a gap 15 provided between the reflection film 13 and the reflection film 13, it is also possible to bring the both into contact without providing the gap 15.
  • the light may be directly incident on the light guide section 11 from the entrance opening 13a without using the prism 14.
  • Laser light is emitted toward the optical element 10 from a light source (not shown).
  • the laser light is coherent light whose phases are aligned and is emitted as collimated light by a collimator lens or the like.
  • the collimated light enters one surface of the prism 14, passes through the inside of the prism 14, and exits from the surface on the side of the gap 15 to the gap 15.
  • the collimated light enters the prism 14 substantially perpendicularly.
  • the collimated light that has passed through the prism 14 is obliquely incident on the side surface 11a of the light guide section 11 through the gap 15 and the entrance opening 13a.
  • the width of the gap 15 is approximately the same as the wavelength of the collimated light, light reflection at the interface between the prism 14 and the gap 15 and the interface between the gap 15 and the light guide portion 11 is reduced, and the collimated light is increased. It can be efficiently incorporated into the light guide section 11.
  • the collimated light that has entered from the side surface 11a enters the diffraction grating section 12 at an incident angle ⁇ as incident light L1 that travels inside the light guide section 11.
  • incident angle ⁇ As incident light L1 that travels inside the light guide section 11.
  • part of the incident light L1 enters the diffraction grating section 12, and part of the incident light L1 is reflected in the light guide section 11 as reflected light.
  • the light that travels in the diffraction grating portion 12 has a traveling angle that changes in accordance with the refractive indices of the light guide portion 11 and the diffraction grating portion 12, and an emission angle that satisfies the diffraction condition of the convex portion 12a and the concave portion 12b.
  • the emitted light LO1 is emitted in the ⁇ d1 direction.
  • the light taken into the diffraction grating portion 12 can satisfy the condition of total leakage leakage at the interface with air by appropriately selecting the refractive index and the incident angle ⁇ , and the light inside the diffraction grating portion 12 can be satisfied. It is repeatedly reflected and propagates in the diffraction grating section 12.
  • the light reflected at the interface between the light guide section 11 and the diffraction grating section 12 travels in the light guide section 11, is reflected by the side surface 11c, the back surface 11d, and the side surface 11a, and reaches the main surface 11b again. Then, it enters the diffraction grating section 12 as the re-incident light L2.
  • the back surface 11d is inclined by the angle ⁇ 1 with respect to the main surface 11b, the reflection position of the light reaching the side surface 11a is different from that of the entrance opening 13a.
  • the re-incident light L2 reflected by the side surface 11a and traveling to the main surface 11b has a traveling angle different from that of the incident light L1 by ⁇ 1 and is non-parallel. Therefore, the position and angle at which the re-incident light L2 is incident on the diffraction grating portion 12 are different from those of the incident light L1.
  • the re-incident light L2 that has entered the interface between the light guide section 11 and the diffraction grating section 12 also partially enters the diffraction grating section 12 and partially enters the light guide section 11 as reflected light, similar to the incident light L1. Is reflected. Further, the re-incident light L2 traveling inside the diffraction grating section 12 is emitted as the emission light LO2 in the direction of the emission angle ⁇ d2 satisfying the diffraction condition.
  • the incident angle when the re-incident light L2 is incident on the diffraction grating portion 12 is different from the incident light L1 by ⁇ 1 , the diffraction condition is different between the incident light L1 and the re-incident light L2, and the emission light is emitted.
  • the angles ⁇ d1 and ⁇ d2 are different.
  • the light reflected at the interface between the light guide section 11 and the diffraction grating section 12 travels in the light guide section 11 and is reflected again by the side surface 11c, the back surface 11d, and the side surface 11a. ..
  • the collimated light is repeatedly reflected in the light guide portion 11 and reaches the main surface 11b, but the incident angle and the position on the main surface 11b differ depending on the number of times the light is reflected by the back surface 11d.
  • the diffraction condition of the light taken into the diffraction grating portion 12 by the repeated reflection becomes different depending on the number of times it is reflected by the back surface 11d, and the emission angles also become different.
  • the light obliquely incident on the light guide section 11 changes its diffraction condition due to the reflection on the inclined back surface 11d and is extracted from the surface of the diffraction grating section 12 at a plurality of emission angles. It is possible to emit light from the element 10 at a wide angle. Further, by providing a light source unit that irradiates the optical element 10 with collimated light, a screen that projects the light emitted from the optical element 10, and the like, it is possible to configure an image display device that can magnify an image according to the projection distance. ..
  • the screen may be a non-transmissive white screen or transmissive glass, and for example, a vehicle windshield can be used.
  • FIGS. 2 to 4 are diagrams showing the results of simulation of the progress and extraction of light from the light guide section 11 to the diffraction grating section 12.
  • the FDTD (Finite Difference Time Domain) method is used for the simulation, and as the simulation conditions, the refractive index of the light guide section 11 is 1.54, the refractive index of the diffraction grating section 12 is 2.52, and the refractive index of air is 1 It was set to 0.00.
  • the pitch between the convex portions 12a and the concave portions 12b is 696 nm
  • the width of the convex portions 12a is 230 nm
  • the height of the convex portions 12a is 210 nm
  • the thickness from the main surface 11b of the light guide portion 11 to the upper surface of the convex portions 12a is set.
  • the height was 788 nm.
  • the incident light L1 was coherent light having a diameter of 2 ⁇ m and the wavelength was 852 nm.
  • FIG. 2 is a diagram showing a simulation result of light vertically incident on the diffraction grating portion 12.
  • 2A shows the electric field distribution of the emitted light
  • FIG. 2B shows the electric field distribution of the light inside and outside the diffraction grating portion 12.
  • FIG. 3 is a diagram showing a simulation result of light vertically incident on the diffraction grating portion 12.
  • 3A shows the imaginary part of the electric field inside the diffraction grating portion 12
  • FIG. 3B shows the electric field inside and outside the diffraction grating portion 12.
  • the shapes of the convex portion 12a and the concave portion 12b are shown by the unevenness of the white line, and the incident position and the angle of the incident light L1 are shown by the outlined arrows.
  • FIGS. 2 and 3 with respect to light that is vertically incident on the diffraction grating portion 12, only transmitted light is emitted, and there is almost no spread of light in the in-plane direction of the diffraction grating portion 12. Recognize.
  • FIG. 4 is a diagram showing a simulation result of light obliquely incident on the diffraction grating portion 12.
  • 4A shows the electric field distribution of emitted light
  • FIG. 4B shows the electric field distribution of light inside and outside the diffraction grating portion 12.
  • FIG. 5 is a diagram showing a simulation result of light obliquely incident on the diffraction grating portion 12.
  • 5A shows the imaginary part of the electric field inside the diffraction grating portion 12
  • FIG. 5B shows the electric field inside and outside the diffraction grating portion 12.
  • the shapes of the convex portion 12a and the concave portion 12b are shown by the unevenness of the white line
  • the incident position and the angle of the incident light L1 are shown by the outlined arrows.
  • the light is distributed in the in-plane direction of the diffraction grating portion 12 in a range wider than the diameter of the collimated light, and It can be seen that the area where the light can be emitted is expanded.
  • the light obliquely incident on the diffraction grating portion 12 is emitted to the outside from a range wider than the diameter of the incident light L1 and the spread angle of the emitted light is increased due to the repeated reflection as described above. Therefore, it is possible to irradiate a wider range of light.
  • FIG. 6 is a graph showing the angle dependence of the electric field in the diffraction grating section 12. As shown in FIG. 6, the spread of the diffraction grating portion 12 in the in-plane direction differs depending on the incident angle of the collimated light. Therefore, by adjusting the angle of incidence on the diffraction grating portion 12, it is possible to control the light emitting region in the optical element 10 and design a desired light distribution.
  • the back surface 11d is inclined by the angle ⁇ 1 with respect to the main surface 11b, the light repeatedly reflected by the main surface 11b, the side surfaces 11a and 11c, and the back surface 11d.
  • the path of the light changes, and the position of the light reaching the diffraction grating section 12 and the incident angle become different.
  • light is extracted from the diffraction grating portion 12 in a plurality of angular directions, and it becomes possible to irradiate light at a wide angle.
  • FIG. 7 is a schematic diagram showing the structure of the optical element 20 in the present embodiment.
  • the optical element 20 includes a light guide section 21 and a diffraction grating section 22. Protrusions 22a and recesses 22b are periodically formed on the upper surface of the diffraction grating portion 22.
  • the reflection film 13 and the prism 14 are not shown in FIG. 7, the optical element 20 may include the reflection film 13 and the prism 14 as in the first embodiment.
  • the convex portion 22a and the concave portion 22b are formed by linearly extending, but are not parallel to any side surface of the light guide portion 21 and are substantially perpendicular to the light incident on the optical element 20. It is formed so that. Further, the light guide portion 21 has a shape in which one side surface and a bottom surface are cut from a rectangular parallelepiped, the main surface and the bottom surface are non-parallel, and the pair of opposite side surfaces are also non-parallel.
  • FIG. 8 is a schematic diagram showing the optical path of the optical element 20.
  • 8A is a view as seen from the side surface direction
  • FIG. 8B is a view as seen from the top surface.
  • the light guide portion 21 includes a side surface 21a, a main surface 21b, side surfaces 21c1 and 21c2, and a back surface 21d.
  • the side surface 21a is a flat surface on which light from a light source arranged outside the optical element 10 is incident, and is formed substantially perpendicular to the main surface 21b.
  • the main surface 21b is a flat surface on which the diffraction grating portion 22 is formed and faces the back surface 21d.
  • the side surface 21c1 is a flat surface orthogonal to the side surface 21a, and is formed substantially perpendicular to the main surface 21b.
  • the back surface 21d is a flat surface facing the main surface 21b, and is formed to be inclined with respect to the main surface 21b by an angle ⁇ 1 .
  • the range of the angle ⁇ 1 is preferably 1 degree or more and 5 degrees or less.
  • the side surface 21c2 is a flat surface facing the side surface 21c1 and is formed to be inclined with respect to the side surface 21c1 by an angle ⁇ 2 .
  • the side surface 21c1 corresponds to the first side surface in the present disclosure
  • the side surface 21c2 corresponds to the facing side surface in the present disclosure.
  • a reflective film is formed on the side surface 21c1 and the side surface 21c2 as in the first embodiment, but the illustration is omitted in FIG.
  • Collimated light is emitted toward the optical element 20 from a light source (not shown).
  • the collimated light is incident on the side surface 21a via the prism 14, and is incident on the diffraction grating portion 22 at the incident angle ⁇ as the incident light L1 traveling inside the light guide portion 21 at the point P1.
  • a part of the incident light L1 propagates in the diffraction grating portion 22 and is emitted as the outgoing light LO1 in the direction of the outgoing angle ⁇ d1 satisfying the diffraction condition as in the case of FIG.
  • the re-incident light L2 is incident on the diffraction grating portion 22 at the point P2.
  • a part of the re-incident light L2 propagates in the diffraction grating section 22 and is emitted as emission light LO2 in the direction of the emission angle ⁇ d2 that satisfies the diffraction condition.
  • repeated reflection in the light guide section 21 and propagation and light emission in the diffraction grating section 22 occur, and the emission light LO3 is emitted from the point P3 in the emission angle ⁇ d3 direction.
  • the incident light L1, the re-incident light L2, and the re-incident light L3 are incident. Is incident on the diffraction grating section 22 at different positions and different angles. As a result, the diffraction conditions at the points P1, P2, P3 are different, and the emission angles ⁇ d1, ⁇ d2, ⁇ d3 of the emitted lights LO1, LO2, LO3 are also different.
  • the light obliquely incident on the light guide portion 21 is extracted at a plurality of emission angles from the surface of the diffraction grating portion 22 because the diffraction condition changes due to the reflection on the inclined back surface 21d and side surface 21c2. Therefore, it becomes possible to emit light from the optical element 20 at a wide angle.
  • the expansion of the light in the in-plane direction within the diffraction grating portion 22 and the expansion of the extraction range of the emitted light are the same as in the first embodiment.
  • the side surface 21c2 is inclined with respect to the side surface 21c1, the incident light L1, the re-incident light L2, and The re-incident light L3 travels in a three-dimensional spiral shape. Therefore, in the in-plane direction of the diffraction grating portion 22, the distance between the points P1, P2, and P3 can be widened, and the incident light L1, the re-incident light L2, and the re-incident light L3 in the diffraction grating portion 22 can be formed. Interference can be suppressed.
  • the back surface 21d is inclined with respect to the main surface 21b by the angle ⁇ 1
  • the side surface 21c2 is inclined with respect to the side surface 21c1 by the angle ⁇ 2
  • the paths of the light repeatedly reflected by the main surface 21b, the side surfaces 21c1 and 21c2, and the back surface 21d change, and the position and the incident angle of the light reaching the diffraction grating portion 22 differ.
  • light is extracted from the diffraction grating portion 22 in a plurality of angular directions, and it becomes possible to irradiate light at a wide angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

主面(11b)と、主面(11b)に対して垂直な複数の側面(11a,11c)と、主面(11b)に対向する裏面(11d)とを有する導光部(11)と、主面(11b)上に形成された回折格子部(12)を備え、裏面(11d)は主面(11b)に対して角度δθ1だけ傾斜している光学素子(10)。

Description

光学素子および画像表示装置
 本開示は、光学素子および画像表示装置に関し、特に回折格子を用いた光学素子および画像表示装置に関する。
 従来から、車両内に各種情報を表示する装置として、アイコンを点灯表示する計器盤が用いられている。また、表示する情報量の増加とともに、計器盤に画像表示装置を埋め込むことや、計器盤全体を画像表示装置で構成することも提案されている。
 しかし、計器盤は車両のフロントガラスより下方に位置しているため、計器盤に表示された情報を運転者が視認するには、運転中に視線を下方に移動させる必要があるため好ましくない。そこで、フロントガラスに画像を投影して、運転者が車両の前方を視認したときに情報を読み取れるようにするヘッドアップディスプレイ(以下、HUD:Head Up Display)も提案されている(例えば、特許文献1を参照)。このようなHUDでは、フロントガラスの広い範囲に画像を投影するための光学装置が必要であり、光学装置の小型化および軽量化が望まれている。
 一方で、小型の光学装置を用いて光を投影する画像表示装置としては、メガネ形状をしたヘッドマウント型のHUDが知られている(例えば、特許文献2を参照)。ヘッドマウント型のHUDでは、光源から照射された光を視認者の眼に直接照射して、視認者の網膜に画像を投影している。
 図9は、従来技術のヘッドマウント型HUDに用いられる光学素子の構造を示す模式図である。ヘッドマウント型HUD内には、導波路部1と、回折格子部2と、反射膜3a,3bとを備えた光学素子が収容されている。導波路部1には、傾斜端面1aと裏面1bと表面1cが形成されており、内部に回折格子部2が設けられている。また、裏面1bと表面1cには反射膜3a,3bが形成されている。回折格子部2は、導波路部1とは屈折率が異なる材料で構成され、所定間隔で凹凸が形成されたブレーズドグレーティングである。
 図9に示したように、光源部(図示省略)から照射された入射光Linは、導波路部1に入射した後に傾斜端面1aで反射される。傾斜端面1aで反射された入射光Linは導波路部1内を進み、裏面1bと表面1cの反射膜3a,3bで繰り返し反射されて回折格子部2に到達する。回折格子部2に到達した光は、回折格子部2の回折条件によって決まる方向に出射光Loutとして照射される。ここで、回折格子部2の回折条件は、光の波長と回折格子部2のピッチ、導波路部1と回折格子部2の屈折率差、回折格子部2に光が到達する角度などによって決定される。
日本国特開2018-118669号公報 日本国特表2018-528446号公報
 上述したように、ヘッドマウント型HUDに用いられる光学素子では、光の出射方向が回折格子部2の回折条件によって決まるため、出射光Loutの拡がり角度は小さくなる。このように拡がり角度の小さい出射光Loutは、網膜のような小さい領域への画像投影には適しているが、車両用HUDのように広い領域に対して光を拡大して画像投影することは困難であった。
 本開示は、回折格子を用いても広い角度に光を照射することが可能な光学素子および画像表示装置を提供することを目的とする。
 上記課題を解決するために、本開示の光学素子は、主面と、前記主面に対して垂直な複数の側面と、前記主面に対向する裏面とを有する導光部と、前記主面上に形成された回折格子部を備え、前記裏面は、前記主面に対して角度δθ1だけ傾斜している。
 このような本開示の光学素子では、主面に対して裏面が角度δθ1だけ傾斜しているため、主面と側面と裏面で繰り返し反射された光の経路が変化し、回折格子部に到達する光の位置と入射角度が異なるものとなる。これにより、回折格子部から複数の角度方向に対して光が取り出され、広い角度に光を照射することが可能となる。
 また、本開示の一態様では、前記複数の側面は、少なくとも第1側面と、前記第1側面に対して角度δθ2だけ傾斜して対向する対向側面を有する。
 また、本開示の一態様では、前記側面および裏面には、反射膜が形成されている。
 また、本開示の一態様では、前記側面に形成された前記反射膜の一つには、入射開口部が形成されている。
 また、本開示の一態様では、前記入射開口部を覆うようにプリズムが配置され、前記プリズムと前記入射開口部が形成された前記反射膜との間には間隙が設けられている。
 また、本開示の一態様では、前記回折格子部は、前記導光部とは屈折率が異なる誘電体で構成されている。
 また、本開示の画像表示装置は、上記何れか一つに記載の光学素子と、前記光学素子に対して光を照射する光源部と、を備え、前記側面の一つを介して前記主面に対して、前記光源部から光を照射する。
 本開示によれば、回折格子を用いても広い角度に光を照射することが可能な光学素子および画像表示装置を提供することができる。
第1実施形態における光学素子10の構造と光路を示す模式図である。 回折格子部12に垂直に入射した光のシミュレーション結果を示す図である。図2の(a)は出射光の電場分布を示し、図2の(b)は回折格子部12内外での光の電場分布を示している。 回折格子部12に垂直に入射した光のシミュレーション結果を示す図である。図3の(a)は回折格子部12内での電場の虚部を示し、図3の(b)は回折格子部12内外での電場を示している。 回折格子部12に斜めに入射した光のシミュレーション結果を示す図である。図4の(a)は出射光の電場分布を示し、図4の(b)は回折格子部12内外での光の電場分布を示している。 回折格子部12に斜めに入射した光のシミュレーション結果を示す図である。図5の(a)は回折格子部12内での電場の虚部を示し、図5の(b)は回折格子部12内外での電場を示している。 回折格子部12内での電場の角度依存性を示すグラフである。 第2実施形態における光学素子20の構造を示す模式図である。 光学素子20の光路を示す模式図である。図8の(a)は側面方向から見た図であり、図8の(b)は上面から見た図である。 従来技術のヘッドマウント型HUDに用いられる光学素子の構造を示す模式図である。
 (第1実施形態)
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本実施形態における光学素子10の構造と光路を示す模式図である。図1に示すように光学素子10は、導光部11と、回折格子部12と、反射膜13と、プリズム14と、間隙15を備えている。なお図1は、光学素子10の構造を模式的に示したものであり、図中の寸法や角度は光学素子10における実寸を示すものではない。
 導光部11は、光を透過する材料で構成された略板状の部分であり、側面11aと、主面11bと、側面11cと、裏面11dを備えている。導光部11のサイズは限定されないが、例えば幅d=10mm、厚さt=2mm程度の大きさが挙げられる。導光部11を構成する材料は限定されないが、例えばSiO2を主成分とする屈折率1.5程度のガラスを用いることが好ましい。
 側面11aは、光学素子10の外部に配置された光源からの光が入射する平坦面であり、主面11bに対して略垂直に形成されている。主面11bは、表面に回折格子部12が形成される平坦面であり、裏面11dに対向している。側面11cは、側面11aに対向する平坦面であり、主面11bに対して略垂直に形成されている。裏面11dは、主面11bに対向する平坦面であり、主面11bに対して角度δθ1だけ傾斜して形成されている。角度δθ1の範囲は1度以上5度以下が好ましい。図1では光の入射面である側面11a側が厚くなるように裏面11dが傾斜した例を示しているが、側面11c側が厚くなるように裏面11dを傾斜させてもよい。
 回折格子部12は、主面11b上に形成された略板状の部分であり、導光部11とは屈折率が異なる材料で構成されている。回折格子部12の表面には、複数の凸部12aと凹部12bが周期的に形成されており、回折格子を構成している。図1では図示を省略しているが、回折格子部12の凸部12aと凹部12bは、それぞれ紙面の奥行方向にストライプ状に延伸して形成されている。
 回折格子部12を構成する材料は限定されないが、導光部11との屈折率差が大きな材料を用いることが好ましく、例えばTiO2を主成分とする屈折率2.5程度の誘電体を用いることが好ましい。回折格子部12のサイズは特に限定されないが、面内方向にも光を導波できる厚さを有することが好ましい。回折格子部12は公知の方法で形成することができ、例えばナノインプリント技術、EBL(Electron Beam Lithography)技術等を用いることができる。
 反射膜13は、側面11a,11cと裏面11dを覆うように形成された反射率の高い膜である。反射膜13には、側面11aの一部に入射開口部13aが形成されており、入射開口部13aを介して導光部11に対して光を入射可能とされている。反射膜13を構成する材料は限定されないが、銀等の高反射率金属を蒸着して形成することが好ましい。
 プリズム14は、側面11aの近傍に配置され断面三角形状の光学要素であり、反射膜13に形成された入射開口部13aを覆うように配置されている。また、反射膜13とプリズム14との間には間隙15が設けられており、反射膜13とプリズム14との間に空気層が介在している。プリズム14を構成する材料は限定されないが、光源からの光を効率よく導光部11に入射させるためには、プリズム14と導光部11の屈折率を同程度にすることが好ましく、導光部11と同じ材料を用いることが好ましい。
 間隙15は、側面11aに形成された反射膜13とプリズム14との間に設けられた空間である。間隙15の幅は、光の波長程度であることが好ましい。図1に示した例では間隙15に空気層が介在しているが、プリズム14と導光部11との光結合効率を向上させるために、導光部11と屈折率が近い透明な接触液を間隙15に充填してもよい。また、図1では反射膜13と間隙15を空けてプリズム14を配置した例を示したが、間隙15を設けず両者を接触させてもよい。また、光学散乱の影響による光結合効率の低下が許容範囲である場合には、プリズム14を用いずに入射開口部13aから導光部11に光を直接入射させてもよい。
 次に、図1を用いて光学素子10における光路について説明する。図示しない光源からは、光学素子10に向けてレーザ光が照射される。ここでレーザ光は位相が揃ったコヒーレントな光であり、コリメートレンズ等によってコリメート光として照射される。コリメート光はプリズム14の一面に入射し、プリズム14内部を透過して間隙15側の面から間隙15に抜ける。ここでコリメート光はプリズム14に対して略垂直に入射される。
 プリズム14を通過したコリメート光は、間隙15および入射開口部13aを介して導光部11の側面11aに対して斜めに入射する。ここで、間隙15の幅をコリメート光の波長と同程度とすることで、プリズム14と間隙15の界面や間隙15と導光部11の界面での光反射を低減して、コリメート光を高効率で導光部11内に取り込むことができる。
 側面11aから入射したコリメート光は、導光部11内部を進行する入射光L1として回折格子部12に入射角Φで入射する。導光部11と回折格子部12の界面では、入射光L1の一部は回折格子部12内に入射し、入射光L1の一部が反射光として導光部11内に反射される。入射光L1のうち回折格子部12内を進行する光は、導光部11と回折格子部12の屈折率に応じて進行角度が変化し、凸部12aと凹部12bによる回折条件を満たす出射角度θd1方向に出射光LO1として出射される。また、回折格子部12内に取り込まれた光は、屈折率と入射角Φを適切に選択することで空気との界面での漏れ全反射の条件を満たすことができ、回折格子部12内で繰り返し反射されて回折格子部12内を伝搬する。
 入射光L1のうち導光部11と回折格子部12の界面で反射された光は、導光部11内を進行して側面11c、裏面11dおよび側面11aで反射されて再び主面11bに到達し、再入射光L2として回折格子部12に入射する。ここで、裏面11dは主面11bに対して角度δθ1だけ傾斜しているため、側面11aに到達する光の反射位置は入射開口部13aとは異なるものとなる。また、側面11aで反射されて主面11bに進行する再入射光L2は、入射光L1とはδθ1だけ進行角度が異なり非平行である。したがって、再入射光L2が回折格子部12に入射する位置と角度は入射光L1とは異なるものとなる。
 導光部11と回折格子部12の界面に入射した再入射光L2も、入射光L1と同様に一部は回折格子部12内に入射し、一部が反射光として導光部11内に反射される。また、回折格子部12内部を進行する再入射光L2は、回折条件を満たす出射角度θd2方向に出射光LO2として出射される。このとき、再入射光L2が回折格子部12に入射する際の入射角は入射光L1とはδθ1だけ異なっているため、回折条件は入射光L1と再入射光L2で異なっており、出射角度θd1とθd2は異なるものとなる。
 以下同様に、再入射光L2のうち導光部11と回折格子部12の界面で反射された光は、導光部11内を進行して再び側面11c、裏面11dおよび側面11aで反射される。このように、コリメート光は導光部11内で繰り返し反射されて主面11bに到達するが、裏面11dで反射された回数に応じて主面11bへの入射角と位置が異なるものとなる。これにより、繰り返し反射で回折格子部12に取り込まれた光の回折条件は、裏面11dで反射された回数に応じて異なるものとなり、出射角度もそれぞれ異なるものとなる。
 以上に述べたように、導光部11に斜めに入射した光は、傾斜した裏面11dでの反射によって回折条件が変化し、回折格子部12の表面から複数の出射角度で取り出されるため、光学素子10から広い角度に光を照射することが可能となる。また、光学素子10に対してコリメート光を照射する光源部と、光学素子10から照射された光を投影するスクリーン等を備えることで、投影距離に応じて画像を拡大できる画像表示装置を構成できる。ここでスクリーンとしては、非透過型の白色スクリーンや透過型のガラスでもよく、例えば車両のフロントガラスを用いることができる。
 図2~図4は、導光部11から回折格子部12への光の進行と取出しについて、シミュレーションをした結果を示す図である。シミュレーションにはFDTD(Finite Difference Time Domain)法を用い、シミュレーション条件としては導光部11の屈折率を1.54とし、回折格子部12の屈折率を2.52とし、空気の屈折率を1.00とした。また、凸部12aと凹部12bのピッチは696nmとし、凸部12aの幅を230nmとし、凸部12aの高さを210nmとし、導光部11の主面11bから凸部12aの上面までの厚さを788nmとした。また、入射光L1を直径2μmのコヒーレント光とし、波長を852nmとした。
 図2は、回折格子部12に垂直に入射した光のシミュレーション結果を示す図である。図2の(a)は出射光の電場分布を示し、図2の(b)は回折格子部12内外での光の電場分布を示している。図3は、回折格子部12に垂直に入射した光のシミュレーション結果を示す図である。図3の(a)は回折格子部12内での電場の虚部を示し、図3の(b)は回折格子部12内外での電場を示している。図2の(b)および図3の(b)では、凸部12aと凹部12bの形状を白線の凹凸で示しており、入射光L1の入射位置と角度を白抜きの矢印で示している。入射光L1の入射位置はx=0で、入射角度は0度である。
 図2の(a)に示したグラフは、回折格子部12外であるz=1.59μm位置での回折光強度を示しており、0次光、1次光、2次光が出射することがわかる。
 図3の(a)に示したグラフは、回折格子部12内であるz=0.70μm位置での電場の虚部を示しており、図中の太い破線は入射したコリメート光の直径を示している。図2および図3に示したように、回折格子部12に垂直に入射した光では、透過光が出射するだけであり、回折格子部12の面内方向への光の拡がりがほとんどないことがわかる。
 図4は、回折格子部12に斜めに入射した光のシミュレーション結果を示す図である。図4の(a)は出射光の電場分布を示し、図4の(b)は回折格子部12内外での光の電場分布を示している。
 図5は、回折格子部12に斜めに入射した光のシミュレーション結果を示す図である。図5の(a)は回折格子部12内での電場の虚部を示し、図5の(b)は回折格子部12内外での電場を示している。図4の(b)および図5の(b)では、凸部12aと凹部12bの形状を白線の凹凸で示しており、入射光L1の入射位置と角度を白抜きの矢印で示している。入射光L1の入射位置はx=0で、入射角度は-62.3度である。
 図4の(a)に示したグラフは、回折格子部12外であるz=1.59μm位置での回折光強度を示しており、0次光、1次光、2次光の他にも複数の光が出射することがわかる。
 図5の(a)に示したグラフは、回折格子部12内であるz=0.70μm位置での電場の虚部を示しており、図中の太い破線はコリメート光の直径を示している。図4および図5に示したように、回折格子部12に斜めに入射した光では、コリメート光の直径よりも広い範囲に回折格子部12の面内方向に光が分布し、回折格子部12において光を出射できる領域も拡がっていることがわかる。
 したがって、回折格子部12に斜めに入射した光は、入射光L1の直径よりも広い範囲から外部に出射され、かつ上述したように繰り返し反射によって出射光の拡がり角度が大きくなるため、光学素子10からより広い範囲に光を照射することが可能となる。
 図6は、回折格子部12内での電場の角度依存性を示すグラフである。図6に示すようにコリメート光の入射角によって回折格子部12の面内方向における広がりが異なっている。したがって、回折格子部12への入射角を調整することで、光学素子10における光出射の領域を制御して、所望の配光分布を設計することができる。
 上述したように、本実施形態の光学素子10では、主面11bに対して裏面11dが角度δθ1だけ傾斜しているため、主面11bと側面11a,11cと裏面11dで繰り返し反射された光の経路が変化し、回折格子部12に到達する光の位置と入射角度が異なるものとなる。これにより、回折格子部12から複数の角度方向に対して光が取り出され、広い角度に光を照射することが可能となる。
 (第2実施形態)
 次に、本開示の第2実施形態について説明する。第1実施形態と重複する内容は説明を省略する。
 図7は、本実施形態における光学素子20の構造を示す模式図である。図7に示すように光学素子20は、導光部21と、回折格子部22を備えている。回折格子部22の上面には、凸部22aと凹部22bが周期的に形成されている。図7では反射膜13およびプリズム14の図示を省略しているが、第1実施形態と同様に、光学素子20は、反射膜13およびプリズム14を備えていてもよい。
 凸部22aと凹部22bは、それぞれ直線状に延伸して形成されているが、導光部21の何れの側面に対しても平行ではなく、光学素子20に入射される光に対して略垂直となるように形成されている。また、導光部21は、直方体から一つの側面と底面が削られた形状をなしており、主面と底面は非平行であり、一対の対向する側面も非平行とされている。
 図8は、光学素子20の光路を示す模式図である。図8の(a)は側面方向から見た図であり、図8の(b)は上面から見た図である。図8の(a)(b)に示すように、導光部21は側面21aと、主面21bと、側面21c1,21c2と、裏面21dを備えている。
 側面21aは、光学素子10の外部に配置された光源からの光が入射する平坦面であり、主面21bに対して略垂直に形成されている。主面21bは、表面に回折格子部22が形成される平坦面であり、裏面21dに対向している。側面21c1は、側面21aに直交する平坦面であり、主面21bに対して略垂直に形成されている。裏面21dは、主面21bに対向する平坦面であり、主面21bに対して角度δθ1だけ傾斜して形成されている。角度δθ1の範囲は1度以上5度以下が好ましい。側面21c2は、側面21c1に対向する平坦面であり、側面21c1に対して角度δθ2だけ傾斜して形成されている。側面21c1は本開示における第1側面に相当し、側面21c2は本開示における対向側面に相当している。ここで、側面21c1および側面21c2には、第1実施形態と同様に反射膜が形成されているが、図8では図示を省略している。
 次に、図8を用いて光学素子20における光路について説明する。図示しない光源からは、光学素子20に向けてコリメート光が照射される。コリメート光は側面21aにプリズム14を介して入射し、導光部21内部を進行する入射光L1として点P1で回折格子部22に入射角Φで入射する。入射光L1の一部は回折格子部22内を伝搬し、図1での説明と同様に回折条件を満たす出射角度θd1方向に出射光LO1として出射される。
 入射光L1のうち導光部21と回折格子部22の界面で反射された光は、導光部21内を進行して側面21c1、裏面21dおよび側面21c2で反射されて再び主面21bに到達し、再入射光L2として点P2で回折格子部22に入射する。再入射光L2の一部は、回折格子部22内を伝搬し、回折条件を満たす出射角度θd2方向に出射光LO2として出射される。以下、同様に導光部21内での繰り返し反射と、回折格子部22内での伝搬および光出射が生じ、点P3からは出射角度θd3方向に出射光LO3が出射される。
 ここで、裏面21dは主面21bに対して角度δθ1だけ傾斜し、側面21c2は側面21c2に対して角度δθ2だけ傾斜しているため、入射光L1、再入射光L2および再々入射光L3が回折格子部22に入射する位置と角度はそれぞれ異なっている。これにより、点P1,P2,P3での回折条件はそれぞれ異なるものとなり、出射光LO1,LO2,LO3の出射角度θd1,θd2,θd3は異なるものとなる。
 以上に述べたように、導光部21に斜めに入射した光は、傾斜した裏面21dと側面21c2での反射によって回折条件が変化し、回折格子部22の表面から複数の出射角度で取り出されるため、光学素子20から広い角度に光を射出することが可能となる。回折格子部22内での面内方向への光の拡がりと、出射光の取出し範囲の拡大についても、第1実施形態と同様である。
 また図8の(a)(b)に示したように光学素子20では、側面21c2が側面21c1に対して傾斜しているため、導光部21内での入射光L1、再入射光L2および再々入射光L3は三次元的な螺旋状に進行する。したがって、回折格子部22の面内方向において、点P1,P2,P3の互いの間隔を広くすることができ、入射光L1、再入射光L2および再々入射光L3の回折格子部22内での干渉を抑制することができる。
 以上に述べたように、本実施形態の光学素子20でも、主面21bに対して裏面21dが角度δθ1だけ傾斜し、側面21c1に対して側面21c2が角度δθ2だけ傾斜しているため、主面21bと側面21c1,21c2と裏面21dで繰り返し反射された光の経路が変化し、回折格子部22に到達する光の位置と入射角度が異なるものとなる。これにより、回折格子部22から複数の角度方向に対して光が取り出され、広い角度に光を照射することが可能となる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本出願は、2019年2月21日出願の日本国特許出願(特願2019-029155号)に基づくものであり、その内容はここに参照として取り込まれる。
10,20…光学素子
11,21…導光部
11a,11c、21a,21c1,21c2…側面
11b,21b…主面
11d,21d…裏面
12,22…回折格子部
12a,22a…凸部
12b,22b…凹部
13…反射膜
13a…入射開口部
14…プリズム
15…間隙
L1…入射光
L2…再入射光
L3…再々入射光
LO1,LO2,LO3…出射光

Claims (7)

  1.  主面と、前記主面に対して垂直な複数の側面と、前記主面に対向する裏面とを有する導光部と、
     前記主面上に形成された回折格子部を備え、
     前記裏面は、前記主面に対して角度δθ1だけ傾斜している、光学素子。
  2.  請求項1に記載の光学素子であって、
     前記複数の側面は、少なくとも第1側面と、前記第1側面に対して角度δθ2だけ傾斜して対向する対向側面を有する、光学素子。
  3.  請求項1または2に記載の光学素子であって、
     前記側面および裏面には、反射膜が形成されている、光学素子。
  4.  請求項3に記載の光学素子であって、
     前記側面に形成された前記反射膜の一つには、入射開口部が形成されている、光学素子。
  5.  請求項4に記載の光学素子であって、
     前記入射開口部を覆うようにプリズムが配置され、
     前記プリズムと前記入射開口部が形成された前記反射膜との間には間隙が設けられている、光学素子。
  6.  請求項1から5の何れか一つに記載の光学素子であって、
     前記回折格子部は、前記導光部とは屈折率が異なる誘電体で構成されている、光学素子。
  7.  請求項1から6の何れか一つに記載の光学素子と、
     前記光学素子に対して光を照射する光源部と、を備え、
     前記側面の一つを介して前記主面に対して、前記光源部から光を照射する、画像表示装置。
PCT/JP2020/002300 2019-02-21 2020-01-23 光学素子および画像表示装置 WO2020170707A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019029155A JP2020134738A (ja) 2019-02-21 2019-02-21 光学素子および画像表示装置
JP2019-029155 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020170707A1 true WO2020170707A1 (ja) 2020-08-27

Family

ID=72144569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002300 WO2020170707A1 (ja) 2019-02-21 2020-01-23 光学素子および画像表示装置

Country Status (2)

Country Link
JP (1) JP2020134738A (ja)
WO (1) WO2020170707A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54626A (en) * 1977-06-03 1979-01-06 Nippon Chemical Ind Focus detecting plate using diffraction grating
JPH11287993A (ja) * 1998-04-01 1999-10-19 Shimada Precision Kk 点光源用の導光板
JPH11337713A (ja) * 1998-05-21 1999-12-10 Fujitsu Ltd 回折格子の形成方法
JP2003139957A (ja) * 2001-10-31 2003-05-14 Sharp Corp 位相型体積ホログラム光学素子の製造方法
JP2003329968A (ja) * 2002-05-13 2003-11-19 Samsung Electronics Co Ltd 倍率調整自在の着用型ディスプレイシステム
JP2003329823A (ja) * 2002-05-17 2003-11-19 Nippon Sheet Glass Co Ltd 1次元フォトニック結晶を用いた光学素子およびそれを用いた分光装置
WO2009093452A1 (ja) * 2008-01-23 2009-07-30 Panasonic Corporation 波長分離装置、これを用いた面状照明装置、及びこれを用いた液晶表示装置
JP2009175238A (ja) * 2008-01-22 2009-08-06 Seiko Epson Corp 光学素子及び光源ユニット
JP2011017923A (ja) * 2009-07-09 2011-01-27 Sumitomo Electric Ind Ltd 導光板、バックライト、ディスプレイ装置、照明装置および導光板の製造方法
JP2017049289A (ja) * 2015-08-31 2017-03-09 セイコーエプソン株式会社 導光装置及び虚像表示装置
WO2018128657A1 (en) * 2017-01-06 2018-07-12 Leia Inc. Static multiview display and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54626A (en) * 1977-06-03 1979-01-06 Nippon Chemical Ind Focus detecting plate using diffraction grating
JPH11287993A (ja) * 1998-04-01 1999-10-19 Shimada Precision Kk 点光源用の導光板
JPH11337713A (ja) * 1998-05-21 1999-12-10 Fujitsu Ltd 回折格子の形成方法
JP2003139957A (ja) * 2001-10-31 2003-05-14 Sharp Corp 位相型体積ホログラム光学素子の製造方法
JP2003329968A (ja) * 2002-05-13 2003-11-19 Samsung Electronics Co Ltd 倍率調整自在の着用型ディスプレイシステム
JP2003329823A (ja) * 2002-05-17 2003-11-19 Nippon Sheet Glass Co Ltd 1次元フォトニック結晶を用いた光学素子およびそれを用いた分光装置
JP2009175238A (ja) * 2008-01-22 2009-08-06 Seiko Epson Corp 光学素子及び光源ユニット
WO2009093452A1 (ja) * 2008-01-23 2009-07-30 Panasonic Corporation 波長分離装置、これを用いた面状照明装置、及びこれを用いた液晶表示装置
JP2011017923A (ja) * 2009-07-09 2011-01-27 Sumitomo Electric Ind Ltd 導光板、バックライト、ディスプレイ装置、照明装置および導光板の製造方法
JP2017049289A (ja) * 2015-08-31 2017-03-09 セイコーエプソン株式会社 導光装置及び虚像表示装置
WO2018128657A1 (en) * 2017-01-06 2018-07-12 Leia Inc. Static multiview display and method

Also Published As

Publication number Publication date
JP2020134738A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
US10795156B2 (en) Waveguide structure
TWI751262B (zh) 交疊的反射面構造
JP4655771B2 (ja) 光学装置及び虚像表示装置
CN107193130B (zh) 显示装置和导光装置
CN111512189B (zh) 谐振波导光栅及其应用
KR102348588B1 (ko) 멀티빔 회절 격자-기반 니어-아이 디스플레이
JP2010044172A (ja) 虚像表示装置
US10108009B2 (en) Image display device
JP2014512574A (ja) 光学的誘導デバイス及びかかるデバイスの製造方法
TWI838394B (zh) 光導裝置及具有其之照明裝置與顯示裝置
KR20170104370A (ko) 도광 장치 및 허상 표시 장치
JP2016188901A (ja) 表示装置
WO2020170707A1 (ja) 光学素子および画像表示装置
JP2020144190A (ja) 画像表示装置
JP7373292B2 (ja) 光学素子および画像表示装置
JP7513418B2 (ja) 光学素子および画像表示装置
JP7479945B2 (ja) 光学素子および画像投影装置
JP2022129525A (ja) 画像投影装置
CN114829837A (zh) 用于控制来自外部光源的光的光学装置
US20240027762A1 (en) Light guide plate and display device
WO2023188701A1 (ja) 光学系及び画像表示装置
JP7380240B2 (ja) 導光部材および虚像表示装置
CN113544556B (zh) 光学元件和光源装置
JP2014067531A (ja) 面光源装置および表示装置
US20240142707A1 (en) Virtual image display device and optical unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20760254

Country of ref document: EP

Kind code of ref document: A1