WO2020170366A1 - Manufacturing method for semiconductor device, and expand tape - Google Patents

Manufacturing method for semiconductor device, and expand tape Download PDF

Info

Publication number
WO2020170366A1
WO2020170366A1 PCT/JP2019/006351 JP2019006351W WO2020170366A1 WO 2020170366 A1 WO2020170366 A1 WO 2020170366A1 JP 2019006351 W JP2019006351 W JP 2019006351W WO 2020170366 A1 WO2020170366 A1 WO 2020170366A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
meth
hydroxy
acrylate
expanded
Prior art date
Application number
PCT/JP2019/006351
Other languages
French (fr)
Japanese (ja)
Inventor
望 松原
一尊 本田
恵子 上野
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/006351 priority Critical patent/WO2020170366A1/en
Priority to PCT/JP2020/006351 priority patent/WO2020171084A1/en
Priority to TW109105220A priority patent/TW202040657A/en
Publication of WO2020170366A1 publication Critical patent/WO2020170366A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to a semiconductor device manufacturing method and an expanded tape.
  • a rewiring layer in which a rewiring pattern is formed with polyimide, copper wiring, or the like is formed on an insulating film on a circuit surface of a semiconductor chip, and metal pads, solder balls, or the like are mounted on the rewiring to connect them.
  • the WLP includes a semiconductor package such as a WLCSP (Wafer Level Chip Scale Package) or a FI-WLP (Fan In Wafer Level Package) having a package area similar to that of the semiconductor chip, and a FO-WLP (Fan Out Wafer Level Package).
  • WLCSP Wafer Level Chip Scale Package
  • FI-WLP Fe In Wafer Level Package
  • FO-WLP Fluor Out Wafer Level Package
  • Such semiconductor packages are rapidly becoming smaller and thinner, they are sealed at the wafer level to protect the periphery of the semiconductor chip to ensure reliability, and then the rewiring layer is formed and the package is packaged. Individualization is performed for each. Reliability is ensured by performing sealing at the wafer level and then performing secondary mounting and the like. Further, also in the field of mounting a single-function semiconductor such as a discrete semiconductor, for the purpose of reducing the stress applied to the cracks or the pad periphery of the semiconductor chip during handling, after sealing the semiconductor chip periphery by performing sealing at the wafer level, Each package is separated into individual pieces and the process is proceeding to the next step (SMT process or the like). Discrete semiconductors are often smaller than the system LCI, and there is a particular demand for 5-sided or 6-sided sealing of the semiconductor chip in order to protect the semiconductor chip to a higher degree.
  • Patent Document 1 In order to seal the side surface of the semiconductor chip, it is necessary to divide the wafer into individual pieces to produce semiconductor chips and then widen the intervals between the semiconductor chips. For example, in Patent Document 1, a plurality of chips are fixed on an expand tape, the gap between the semiconductor chips is widened by stretching the expand tape, and then the expand tape is separated from the semiconductor chip, and the method is used. An expandable tape capable of being disclosed is disclosed.
  • the present invention is applicable to a method for manufacturing a semiconductor device and a method for manufacturing the same, in which chip skipping and reduction in transfer rate are sufficiently suppressed even when the semiconductor chip is miniaturized (for example, about 1 mm ⁇ 1 mm).
  • the purpose of the present invention is to provide an expanded tape.
  • An expanded tape used in a method for manufacturing a semiconductor device which comprises an ultraviolet irradiation step of, and a separation step of separating the expanded tape irradiated with ultraviolet rays from a plurality of semiconductor chips,
  • An expanded tape having a peel strength of 6 N/25 mm or more before UV irradiation and a peel strength of 0.4 N/25 mm or less after UV irradiation.
  • the adhesive layer comprises an acrylic copolymer having a radiation-curable carbon-carbon double bond-containing group and a hydroxyl group in the main chain, and a crosslinking agent having two or more functional groups capable of reacting with the hydroxyl group.
  • the expand tape according to [2] which contains a photopolymerization initiator and has a crosslinking agent content of 0.05 to 0.3 parts by mass relative to 100 parts by mass of the acrylic copolymer.
  • the expanded tape according to [4] wherein the crosslinking agent is a crosslinking agent having two or more isocyanate groups.
  • a method of manufacturing a semiconductor device comprising: an expanding step; an ultraviolet ray irradiating step of irradiating a stretched expanded tape with ultraviolet rays; [8]
  • a method of manufacturing a semiconductor device having a semiconductor chip comprising: A preparatory step of preparing the expanded tape according to any one of [1] to [6] and a plurality of semiconductor chips fixed on the expanded tape; A tape-expanding step for extending the interval between the plurality of semiconductor chips fixed on the expand tape from 100 ⁇ m or less to 300 ⁇ m or more by stretching the expand tape; A tension holding step of holding the tension of the stretched expanded tape, An ultraviolet irradiation step of irradiating the stretched expanded tape with ultraviolet rays, A transfer step of transferring a plurality of semiconductor chips to the carrier so that the surface opposite to the surface fixed on the expanded expand tape is fixed.
  • a peeling step of peeling the expanded tape irradiated with ultraviolet rays from the semiconductor chip comprising:
  • a method for manufacturing a semiconductor device and a method for manufacturing the same in which chip fly and transfer rate decrease are sufficiently suppressed even when the size of the semiconductor chip is reduced (for example, about 1 mm ⁇ 1 mm) It is an object of the present invention to provide an expanded tape applicable to.
  • FIG. 9 is a schematic cross-sectional view for explaining the embodiment of the method for manufacturing the semiconductor device.
  • FIG. 9 is a schematic cross-sectional view for explaining the embodiment of the method for manufacturing the semiconductor device. It is a schematic cross section for explaining other embodiment of a manufacturing method of a semiconductor device. It is a schematic cross section for explaining other embodiment of a manufacturing method of a semiconductor device.
  • the method for manufacturing the semiconductor device of the present embodiment is a tape expand in which a predetermined expand tape to be described later is stretched while being heated to expand the interval between the plurality of semiconductor chips fixed on the expand tape from 100 ⁇ m or less to 300 ⁇ m or more.
  • FIGS. 1 and 2 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing a semiconductor device
  • FIGS. 3 and 4 are schematic cross-sectional views for explaining another embodiment of a method for manufacturing a semiconductor device.
  • FIG. 1 and 2 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing a semiconductor device
  • FIGS. 3 and 4 are schematic cross-sectional views for explaining another embodiment of a method for manufacturing a semiconductor device.
  • the expanded tape 1 to which a plurality of semiconductor chips 2 are fixed is prepared.
  • the expanded tape 1 has an adhesive layer 1a and a base film 1b, and the adhesive layer 1a contacts the semiconductor chip 2.
  • the semiconductor chip 2 has a circuit surface on which the pads (circuits) 3 are provided.
  • the surface of the semiconductor chip 2 opposite to the circuit surface may be fixed to the expanding tape 1 (FIG. 1A), or the circuit surface may be fixed to the expanding tape 1 (FIG. 3A).
  • the expanding tape 1 is stretched while being heated to increase the distance between the semiconductor chips 2 fixed on the expanding tape 1 (FIG. 1(b) or FIG. 3(b)).
  • the stretched expanded tape 1 is fixed with a fixing jig 4 to hold the tension of the expanded tape 1 (FIG. 1(c) or FIG. 3(c)).
  • the stretched expanded tape 1 is irradiated with ultraviolet rays to reduce the adhesive strength (peel strength) of the expanded tape 1 to the semiconductor chip 2 (FIG. 2A or FIG. 4A).
  • the transfer step the semiconductor chip 2 is transferred onto the carrier 5.
  • the preparation step when the surface of the semiconductor chip 2 opposite to the circuit surface is fixed to the expanding tape 1, the circuit surface is fixed to the carrier 5 by the above transfer (FIG. 2B).
  • the method for preparing the expand tape and the plurality of semiconductor chips fixed on the expand tape is not particularly limited.
  • it can be manufactured by laminating a semiconductor wafer on a dicing tape or the like, dicing it with a blade or a laser to obtain a plurality of individual semiconductor chips, and then transferring these to an expanding tape.
  • the dicing may be performed by forming a brittle layer with a laser and expanding.
  • the semiconductor wafer may be directly laminated on the expand tape and the semiconductor wafer may be diced by the above-mentioned method.
  • the initial semiconductor chip interval (semiconductor chip interval before the tape expanding step) is preferably narrow, and is 100 ⁇ m or less, preferably 80 ⁇ m or less, and more preferably 60 ⁇ m or less.
  • the semiconductor wafer is wasted as the chip interval is wider, and thus the narrower one is preferable from the viewpoint of cost reduction.
  • the initial intervals between the semiconductor chips are preferably 10 ⁇ m or more. If it is smaller than 10 ⁇ m, the expanded tape region between a plurality of semiconductor chips is small and it is difficult to spread.
  • the type of pad on the circuit surface of the semiconductor chip is not particularly limited as long as it can be formed on the circuit surface of the semiconductor chip, and even if bumps (projection electrodes) such as copper bumps and solder bumps are used, Ni/Au It may be a relatively flat metal pad such as a plating pad.
  • ⁇ Tape expanding process> By stretching the expanded tape, the intervals between the plurality of semiconductor chips are widened.
  • Extending tape stretching methods include, for example, a push-up method and a pulling method.
  • the push-up method the expand tape is stretched by fixing the expand tape and then raising the stage having a predetermined shape.
  • the pulling method is a method in which the expand tape is stretched by fixing the expand tape and then pulling it in a predetermined direction in parallel with the surface of the installed expand tape.
  • the push-up method is preferable because the distance between the semiconductor chips can be uniformly extended and the required (occupied) device area is small and compact.
  • the stretching conditions may be appropriately set according to the characteristics of the expanded tape.
  • the push-up amount (pull amount) is preferably 10 to 150 mm, more preferably 10 to 120 mm.
  • the temperature at the time of stretching may be appropriately set according to the characteristics of the expanded tape, but may be, for example, 10 to 200°C, 10 to 150°C, or 20 to 100°C. When the temperature is 10° C. or higher, the expand tape is easily stretched, and when the temperature is 200° C.
  • the push-up speed may be appropriately set according to the characteristics of the expanded tape, but may be, for example, 0.1 to 500 mm/sec, 0.1 to 300 mm/sec, or 0.1 to 200 mm/sec. .. When it is 0.1 mm/sec or more, productivity is improved. When it is 500 mm/sec or less, peeling between the semiconductor chip and the expanding tape becomes difficult to occur.
  • the interval between the plurality of semiconductor chips is preferably 500 ⁇ m or more in order to secure the space required for providing the rewiring pattern and the connection terminal pads outside the semiconductor chip area. Since the total number of rewiring layers is increased in a semiconductor package having a high density and high functionality, it is necessary to provide a connection terminal pad outside the semiconductor chip. Therefore, it is preferable that the semiconductor chip interval be wide. From the above viewpoint, the interval between the plurality of semiconductor chips after the tape expanding step is more preferably 1 mm or more, further preferably 2 mm or more. The upper limit is not particularly limited, but can be 5 mm or less.
  • the distance between the semiconductor chips after the tape expanding step may be 300 ⁇ m or more, but an appropriate distance can be selected according to the application.
  • 500 ⁇ m or more is preferable in order to secure a space necessary for providing the rewiring pattern and the connection terminal pad outside the region of the semiconductor chip. Since the total number of rewiring layers increases in a high-density and high-performance semiconductor package, it is necessary to provide a connection terminal pad on the outer side of the semiconductor chip. Therefore, it is preferable that the semiconductor chip interval be wide. From the above viewpoint, the interval between the plurality of semiconductor chips after the tape expanding step is preferably 1 mm or more, more preferably 2 mm or more.
  • the distance between the semiconductor chips after the tape expanding step is 300 ⁇ m or more from the viewpoint of surely protecting the side surface of the semiconductor chip with a sealing material.
  • the interval between the plurality of semiconductor chips after the tape expanding step is preferably 500 ⁇ m or more, and more preferably 1 mm.
  • the upper limit of the distance between the semiconductor chips after the tape expanding step is not particularly limited, but can be 5 mm or less.
  • ⁇ Ultraviolet irradiation process> By irradiating the stretched expanded tape with ultraviolet rays, the adhesive strength of the expanded tape to the semiconductor chip is reduced.
  • ultraviolet rays having a wavelength of 200 to 400 nm it is preferable to use ultraviolet rays having a wavelength of 200 to 400 nm, and it is preferable that the irradiation conditions are such that the illuminance is 30 to 240 mW/cm 2 and the irradiation amount is 200 to 500 mJ/cm 2. ..
  • ⁇ Transfer process> Transfer (laminate) is performed so that the semiconductor chip is fixed to the carrier.
  • the laminating method is not particularly limited, but a roll laminator, a diaphragm laminator, a vacuum roll laminator, or a vacuum diaphragm laminator can be used.
  • Lamination conditions may be set appropriately according to the physical properties and characteristics of the expanded tape, semiconductor chip and carrier.
  • the temperature may be room temperature (25°C) to 200°C, preferably room temperature (25°C) to 150°C, and more preferably room temperature (25°C) to 100°C.
  • the semiconductor chip is easily transferred (laminated) to the carrier, and when the temperature is 200° C. or lower, the semiconductor tape is misaligned due to strain or slack due to thermal expansion or low elasticity of the expand tape (expand tape and semiconductor chip). It is possible to more highly prevent the separation of the semiconductor chip) and the scattering of the semiconductor chip.
  • the temperature condition is the same as that of the roll laminator described above.
  • the pressure bonding time may be 5 to 300 seconds, preferably 5 to 200 seconds, more preferably 5 to 100 seconds. When it is 5 seconds or more, the semiconductor chip is easily transferred (laminated) to the carrier, and when it is 300 seconds or less, the productivity is improved.
  • the pressure may be 0.1 to 3 MPa, preferably 0.1 to 2 MPa, more preferably 0.1 to 1 MPa. When it is 0.1 MPa or more, the semiconductor chip is easily transferred (laminated) to the carrier, and when it is 3 MPa or less, damage to the semiconductor chip is reduced.
  • the adhesive strength of the expand tape to the semiconductor chip is reduced, stress on the semiconductor chip during peeling is reduced.
  • the peeling can be performed smoothly without displacement.
  • the method for manufacturing a semiconductor device of the present embodiment further includes a sealing step of sealing a plurality of semiconductor chips on a carrier with a sealing material, and a plurality of semiconductor chips sealed with a sealing material. At least one of a second peeling step of peeling the carrier from the semiconductor chip and a semiconductor package forming step of forming a plurality of semiconductor packages by dividing a plurality of semiconductor chips sealed by a sealing material into individual semiconductor chips May be.
  • the expanded tape of the present embodiment is an expanded tape used in the above-described method for manufacturing a semiconductor device, which has a peel strength before UV irradiation of 6 N/25 mm or more and a peel strength after UV irradiation of 0.4 N/ It is 25 mm or less.
  • the peel strength referred to here is the peel strength of the expanded tape with respect to SUS when a stainless steel material (SUS) is attached to the expanded tape.
  • SUS stainless steel material
  • the peel strength measured after applying an expanding tape at a lamination temperature of 40° C. to a SUS having a thickness of 0.5 mm by using Laminator GK-13DX (manufactured by Lamy Corporation) is UV.
  • the peel strength measured is the peel strength after irradiation with ultraviolet rays.
  • the peel strength can be evaluated in accordance with JIS C 5016 (1994-Peeling strength of conductor).
  • the peel strength of the expanded tape before ultraviolet irradiation is preferably 7 N/25 mm or more, and 8 N/25 mm or more from the viewpoint that the semiconductor chip can be more highly prevented from scattering or misalignment in the tape expanding step. Is more preferable and 9 N/25 mm or more is further preferable.
  • the upper limit of the peel strength of the expanded tape before ultraviolet irradiation is not particularly limited, but may be, for example, 15 N/25 mm or less.
  • the peel strength of the expanded tape after irradiation with ultraviolet rays is preferably 0.35 N/25 mm or less from the viewpoint of further improving the transfer rate of the semiconductor chip in the transfer step.
  • the lower limit of the peel strength of the expanded tape after irradiation with ultraviolet rays is not particularly limited, but may be 0.1 N/25 mm or more, for example.
  • the expanded tape may have a multi-layer structure such as a base film (base layer) that greatly contributes to the stretchability and an adhesive layer that controls the adhesive strength.
  • the substrate film is not particularly limited as long as it has stretchability and stability that holds the semiconductor chip interval after the tension holding step.
  • the base material film is a polyester film such as polyethylene terephthalate film; polytetrafluoroethylene film, polyethylene film, polypropylene film, polymethylpentene film, polyvinyl acetate film, and ⁇ -olefin such as poly-4-methylpentene-1. It may be various plastic films such as a homopolymer and a copolymer thereof, and a polyolefin film containing the homopolymer or the ionomer of the above copolymer; a polyvinyl chloride film; and a polyimide film; a urethane resin film.
  • the base film is not limited to a single-layer film, and may be a multi-layer film obtained by combining two or more kinds of the plastic films or two or more plastic films of the same kind.
  • the above base film is preferably a polyolefin film or a urethane resin film from the viewpoint of stretchability.
  • the base film may contain various additives such as an antiblocking agent, if necessary.
  • the thickness of the base film may be appropriately set if necessary, but is preferably 50 to 500 ⁇ m. If it is thinner than 50 ⁇ m, the stretchability is deteriorated, and if it is thicker than 500 ⁇ m, distortions are likely to occur and handling properties are deteriorated.
  • the thickness of the base film is appropriately selected within a range that does not impair workability.
  • a high-energy ray (in particular, ultraviolet ray) curable adhesive is used as the adhesive constituting the adhesive layer, it is necessary to have a thickness that does not hinder the transmission of the high-energy ray.
  • the thickness of the base film may be usually 10 to 500 ⁇ m, preferably 50 to 400 ⁇ m, and more preferably 70 to 300 ⁇ m.
  • the base material layer is composed of a plurality of base material films, it is preferable to adjust the total thickness of the base material layer within the above range.
  • the base film may be chemically or physically surface-treated, if necessary, in order to improve the adhesion with the adhesive layer. Examples of the surface treatment include corona treatment, chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, and ionizing radiation treatment.
  • the adhesive layer preferably contains an acrylic copolymer (acrylic resin), a crosslinking agent, and a photopolymerization initiator.
  • acrylic copolymer acrylic resin
  • crosslinking agent a crosslinking agent
  • photopolymerization initiator a photopolymerization initiator
  • the above acrylic copolymer has at least a radiation-curable carbon-carbon double bond-containing group and a hydroxyl group in the main chain.
  • the acrylic resin or methacrylic resin (hereinafter referred to as “(meth)acrylic resin”) as the acrylic copolymer may be a resin having an unsaturated bond in its side chain and having adhesiveness itself.
  • the glass transition temperature is ⁇ 40° C. or lower
  • the hydroxyl value is 20 to 150 mgKOH/g
  • the chain-polymerizable functional group is 0.3 to 1.5 mmol/g
  • the acid value is Examples thereof include resins that are not substantially detected and have a weight average molecular weight of 300,000 or more.
  • the (meth)acrylic resin having such characteristics can be obtained by synthesizing by a known method, and for example, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a bulk polymerization method, a precipitation polymerization method. , A gas phase polymerization method, a plasma polymerization method, a supercritical polymerization method and the like are used.
  • a gas phase polymerization method, a plasma polymerization method, a supercritical polymerization method and the like are used.
  • radical polymerization, cationic polymerization, anionic polymerization, living radical polymerization, living cationic polymerization, living anionic polymerization, coordination polymerization, immodal polymerization and the like, and methods such as ATRP or RAFT can also be used.
  • synthesis by radical polymerization using a solution polymerization method can be compounded using the resin solution obtained by polymerization as it is, in addition to good economic efficiency, high reaction rate, easy control of polymerization, and the like. It is preferable because it is easy to mix.
  • the monomer used when synthesizing the (meth)acrylic resin is not particularly limited as long as it has one (meth)acryloyl group in one molecule, but if specifically exemplified, Methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, butoxyethyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate , 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, octylheptyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth) Acrylate, tetradecy
  • At least one selected from (meth)acrylic esters which are C8 to C23 aliphatic esters.
  • the (meth)acrylic resin obtained by copolymerizing such a monomer component has a low glass transition temperature and thus exhibits excellent adhesive properties, which is preferable.
  • the polymerization initiator necessary for obtaining such a (meth)acrylic resin is not particularly limited as long as it is a compound that generates a radical by heating at 30° C. or higher, and examples thereof include methyl ethyl ketone peroxide and cyclohexanone peroxide.
  • Ketone ketones such as methylcyclohexanone peroxide; 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)-2-methylcyclohexane, 1,1-bis(t -Butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane
  • Peroxyketals such as; hydroperoxides such as p-menthane hydroperoxide; ⁇ , ⁇ ′-bis(t-butylperoxy)diisopropylbenzene, dicumyl peroxide, t-butylcumyl peroxide, di-t- Dialkyl peroxides such as butyl peroxide; diacyl peroxides such as octanoyl peroxide,
  • the reaction solvent used in the solution polymerization is not particularly limited as long as it can dissolve the (meth)acrylic resin, and examples thereof include aromas such as toluene, xylene, mesitylene, cumene and p-cymene.
  • hydrocarbons such as cyclic ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl -Ketones such as 2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -butyrolactone; carbonic acid esters such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , Ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glyco
  • Photosensitivity can be imparted by chemically bonding to (meth)acrylic resin a functional group capable of reacting with irradiation of ultraviolet rays, electron beams, and/or visible rays.
  • the functional group capable of reacting with irradiation of ultraviolet rays, electron beams, and/or visible rays is, if specifically exemplified, a (meth)acryloyl group, a vinyl group, an allyl group, a glycidyl group, or a fat. Examples thereof include a cyclic epoxy group and an oxetane group.
  • the method for imparting photosensitivity to the (meth)acrylic resin is not particularly limited, but, for example, when synthesizing the above (meth)acrylic resin, a functional group capable of undergoing an addition reaction in advance, for example, a hydroxyl group or a carboxyl group.
  • a maleic anhydride group, a glycidyl group, an amino group and the like are copolymerized to introduce a functional group capable of undergoing an addition reaction into a (meth)acrylic resin, and at least one ethylenically unsaturated group and epoxy Group, an oxetanyl group, an isocyanate group, a hydroxyl group, a carboxyl group and the like, and a compound having at least one functional group is added to react to introduce an ethylenically unsaturated group into a side chain, thereby producing a (meth)acrylic resin.
  • 2-(meth)acryloyloxyethyl isocyanate 2-(meth)acryloyloxyethyl isocyanate, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, ethyl isocyanate (meth)acrylate, 2 -Using hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, (meth)acrylic acid, crotonic acid, 2-hexahydrophthaloylethyl (meth)acrylate , (Meth)acrylic resin is preferably reacted to impart photosensitivity.
  • a catalyst that accelerates the addition reaction or a polymerization inhibitor may be added for the purpose of avoiding double bond cleavage during the reaction. More preferably, it is a reaction product of an (meth)acrylic resin containing an OH group and at least one selected from 2-methacryloyloxyethyl isocyanate and 2-acryloyloxyethyl isocyanate.
  • the cross-linking agent is a compound having at least one selected from a hydroxyl group, a glycidyl group, an amino group, and the like introduced into a (meth)acrylic resin, and two or more functional groups capable of reacting with these functional groups, There is no limit to its structure.
  • Examples of the bond formed by such a crosslinking agent include an ester bond, an ether bond, an amide bond, an imide bond, a urethane bond and a urea bond.
  • the amount of the crosslinking agent contained in the adhesive layer is preferably 0.05 to 0.3 parts by mass with respect to 100 parts by mass of the acrylic copolymer. If the amount of the cross-linking agent is less than 0.05 parts by mass, it may cause the adhesive layer to become brittle after irradiation with ultraviolet rays. On the other hand, when the amount of the cross-linking agent exceeds 0.3 parts by mass, the adhesive force of the adhesive layer before the irradiation of ultraviolet rays tends to be weak, and the force for fixing the semiconductor chip tends to be insufficient.
  • the cross-linking agent one having two or more isocyanate groups is preferable.
  • the cross-linking agent one having two or more isocyanate groups is preferable.
  • it easily reacts with the hydroxyl group, glycidyl group, amino group, etc. introduced into the (meth)acrylic resin to form a strong cross-linked structure, and the adhesive layer becomes brittle after irradiation with ultraviolet rays. Can be suppressed.
  • the cross-linking agent having two or more isocyanate groups is, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4.
  • an isocyanate group-containing oligomer obtained by reacting the above-mentioned isocyanate compound with a polyhydric alcohol having two or more OH groups can also be used.
  • examples of the polyhydric alcohol having two or more OH groups include ethylene glycol, propylene glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, and 1,9.
  • Nonanediol 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, glycerin, pentaerythritol, dipentaerythritol, 1,4-cyclohexanediol, 1,3-cyclohexanediol and the like.
  • the cross-linking agent is a reaction product of a polyfunctional isocyanate having two or more isocyanate groups and a polyhydric alcohol having three or more OH groups.
  • the photopolymerization initiator is not particularly limited as long as it generates an active species capable of causing chain polymerization of the acrylic copolymer by irradiation with one or more kinds of light selected from ultraviolet rays, electron rays and visible rays. However, for example, it may be a photoradical polymerization initiator or a photocationic polymerization initiator.
  • the chain-polymerizable active species is not particularly limited as long as it can initiate a polymerization reaction by reacting with the functional group of the acrylic copolymer.
  • photoradical polymerization initiator examples include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethan-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- ⁇ -Hydroxyketone such as 1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1 ⁇ -aminoketone such as -(4-morpholinophenyl)-butan-1-one and 1,2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one; 1-[ (4-phenylthio)phenyl]-1,2-octadion-2-(benzoyl)oxime and other oxime esters; bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,6-dimethoxy
  • the substituents on the aryl groups of the two triarylimidazole moieties may give the same and symmetrical compounds, and different asymmetrical compounds are given. May be given. Also.
  • a thioxanthone compound and a tertiary amine may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
  • Examples of the cationic photopolymerization initiator include aryldiazonium salts such as p-methoxybenzenediazonium hexafluorophosphate; diphenyliodonium hexafluorophosphate, diaryliodonium salts such as diphenyliodonium hexafluoroantimonate; triphenylsulfonium hexafluorophosphate, triphenyl Triarylsulfonium salts such as sulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium hexafluorophosphate, diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium pentafluorohydroxyantimonate Triarylselenonium salts such as triphenylselenonium he
  • a photoradical initiator when the adhesive layer requires strict insulation and insulation reliability, it is preferable to use a photoradical initiator, and among them, benzoin ketal such as 2,2-dimethoxy-1,2-diphenylethan-1-one.
  • the optimum amount of the photopolymerization initiator is preferably 0.5 to 1.5 parts by mass, although the optimum value varies depending on the intended thickness of the adhesive layer and/or the light source used. If the amount of the photopolymerization initiator is less than 0.5 parts by mass, the peeling force after irradiation with ultraviolet rays will not be sufficiently reduced, and problems will easily occur when the amount of push-up at the time of pickup is low. Even when the amount of the photopolymerization initiator is larger than 1.5 parts by mass, there is no advantage in the characteristics and it is uneconomical.
  • the thickness of the adhesive layer is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 5 to 40 ⁇ m.
  • the thickness of the adhesive layer is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 5 to 40 ⁇ m.
  • the adhesive layer has a thickness of 10 ⁇ m or more, the base film is not damaged (cuts or the like) even if the semiconductor wafer is diced on the expand tape without using the dicing tape, so that the semiconductor is diced on the dicing tape in the preparation step.
  • the step of dicing the wafer and transferring (attaching) it to the expanding tape can be omitted.
  • Expanded tapes can be manufactured according to techniques well known in the art. For example, it can be manufactured according to the following method. By coating a varnish containing an adhesive component and a solvent by a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method or the like on the protective film, and removing the solvent. Form an adhesive layer. Specifically, it is preferable to perform heating at 50 to 200° C. for 0.1 to 90 minutes. If there is no effect on the occurrence of voids or viscosity adjustment in each step, it is preferable to set the conditions under which the organic solvent volatilizes to 1.5% or less.
  • the produced protective film with an adhesive layer and the substrate film are laminated under a temperature condition of room temperature to 60°C so that the adhesive layer and the substrate film face each other.
  • -Expand tape base film, or base film + adhesive layer
  • base film or base film + adhesive layer
  • the protective film examples include A-63 (manufactured by Teijin DuPont Films Ltd., release treatment agent: modified silicone type), A-31 (manufactured by Teijin DuPont Films Ltd., release treatment agent: Pt type silicone type) and the like. Is mentioned.
  • the thickness of the protective film is appropriately selected within a range that does not impair the workability, and is usually preferably 100 ⁇ m or less from the economical viewpoint.
  • the thickness of the protective film is preferably 10 to 75 ⁇ m, more preferably 25 to 50 ⁇ m. When the thickness of the protective film is 10 ⁇ m or more, problems such as tearing of the film during the production of the expanded tape are unlikely to occur. When the thickness of the protective film is 75 ⁇ m or less, the protective film can be easily peeled off when using the expanded tape.
  • the carrier is not particularly limited as long as it can withstand the temperature and pressure at the time of transfer (the chips are not damaged, the chip interval does not change), and the temperature and pressure at the time of sealing can be endured.
  • the sealing temperature is 100 to 200° C.
  • the sealing material has heat resistance to withstand the temperature range.
  • the coefficient of thermal expansion is preferably 100 ppm/° C. or lower, more preferably 50 ppm/° C. or lower, still more preferably 20 ppm/° C. or lower. If the coefficient of thermal expansion is large, problems such as displacement of the semiconductor chip occur. Further, the coefficient of thermal expansion is preferably 3 ppm/° C. or higher because distortion or warpage occurs when the coefficient of thermal expansion is smaller than that of the semiconductor chip.
  • the material of the carrier is not particularly limited, but examples thereof include silicon (wafer), glass, SUS, iron, Cu, etc. plates, and glass epoxy substrates.
  • the thickness of the carrier may be 100 to 5000 ⁇ m, preferably 100 to 4000 ⁇ m, more preferably 100 to 3000 ⁇ m. When it is 100 ⁇ m or more, handleability is improved. Even if it is thick, no remarkable improvement in handleability can be expected. From the economical viewpoint, the thickness may be 5000 ⁇ m or less.
  • the carrier may consist of multiple layers.
  • an adhesive layer or a layer obtained by laminating a temporary fixing material may be provided from the viewpoint of imparting adhesion control.
  • the adhesive force may be appropriately set in consideration of the adhesive force of the semiconductor chip or the expanded tape.
  • the thickness is not particularly limited, but may be, for example, 1 to 300 ⁇ m, preferably 1 to 200 ⁇ m. When the thickness is 1 ⁇ m or more, a sufficient adhesive force with the semiconductor chip can be secured. On the other hand, even if the thickness exceeds 300 ⁇ m, there is no advantage in characteristics and it is uneconomical.
  • SD-8022/DP-8020/RI-8020 (manufactured by Tosoh Corporation) is used, and the column is Gelpack GL-A150-S/GL-A160-S (manufactured by Hitachi Chemical Co., Ltd.) and eluted.
  • the polystyrene-converted weight average molecular weight was 420,000.
  • Example 1 0.1 part by mass of polyfunctional isocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., Coronate L, solid content 75%) as a cross-linking agent with respect to the acrylic resin solution (solid content: 100 parts by mass) as a solid content, photopolymerization initiation 1.0 mass part of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Corporation, Irgacure 184) was added as an agent, and 2-butanone was further added so that the total solid content was 25 mass %, and the mixture was stirred uniformly for 10 minutes. ..
  • polyfunctional isocyanate manufactured by Nippon Polyurethane Industry Co., Ltd., Coronate L, solid content 75%
  • photopolymerization initiation 1.0 mass part of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Corporation, Irgacure 184) was added as an agent, and 2-butanone was
  • the obtained solution was applied onto a protective film (surface release-treated polyethylene terephthalate, thickness 25 ⁇ m) and dried to form an adhesive layer.
  • a protective film surface release-treated polyethylene terephthalate, thickness 25 ⁇ m
  • the thickness of the adhesive layer when dried was set to 10 ⁇ m.
  • the adhesive layer surface was laminated on a substrate film (thickness 100 ⁇ m). Then, the obtained tape was aged at 40° C. for 4 days.
  • Himilan 1706 Mitsubishi Chemical Co., Ltd., ionomer resin
  • ethylene/1-hexene copolymer and butene/ ⁇ -olefin copolymer are listed in this order.
  • a laminated three-layer resin film was used.
  • the pressure-sensitive adhesive layer, the protective film, and the base film were laminated with a roll laminator at 40° C. to form a protective film/adhesive layer/base film in this order.
  • the protective film was peeled off before use.
  • step 1 An 8-inch silicon wafer (thickness: 250 ⁇ m) is laminated on a dicing tape attached to a 12-inch dicing ring at 40° C. using a laminating device (V130, manufactured by Nikko Materials Co., Ltd.) to obtain a size of 1 mm ⁇ 1 mm. Dicing was performed with a blade using a dicing device (DFD3360, manufactured by Disco Corporation). Then, using a UV exposure machine (ML-320FSAT, manufactured by Mikasa Co., Ltd.), UV was irradiated at 300 mJ to reduce the adhesive force of the dicing tape.
  • V130 manufactured by Nikko Materials Co., Ltd.
  • the individual semiconductor chips are transferred to an expanding tape attached to a 12-inch dicing ring (V130, manufactured by Nikko Materials Co., Ltd.) (40° C./0.5 MPa/10 seconds) Conditions).
  • a sample obtained by removing the dicing tape after the transfer was used as a sample to be expanded, and the 12-inch dicing ring was set in the expand.
  • the initial semiconductor chip interval was about 50 ⁇ m.
  • ⁇ Step 2> The sample obtained in the step 1 was set in a 12-inch expander device (MX-5154FN, manufactured by Omiya Kogyo Co., Ltd.) and pushed up by 85 mm at a pushing speed of 100 mm/sec and a temperature (stage temperature) of 50° C. to stretch the expanded tape. .. At this time, the semiconductor chip interval has expanded from about 50 ⁇ m at the initial stage to about 500 ⁇ m.
  • ⁇ Step 3> The sample obtained by stretching the expand tape in step 2 was fixed with a grip ring for a 12-inch expander (GR-12, manufactured by Technovision Co., Ltd.) to maintain the tension.
  • GR-12 manufactured by Technovision Co., Ltd.
  • ⁇ Step 4> After irradiating UV (UV exposure machine ML-320FSAT, manufactured by Mikasa Co., Ltd.) to the sample whose tension is held in step 3, the semiconductor chip surface is used as a carrier by using a vacuum laminator (V130, manufactured by Nikko Materials Co., Ltd.). Was laminated.
  • the laminating conditions were a diaphragm temperature of 60° C., a stage temperature of 60° C., a pressure of 0.5 MPa and 60 seconds.
  • ⁇ Step 5> Only the expanded tape was peeled off from the sample laminated with the carrier in step 4 to prepare a sample in which semiconductor chips were arranged on the carrier (temporary fixing material).
  • the carrier produced in the following method was used as the carrier in step 4.
  • a 12-inch silicon wafer (thickness: 775 ⁇ m) is laminated with Riva Alpha 3195V (manufactured by Nitto Denko Corporation) as a temporary fixing material using a vacuum laminator (V130, manufactured by Nikko Materials Co., Ltd.), and then externally processed into a wafer shape to be a carrier.
  • the lamination conditions were a diaphragm temperature of 80° C., a stage temperature of 40° C., a time of 60 seconds, and a pressure of 0.5 MPa.
  • Example 2 and Comparative Examples 1 and 2 were carried out in the same manner as in Example 1 except that the amount of the crosslinking agent used was changed as shown in Table 1.
  • Example 3 was carried out in the same manner as Example 2 except that the size of dicing in Step 1 was changed to 0.7 mm ⁇ 0.7 mm.
  • Comparative Example 3 was carried out in the same manner as in Example 3 except that the amount of the crosslinking agent used was changed as shown in Table 1.
  • step 1 Evaluation of Transfer Rate of Semiconductor Chip from Dicing Tape to Expanding Tape
  • step 1 the transfer rate when the semiconductor chip was transferred from the dicing tape to the expanding tape was evaluated by visually counting the untransferred chips.
  • the case where the semiconductor chip was 100% transferred was designated as A, and the case where there was transfer residue was designated as B.
  • step 2 Evaluation of chip jump during expansion The chip jump during expansion was evaluated by visually counting the chip skips after step 2. In addition, the case where there was no chip flying was A, and the case where there was chip flying was B.
  • Table 1 shows the results of evaluating Examples 1 to 3 and Comparative Examples 1 to 3 by the above evaluation method.

Abstract

An expand tape used in a manufacturing method for a semiconductor device, the method comprising: a tape expanding step in which an expand tape is stretched whilst being heated, widening the interval between a plurality of semiconductor chips fixed onto the expand tape from 100µm or less to 300µm or more; an ultraviolet irradiation step in which ultraviolet light is irradiated on the stretched expand tape; and a peeling step in which the expand tape which has been irradiated with ultraviolet light is peeled away from the plurality of semiconductor chips, wherein the peel strength of the expand tape before the ultraviolet irradiation is at least 6N/25mm, and the peel strength after the ultraviolet irradiation is not more than 0.4N/25mm.

Description

半導体装置の製造方法及びエキスパンドテープMethod for manufacturing semiconductor device and expanded tape
 本発明は、半導体装置の製造方法及びエキスパンドテープに関する。 The present invention relates to a semiconductor device manufacturing method and an expanded tape.
 近年、半導体装置の小型化、高機能化及び高集積化に伴い、半導体の多ピン化、高密度化及び配線の狭ピッチ化が進展している。そのため、ピン又は配線の微細化又は低誘電率化を目的としたlow-K層のような脆弱層が適用され、これに伴い高信頼性化技術が求められている。
 このような背景の中、高信頼性化、高生産化等が可能なウエハレベルパッケージ(Wafer Level Package:WLP)技術が進展している。
 WLP技術は、ウエハ状態のままで組立を行い、その最終工程でダイシングによってウエハを個片化することを特徴とする。ウエハレベルで一括に組立てる(封止を行う)ことから、高生産化及び高信頼性化が可能な技術である。
 WLP技術では、半導体チップの回路面の絶縁膜上にポリイミド、銅配線等で再配線パターンを形成した再配線層を形成し、その再配線上にメタルパッド、はんだボール等を搭載して、接続端子用バンプを構成する。
 WLPには、WLCSP(Wafer Level Chip Scale Package)又はFI-WLP(Fan In Wafer Level Package)のような、半導体チップとパッケージ面積が同程度の半導体パッケージと、FO-WLP(Fan Out Wafer Level Package)のような、パッケージ面積が半導体チップ面積よりも大きく、チップの外側まで端子を広げることができる半導体パッケージとがある。このような半導体パッケージは小型化及び薄型化が急速に進展しているため、信頼性を確保するためにウエハレベルで封止を行って半導体チップ周辺を保護した後に、再配線層の形成、パッケージ毎の個片化等を行う。
 このようなウエハレベルでの封止を行い、その後の二次実装等のハンドリングを行うことで信頼性を確保している。また、ディスクリート半導体のような単機能半導体の実装分野もハンドリングの際の半導体チップのクラック又はパッド周辺部にかかるストレス低減を目的に、ウエハレベルで封止を行って半導体チップ周辺を保護した後に、パッケージ毎に個片化して次の工程(SMTプロセス等)に進んでいる。ディスクリート半導体はシステムLCIに比べて小型のものが多く、半導体チップをより高度に保護するため、半導体チップの5面又は6面封止が特に求められている。
2. Description of the Related Art In recent years, as semiconductor devices have become smaller, more highly functional, and more highly integrated, the number of pins of semiconductors has increased, the density has increased, and the pitch of wiring has narrowed. Therefore, a fragile layer such as a low-K layer for the purpose of miniaturization of pins or wiring or lowering of the dielectric constant is applied, and along with this, high reliability technology is required.
Against this background, Wafer Level Package (WLP) technology capable of achieving high reliability and high productivity has been developed.
The WLP technique is characterized by assembling the wafer as it is, and dicing the wafer into individual pieces in the final step. This is a technology that enables high productivity and high reliability because it is assembled (sealed) collectively at the wafer level.
In the WLP technology, a rewiring layer in which a rewiring pattern is formed with polyimide, copper wiring, or the like is formed on an insulating film on a circuit surface of a semiconductor chip, and metal pads, solder balls, or the like are mounted on the rewiring to connect them. Configure bumps for terminals.
The WLP includes a semiconductor package such as a WLCSP (Wafer Level Chip Scale Package) or a FI-WLP (Fan In Wafer Level Package) having a package area similar to that of the semiconductor chip, and a FO-WLP (Fan Out Wafer Level Package). There is a semiconductor package in which the package area is larger than the semiconductor chip area and the terminals can be extended to the outside of the chip. Since such semiconductor packages are rapidly becoming smaller and thinner, they are sealed at the wafer level to protect the periphery of the semiconductor chip to ensure reliability, and then the rewiring layer is formed and the package is packaged. Individualization is performed for each.
Reliability is ensured by performing sealing at the wafer level and then performing secondary mounting and the like. Further, also in the field of mounting a single-function semiconductor such as a discrete semiconductor, for the purpose of reducing the stress applied to the cracks or the pad periphery of the semiconductor chip during handling, after sealing the semiconductor chip periphery by performing sealing at the wafer level, Each package is separated into individual pieces and the process is proceeding to the next step (SMT process or the like). Discrete semiconductors are often smaller than the system LCI, and there is a particular demand for 5-sided or 6-sided sealing of the semiconductor chip in order to protect the semiconductor chip to a higher degree.
 半導体チップの側面を封止するためには、ウエハを個片化して半導体チップを作製した後に、半導体チップの間隔を広げる必要がある。例えば、特許文献1では、複数のチップをエキスパンドテープ上に固定し、当該エキスパンドテープを延伸することにより、半導体チップの間隔を広げ、その後半導体チップからエキスパンドテープを剥離する方法、及び当該方法に用いることができるエキスパンドテープが開示されている。 In order to seal the side surface of the semiconductor chip, it is necessary to divide the wafer into individual pieces to produce semiconductor chips and then widen the intervals between the semiconductor chips. For example, in Patent Document 1, a plurality of chips are fixed on an expand tape, the gap between the semiconductor chips is widened by stretching the expand tape, and then the expand tape is separated from the semiconductor chip, and the method is used. An expandable tape capable of being disclosed is disclosed.
国際公開第2018/216621号International Publication No. 2018/216621
 ところで、エキスパンドテープの延伸時には、エキスパンドテープ上に固定された半導体チップが外れる、すなわちチップ飛びの虞があり、半導体チップからエキスパンドテープを剥離する際には、半導体チップがエキスパンドテープ上に残る、すなわち転写率が低下する虞がある。チップ飛びが発生したり、転写率が低下したりすると、生産性が低くなるという問題が生じる。半導体チップを小型化した場合に、特許文献1に記載のエキスパンドテープでは、チップ飛び及び転写率について改善の余地があることが本発明者等の検討により明らかとなった。 By the way, at the time of stretching the expand tape, the semiconductor chip fixed on the expand tape comes off, that is, there is a risk of chip jump, and when the expand tape is peeled from the semiconductor chip, the semiconductor chip remains on the expand tape, that is, The transfer rate may decrease. If chip fly occurs or the transfer rate is lowered, there arises a problem that productivity is lowered. The inventors of the present invention have found that there is room for improvement in chip skipping and transfer rate in the expanded tape described in Patent Document 1 when the semiconductor chip is downsized.
 そこで本発明は、半導体チップを小型化(例えば、1mm×1mm程度)した場合であっても、チップ飛び及び転写率の低下が充分に抑制される半導体装置の製造方法及び当該製造方法に適用可能なエキスパンドテープを提供することを目的とする。 Therefore, the present invention is applicable to a method for manufacturing a semiconductor device and a method for manufacturing the same, in which chip skipping and reduction in transfer rate are sufficiently suppressed even when the semiconductor chip is miniaturized (for example, about 1 mm×1 mm). The purpose of the present invention is to provide an expanded tape.
 本発明者らは、鋭意研究した結果、以下の[1]~[8]に記載の発明により、上記課題を解決できることを見出すに至った。
[1] エキスパンドテープを加熱しながら延伸することにより、当該エキスパンドテープ上に固定された複数の半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、延伸されたエキスパンドテープに紫外線を照射する紫外線照射工程と、紫外線が照射されたエキスパンドテープを複数の半導体チップから剥離する剥離工程とを備える半導体装置の製造方法に用いられるエキスパンドテープであって、
 エキスパンドテープの紫外線照射前のピール強度が6N/25mm以上であり、且つ紫外線照射後のピール強度が0.4N/25mm以下であるエキスパンドテープ。
[2] 基材層及び粘着層を有する、[1]に記載のエキスパンドテープ。
[3] 粘着層が紫外線硬化型の粘着剤から構成される、[2]に記載のエキスパンドテープ。
[4] 粘着層は、主鎖に対して放射線硬化性炭素-炭素二重結合含有基及び水酸基を有するアクリル系共重合体と、水酸基と反応し得る官能基を2つ以上有する架橋剤と、光重合開始剤とを含み、架橋剤の含有量がアクリル系共重合体100質量部に対し0.05~0.3質量部である、[2]に記載のエキスパンドテープ。
[5] 架橋剤は、2つ以上のイソシアネート基を有する架橋剤である、[4]に記載のエキスパンドテープ。
[6] 光重合開始剤の含有量は、アクリル系共重合体100質量部に対し0.5~1.5質量部である、[4]又は[5]に記載のエキスパンドテープ。
[7] [1]~[6]のいずれかに記載のエキスパンドテープを加熱しながら延伸することにより、当該エキスパンドテープ上に固定された複数の半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、延伸されたエキスパンドテープに紫外線を照射する紫外線照射工程と、紫外線が照射されたエキスパンドテープを複数の半導体チップから剥離する剥離工程とを備える、半導体装置の製造方法。
[8] 半導体チップを有する半導体装置の製造方法であって、
 [1]~[6]のいずれかに記載のエキスパンドテープ、及び当該エキスパンドテープ上に固定された複数の半導体チップを準備する準備工程と、
 エキスパンドテープを延伸することにより、エキスパンドテープ上に固定された複数の半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、
 延伸されたエキスパンドテープのテンションを保持するテンション保持工程と、
 延伸されたエキスパンドテープに紫外線を照射する紫外線照射工程と、
 キャリアに、複数の半導体チップの、延伸されたエキスパンドテープ上に固定された面とは反対側の面が固定されるように転写する転写工程と、
 紫外線が照射されたエキスパンドテープを半導体チップから剥離する剥離工程と、
を備える半導体装置の製造方法。
As a result of earnest research, the present inventors have found that the problems described above can be solved by the inventions described in [1] to [8] below.
[1] A tape expanding step of expanding the interval between a plurality of semiconductor chips fixed on the expanded tape from 100 μm or less to 300 μm or more by stretching the expanded tape while heating, and irradiating the stretched expanded tape with ultraviolet rays. An expanded tape used in a method for manufacturing a semiconductor device, which comprises an ultraviolet irradiation step of, and a separation step of separating the expanded tape irradiated with ultraviolet rays from a plurality of semiconductor chips,
An expanded tape having a peel strength of 6 N/25 mm or more before UV irradiation and a peel strength of 0.4 N/25 mm or less after UV irradiation.
[2] The expanded tape according to [1], which has a base material layer and an adhesive layer.
[3] The expanded tape according to [2], wherein the adhesive layer is composed of an ultraviolet curable adhesive.
[4] The adhesive layer comprises an acrylic copolymer having a radiation-curable carbon-carbon double bond-containing group and a hydroxyl group in the main chain, and a crosslinking agent having two or more functional groups capable of reacting with the hydroxyl group. The expand tape according to [2], which contains a photopolymerization initiator and has a crosslinking agent content of 0.05 to 0.3 parts by mass relative to 100 parts by mass of the acrylic copolymer.
[5] The expanded tape according to [4], wherein the crosslinking agent is a crosslinking agent having two or more isocyanate groups.
[6] The expand tape according to [4] or [5], wherein the content of the photopolymerization initiator is 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the acrylic copolymer.
[7] A tape for expanding the interval between a plurality of semiconductor chips fixed on the expanded tape from 100 μm or less to 300 μm or more by stretching the expanded tape according to any one of [1] to [6] while heating. A method of manufacturing a semiconductor device, comprising: an expanding step; an ultraviolet ray irradiating step of irradiating a stretched expanded tape with ultraviolet rays;
[8] A method of manufacturing a semiconductor device having a semiconductor chip, comprising:
A preparatory step of preparing the expanded tape according to any one of [1] to [6] and a plurality of semiconductor chips fixed on the expanded tape;
A tape-expanding step for extending the interval between the plurality of semiconductor chips fixed on the expand tape from 100 μm or less to 300 μm or more by stretching the expand tape;
A tension holding step of holding the tension of the stretched expanded tape,
An ultraviolet irradiation step of irradiating the stretched expanded tape with ultraviolet rays,
A transfer step of transferring a plurality of semiconductor chips to the carrier so that the surface opposite to the surface fixed on the expanded expand tape is fixed.
A peeling step of peeling the expanded tape irradiated with ultraviolet rays from the semiconductor chip,
A method for manufacturing a semiconductor device, comprising:
 本発明によれば、半導体チップのサイズを小型化(例えば、1mm×1mm程度)した場合であっても、チップ飛び及び転写率の低下が充分に抑制される半導体装置の製造方法及び当該製造方法に適用可能なエキスパンドテープを提供することを目的とする。 According to the present invention, a method for manufacturing a semiconductor device and a method for manufacturing the same, in which chip fly and transfer rate decrease are sufficiently suppressed even when the size of the semiconductor chip is reduced (for example, about 1 mm×1 mm) It is an object of the present invention to provide an expanded tape applicable to.
半導体装置の製造方法の一実施形態を説明するための模式断面図である。FIG. 9 is a schematic cross-sectional view for explaining the embodiment of the method for manufacturing the semiconductor device. 半導体装置の製造方法の一実施形態を説明するための模式断面図である。FIG. 9 is a schematic cross-sectional view for explaining the embodiment of the method for manufacturing the semiconductor device. 半導体装置の製造方法の他の実施形態を説明するための模式断面図である。It is a schematic cross section for explaining other embodiment of a manufacturing method of a semiconductor device. 半導体装置の製造方法の他の実施形態を説明するための模式断面図である。It is a schematic cross section for explaining other embodiment of a manufacturing method of a semiconductor device.
 以下、図面を参照しながら本実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, the present embodiment will be described in detail with reference to the drawings. In the following description, the same or corresponding parts will be denoted by the same reference symbols, without redundant description. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
(半導体装置の製造方法)
 本実施形態の半導体装置の製造方法は、後述する所定のエキスパンドテープを加熱しながら延伸することにより、当該エキスパンドテープ上に固定された複数の半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、延伸されたエキスパンドテープに紫外線を照射する紫外線照射工程と、紫外線が照射されたエキスパンドテープを複数の半導体チップから剥離する剥離工程とを備える。
 本実施形態の半導体装置の製造方法は、後述する所定のエキスパンドテープ、及び当該エキスパンドテープ上に固定された複数の半導体チップを準備する準備工程と、エキスパンドテープを延伸することにより、エキスパンドテープ上に固定された複数の半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、延伸されたエキスパンドテープのテンションを保持するテンション保持工程と、延伸されたエキスパンドテープに紫外線を照射する紫外線照射工程と、キャリアに、複数の半導体チップの、延伸されたエキスパンドテープ上に固定された面とは反対側の面が固定されるように転写する転写工程と、紫外線が照射されたエキスパンドテープを半導体チップから剥離する剥離工程を備えるものであってもよい。以下、各工程について説明する。
(Method of manufacturing semiconductor device)
The method for manufacturing the semiconductor device of the present embodiment is a tape expand in which a predetermined expand tape to be described later is stretched while being heated to expand the interval between the plurality of semiconductor chips fixed on the expand tape from 100 μm or less to 300 μm or more. A step of irradiating the stretched expanded tape with ultraviolet rays; and a step of peeling the expanded tape irradiated with ultraviolet rays from the plurality of semiconductor chips.
The manufacturing method of the semiconductor device of the present embodiment, a predetermined expand tape described later, and a preparatory step of preparing a plurality of semiconductor chips fixed on the expand tape, by stretching the expand tape, on the expand tape. A tape-expanding step for expanding the distance between a plurality of fixed semiconductor chips from 100 μm or less to 300 μm or more, a tension holding step for holding the tension of the stretched expanded tape, and an ultraviolet irradiation step for irradiating the stretched expanded tape with ultraviolet rays. And a transfer step of transferring a plurality of semiconductor chips to the carrier so that the surface opposite to the surface fixed on the stretched expand tape is fixed, and the expand tape irradiated with ultraviolet rays is applied to the semiconductor chip. It may have a peeling step of peeling from. Each step will be described below.
 図1及び図2は、半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図3及び図4は、半導体装置の製造方法の他の実施形態を説明するための模式断面図である。 1 and 2 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing a semiconductor device, and FIGS. 3 and 4 are schematic cross-sectional views for explaining another embodiment of a method for manufacturing a semiconductor device. FIG.
 まず、準備工程では、複数の半導体チップ2が固定されたエキスパンドテープ1を準備する。エキスパンドテープ1は、粘着層1aと基材フィルム1bとを有し、粘着層1aが半導体チップ2と接する。また、半導体チップ2は、パッド(回路)3が設けられた回路面を有する。半導体チップ2は、回路面とは反対側の面がエキスパンドテープ1に固定されていても(図1(a))、回路面がエキスパンドテープ1に固定されていてもよい(図3(a))。
 テープエキスパンド工程では、エキスパンドテープ1を加熱しながら延伸することにより、エキスパンドテープ1上に固定された、半導体チップ2の間隔を広げる(図1(b)又は図3(b))。
 テンション保持工程では、延伸されたエキスパンドテープ1を、固定用ジグ4を用いて固定することにより、エキスパンドテープ1のテンションを保持する(図1(c)又は図3(c))。
 紫外線照射工程では、延伸されたエキスパンドテープ1に紫外線を照射することにより、半導体チップ2に対するエキスパンドテープ1の粘着力(ピール強度)を低下させる(図2(a)又は図4(a))。
 転写工程では、キャリア5に半導体チップ2を転写する。準備工程において、半導体チップ2の回路面とは反対側の面をエキスパンドテープ1に固定した場合には、上記転写により、回路面がキャリア5に固定され(図2(b))、半導体チップ2の回路面をエキスパンドテープ1に固定した場合には、上記転写により、回路面とは反対側の面がキャリア5に固定される(図4(b))。
 剥離工程では、紫外線が照射されたエキスパンドテープ1を半導体チップ2から、剥離する(図2(c)又は図4(c))。
 以下、各工程について詳細に説明する。
First, in the preparation step, the expanded tape 1 to which a plurality of semiconductor chips 2 are fixed is prepared. The expanded tape 1 has an adhesive layer 1a and a base film 1b, and the adhesive layer 1a contacts the semiconductor chip 2. Further, the semiconductor chip 2 has a circuit surface on which the pads (circuits) 3 are provided. The surface of the semiconductor chip 2 opposite to the circuit surface may be fixed to the expanding tape 1 (FIG. 1A), or the circuit surface may be fixed to the expanding tape 1 (FIG. 3A). ).
In the tape expanding step, the expanding tape 1 is stretched while being heated to increase the distance between the semiconductor chips 2 fixed on the expanding tape 1 (FIG. 1(b) or FIG. 3(b)).
In the tension holding step, the stretched expanded tape 1 is fixed with a fixing jig 4 to hold the tension of the expanded tape 1 (FIG. 1(c) or FIG. 3(c)).
In the ultraviolet irradiation step, the stretched expanded tape 1 is irradiated with ultraviolet rays to reduce the adhesive strength (peel strength) of the expanded tape 1 to the semiconductor chip 2 (FIG. 2A or FIG. 4A).
In the transfer step, the semiconductor chip 2 is transferred onto the carrier 5. In the preparation step, when the surface of the semiconductor chip 2 opposite to the circuit surface is fixed to the expanding tape 1, the circuit surface is fixed to the carrier 5 by the above transfer (FIG. 2B). When the circuit surface of (1) is fixed to the expanding tape 1, the surface opposite to the circuit surface is fixed to the carrier 5 by the transfer (FIG. 4B).
In the peeling step, the expand tape 1 irradiated with ultraviolet rays is peeled from the semiconductor chip 2 (FIG. 2(c) or FIG. 4(c)).
Hereinafter, each step will be described in detail.
<準備工程>
 エキスパンドテープと、エキスパンドテープ上に固定された複数の半導体チップと、を準備する方法に特に制限はない。例えば、ダイシングテープ等に半導体ウエハをラミネート後、ブレード又はレーザーでダイシングして複数の個片化された半導体チップを得た後、これらをエキスパンドテープに転写することにより作製することができる。
 ダイシングは、レーザーで脆弱層を形成してエキスパンドすることによって行ってもよい。また、上述の転写を省略して生産性を向上させる観点から、エキスパンドテープに半導体ウエハを直接ラミネートして、上述の方法で半導体ウエハをダイシングして作製してもよい。
<Preparation process>
The method for preparing the expand tape and the plurality of semiconductor chips fixed on the expand tape is not particularly limited. For example, it can be manufactured by laminating a semiconductor wafer on a dicing tape or the like, dicing it with a blade or a laser to obtain a plurality of individual semiconductor chips, and then transferring these to an expanding tape.
The dicing may be performed by forming a brittle layer with a laser and expanding. Further, from the viewpoint of omitting the above-mentioned transfer and improving the productivity, the semiconductor wafer may be directly laminated on the expand tape and the semiconductor wafer may be diced by the above-mentioned method.
 生産性向上及び低コスト化の観点から、初期の半導体のチップ間隔(テープエキスパンド工程前の半導体チップの間隔)は狭い方が好ましく、100μm以下であり、80μm以下が好ましく、60μm以下がより好ましい。ダイシングによるウエアの切削は、上記チップ間隔が広い程半導体ウエハを無駄にするため、低コスト化の観点から、上述のように狭い方が好ましい。チップ間隔を広げる際に、半導体チップにストレスがかからないようにするために、初期の半導体チップの間隔は10μm以上が好ましい。10μmより小さいと複数の半導体チップの間のエキスパンドテープ領域が少ないため広がりにくい。 From the viewpoint of productivity improvement and cost reduction, the initial semiconductor chip interval (semiconductor chip interval before the tape expanding step) is preferably narrow, and is 100 μm or less, preferably 80 μm or less, and more preferably 60 μm or less. In the cutting of the wear by dicing, the semiconductor wafer is wasted as the chip interval is wider, and thus the narrower one is preferable from the viewpoint of cost reduction. In order to prevent stress from being applied to the semiconductor chips when the chip intervals are widened, the initial intervals between the semiconductor chips are preferably 10 μm or more. If it is smaller than 10 μm, the expanded tape region between a plurality of semiconductor chips is small and it is difficult to spread.
 半導体チップの回路面上のパッドの種類は、半導体チップの回路面に形成され得るものであれば特に限定されず、銅バンプ、はんだバンプ等のバンプ(突起電極)であっても、Ni/Auめっきパッド等の比較的平坦な金属パッドであってもよい。 The type of pad on the circuit surface of the semiconductor chip is not particularly limited as long as it can be formed on the circuit surface of the semiconductor chip, and even if bumps (projection electrodes) such as copper bumps and solder bumps are used, Ni/Au It may be a relatively flat metal pad such as a plating pad.
<テープエキスパンド工程>
 エキスパンドテープを延伸することにより、複数の半導体チップの間隔を広げる。
<Tape expanding process>
By stretching the expanded tape, the intervals between the plurality of semiconductor chips are widened.
 エキスパンドテープの延伸方法としては、例えば、突き上げ方式と引張り方式がある。突き上げ方式は、エキスパンドテープを固定後、所定の形をしたステージが上昇することでエキスパンドテープが引き伸ばされる。引張り方式はエキスパンドテープを固定後、設置したエキスパンドテープ面と平行に所定の方向に引っ張ることで、エキスパンドテープが引き伸ばされる方式である。半導体チップの間隔を均一に引き伸ばせる点、及び必要な(占有する)装置面積が小さくてコンパクトである点から、突き上げ方式の方が好ましい。 Extending tape stretching methods include, for example, a push-up method and a pulling method. In the push-up method, the expand tape is stretched by fixing the expand tape and then raising the stage having a predetermined shape. The pulling method is a method in which the expand tape is stretched by fixing the expand tape and then pulling it in a predetermined direction in parallel with the surface of the installed expand tape. The push-up method is preferable because the distance between the semiconductor chips can be uniformly extended and the required (occupied) device area is small and compact.
 延伸条件は、エキスパンドテープの特性に応じて適宜設定すればよい。例えば、突き上げ方式を採用した場合の突き上げ量(引張り量)は10~150mmが好ましく、10~120mmがより好ましい。10mm以上であると、複数の半導体チップの間隔が広がりやすく、150mm以下であると半導体チップの飛散又は位置ずれをより高度に防止することができる。
 延伸時の温度もエキスパンドテープ特性に応じて適宜設定すればよいが、例えば10~200℃であってもよく、10~150℃、20~100℃であってもよい。温度が10℃以上であるとエキスパンドテープが延伸しやすくなり、温度が200℃以下であるとエキスパンドテープの熱膨張又は低弾性化による歪み又はたるみによる半導体チップの位置ずれ(エキスパンドテープと半導体チップ間の剥離)、半導体チップの飛散等をより高度に防止することができる。
 突き上げ速度もエキスパンドテープ特性に応じて適宜設定すればよいが、例えば0.1~500mm/秒であってもよく、0.1~300mm/秒、0.1~200mm/秒であってもよい。0.1mm/秒以上であると生産性が向上する。500mm/秒以下であると、半導体チップとエキスパンドテープ間での剥離が生じづらくなる。
The stretching conditions may be appropriately set according to the characteristics of the expanded tape. For example, when the push-up method is adopted, the push-up amount (pull amount) is preferably 10 to 150 mm, more preferably 10 to 120 mm. When it is 10 mm or more, the intervals between the plurality of semiconductor chips are easily widened, and when it is 150 mm or less, the scattering or displacement of the semiconductor chips can be more highly prevented.
The temperature at the time of stretching may be appropriately set according to the characteristics of the expanded tape, but may be, for example, 10 to 200°C, 10 to 150°C, or 20 to 100°C. When the temperature is 10° C. or higher, the expand tape is easily stretched, and when the temperature is 200° C. or lower, the semiconductor tape is displaced due to distortion or slack due to thermal expansion or low elasticity of the expand tape (between the expand tape and the semiconductor chip. Peeling) and scattering of semiconductor chips can be prevented to a higher degree.
The push-up speed may be appropriately set according to the characteristics of the expanded tape, but may be, for example, 0.1 to 500 mm/sec, 0.1 to 300 mm/sec, or 0.1 to 200 mm/sec. .. When it is 0.1 mm/sec or more, productivity is improved. When it is 500 mm/sec or less, peeling between the semiconductor chip and the expanding tape becomes difficult to occur.
 テープエキスパンド工程後の複数の半導体チップの間隔は、半導体チップの領域外に再配線パターン及び接続端子用パッドを設けるために必要なスペースを確保するため、500μm以上が好ましい。高密度化及び高機能化された半導体パッケージでは再配線層の総数も増えるため、半導体チップのより外側に接続端子用パッドを設ける必要がある。このため、半導体チップ間隔は広い方が好ましい。上述の観点から、テープエキスパンド工程後の複数の半導体チップの間隔は、1mm以上がより好ましく、2mm以上が更に好ましい。上限は特に制限はないが、5mm以下とすることができる。 After the tape expanding process, the interval between the plurality of semiconductor chips is preferably 500 μm or more in order to secure the space required for providing the rewiring pattern and the connection terminal pads outside the semiconductor chip area. Since the total number of rewiring layers is increased in a semiconductor package having a high density and high functionality, it is necessary to provide a connection terminal pad outside the semiconductor chip. Therefore, it is preferable that the semiconductor chip interval be wide. From the above viewpoint, the interval between the plurality of semiconductor chips after the tape expanding step is more preferably 1 mm or more, further preferably 2 mm or more. The upper limit is not particularly limited, but can be 5 mm or less.
 テープエキスパンド工程後の半導体チップの間隔は300μm以上であればよいが、用途に応じて適切な間隔を選択することができる。
 FO-WLP用途では、半導体チップの領域外に再配線パターン及び接続端子用パッドを設けるために必要なスペースを確保するため、500μm以上が好ましい。高密度化、高機能化半導体パッケージでは再配線層の総数も増えるため、半導体チップのより外側に接続端子用パッドを設ける必要がある。このため、半導体チップ間隔は広い方が好ましい。上述の観点から、テープエキスパンド工程後の複数の半導体チップの間隔は、1mm以上が好ましく、2mm以上がより好ましい。
 また、テープエキスパンド工程後の半導体チップの間隔は、FI-WLP用途又はディスクリート半導体チップ実装用途では、半導体チップの側面を封止材により確実に保護する観点から、300μm以上である。取り扱い性の観点から、テープエキスパンド工程後の複数の半導体チップの間隔は、500μm以上が好ましく、1mmがより好ましい。
 なお、テープエキスパンド工程後の半導体チップの間隔の上限は特に制限はないが、5mm以下とすることができる。
The distance between the semiconductor chips after the tape expanding step may be 300 μm or more, but an appropriate distance can be selected according to the application.
In the FO-WLP application, 500 μm or more is preferable in order to secure a space necessary for providing the rewiring pattern and the connection terminal pad outside the region of the semiconductor chip. Since the total number of rewiring layers increases in a high-density and high-performance semiconductor package, it is necessary to provide a connection terminal pad on the outer side of the semiconductor chip. Therefore, it is preferable that the semiconductor chip interval be wide. From the above viewpoint, the interval between the plurality of semiconductor chips after the tape expanding step is preferably 1 mm or more, more preferably 2 mm or more.
In addition, in the FI-WLP application or the discrete semiconductor chip mounting application, the distance between the semiconductor chips after the tape expanding step is 300 μm or more from the viewpoint of surely protecting the side surface of the semiconductor chip with a sealing material. From the viewpoint of handleability, the interval between the plurality of semiconductor chips after the tape expanding step is preferably 500 μm or more, and more preferably 1 mm.
The upper limit of the distance between the semiconductor chips after the tape expanding step is not particularly limited, but can be 5 mm or less.
<テンション保持工程>
 延伸されたエキスパンドテープが元の状態に戻ることを防ぐために、エキスパンドテープのテンションを保持する。
<Tension holding process>
The tension of the expanded tape is maintained to prevent the stretched expanded tape from returning to its original state.
 エキスパンドテープのテンションを保持する方法は、テンションが保持され、半導体チップの間隔が元に戻らなければ特に制限はない。例えば、グリップリング(株式会社テクノビジョン製)等の固定用ジグを用いて固定する方法、エキスパンドテープの外周部を加熱して収縮させて(ヒートシュリンク)テンションを保持する方法等が挙げられる。 There is no particular limitation on the method of maintaining the tension of the expand tape as long as the tension is maintained and the distance between the semiconductor chips is not restored. For example, a method of fixing using a fixing jig such as a grip ring (manufactured by Technovision Co., Ltd.), a method of heating the outer peripheral portion of the expanded tape to shrink it (heat shrink) and maintaining tension can be mentioned.
<紫外線照射工程>
 延伸されたエキスパンドテープに紫外線を照射することにより、半導体チップに対するエキスパンドテープの粘着力を低下させる。本実施形態においては、波長200~400nmの紫外線を用いることが好ましく、その照射条件としては、照度:30~240mW/cmで照射量200~500mJ/cmとなるように照射することが好ましい。
<Ultraviolet irradiation process>
By irradiating the stretched expanded tape with ultraviolet rays, the adhesive strength of the expanded tape to the semiconductor chip is reduced. In the present embodiment, it is preferable to use ultraviolet rays having a wavelength of 200 to 400 nm, and it is preferable that the irradiation conditions are such that the illuminance is 30 to 240 mW/cm 2 and the irradiation amount is 200 to 500 mJ/cm 2. ..
<転写工程>
 キャリアに、半導体チップが固定されるように転写(ラミネート)する。ラミネート方法は特に制限はないが、ロールラミネータ、ダイヤフラム式ラミネータ、真空ロールラミネータ、真空ダイヤフラム式ラミネータを採用することができる。
<Transfer process>
Transfer (laminate) is performed so that the semiconductor chip is fixed to the carrier. The laminating method is not particularly limited, but a roll laminator, a diaphragm laminator, a vacuum roll laminator, or a vacuum diaphragm laminator can be used.
 ラミネート条件は、エキスパンドテープ、半導体チップ及びキャリアの物性及び特性によって適宜設定すればよい。例えば、ロールラミネータであれば、室温(25℃)~200℃であってもよく、室温(25℃)~150℃が好ましく、室温(25℃)~100℃がより好ましい。室温以上であると、半導体チップがキャリアに転写(ラミネート)しやすくなり、200℃以下であるとエキスパンドテープの熱膨張又は低弾性化による歪み又はたるみによる半導体チップの位置ずれ(エキスパンドテープと半導体チップ間の剥離)、半導体チップの飛散等をより高度に防止することができる。ダイヤフラム式のラミネータであれば、温度条件に関しては、上述のロールラミネータと同様である。圧着時間は5~300秒であってもよく、5~200秒が好ましく、5~100秒がより好ましい。5秒以上であると半導体チップがキャリアに転写(ラミネート)しやすく、300秒以下であると生産性が向上する。圧力は0.1~3MPaであってもよく、0.1~2MPaが好ましく、0.1~1MPaがより好ましい。0.1MPa以上であると、半導体チップがキャリアに転写(ラミネート)しやすく、3MPa以下であると半導体チップへのダメージが軽減される。 Lamination conditions may be set appropriately according to the physical properties and characteristics of the expanded tape, semiconductor chip and carrier. For example, in the case of a roll laminator, the temperature may be room temperature (25°C) to 200°C, preferably room temperature (25°C) to 150°C, and more preferably room temperature (25°C) to 100°C. When the temperature is room temperature or higher, the semiconductor chip is easily transferred (laminated) to the carrier, and when the temperature is 200° C. or lower, the semiconductor tape is misaligned due to strain or slack due to thermal expansion or low elasticity of the expand tape (expand tape and semiconductor chip). It is possible to more highly prevent the separation of the semiconductor chip) and the scattering of the semiconductor chip. If it is a diaphragm type laminator, the temperature condition is the same as that of the roll laminator described above. The pressure bonding time may be 5 to 300 seconds, preferably 5 to 200 seconds, more preferably 5 to 100 seconds. When it is 5 seconds or more, the semiconductor chip is easily transferred (laminated) to the carrier, and when it is 300 seconds or less, the productivity is improved. The pressure may be 0.1 to 3 MPa, preferably 0.1 to 2 MPa, more preferably 0.1 to 1 MPa. When it is 0.1 MPa or more, the semiconductor chip is easily transferred (laminated) to the carrier, and when it is 3 MPa or less, damage to the semiconductor chip is reduced.
<剥離工程>
 紫外線が照射されたエキスパンドテープを複数の半導体チップから剥離(除去)する。
<Peeling process>
The expand tape irradiated with ultraviolet rays is peeled (removed) from the plurality of semiconductor chips.
 本実施形態の半導体装置の製造方法によれば、剥離工程より前の紫外線照射工程において、半導体チップに対するエキスパンドテープの粘着力が低下しているので、剥離の際の半導体チップへのストレスが軽減され、剥離を位置ずれなくスムーズに行うことができる。 According to the method for manufacturing a semiconductor device of the present embodiment, in the ultraviolet irradiation step prior to the peeling step, since the adhesive strength of the expand tape to the semiconductor chip is reduced, stress on the semiconductor chip during peeling is reduced. The peeling can be performed smoothly without displacement.
 本実施形態の半導体装置の製造方法は、上述の工程に加えて更に、キャリア上の複数の半導体チップを封止材により封止する封止工程、封止材により封止された複数の半導体チップからキャリアを剥離する第2剥離工程、封止材により封止された複数の半導体チップを、半導体チップ毎に個片化し、複数の半導体パッケージを形成する半導体パッケージ形成工程のうち少なくとも一つを備えていてもよい。これらの工程は、上記特許文献1を参考にして実施することができる。 In addition to the above steps, the method for manufacturing a semiconductor device of the present embodiment further includes a sealing step of sealing a plurality of semiconductor chips on a carrier with a sealing material, and a plurality of semiconductor chips sealed with a sealing material. At least one of a second peeling step of peeling the carrier from the semiconductor chip and a semiconductor package forming step of forming a plurality of semiconductor packages by dividing a plurality of semiconductor chips sealed by a sealing material into individual semiconductor chips May be. These steps can be carried out with reference to Patent Document 1 described above.
 次に各工程で用いられる材料について説明する。 Next, the materials used in each process will be explained.
(エキスパンドテープ)
 本実施形態のエキスパンドテープは、上述の半導体装置の製造方法に用いられるエキスパンドテープであって、紫外線照射前のピール強度が6N/25mm以上であり、且つ紫外線照射後のピール強度が0.4N/25mm以下である。なお、ここでいうピール強度とは、エキスパンドテープにステンレス鋼材(SUS)を貼着させた際の、SUSに対するエキスパンドテープのピール強度である。具体的には、例えば、厚さ0.5mmのSUSに、ラミネータGK-13DX(株式会社ラミーコーポレーション製)を用いて、ラミネート温度40℃でエキスパンドテープを貼着した後に測定されたピール強度が紫外線照射前のピール強度であり、更に紫外線露光機(ミカサ株式会社製「ML-320FSAT」)を用いて、紫外線波長:365nm、露光量:300mJ/cmの条件で紫外線をエキスパンドテープに照射した後に測定されたピール強度が紫外線照射後のピール強度である。なお、ピール強度の評価は、JIS C 5016(1994-導体の引きはがし強さ)に準拠して行うことができる。
(Expanding tape)
The expanded tape of the present embodiment is an expanded tape used in the above-described method for manufacturing a semiconductor device, which has a peel strength before UV irradiation of 6 N/25 mm or more and a peel strength after UV irradiation of 0.4 N/ It is 25 mm or less. The peel strength referred to here is the peel strength of the expanded tape with respect to SUS when a stainless steel material (SUS) is attached to the expanded tape. Specifically, for example, the peel strength measured after applying an expanding tape at a lamination temperature of 40° C. to a SUS having a thickness of 0.5 mm by using Laminator GK-13DX (manufactured by Lamy Corporation) is UV. It is the peel strength before irradiation and after the expanded tape is irradiated with ultraviolet rays under the conditions of ultraviolet wavelength: 365 nm and exposure amount: 300 mJ/cm 2 using an ultraviolet exposure device (“ML-320FSAT” manufactured by Mikasa Co., Ltd.) The peel strength measured is the peel strength after irradiation with ultraviolet rays. The peel strength can be evaluated in accordance with JIS C 5016 (1994-Peeling strength of conductor).
 エキスパンドテープの紫外線照射前のピール強度は、テープエキスパンド工程において、半導体チップの飛散又は位置ずれをより高度に防止することができる観点から、7N/25mm以上であると好ましく、8N/25mm以上であるとより好ましく、9N/25mm以上であると更に好ましい。なお、エキスパンドテープの紫外線照射前のピール強度の上限は、特に限定されないが、例えば、15N/25mm以下とすることができる。 The peel strength of the expanded tape before ultraviolet irradiation is preferably 7 N/25 mm or more, and 8 N/25 mm or more from the viewpoint that the semiconductor chip can be more highly prevented from scattering or misalignment in the tape expanding step. Is more preferable and 9 N/25 mm or more is further preferable. The upper limit of the peel strength of the expanded tape before ultraviolet irradiation is not particularly limited, but may be, for example, 15 N/25 mm or less.
 エキスパンドテープの紫外線照射後のピール強度は、転写工程において、半導体チップの転写率をより向上させることができる観点から、0.35N/25mm以下であると好ましい。なお、エキスパンドテープの紫外線照射後のピール強度の下限は、特に限定されないが、例えば、0.1N/25mm以上とすることができる。 The peel strength of the expanded tape after irradiation with ultraviolet rays is preferably 0.35 N/25 mm or less from the viewpoint of further improving the transfer rate of the semiconductor chip in the transfer step. The lower limit of the peel strength of the expanded tape after irradiation with ultraviolet rays is not particularly limited, but may be 0.1 N/25 mm or more, for example.
 エキスパンドテープは、延伸性に大きく寄与する基材フィルム(基材層)、粘着力を制御する粘着層等、複数の層構造であってもよい。 The expanded tape may have a multi-layer structure such as a base film (base layer) that greatly contributes to the stretchability and an adhesive layer that controls the adhesive strength.
(基材フィルム)
 基材フィルムは、延伸性、テンション保持工程後に半導体チップ間隔を保持する安定性があれば特に制限はない。
(Base film)
The substrate film is not particularly limited as long as it has stretchability and stability that holds the semiconductor chip interval after the tension holding step.
 基材フィルムは、ポリエチレンテレフタレートフィルム等のポリエステル系フィルム;ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリビニルアセテートフィルム、及びポリ-4-メチルペンテン-1等のα-オレフィンの単独重合体及びそれらの共重合体、並びに上記単独重合体又は上記共重合体のアイオノマーを含むポリオレフィン系フィルム;ポリ塩化ビニルフィルム;及びポリイミドフィルム;ウレタン樹脂フィルムなどの各種プラスチックフィルムであってよい。上記基材フィルムは、単層のフィルムに限らず、上記プラスチックフィルムを2種以上又は同種のプラスチックフィルムを2つ以上組み合わせて得られる多層のフィルムであってもよい。 The base material film is a polyester film such as polyethylene terephthalate film; polytetrafluoroethylene film, polyethylene film, polypropylene film, polymethylpentene film, polyvinyl acetate film, and α-olefin such as poly-4-methylpentene-1. It may be various plastic films such as a homopolymer and a copolymer thereof, and a polyolefin film containing the homopolymer or the ionomer of the above copolymer; a polyvinyl chloride film; and a polyimide film; a urethane resin film. The base film is not limited to a single-layer film, and may be a multi-layer film obtained by combining two or more kinds of the plastic films or two or more plastic films of the same kind.
 上記基材フィルムは、延伸性の観点から、ポリオレフィンフィルム又はウレタン樹脂フィルムであることが好ましい。基材フィルムは、必要に応じて、ブロッキング防止剤等の各種添加剤を含んでもよい。 The above base film is preferably a polyolefin film or a urethane resin film from the viewpoint of stretchability. The base film may contain various additives such as an antiblocking agent, if necessary.
 上記基材フィルムの厚みは、必要に応じて適宜設定すればよいが、50~500μmが好ましい。50μmより薄いと延伸性が低下し、500μmより大きいと歪みが発生しやすくなったり、取り扱い性が低下したりする等、不具合が生じる。 The thickness of the base film may be appropriately set if necessary, but is preferably 50 to 500 μm. If it is thinner than 50 μm, the stretchability is deteriorated, and if it is thicker than 500 μm, distortions are likely to occur and handling properties are deteriorated.
 上記基材フィルムの厚みは、作業性を損なわない範囲で適宜選択される。ただし、粘着層を構成する粘着剤として、高エネルギー線(中でも、紫外線)硬化性粘着剤を用いる場合は、その高エネルギー線の透過を阻害しない厚さにする必要がある。このような観点から、基材フィルムの厚さは、通常は10~500μmであってもよく、50~400μmが好ましく、70~300μmがより好ましい。
 基材層を複数の基材フィルムから構成する場合、基材層全体の厚さが上記範囲内となるように調整することが好ましい。基材フィルムは、粘着層との密着性を向上させるために、必要に応じて、化学的又は物理的に表面処理を施したものであってもよい。上記表面処理としては、例えば、コロナ処理、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等が挙げられる。
The thickness of the base film is appropriately selected within a range that does not impair workability. However, when a high-energy ray (in particular, ultraviolet ray) curable adhesive is used as the adhesive constituting the adhesive layer, it is necessary to have a thickness that does not hinder the transmission of the high-energy ray. From such a viewpoint, the thickness of the base film may be usually 10 to 500 μm, preferably 50 to 400 μm, and more preferably 70 to 300 μm.
When the base material layer is composed of a plurality of base material films, it is preferable to adjust the total thickness of the base material layer within the above range. The base film may be chemically or physically surface-treated, if necessary, in order to improve the adhesion with the adhesive layer. Examples of the surface treatment include corona treatment, chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, and ionizing radiation treatment.
(粘着層)
 粘着層は、アクリル系共重合体(アクリル樹脂)と、架橋剤と、光重合開始剤とを含有することが好ましい。以下、これらの成分について説明する。なお、上記粘着層においては、アクリル系共重合体の含有量が、粘着層を構成する組成物100質量部に対して50質量部を超えることが好ましい。
(Adhesive layer)
The adhesive layer preferably contains an acrylic copolymer (acrylic resin), a crosslinking agent, and a photopolymerization initiator. Hereinafter, these components will be described. The content of the acrylic copolymer in the adhesive layer is preferably more than 50 parts by mass with respect to 100 parts by mass of the composition constituting the adhesive layer.
 上記アクリル系共重合体は、主鎖に対して、少なくとも放射線硬化性炭素-炭素二重結合含有基及び水酸基を有する。 The above acrylic copolymer has at least a radiation-curable carbon-carbon double bond-containing group and a hydroxyl group in the main chain.
 アクリル系共重合体としてのアクリル系樹脂又はメタクリル系樹脂(以下、「(メタ)アクリル系樹脂」という。)は、側鎖に不飽和結合を含有し且つ樹脂自体が粘着性を有するものであれば制限はない。具体的に例示するのであれば、ガラス転移温度が-40℃以下、水酸基価が20~150mgKOH/g、連鎖重合可能な官能基が0.3~1.5mmol/g含まれ、且つ酸価が実質検出されず、重量平均分子量が30万以上である樹脂が挙げられる。 The acrylic resin or methacrylic resin (hereinafter referred to as “(meth)acrylic resin”) as the acrylic copolymer may be a resin having an unsaturated bond in its side chain and having adhesiveness itself. There is no limit. Specifically, the glass transition temperature is −40° C. or lower, the hydroxyl value is 20 to 150 mgKOH/g, the chain-polymerizable functional group is 0.3 to 1.5 mmol/g, and the acid value is Examples thereof include resins that are not substantially detected and have a weight average molecular weight of 300,000 or more.
 このような特徴を有する(メタ)アクリル系樹脂は、既知の方法で合成することで得ることができるが、例えば、溶液重合法、懸濁重合法、乳化重合法、塊状重合法、析出重合法、気相重合法、プラズマ重合法、超臨界重合法などが用いられる。また重合反応の種類としては、ラジカル重合、カチオン重合、アニオン重合、リビングラジカル重合、リビングカチオン重合、リビングアニオン重合、配位重合、イモーダル重合などの他、ATRP又はRAFTといった手法も用いることができる。この中でも、溶液重合法を用いてラジカル重合により合成することは、経済性の良さ、反応率の高さ、重合制御の容易さ等の他、重合で得られた樹脂溶液をそのまま用いて配合できるといった配合の簡便さもあるため好ましい。 The (meth)acrylic resin having such characteristics can be obtained by synthesizing by a known method, and for example, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a bulk polymerization method, a precipitation polymerization method. , A gas phase polymerization method, a plasma polymerization method, a supercritical polymerization method and the like are used. As the type of the polymerization reaction, radical polymerization, cationic polymerization, anionic polymerization, living radical polymerization, living cationic polymerization, living anionic polymerization, coordination polymerization, immodal polymerization and the like, and methods such as ATRP or RAFT can also be used. Among these, synthesis by radical polymerization using a solution polymerization method can be compounded using the resin solution obtained by polymerization as it is, in addition to good economic efficiency, high reaction rate, easy control of polymerization, and the like. It is preferable because it is easy to mix.
 ここでは、溶液重合法を用いてラジカル重合により(メタ)アクリル系樹脂を得る方法を例に挙げ、詳細に説明する。 Here, a method of obtaining a (meth)acrylic resin by radical polymerization using a solution polymerization method will be described in detail as an example.
 (メタ)アクリル系樹脂を合成する際に用いられるモノマーとしては、一分子中に1個の(メタ)アクリロイル基を有するものであれば特に制限はないが、具体的に例示するのであれば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)テトラヒドロフタレート、モノ(2-(メタ)アクリロイロキシエチル)ヘキサヒドロフタレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、2-(メタ)アクリロイロキシエチル-N-カルバゾール等の複素環式(メタ)アクリレート、これらのカプロラクトン変性体、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、α-エチルグリシジル(メタ)アクリレート、α-プロピルグリシジル(メタ)アクリレート、α-ブチルグリシジル(メタ)アクリレート、2-メチルグリシジル(メタ)アクリレート、2-エチルグリシジル(メタ)アクリレート、2-プロピルグリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-エポキシヘプチル(メタ)アクリレート、α-エチル-6,7-エポキシヘプチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル等のエチレン性不飽和基とエポキシ基を有する化合物;(2-エチル-2-オキセタニル)メチル(メタ)アクリレート、(2-メチル-2-オキセタニル)メチル(メタ)アクリレート、2-(2-エチル-2-オキセタニル)エチル(メタ)アクリレート、2-(2-メチル-2-オキセタニル)エチル(メタ)アクリレート、3-(2-エチル-2-オキセタニル)プロピル(メタ)アクリレート、3-(2-メチル-2-オキセタニル)プロピル(メタ)アクリレート等のエチレン性不飽和基とオキセタニル基を有する化合物;2-(メタ)アクリロイルオキシエチルイソシアネート等のエチレン性不飽和基とイソシアネート基を有する化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のエチレン性不飽和基とヒドロキシル基を有する化合物が挙げられ、これらを適宜組み合わせて目的とする組成物を得ることができる。 The monomer used when synthesizing the (meth)acrylic resin is not particularly limited as long as it has one (meth)acryloyl group in one molecule, but if specifically exemplified, Methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, butoxyethyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate , 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, octylheptyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth) Acrylate, tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, stearyl (meth)acrylate, behenyl (meth)acrylate, methoxy polyethylene glycol (meth)acrylate, ethoxy polyethylene glycol (meth)acrylate, methoxy polypropylene Aliphatic (meth)acrylates such as glycol (meth)acrylate, ethoxy polypropylene glycol (meth)acrylate, mono(2-(meth)acryloyloxyethyl)succinate; cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, cyclopentyl ( (Meth)acrylate, dicyclopentanyl(meth)acrylate, dicyclopentenyl(meth)acrylate, isobornyl(meth)acrylate, mono(2-(meth)acryloyloxyethyl)tetrahydrophthalate, mono(2-(meth)acryl Alicyclic (meth)acrylates such as royroxyethyl)hexahydrophthalate; benzyl (meth)acrylate, phenyl (meth)acrylate, o-biphenyl (meth)acrylate, 1-naphthyl (meth)acrylate, 2-naphthyl (meth ) Acrylate, phenoxyethyl (meth)acrylate, p-cumylphenoxyethyl (meth)acrylate, o-phenylphenoxyethyl (meth)acrylate, 1-naphthoxyethyl (meth)acrylate, 2-naphthoxyethyl (meth)acrylate, phenoxypolyethylene glycol (Meth)acrylate, nonylphenoxy polyethylene glycol (Meth)acrylate, phenoxy polypropylene glycol (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, 2-hydroxy-3-(o-phenylphenoxy)propyl (meth)acrylate, 2-hydroxy-3 Aromatic (meth)acrylates such as -(1-naphthoxy)propyl(meth)acrylate and 2-hydroxy-3-(2-naphthoxy)propyl(meth)acrylate; 2-tetrahydrofurfuryl(meth)acrylate, N-( Heterocyclic (meth)acrylates such as (meth)acryloyloxyethyl hexahydrophthalimide, 2-(meth)acryloyloxyethyl-N-carbazole, caprolactone modified products thereof, ω-carboxy-polycaprolactone mono(meth)acrylate , Glycidyl (meth)acrylate, α-ethylglycidyl (meth)acrylate, α-propylglycidyl (meth)acrylate, α-butylglycidyl (meth)acrylate, 2-methylglycidyl (meth)acrylate, 2-ethylglycidyl (meth) Acrylate, 2-propylglycidyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, 3,4-epoxyheptyl (meth)acrylate, α-ethyl-6,7-epoxyheptyl (meth)acrylate, 3, Compounds having an ethylenically unsaturated group and an epoxy group such as 4-epoxycyclohexylmethyl (meth)acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether and p-vinylbenzyl glycidyl ether; (2-ethyl-2 -Oxetanyl)methyl(meth)acrylate, (2-methyl-2-oxetanyl)methyl(meth)acrylate, 2-(2-ethyl-2-oxetanyl)ethyl(meth)acrylate, 2-(2-methyl-2- Oxetanyl with ethylenically unsaturated groups such as oxetanyl)ethyl(meth)acrylate, 3-(2-ethyl-2-oxetanyl)propyl(meth)acrylate, 3-(2-methyl-2-oxetanyl)propyl(meth)acrylate Compounds having a group; compounds having an ethylenically unsaturated group such as 2-(meth)acryloyloxyethyl isocyanate and an isocyanate group; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (Meth)acrylate, 3-chloro- Examples thereof include compounds having an ethylenically unsaturated group and a hydroxyl group such as 2-hydroxypropyl (meth)acrylate and 2-hydroxybutyl (meth)acrylate, and the desired composition can be obtained by appropriately combining these.
 更に必要に応じて、上述モノマーと共重合可能なスチレン、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-イソブチルマレイミド、N-2-メチル-2-プロピルマレイミド、N-ペンチルマレイミド、N-2-ペンチルマレイミド、N-3-ペンチルマレイミド、N-2-メチル-1-ブチルマレイミド、N-2-メチル-2-ブチルマレイミド、N-3-メチル-1-ブチルマレイミド、N-3-メチル-2-ブチルマレイミド、N-ヘキシルマレイミド、N-2-ヘキシルマレイミド、N-3-ヘキシルマレイミド、N-2-メチル-1-ペンチルマレイミド、N-2-メチル-2-ペンチルマレイミド、N-2-メチル-3-ペンチルマレイミド、N-3-メチル-1-ペンチルマレイミド、N-3-メチル-2-ペンチルマレイミド、N-3-メチル-3-ペンチルマレイミド、N-4-メチル-1-ペンチルマレイミド、N-4-メチル-2-ペンチルマレイミド、N-2,2-ジメチル-1-ブチルマレイミド、N-3,3-ジメチル-1-ブチルマレイミド、N-3,3-ジメチル-2-ブチルマレイミド、N-2,3-ジメチル-1-ブチルマレイミド、N-2,3-ジメチル-2-ブチルマレイミド、N-ヒドロキシメチルマレイミド、N-1-ヒドロキシエチルマレイミド、N-2-ヒドロキシエチルマレイミド、N-1-ヒドロキシ-1-プロピルマレイミド、N-2-ヒドロキシ-1-プロピルマレイミド、N-3―ヒドロキシ-1-プロピルマレイミド、N-1-ヒドロキシ-2-プロピルマレイミド、N-2-ヒドロキシ-2-プロピルマレイミド、N-1-ヒドロキシ-1-ブチルマレイミド、N-2-ヒドロキシ-1-ブチルマレイミド、N-3-ヒドロキシ-1-ブチルマレイミド、N-4-ヒドロキシ-1-ブチルマレイミド、N-1-ヒドロキシ-2-ブチルマレイミド、N-2-ヒドロキシ-2-ブチルマレイミド、N-3-ヒドロキシ-2-ブチルマレイミド、N-4-ヒドロキシ-2-ブチルマレイミド、N-2-メチル-3-ヒドロキシ-1-プロピルマレイミド、N-2-メチル-3-ヒドロキシ-2-プロピルマレイミド、N-2-メチル-2-ヒドロキシ-1-プロピルマレイミド、N-1-ヒドロキシ-1-ペンチルマレイミド、N-2-ヒドロキシ-1-ペンチルマレイミド、N-3-ヒドロキシ-1-ペンチルマレイミド、N-4-ヒドロキシ-1-ペンチルマレイミド、N-5-ヒドロキシ-1-ペンチルマレイミド、N-1-ヒドロキシ-2-ペンチルマレイミド、N-2-ヒドロキシ-2-ペンチルマレイミド、N-3-ヒドロキシ-2-ペンチルマレイミド、N-4-ヒドロキシ-2-ペンチルマレイミド、N-5-ヒドロキシ-2-ペンチルマレイミド、N-1-ヒドロキシ-3-ペンチルマレイミド、N-2-ヒドロキシ-3-ペンチルマレイミド、N-3-ヒドロキシ-3-ペンチルマレイミド、N-1-ヒドロキシ-2-メチル-1-ブチルマレイミド、N-1-ヒドロキシ-2-メチル-2-ブチルマレイミド、N-1-ヒドロキシ-2-メチル-3-ブチルマレイミド、N-1-ヒドロキシ-2-メチル-4-ブチルマレイミド、N-2-ヒドロキシ-2-メチル-1-ブチルマレイミド、N-2-ヒドロキシ-2-メチル-3-ブチルマレイミド、N-2-ヒドロキシ-2-メチル-4-ブチルマレイミド、N-2-ヒドロキシ-3-メチル-1-ブチルマレイミド、N-2-ヒドロキシ-3-メチル-2-ブチルマレイミド、N-2-ヒドロキシ-3-メチル-3-ブチルマレイミド、N-2-ヒドロキシ-3-メチル-4-ブチルマレイミド、N-4-ヒドロキシ-2-メチル-1-ブチルマレイミド、N-4-ヒドロキシ-2-メチル-2-ブチルマレイミド、N-1-ヒドロキシ-3-メチル-2-ブチルマレイミド、N-1-ヒドロキシ-3-メチル-1-ブチルマレイミド、N-1-ヒドロキシ-2,2-ジメチル-1-プロピルマレイミド、N-3-ヒドロキシ-2,2-ジメチル-1-プロピルマレイミド、N-1-ヒドロキシ-1-ヘキシルマレイミド、N-1-ヒドロキシ-2-ヘキシルマレイミド、N-1-ヒドロキシ-3-ヘキシルマレイミド、N-1-ヒドロキシ-4-ヘキシルマレイミド、N-1-ヒドロキシ-5-ヘキシルマレイミド、N-1-ヒドロキシ-6-ヘキシルマレイミド、N-2-ヒドロキシ-1-ヘキシルマレイミド、N-2-ヒドロキシ-2-ヘキシルマレイミド、N-2-ヒドロキシ-3-ヘキシルマレイミド、N-2-ヒドロキシ-4-ヘキシルマレイミド、N-2-ヒドロキシ-5-ヘキシルマレイミド、N-2-ヒドロキシ-6-ヘキシルマレイミド、N-3-ヒドロキシ-1-ヘキシルマレイミド、N-3-ヒドロキシ-2-ヘキシルマレイミド、N-3-ヒドロキシ-3-ヘキシルマレイミド、N-3-ヒドロキシ-4-ヘキシルマレイミド、N-3-ヒドロキシ-5-ヘキシルマレイミド、N-3-ヒドロキシ-6-ヘキシルマレイミド、N-1-ヒドロキシ-2-メチル-1-ペンチルマレイミド、N-1-ヒドロキシ-2-メチル-2-ペンチルマレイミド、N-1-ヒドロキシ-2-メチル-3-ペンチルマレイミド、N-1-ヒドロキシ-2-メチル-4-ペンチルマレイミド、N-1-ヒドロキシ-2-メチル-5-ペンチルマレイミド、N-2-ヒドロキシ-2-メチル-1-ペンチルマレイミド、N-2-ヒドロキシ-2-メチル-2-ペンチルマレイミド、N-2-ヒドロキシ-2-メチル-3-ペンチルマレイミド、N-2-ヒドロキシ-2-メチル-4-ペンチルマレイミド、N-2-ヒドロキシ-2-メチル-5-ペンチルマレイミド、N-2-ヒドロキシ-3-メチル-1-ペンチルマレイミド、N-2-ヒドロキシ-3-メチル-2-ペンチルマレイミド、N-2-ヒドロキシ-3-メチル-3-ペンチルマレイミド、N-2-ヒドロキシ-3-メチル-4-ペンチルマレイミド、N-2-ヒドロキシ-3-メチル-5-ペンチルマレイミド、N-2-ヒドロキシ-4-メチル-1-ペンチルマレイミド、N-2-ヒドロキシ-4-メチル-2-ペンチルマレイミド、N-2-ヒドロキシ-4-メチル-3-ペンチルマレイミド、N-2-ヒドロキシ-4-メチル-4-ペンチルマレイミド、N-2-ヒドロキシ-4-メチル-5-ペンチルマレイミド、N-3-ヒドロキシ-2-メチル-1-ペンチルマレイミド、N-3-ヒドロキシ-2-メチル-2-ペンチルマレイミド、N-3-ヒドロキシ-2-メチル-3-ペンチルマレイミド、N-3-ヒドロキシ-2-メチル-4-ペンチルマレイミド、N-3-ヒドロキシ-2-メチル-5-ペンチルマレイミド、N-1-ヒドロキシ-4-メチル-1-ペンチルマレイミド、N-1-ヒドロキシ-4-メチル-2-ペンチルマレイミド、N-1-ヒドロキシ-4-メチル-3-ペンチルマレイミド、N-1-ヒドロキシ-4-メチル、N-1-ヒドロキシ-3-メチル-1-ペンチルマレイミド、N-1-ヒドロキシ-3-メチル-2-ペンチルマレイミド、N-1-ヒドロキシ-3-メチル-3-ペンチルマレイミド、N-1-ヒドロキシ-3-メチル-4-ペンチルマレイミド、N-1-ヒドロキシ-3-メチル-5-ペンチルマレイミド、N-3-ヒドロキシ-3-メチル-1-ペンチルマレイミド、N-3-ヒドロキシ-3-メチル-2-ペンチルマレイミド、N-1-ヒドロキシ-3-エチル-4-ブチルマレイミド、N-2-ヒドロキシ-3-エチル-4-ブチルマレイミド、N-2-ヒドロキシ-2-エチル-1-ブチルマレイミド、N-4-ヒドロキシ-3-エチル-1-ブチルマレイミド、N-4-ヒドロキシ-3-エチル-2-ブチルマレイミド、N-4-ヒドロキシ-3-エチル-3-ブチルマレイミド、N-4-ヒドロキシ-3-エチル-4-ブチルマレイミド、N-1-ヒドロキシ-2,3-ジメチル-1-ブチルマレイミド、N-1-ヒドロキシ-2,3-ジメチル-2-ブチルマレイミド、N-1-ヒドロキシ-2,3-ジメチル-3-ブチルマレイミド、N-1-ヒドロキシ-2,3-ジメチル-4-ブチルマレイミド、N-2-ヒドロキシ-2,3-ジメチル-1-ブチルマレイミド、N-2-ヒドロキシ-2,3-ジメチル-3-ブチルマレイミド、N-2-ヒドロキシ-2,3-ジメチル-4-ブチルマレイミド、N-1-ヒドロキシ-2,2-ジメチル-1-ブチルマレイミド、N-1-ヒドロキシ-2,2-ジメチル-3-ブチルマレイミド、N-1-ヒドロキシ-2,2-ジメチル-4-ブチルマレイミド、N-2-ヒドロキシ-3,3-ジメチル-1-ブチルマレイミド、N-2-ヒドロキシ-3,3-ジメチル-2-ブチルマレイミド、N-2-ヒドロキシ-3,3-ジメチル-4-ブチルマレイミド、N-1-ヒドロキシ-3,3-ジメチル-1-ブチルマレイミド、N-1-ヒドロキシ-3,3-ジメチル-2-ブチルマレイミド、N-1-ヒドロキシ-3,3-ジメチル-4-ブチルマレイミド等のアルキルマレイミド;N-シクロプロピルマレイミド、N-シクロブチルマレイミド、N-シクロペンチルマレイミド、N-シクロヘキシルマレイミド、N-シクロヘプチルマレイミド、N-シクロオクチルマレイミド、N-2-メチルシクロヘキシルマレイミド、N-2-エチルシクロヘキシルマレイミド、N-2-クロロシクロヘキシルマレイミド等のシクロアルキルマレイミド;N-フェニルマレイミド、N-2-メチルフェニルマレイミド、N-2-エチルフェニルマレイミド、N-2-クロロフェニルマレイミド等のアリールマレイミドなどを、適宜用いることができる。 Further, if necessary, styrene, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-isobutylmaleimide, N-2-methyl, which can be copolymerized with the above-mentioned monomers. -2-propylmaleimide, N-pentylmaleimide, N-2-pentylmaleimide, N-3-pentylmaleimide, N-2-methyl-1-butylmaleimide, N-2-methyl-2-butylmaleimide, N-3 -Methyl-1-butylmaleimide, N-3-methyl-2-butylmaleimide, N-hexylmaleimide, N-2-hexylmaleimide, N-3-hexylmaleimide, N-2-methyl-1-pentylmaleimide, N -2-Methyl-2-pentylmaleimide, N-2-methyl-3-pentylmaleimide, N-3-methyl-1-pentylmaleimide, N-3-methyl-2-pentylmaleimide, N-3-methyl-3 -Pentyl maleimide, N-4-methyl-1-pentyl maleimide, N-4-methyl-2-pentyl maleimide, N-2,2-dimethyl-1-butyl maleimide, N-3,3-dimethyl-1-butyl Maleimide, N-3,3-dimethyl-2-butylmaleimide, N-2,3-dimethyl-1-butylmaleimide, N-2,3-dimethyl-2-butylmaleimide, N-hydroxymethylmaleimide, N-1 -Hydroxyethylmaleimide, N-2-hydroxyethylmaleimide, N-1-hydroxy-1-propylmaleimide, N-2-hydroxy-1-propylmaleimide, N-3-hydroxy-1-propylmaleimide, N-1- Hydroxy-2-propylmaleimide, N-2-hydroxy-2-propylmaleimide, N-1-hydroxy-1-butylmaleimide, N-2-hydroxy-1-butylmaleimide, N-3-hydroxy-1-butylmaleimide , N-4-hydroxy-1-butylmaleimide, N-1-hydroxy-2-butylmaleimide, N-2-hydroxy-2-butylmaleimide, N-3-hydroxy-2-butylmaleimide, N-4-hydroxy -2-Butylmaleimide, N-2-Methyl-3-hydroxy-1-propylmaleimide, N-2-Methyl-3-hydroxy-2-propylmaleimide, N-2-Methyl-2-hydroxy-1-propylmaleimide , N-1-hydroxy-1-pentylmaleimide, N-2-hydroxy-1-pentylmaleimide Imido, N-3-hydroxy-1-pentylmaleimide, N-4-hydroxy-1-pentylmaleimide, N-5-hydroxy-1-pentylmaleimide, N-1-hydroxy-2-pentylmaleimide, N-2- Hydroxy-2-pentylmaleimide, N-3-hydroxy-2-pentylmaleimide, N-4-hydroxy-2-pentylmaleimide, N-5-hydroxy-2-pentylmaleimide, N-1-hydroxy-3-pentylmaleimide , N-2-hydroxy-3-pentylmaleimide, N-3-hydroxy-3-pentylmaleimide, N-1-hydroxy-2-methyl-1-butylmaleimide, N-1-hydroxy-2-methyl-2- Butyl maleimide, N-1-hydroxy-2-methyl-3-butyl maleimide, N-1-hydroxy-2-methyl-4-butyl maleimide, N-2-hydroxy-2-methyl-1-butyl maleimide, N- 2-hydroxy-2-methyl-3-butylmaleimide, N-2-hydroxy-2-methyl-4-butylmaleimide, N-2-hydroxy-3-methyl-1-butylmaleimide, N-2-hydroxy-3 -Methyl-2-butylmaleimide, N-2-hydroxy-3-methyl-3-butylmaleimide, N-2-hydroxy-3-methyl-4-butylmaleimide, N-4-hydroxy-2-methyl-1- Butyl maleimide, N-4-hydroxy-2-methyl-2-butyl maleimide, N-1-hydroxy-3-methyl-2-butyl maleimide, N-1-hydroxy-3-methyl-1-butyl maleimide, N- 1-hydroxy-2,2-dimethyl-1-propylmaleimide, N-3-hydroxy-2,2-dimethyl-1-propylmaleimide, N-1-hydroxy-1-hexylmaleimide, N-1-hydroxy-2 -Hexylmaleimide, N-1-hydroxy-3-hexylmaleimide, N-1-hydroxy-4-hexylmaleimide, N-1-hydroxy-5-hexylmaleimide, N-1-hydroxy-6-hexylmaleimide, N- 2-hydroxy-1-hexylmaleimide, N-2-hydroxy-2-hexylmaleimide, N-2-hydroxy-3-hexylmaleimide, N-2-hydroxy-4-hexylmaleimide, N-2-hydroxy-5- Hexylmaleimide, N-2-hydroxy-6-hexylmaleimide, N-3-hydroxy-1-hexylmaleimide, N -3-Hydroxy-2-hexylmaleimide, N-3-Hydroxy-3-hexylmaleimide, N-3-Hydroxy-4-hexylmaleimide, N-3-Hydroxy-5-hexylmaleimide, N-3-Hydroxy-6 -Hexylmaleimide, N-1-hydroxy-2-methyl-1-pentylmaleimide, N-1-hydroxy-2-methyl-2-pentylmaleimide, N-1-hydroxy-2-methyl-3-pentylmaleimide, N -1-hydroxy-2-methyl-4-pentylmaleimide, N-1-hydroxy-2-methyl-5-pentylmaleimide, N-2-hydroxy-2-methyl-1-pentylmaleimide, N-2-hydroxy- 2-methyl-2-pentylmaleimide, N-2-hydroxy-2-methyl-3-pentylmaleimide, N-2-hydroxy-2-methyl-4-pentylmaleimide, N-2-hydroxy-2-methyl-5 -Pentylmaleimide, N-2-hydroxy-3-methyl-1-pentylmaleimide, N-2-hydroxy-3-methyl-2-pentylmaleimide, N-2-hydroxy-3-methyl-3-pentylmaleimide, N -2-hydroxy-3-methyl-4-pentylmaleimide, N-2-hydroxy-3-methyl-5-pentylmaleimide, N-2-hydroxy-4-methyl-1-pentylmaleimide, N-2-hydroxy- 4-methyl-2-pentylmaleimide, N-2-hydroxy-4-methyl-3-pentylmaleimide, N-2-hydroxy-4-methyl-4-pentylmaleimide, N-2-hydroxy-4-methyl-5 -Pentylmaleimide, N-3-Hydroxy-2-methyl-1-pentylmaleimide, N-3-Hydroxy-2-methyl-2-pentylmaleimide, N-3-Hydroxy-2-methyl-3-pentylmaleimide, N -3-hydroxy-2-methyl-4-pentylmaleimide, N-3-hydroxy-2-methyl-5-pentylmaleimide, N-1-hydroxy-4-methyl-1-pentylmaleimide, N-1-hydroxy- 4-methyl-2-pentylmaleimide, N-1-hydroxy-4-methyl-3-pentylmaleimide, N-1-hydroxy-4-methyl, N-1-hydroxy-3-methyl-1-pentylmaleimide, N -1-hydroxy-3-methyl-2-pentylmaleimide, N-1-hydroxy-3-methyl-3-pentylmaleimide, N-1-hydro Xy-3-methyl-4-pentylmaleimide, N-1-hydroxy-3-methyl-5-pentylmaleimide, N-3-hydroxy-3-methyl-1-pentylmaleimide, N-3-hydroxy-3-methyl -2-Pentylmaleimide, N-1-hydroxy-3-ethyl-4-butylmaleimide, N-2-hydroxy-3-ethyl-4-butylmaleimide, N-2-hydroxy-2-ethyl-1-butylmaleimide , N-4-hydroxy-3-ethyl-1-butylmaleimide, N-4-hydroxy-3-ethyl-2-butylmaleimide, N-4-hydroxy-3-ethyl-3-butylmaleimide, N-4- Hydroxy-3-ethyl-4-butylmaleimide, N-1-hydroxy-2,3-dimethyl-1-butylmaleimide, N-1-hydroxy-2,3-dimethyl-2-butylmaleimide, N-1-hydroxy -2,3-Dimethyl-3-butylmaleimide, N-1-hydroxy-2,3-dimethyl-4-butylmaleimide, N-2-hydroxy-2,3-dimethyl-1-butylmaleimide, N-2- Hydroxy-2,3-dimethyl-3-butylmaleimide, N-2-hydroxy-2,3-dimethyl-4-butylmaleimide, N-1-hydroxy-2,2-dimethyl-1-butylmaleimide, N-1 -Hydroxy-2,2-dimethyl-3-butylmaleimide, N-1-hydroxy-2,2-dimethyl-4-butylmaleimide, N-2-hydroxy-3,3-dimethyl-1-butylmaleimide, N- 2-hydroxy-3,3-dimethyl-2-butylmaleimide, N-2-hydroxy-3,3-dimethyl-4-butylmaleimide, N-1-hydroxy-3,3-dimethyl-1-butylmaleimide, N Alkyl maleimides such as 1-hydroxy-3,3-dimethyl-2-butylmaleimide and N-1-hydroxy-3,3-dimethyl-4-butylmaleimide; N-cyclopropylmaleimide, N-cyclobutylmaleimide, N Cycloalkylmaleimides such as cyclopentylmaleimide, N-cyclohexylmaleimide, N-cycloheptylmaleimide, N-cyclooctylmaleimide, N-2-methylcyclohexylmaleimide, N-2-ethylcyclohexylmaleimide, N-2-chlorocyclohexylmaleimide; N-phenylmaleimide, N-2-methylphenylmaleimide, N-2-ethylphenylmaleimide, N-2-chloro An aryl maleimide such as rophenyl maleimide can be used as appropriate.
 この中でも、C8~C23の脂肪族エステルである(メタ)アクリルエステルから選ばれる少なくとも1種を用いるのが好ましい。このようなモノマー成分を共重合して得られた(メタ)アクリル系樹脂はガラス転移温度が低いため、優れた粘着特性を示すため好ましい。 Among these, it is preferable to use at least one selected from (meth)acrylic esters, which are C8 to C23 aliphatic esters. The (meth)acrylic resin obtained by copolymerizing such a monomer component has a low glass transition temperature and thus exhibits excellent adhesive properties, which is preferable.
 またこのような(メタ)アクリル系樹脂を得るために必要な重合開始剤としては、30℃以上の加熱によりラジカルを発生する化合物であれば特に制限はないが、例えばメチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のパーオキシケタール;p-メンタンヒドロパーオキシド等のヒドロパーオキシド;α、α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート等のパーオキシエステル;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2’-ジメチルバレロニトリル)などが挙げられる。 Further, the polymerization initiator necessary for obtaining such a (meth)acrylic resin is not particularly limited as long as it is a compound that generates a radical by heating at 30° C. or higher, and examples thereof include methyl ethyl ketone peroxide and cyclohexanone peroxide. Ketone ketones such as methylcyclohexanone peroxide; 1,1-bis(t-butylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)-2-methylcyclohexane, 1,1-bis(t -Butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane Peroxyketals such as; hydroperoxides such as p-menthane hydroperoxide; α,α′-bis(t-butylperoxy)diisopropylbenzene, dicumyl peroxide, t-butylcumyl peroxide, di-t- Dialkyl peroxides such as butyl peroxide; diacyl peroxides such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide, benzoyl peroxide; bis(4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxy Peroxycarbonates such as ethylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate and di-3-methoxybutylperoxycarbonate; t-butylperoxypivalate, t-hexylperoxypivalate, 1,1 ,3,3-Tetramethylbutylperoxy-2-ethylhexanoate, 2,5-Dimethyl-2,5-bis(2-ethylhexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexa Noate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate , T-butylperoxylaurylate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-butylperoxybenzoate, t-hexylperoxybenzoate, 2,5-dimethyl- Peroxyesters such as 2,5-bis(benzoylperoxy)hexane and t-butylperoxyacetate; 2,2′-azobi Examples thereof include suisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2'-azobis(4-methoxy-2'-dimethylvaleronitrile).
 また溶液重合の際に用いられる反応溶媒としては、(メタ)アクリル系樹脂を溶解し得るものであれば、特に制限はないが、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミドなどが挙げられ、更にこれらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。更に超臨界二酸化炭素などを溶媒に用いて重合することもできる。 The reaction solvent used in the solution polymerization is not particularly limited as long as it can dissolve the (meth)acrylic resin, and examples thereof include aromas such as toluene, xylene, mesitylene, cumene and p-cymene. Group hydrocarbons; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl -Ketones such as 2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone; carbonic acid esters such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , Ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether , Polyhydric alcohol alkyl ethers such as diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol Examples include polyhydric alcohol alkyl ether acetates such as monoethyl ether acetate; amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone. These organic solvents may be used alone or Combinations of more than one type can be used. Further, supercritical carbon dioxide can be used as a solvent for polymerization.
 (メタ)アクリル系樹脂に、紫外線、電子線、及び/又は可視光線の照射によって反応し得る官能基を化学的に結合させることによって、感光性を付与することができる。ここでいう、紫外線、電子線、及び/又は可視光線の照射によって反応し得る官能基とは、具体的に例示するのであれば、(メタ)アクリロイル基、ビニル基、アリル基、グリシジル基、脂環式エポキシ基、オキセタン基などが挙げられる。 Photosensitivity can be imparted by chemically bonding to (meth)acrylic resin a functional group capable of reacting with irradiation of ultraviolet rays, electron beams, and/or visible rays. As used herein, the functional group capable of reacting with irradiation of ultraviolet rays, electron beams, and/or visible rays is, if specifically exemplified, a (meth)acryloyl group, a vinyl group, an allyl group, a glycidyl group, or a fat. Examples thereof include a cyclic epoxy group and an oxetane group.
 (メタ)アクリル系樹脂に感光性を付与する方法としては、特に制限はないが、例えば上記の(メタ)アクリル系樹脂を合成する際に、前もって付加反応し得る官能基、例えば水酸基、カルボキシル基、無水マレイル基、グリシジル基、アミノ基等を有するモノマーと共重合することで(メタ)アクリル系樹脂に付加反応可能な官能基を導入し、そこに少なくとも1つのエチレン性不飽和基と、エポキシ基、オキセタニル基、イソシアネート基、ヒドロキシル基、カルボキシル基等から選ばれる少なくとも1つの官能基を有する化合物を付加反応させて側鎖にエチレン性不飽和基を導入することで、(メタ)アクリル系樹脂に感光性を付与することができる。 The method for imparting photosensitivity to the (meth)acrylic resin is not particularly limited, but, for example, when synthesizing the above (meth)acrylic resin, a functional group capable of undergoing an addition reaction in advance, for example, a hydroxyl group or a carboxyl group. , A maleic anhydride group, a glycidyl group, an amino group and the like are copolymerized to introduce a functional group capable of undergoing an addition reaction into a (meth)acrylic resin, and at least one ethylenically unsaturated group and epoxy Group, an oxetanyl group, an isocyanate group, a hydroxyl group, a carboxyl group and the like, and a compound having at least one functional group is added to react to introduce an ethylenically unsaturated group into a side chain, thereby producing a (meth)acrylic resin. Can be imparted with photosensitivity.
 このような化合物としては特に制限はなく、グリシジル(メタ)アクリレート、α-エチルグリシジル(メタ)アクリレート、α-プロピルグリシジル(メタ)アクリレート、α-ブチルグリシジル(メタ)アクリレート、2-メチルグリシジル(メタ)アクリレート、2-エチルグリシジル(メタ)アクリレート、2-プロピルグリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-エポキシヘプチル(メタ)アクリレート、α-エチル-6,7-エポキシヘプチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル等のエチレン性不飽和基とエポキシ基を有する化合物;(2-エチル-2-オキセタニル)メチル(メタ)アクリレート、(2-メチル-2-オキセタニル)メチル(メタ)アクリレート、2-(2-エチル-2-オキセタニル)エチル(メタ)アクリレート、2-(2-メチル-2-オキセタニル)エチル(メタ)アクリレート、3-(2-エチル-2-オキセタニル)プロピル(メタ)アクリレート、3-(2-メチル-2-オキセタニル)プロピル(メタ)アクリレート等のエチレン性不飽和基とオキセタニル基を有する化合物;メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、2-アクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等のエチレン性不飽和基とイソシアネート基を有する化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のエチレン性不飽和基とヒドロキシル基を有する化合物;(メタ)アクリル酸、クロトン酸、ケイ皮酸、コハク酸(2-(メタ)アクリロイロキシエチル)、2-フタロイルエチル(メタ)アクリレート、2-テトラヒドロフタロイルエチル(メタ)アクリレート、2-ヘキサヒドロフタロイルエチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、3-ビニル安息香酸、4-ビニル安息香酸等のエチレン性不飽和基とカルボキシル基を有する化合物などが挙げられる。 There is no particular limitation on such a compound, and glycidyl (meth)acrylate, α-ethylglycidyl (meth)acrylate, α-propylglycidyl (meth)acrylate, α-butylglycidyl (meth)acrylate, 2-methylglycidyl (meth) ) Acrylate, 2-ethylglycidyl (meth)acrylate, 2-propylglycidyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, 3,4-epoxyheptyl (meth)acrylate, α-ethyl-6,7 -Epoxy heptyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether and other ethylenically unsaturated groups and epoxy groups A compound having: (2-ethyl-2-oxetanyl)methyl(meth)acrylate, (2-methyl-2-oxetanyl)methyl(meth)acrylate, 2-(2-ethyl-2-oxetanyl)ethyl(meth)acrylate , 2-(2-methyl-2-oxetanyl)ethyl(meth)acrylate, 3-(2-ethyl-2-oxetanyl)propyl(meth)acrylate, 3-(2-methyl-2-oxetanyl)propyl(meth) Compounds having an ethylenically unsaturated group such as acrylate and an oxetanyl group; methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, 2-acryloyloxyethyl isocyanate, m-isopropenyl-α,α-dimethylbenzyl isocyanate and other ethylenically unsaturated compounds Group having a hydroxyl group and an isocyanate group; ethylene such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate and 2-hydroxybutyl (meth)acrylate Compounds having a polyunsaturated group and a hydroxyl group; (meth)acrylic acid, crotonic acid, cinnamic acid, succinic acid (2-(meth)acryloyloxyethyl), 2-phthaloylethyl (meth)acrylate, 2- Ethylenic unsaturation of tetrahydrophthaloylethyl (meth)acrylate, 2-hexahydrophthaloylethyl (meth)acrylate, ω-carboxy-polycaprolactone mono(meth)acrylate, 3-vinylbenzoic acid, 4-vinylbenzoic acid, etc. Examples include compounds having a group and a carboxyl group To be
 これらの中でもコスト及び/又は反応性の観点から、2-(メタ)アクリロイルオキシエチルイソシアネート、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、イソシアン酸エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、(メタ)アクリル酸、クロトン酸、2-ヘキサヒドロフタロイルエチル(メタ)アクリレートなどを用いて、(メタ)アクリル系樹脂と反応させ、感光性を付与することが好ましい。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。また必要に応じて、付加反応を促進する触媒を添加、又は反応中の二重結合の開裂を避ける目的のために重合禁止剤を添加することもできる。また更に好ましくは、OH基を含有する(メタ)アクリル系樹脂と2-メタクリロイルオキシエチルイソシアネート、2-アクリロイルオキシエチルイソシアネートから選ばれる少なくとも1種との反応物である。 Among these, from the viewpoint of cost and/or reactivity, 2-(meth)acryloyloxyethyl isocyanate, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, ethyl isocyanate (meth)acrylate, 2 -Using hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, (meth)acrylic acid, crotonic acid, 2-hexahydrophthaloylethyl (meth)acrylate , (Meth)acrylic resin is preferably reacted to impart photosensitivity. These compounds can be used alone or in combination of two or more kinds. If necessary, a catalyst that accelerates the addition reaction or a polymerization inhibitor may be added for the purpose of avoiding double bond cleavage during the reaction. More preferably, it is a reaction product of an (meth)acrylic resin containing an OH group and at least one selected from 2-methacryloyloxyethyl isocyanate and 2-acryloyloxyethyl isocyanate.
 上記架橋剤は、(メタ)アクリル系樹脂に導入された水酸基、グリシジル基及びアミノ基などから選ばれる少なくとも1種と、これらの官能基と反応し得る官能基を2つ以上有する化合物であり、その構造には制限はない。このような架橋剤で形成される結合としては、エステル結合、エーテル結合、アミド結合、イミド結合、ウレタン結合及びウレア結合などが挙げられる。 The cross-linking agent is a compound having at least one selected from a hydroxyl group, a glycidyl group, an amino group, and the like introduced into a (meth)acrylic resin, and two or more functional groups capable of reacting with these functional groups, There is no limit to its structure. Examples of the bond formed by such a crosslinking agent include an ester bond, an ether bond, an amide bond, an imide bond, a urethane bond and a urea bond.
 粘着層に含まれる架橋剤の量は、アクリル系共重合体100質量部に対して0.05~0.3質量部であることが好ましい。架橋剤の量が0.05質量部未満であると、紫外線照射後における粘着層が脆くなる原因となり得る。他方、架橋剤の量が0.3質量部を超えると、紫外線照射前における粘着層の粘着力が弱くなる傾向にあり、半導体チップを固定する力が不十分となりやすい。 The amount of the crosslinking agent contained in the adhesive layer is preferably 0.05 to 0.3 parts by mass with respect to 100 parts by mass of the acrylic copolymer. If the amount of the cross-linking agent is less than 0.05 parts by mass, it may cause the adhesive layer to become brittle after irradiation with ultraviolet rays. On the other hand, when the amount of the cross-linking agent exceeds 0.3 parts by mass, the adhesive force of the adhesive layer before the irradiation of ultraviolet rays tends to be weak, and the force for fixing the semiconductor chip tends to be insufficient.
 架橋剤としては、2つ以上のイソシアネート基を有するものが好ましい。このような化合物を用いると、(メタ)アクリル系樹脂に導入された水酸基、グリシジル基、アミノ基などと容易に反応し、強固な架橋構造を形成し、紫外線照射後に粘着層が脆くなることを抑制することができる。 As the cross-linking agent, one having two or more isocyanate groups is preferable. When such a compound is used, it easily reacts with the hydroxyl group, glycidyl group, amino group, etc. introduced into the (meth)acrylic resin to form a strong cross-linked structure, and the adhesive layer becomes brittle after irradiation with ultraviolet rays. Can be suppressed.
 ここで、2つ以上のイソシアネート基を有する架橋剤とは、具体的に例示すれば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、リジンイソシアネートなどのイソシアネート化合物が挙げられる。 Here, the cross-linking agent having two or more isocyanate groups is, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4. -Xylene diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2, Isocyanate compounds such as 4'-diisocyanate and lysine isocyanate are mentioned.
 また更に上述のイソシアネート化合物と、2つ以上のOH基を有する多価アルコール類を反応させることで得られるイソシアナート基含有オリゴマーを用いることもできる。そのようなオリゴマーを得る場合、2つ以上のOH基を有する多価アルコールの例としては、エチレングリコール、プロピレングリコール、ブチレングリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール等が挙げられる。 Furthermore, an isocyanate group-containing oligomer obtained by reacting the above-mentioned isocyanate compound with a polyhydric alcohol having two or more OH groups can also be used. When obtaining such an oligomer, examples of the polyhydric alcohol having two or more OH groups include ethylene glycol, propylene glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, and 1,9. -Nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, glycerin, pentaerythritol, dipentaerythritol, 1,4-cyclohexanediol, 1,3-cyclohexanediol and the like. To be
 これらの中でも、架橋剤が、2つ以上のイソシアネート基を有する多官能イソシアネートと、3つ以上のOH基を有する多価アルコールの反応物であることが更に望ましい。このようなイソシアネート基含有オリゴマーを用いることで、粘着層が緻密な架橋構造を形成し、紫外線照射後に粘着層が脆くなることを抑制することができる。 Among these, it is more preferable that the cross-linking agent is a reaction product of a polyfunctional isocyanate having two or more isocyanate groups and a polyhydric alcohol having three or more OH groups. By using such an isocyanate group-containing oligomer, it is possible to prevent the pressure-sensitive adhesive layer from forming a dense cross-linked structure and making the pressure-sensitive adhesive layer brittle after irradiation with ultraviolet rays.
 上記光重合開始剤は、紫外線、電子線及び可視光線から選択される1種以上の光の照射によって上記アクリル系共重合体の連鎖重合を生じさせ得る活性種を発生するものであれば特に制限はなく、例えば、光ラジカル重合開始剤であっても、光カチオン重合開始剤であってもよい。連鎖重合可能な活性種としては、上記アクリル系共重合体の官能基と反応することで重合反応が開始されるものであれば特に制限はない。 The photopolymerization initiator is not particularly limited as long as it generates an active species capable of causing chain polymerization of the acrylic copolymer by irradiation with one or more kinds of light selected from ultraviolet rays, electron rays and visible rays. However, for example, it may be a photoradical polymerization initiator or a photocationic polymerization initiator. The chain-polymerizable active species is not particularly limited as long as it can initiate a polymerization reaction by reacting with the functional group of the acrylic copolymer.
 光ラジカル重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシケトン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のα-アミノケトン;1-[(4-フェニルチオ)フェニル]-1,2-オクタジオン-2-(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシド;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N,N’,N-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N,N’,N-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン化合物;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9-フェニルアクリジン、1,7-ビス(9、9’-アクリジニルヘプタン)等のアクリジン化合物;N-フェニルグリシン、クマリンなどが挙げられる。 Examples of the photoradical polymerization initiator include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethan-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- Α-Hydroxyketone such as 1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1 Α-aminoketone such as -(4-morpholinophenyl)-butan-1-one and 1,2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one; 1-[ (4-phenylthio)phenyl]-1,2-octadion-2-(benzoyl)oxime and other oxime esters; bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)- Phosphine oxides such as 2,4,4-trimethylpentylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(o- Chlorophenyl)-4,5-di(methoxyphenyl)imidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenyl 2,4,5-triarylimidazole dimers such as imidazole dimers and 2-(p-methoxyphenyl)-4,5-diphenylimidazole dimers; benzophenone, N,N,N',N-tetra Benzophenone compounds such as methyl-4,4'-diaminobenzophenone, N,N,N',N-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone; 2-ethylanthraquinone, phenanthrene Quinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1 , 4-naphthoquinone, 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone and other quinone compounds; benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether Benzoin ethers such as; benzoin compounds such as benzoin, methylbenzoin, ethylbenzoin; benzyl compounds such as benzyldimethylketal; acridine compounds such as 9-phenylacridine, 1,7-bis(9,9'-acridinylheptane) Examples thereof include N-phenylglycine and coumarin.
 また、上述した2,4,5-トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。また。ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン化合物と3級アミンとを組み合わせてもよい。 Further, in the above-mentioned 2,4,5-triarylimidazole dimer, the substituents on the aryl groups of the two triarylimidazole moieties may give the same and symmetrical compounds, and different asymmetrical compounds are given. May be given. Also. A thioxanthone compound and a tertiary amine may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
 光カチオン重合開始剤としては、例えばp-メトキシベンゼンジアゾニウムヘキサフルオロホスフェート等のアリールジアゾニウム塩;ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート等のジアリールヨードニウム塩;トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-チオフェノキシフェニルスルホニウムペンタフルオロヒドロキシアンチモネート等のトリアリールスルホニウム塩;トリフェニルセレノニウムヘキサフルオロホスフェート、トリフェニルセレノニウムテトラフルオロボレート、トリフェニルセレノニウムヘキサフルオロアンチモネート等のトリアリールセレノニウム塩;ジメチルフェナシルスルホニウムヘキサフルオロアンチモネート、ジエチルフェナシルスルホニウムヘキサフルオロアンチモネート等のジアルキルフェナシルスルホニウム塩;4-ヒドロキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4-ヒドロキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート等のジアルキル-4-ヒドロキシ塩;α-ヒドロキシメチルベンゾインスルホン酸エステル、N-ヒドロキシイミドスルホネート、α-スルホニロキシケトン、β-スルホニロキシケトン等のスルホン酸エステルなどが挙げられるが、これらのカチオン重合開始剤は、単独で又は2種類以上組み合わせて用いることができる。更に、適切な増感剤と組み合わせて用いることもできる。 Examples of the cationic photopolymerization initiator include aryldiazonium salts such as p-methoxybenzenediazonium hexafluorophosphate; diphenyliodonium hexafluorophosphate, diaryliodonium salts such as diphenyliodonium hexafluoroantimonate; triphenylsulfonium hexafluorophosphate, triphenyl Triarylsulfonium salts such as sulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium hexafluorophosphate, diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium pentafluorohydroxyantimonate Triarylselenonium salts such as triphenylselenonium hexafluorophosphate, triphenylselenonium tetrafluoroborate, triphenylselenonium hexafluoroantimonate; dimethylphenacylsulfonium hexafluoroantimonate, diethylphenacylsulfonium hexafluoroantimonate Dialkylphenacylsulfonium salts such as; 4-hydroxyphenyldimethylsulfonium hexafluoroantimonate, dihydroxy-4-hydroxy salts such as 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate; α-hydroxymethylbenzoinsulfonic acid ester, N- Examples thereof include sulfonic acid esters such as hydroxyimide sulfonate, α-sulfonyloxyketone and β-sulfonyloxyketone, and these cationic polymerization initiators may be used alone or in combination of two or more kinds. Further, it can be used in combination with a suitable sensitizer.
 その中でも粘着層に厳しい絶縁性及び絶縁信頼性が必要な場合は、光ラジカル開始剤を用いるのが好ましく、その中でも2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシケトン;ベンゾフェノン、2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9-フェニルアクリジン、1,7-ビス(9、9’-アクリジニルヘプタン)等のアクリジン化合物;N-フェニルグリシン、クマリンなどは、エキスパンドテープの保存安定性に優れるため好ましく、更に2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ベンゾフェノンは一般の紫外線遮光型蛍光灯の元での取り扱いが可能であり、イエロールーム等の設備が必要でないため更に好ましい。 Among them, when the adhesive layer requires strict insulation and insulation reliability, it is preferable to use a photoradical initiator, and among them, benzoin ketal such as 2,2-dimethoxy-1,2-diphenylethan-1-one. 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propane Α-hydroxyketone such as 1-one; benzophenone, 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone , 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone, etc. Quinone compounds; benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether and other benzoin ethers; benzoin, methylbenzoin, ethylbenzoin and other benzoin compounds; benzyl dimethyl ketal and other benzyl compounds; 9-phenylacridine, 1,7-bis Acridine compounds such as (9,9'-acridinylheptane); N-phenylglycine, coumarin and the like are preferable because of excellent storage stability of the expanded tape, and further 2,2-dimethoxy-1,2-diphenylethane- 1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl- 1-propan-1-one and benzophenone are more preferable because they can be handled under a general ultraviolet light-shielding fluorescent lamp and a facility such as a yellow room is not required.
 光重合開始剤の配合量は、目的とする粘着層の厚さ及び/又は用いる光源によって最適値は異なるが、0.5~1.5質量部であることが好ましい。光重合開始剤の量が0.5質量部未満であると紫外線照射後における剥離力が十分に低下せず、ピックアップ時に突き上げ量が低い場合に不具合が発生しやすい。光重合開始剤の量が1.5質量部より大きい場合でも特性において利点はなく、不経済となる。 The optimum amount of the photopolymerization initiator is preferably 0.5 to 1.5 parts by mass, although the optimum value varies depending on the intended thickness of the adhesive layer and/or the light source used. If the amount of the photopolymerization initiator is less than 0.5 parts by mass, the peeling force after irradiation with ultraviolet rays will not be sufficiently reduced, and problems will easily occur when the amount of push-up at the time of pickup is low. Even when the amount of the photopolymerization initiator is larger than 1.5 parts by mass, there is no advantage in the characteristics and it is uneconomical.
 粘着層の厚さは、通常は1~100μmであり、2~50μmが好ましく、5~40μmがより好ましい。粘着層の厚さを1μm以上にすることによって、半導体チップとの十分な粘着力を確保することができるため、テープエキスパンド工程の際に半導体のチップの飛散をより高度に防止することができる。一方、100μmを超える厚さとしても、特性において利点はなく、不経済となる。 The thickness of the adhesive layer is usually 1 to 100 μm, preferably 2 to 50 μm, more preferably 5 to 40 μm. By setting the thickness of the adhesive layer to 1 μm or more, a sufficient adhesive force with the semiconductor chip can be secured, so that the scattering of the semiconductor chip can be more highly prevented during the tape expanding step. On the other hand, even if the thickness exceeds 100 μm, there is no advantage in characteristics and it is uneconomical.
 粘着層が10μm以上であると、ダイシングテープを用いずに、エキスパンドテープ上で半導体ウエハをダイシングしても基材フィルムにダメージ(切り込み等)が入らないため、準備工程において、ダイシングテープ上で半導体ウエハをダイシングしてエキスパンドテープに転写する(貼り付ける)工程を省略することができる。 If the adhesive layer has a thickness of 10 μm or more, the base film is not damaged (cuts or the like) even if the semiconductor wafer is diced on the expand tape without using the dicing tape, so that the semiconductor is diced on the dicing tape in the preparation step. The step of dicing the wafer and transferring (attaching) it to the expanding tape can be omitted.
(エキスパンドテープの作製方法)
 エキスパンドテープは、当技術分野で周知の技術に沿って製造することができる。例えば、以下の方法に従って製造することができる。保護フィルムの上に、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等によって粘着剤成分及び溶媒を含むワニスを塗工し、溶媒を除去することによって粘着層を形成する。具体的には、50~200℃、0.1~90分間の加熱を行うことが好ましい。各工程でのボイド発生又は粘度調整に影響がなければ、有機溶媒が1.5%以下となるまで揮発する条件とすることが好ましい。
 作製した粘着層付保護フィルムと、基材フィルムを、常温~60℃の温度条件下で、粘着層と基材フィルムが対向するように積層する。
(Method for making expanded tape)
Expanded tapes can be manufactured according to techniques well known in the art. For example, it can be manufactured according to the following method. By coating a varnish containing an adhesive component and a solvent by a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method or the like on the protective film, and removing the solvent. Form an adhesive layer. Specifically, it is preferable to perform heating at 50 to 200° C. for 0.1 to 90 minutes. If there is no effect on the occurrence of voids or viscosity adjustment in each step, it is preferable to set the conditions under which the organic solvent volatilizes to 1.5% or less.
The produced protective film with an adhesive layer and the substrate film are laminated under a temperature condition of room temperature to 60°C so that the adhesive layer and the substrate film face each other.
 エキスパンドテープ(基材フィルム、もしくは基材フィルム+粘着層)は保護フィルムを剥がして使用する。 -Expand tape (base film, or base film + adhesive layer) is used after removing the protective film.
 保護フィルムとしては、例えば、A-63(帝人デュポンフィルム株式会社製、離型処理剤:変性シリコーン系)、A-31(帝人デュポンフィルム株式会社製、離型処理剤:Pt系シリコーン系)等が挙げられる。
 保護フィルムの厚さは、作業性を損なわない範囲で適宜選択され、通常は、経済的観点から100μm以下であることが好ましい。上記保護フィルムの厚さは、10~75μmが好ましく、25~50μmがより好ましい。上記保護フィルムの厚さが10μm以上であれば、エキスパンドテープの作製時にフィルムが破れる等の不具合が起こり難い。また、上記保護フィルムの厚さが75μm以下であれば、エキスパンドテープの使用時に保護フィルムを容易に剥離することができる。
Examples of the protective film include A-63 (manufactured by Teijin DuPont Films Ltd., release treatment agent: modified silicone type), A-31 (manufactured by Teijin DuPont Films Ltd., release treatment agent: Pt type silicone type) and the like. Is mentioned.
The thickness of the protective film is appropriately selected within a range that does not impair the workability, and is usually preferably 100 μm or less from the economical viewpoint. The thickness of the protective film is preferably 10 to 75 μm, more preferably 25 to 50 μm. When the thickness of the protective film is 10 μm or more, problems such as tearing of the film during the production of the expanded tape are unlikely to occur. When the thickness of the protective film is 75 μm or less, the protective film can be easily peeled off when using the expanded tape.
(キャリア)
 キャリアは、転写時の温度及び圧力に耐えられること(チップが破損しないこと、チップ間隔が変わらないこと)、また、封止時の温度及び圧力にも耐えられることができれば特に制限はない。例えば、封止温度が100~200℃の場合、その温度領域に耐えうる耐熱性があることが好ましい。また、熱膨張率が100ppm/℃以下が好ましく、50ppm/℃以下がより好ましく、20ppm/℃以下が更に好ましい。熱膨張率が大きいと半導体チップの位置ずれ等の不具合が発生する。また、熱膨張率は、半導体チップよりも熱膨張率が小さいと歪み又は反りが生じるため、3ppm/℃以上が好ましい。
(Career)
The carrier is not particularly limited as long as it can withstand the temperature and pressure at the time of transfer (the chips are not damaged, the chip interval does not change), and the temperature and pressure at the time of sealing can be endured. For example, when the sealing temperature is 100 to 200° C., it is preferable that the sealing material has heat resistance to withstand the temperature range. The coefficient of thermal expansion is preferably 100 ppm/° C. or lower, more preferably 50 ppm/° C. or lower, still more preferably 20 ppm/° C. or lower. If the coefficient of thermal expansion is large, problems such as displacement of the semiconductor chip occur. Further, the coefficient of thermal expansion is preferably 3 ppm/° C. or higher because distortion or warpage occurs when the coefficient of thermal expansion is smaller than that of the semiconductor chip.
 キャリアの材質としては、特に制限はないが、シリコン(ウエハ)、ガラス、SUS、鉄、Cu等の板、ガラスエポキシ基板などが挙げられる。 The material of the carrier is not particularly limited, but examples thereof include silicon (wafer), glass, SUS, iron, Cu, etc. plates, and glass epoxy substrates.
 キャリアの厚みは100~5000μmであってもよく、100~4000μmが好ましく、100~3000μmがより好ましい。100μm以上であると取り扱い性が向上する。厚くても格段の取り扱い性向上が見込めるわけではなく、経済面から考慮して5000μm以下であればよい。 The thickness of the carrier may be 100 to 5000 μm, preferably 100 to 4000 μm, more preferably 100 to 3000 μm. When it is 100 μm or more, handleability is improved. Even if it is thick, no remarkable improvement in handleability can be expected. From the economical viewpoint, the thickness may be 5000 μm or less.
 キャリアは、複数の層から成っていてもよい。上述の耐熱性及び取り扱い性を担う層に加えて、密着力制御を付与する観点から、粘着層又は仮固定材をラミネートした層があってもよい。密着力は半導体チップ又はエキスパンドテープの密着力を考慮して、適宜設定すればよい。厚みも特に制限はないが、例えば、1~300μmであってもよく、1~200μmが好ましい。1μm以上とすることで半導体チップとの十分な粘着力を確保することができる。一方、300μmを超える厚さとしても、特性において利点はなく、不経済となる。 The carrier may consist of multiple layers. In addition to the above-mentioned layer that bears heat resistance and handleability, an adhesive layer or a layer obtained by laminating a temporary fixing material may be provided from the viewpoint of imparting adhesion control. The adhesive force may be appropriately set in consideration of the adhesive force of the semiconductor chip or the expanded tape. The thickness is not particularly limited, but may be, for example, 1 to 300 μm, preferably 1 to 200 μm. When the thickness is 1 μm or more, a sufficient adhesive force with the semiconductor chip can be secured. On the other hand, even if the thickness exceeds 300 μm, there is no advantage in characteristics and it is uneconomical.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれらによって制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(アクリル樹脂溶液の調製)
 スリーワンモータ、撹拌翼及び窒素導入管が備え付けられた容量4000mlのオートクレーブに酢酸エチル1000g、2-エチルヘキシルアクリレート650g、2-ヒドロキシエチルアクリレート350g、及びアゾビスイソブチロニトリル3.0gを配合し、均一になるまで撹拌後、流量100ml/分にて60分間窒素バブリングを実施し、系中の溶存酸素を脱気した。1時間かけて60℃まで昇温し、昇温後4時間重合させた。その後1時間かけて90℃まで昇温し、更に90℃にて1時間保持後、室温に冷却した。
 次に酢酸エチルを1000g加えて撹拌し希釈した。これに重合禁止剤としてメトキノンを0.1g、ウレタン化触媒として、ジオクチルスズジラウレートを0.05g添加した後、2-メタクリロキシエチルイソシアネート(昭和電工株式会社製、カレンズMOI(登録商標))を100g加えた。70℃で6時間反応させた後、室温に冷却した。その後、酢酸エチルを加え、アクリル樹脂溶液中の不揮発分含有量が35質量%となるよう調整し、連鎖重合可能な官能基を有するアクリル樹脂溶液を得た。
 この樹脂の酸価と水酸基価を、JIS K0070に従って測定したところ、酸価は検出されず、水酸基価は121mgKOH/gであった。
 また、得られたアクリル樹脂溶液を60℃で一晩真空乾燥し、得られた固形分を全自動元素分析装置(エレメンタール株式会社製、varioEL)にて元素分析した。測定された窒素含有量から、アクリル樹脂に導入された2-メタクリロキシエチルイソシアネートの含有量を算出したところ、0.59mmol/gであった。
 また、SD-8022/DP-8020/RI-8020(東ソー株式会社製)を使用し、カラムには、Gelpack GL-A150-S/GL-A160-S(日立化成株式会社製)を用い、溶離液にテトラヒドロフランを用いてGPC測定をした結果、ポリスチレン換算重量平均分子量は42万であった。
(Preparation of acrylic resin solution)
1000 ml of ethyl acetate, 650 g of 2-ethylhexyl acrylate, 350 g of 2-hydroxyethyl acrylate, and 3.0 g of azobisisobutyronitrile were mixed into an autoclave with a capacity of 4000 ml equipped with a three-one motor, a stirring blade and a nitrogen introducing tube, and uniformly mixed. After stirring until, the nitrogen bubbling was performed at a flow rate of 100 ml/min for 60 minutes to degas the dissolved oxygen in the system. The temperature was raised to 60° C. over 1 hour, and after the temperature was raised, polymerization was carried out for 4 hours. Thereafter, the temperature was raised to 90° C. over 1 hour, the temperature was further maintained at 90° C. for 1 hour, and then cooled to room temperature.
Next, 1000 g of ethyl acetate was added and stirred to dilute. To this, 0.1 g of methquinone as a polymerization inhibitor and 0.05 g of dioctyltin dilaurate as a urethane-forming catalyst were added, and then 100 g of 2-methacryloxyethyl isocyanate (Karenzu MOI (registered trademark) manufactured by Showa Denko KK) was added. added. After reacting at 70° C. for 6 hours, it was cooled to room temperature. Thereafter, ethyl acetate was added to adjust the nonvolatile content in the acrylic resin solution to be 35% by mass to obtain an acrylic resin solution having a chain-polymerizable functional group.
When the acid value and the hydroxyl value of this resin were measured according to JIS K0070, no acid value was detected and the hydroxyl value was 121 mgKOH/g.
Further, the obtained acrylic resin solution was vacuum dried overnight at 60° C., and the obtained solid content was subjected to elemental analysis by a fully automatic elemental analyzer (VarioEL manufactured by Elemental Co., Ltd.). When the content of 2-methacryloxyethyl isocyanate introduced into the acrylic resin was calculated from the measured nitrogen content, it was 0.59 mmol/g.
In addition, SD-8022/DP-8020/RI-8020 (manufactured by Tosoh Corporation) is used, and the column is Gelpack GL-A150-S/GL-A160-S (manufactured by Hitachi Chemical Co., Ltd.) and eluted. As a result of GPC measurement using tetrahydrofuran as the liquid, the polystyrene-converted weight average molecular weight was 420,000.
(実施例1)
 上記アクリル樹脂溶液(固形分:100質量部)に対し、架橋剤として多官能イソシアネート(日本ポリウレタン工業株式会社製、コロネートL、固形分75%)を固形分として0.1質量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASF株式会社製、イルガキュア184)を1.0質量部、更に総固形分含有量が25質量%となるように2-ブタノンを加え、10分間均一に撹拌した。その後、得られた溶液を、保護フィルム(表面離型処理ポリエチレンテレフタレート、厚さ25μm)の上に塗工乾燥して、粘着層を形成した。この際、乾燥時の粘着層厚さを10μmとした。更に、基材フィルム(厚さ100μm)に粘着層面をラミネートした。その後、得られたテープを40℃で4日間エージングした。
(Example 1)
0.1 part by mass of polyfunctional isocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., Coronate L, solid content 75%) as a cross-linking agent with respect to the acrylic resin solution (solid content: 100 parts by mass) as a solid content, photopolymerization initiation 1.0 mass part of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Corporation, Irgacure 184) was added as an agent, and 2-butanone was further added so that the total solid content was 25 mass %, and the mixture was stirred uniformly for 10 minutes. .. Then, the obtained solution was applied onto a protective film (surface release-treated polyethylene terephthalate, thickness 25 μm) and dried to form an adhesive layer. At this time, the thickness of the adhesive layer when dried was set to 10 μm. Furthermore, the adhesive layer surface was laminated on a substrate film (thickness 100 μm). Then, the obtained tape was aged at 40° C. for 4 days.
 なお、上記基材フィルムとしては、ハイミラン1706(三井・デュポン ポリケミカル株式会社製、アイオノマー樹脂)、エチレン・1-ヘキセン共重合体とブテン・α-オレフィン共重合体、及びハイミラン1706がこの順で積層された三層の樹脂フィルムを用いた。
 また、粘着層及び保護フィルムと基材フィルムとは、40℃のロールラミネータでラミネートし、保護フィルム/粘着層/基材フィルムの順の構成とした。エキスパンドテープとして使用する際は、保護フィルムを剥がして使用した。
In addition, as the above-mentioned substrate film, Himilan 1706 (Mitsui DuPont Polychemical Co., Ltd., ionomer resin), ethylene/1-hexene copolymer and butene/α-olefin copolymer, and Himilan 1706 are listed in this order. A laminated three-layer resin film was used.
The pressure-sensitive adhesive layer, the protective film, and the base film were laminated with a roll laminator at 40° C. to form a protective film/adhesive layer/base film in this order. When used as an expanded tape, the protective film was peeled off before use.
<エキスパンドテープ上の個片化された半導体チップの作製(工程1)>
 12インチのダイシングリングに貼り付けたダイシングテープに8インチシリコンウエハ(厚み250μm)を40℃で、ラミネート装置(V130、ニッコー・マテリアルズ株式会社製)を用いてラミネートし、1mm×1mmのサイズにブレードでダイシング装置(DFD3360、株式会社ディスコ製)を用いてダイシングした。その後、UV露光機(ML-320FSAT、ミカサ株式会社製)を用いて、UVを300mJ照射して、ダイシングテープの密着力を下げた。その後、12インチのダイシングリングに貼り付けたエキスパンドテープに個片化された半導体チップをラミネート装置(V130、ニッコー・マテリアルズ株式会社製)を用いて転写(40℃/0.5MPa/10秒の条件)した。転写後にダイシングテープを剥がしたものを、エキスパンドするサンプルとし、12インチのダイシングリングごとエキスパンドにセットした。この時、初期の半導体チップ間隔は約50μmだった。
<Production of individual semiconductor chips on expanded tape (step 1)>
An 8-inch silicon wafer (thickness: 250 μm) is laminated on a dicing tape attached to a 12-inch dicing ring at 40° C. using a laminating device (V130, manufactured by Nikko Materials Co., Ltd.) to obtain a size of 1 mm×1 mm. Dicing was performed with a blade using a dicing device (DFD3360, manufactured by Disco Corporation). Then, using a UV exposure machine (ML-320FSAT, manufactured by Mikasa Co., Ltd.), UV was irradiated at 300 mJ to reduce the adhesive force of the dicing tape. After that, the individual semiconductor chips are transferred to an expanding tape attached to a 12-inch dicing ring (V130, manufactured by Nikko Materials Co., Ltd.) (40° C./0.5 MPa/10 seconds) Conditions). A sample obtained by removing the dicing tape after the transfer was used as a sample to be expanded, and the 12-inch dicing ring was set in the expand. At this time, the initial semiconductor chip interval was about 50 μm.
<工程2>
 工程1で得られたサンプルを、12インチエキスパンダー装置(大宮工業株式会社製、MX-5154FN)にセットし、突き上げ速度100mm/秒、温度(ステージ温度)50℃で85mm突き上げ、エキスパンドテープを引き伸ばした。この時、半導体のチップ間隔は初期の約50μmから約500μmに広がった。
<工程3>
 工程2でエキスパンドテープを引き伸ばしたサンプルを、12インチエキスパンダー用のグリップリング(株式会社テクノビジョン製、GR-12)で固定して、テンションを保持した。
<工程4>
 工程3でテンションを保持したサンプルにUVを照射(UV露光機ML-320FSAT、ミカサ株式会社製)した後、真空ラミネータ(V130、ニッコー・マテリアルズ株式会社製)を用いて、キャリアに半導体チップ面をラミネートした。ラミネート条件はダイヤフラム温度60℃、ステージ温度60℃、圧力0.5MPa、60秒とした。
<工程5>
 工程4でキャリアをラミネートしたサンプルからエキスパンドテープのみを剥がし、キャリア上(仮固定材)に半導体チップが配列したサンプルを作製した。
<Step 2>
The sample obtained in the step 1 was set in a 12-inch expander device (MX-5154FN, manufactured by Omiya Kogyo Co., Ltd.) and pushed up by 85 mm at a pushing speed of 100 mm/sec and a temperature (stage temperature) of 50° C. to stretch the expanded tape. .. At this time, the semiconductor chip interval has expanded from about 50 μm at the initial stage to about 500 μm.
<Step 3>
The sample obtained by stretching the expand tape in step 2 was fixed with a grip ring for a 12-inch expander (GR-12, manufactured by Technovision Co., Ltd.) to maintain the tension.
<Step 4>
After irradiating UV (UV exposure machine ML-320FSAT, manufactured by Mikasa Co., Ltd.) to the sample whose tension is held in step 3, the semiconductor chip surface is used as a carrier by using a vacuum laminator (V130, manufactured by Nikko Materials Co., Ltd.). Was laminated. The laminating conditions were a diaphragm temperature of 60° C., a stage temperature of 60° C., a pressure of 0.5 MPa and 60 seconds.
<Step 5>
Only the expanded tape was peeled off from the sample laminated with the carrier in step 4 to prepare a sample in which semiconductor chips were arranged on the carrier (temporary fixing material).
 なお、工程4におけるキャリアとしては、以下の方法で作製したものを用いた。
 12インチシリコンウエハ(厚み775μm)に仮固定材としてリバアルファ3195V(日東電工株式会社製)を真空ラミネータ(V130、ニッコー・マテリアルズ株式会社製)でラミネート後、ウエハの形に外形加工してキャリアを作製した。ラミネート条件は、ダイヤフラム温度80℃、ステージ温度40℃、時間60秒、圧力0.5MPaとした。
The carrier produced in the following method was used as the carrier in step 4.
A 12-inch silicon wafer (thickness: 775 μm) is laminated with Riva Alpha 3195V (manufactured by Nitto Denko Corporation) as a temporary fixing material using a vacuum laminator (V130, manufactured by Nikko Materials Co., Ltd.), and then externally processed into a wafer shape to be a carrier. Was produced. The lamination conditions were a diaphragm temperature of 80° C., a stage temperature of 40° C., a time of 60 seconds, and a pressure of 0.5 MPa.
<実施例2及び比較例1、2>
 架橋剤の使用量を表1に示すように変更した他は実施例1と同様にして、実施例2及び比較例1、2を実施した。
<Example 2 and Comparative Examples 1 and 2>
Example 2 and Comparative Examples 1 and 2 were carried out in the same manner as in Example 1 except that the amount of the crosslinking agent used was changed as shown in Table 1.
(実施例3)
 工程1におけるダイシングのサイズを0.7mm×0.7mmに変更した他は実施例2と同様にして、実施例3を実施した。
(Example 3)
Example 3 was carried out in the same manner as Example 2 except that the size of dicing in Step 1 was changed to 0.7 mm×0.7 mm.
<比較例3>
 架橋剤の使用量を表1に示すように変更した他は実施例3と同様にして、比較例3を実施した。
<Comparative example 3>
Comparative Example 3 was carried out in the same manner as in Example 3 except that the amount of the crosslinking agent used was changed as shown in Table 1.
<評価方法>
(ピール強度)
 実施例1~3及び比較例1~3で用いたエキスパンドテープのSUSに対するピール強度を以下の方法で測定した。
 厚さ0.5mmのSUSに、ラミネータGK-13DX(株式会社ラミーコーポレーション製)を用いて、ラミネート温度40℃でエキスパンドテープを貼着したUV照射前サンプル、及び当該UV照射前サンプルに紫外線露光機(ミカサ株式会社製「ML-320FSAT」)を用いて、紫外線波長:365nm、露光量:300mJ/cmの条件で紫外線をエキスパンドテープに照射したUV照射後サンプルを準備した。UV照射前サンプル及びUV照射後サンプルについて、それぞれJIS C 5016(1994-導体の引きはがし強さ)に準拠した方法でピール強度を測定した。
<Evaluation method>
(Peel strength)
The peel strength against SUS of the expanded tapes used in Examples 1 to 3 and Comparative Examples 1 to 3 was measured by the following method.
UV pre-irradiation sample in which an expand tape was attached to a SUS 0.5 mm thick laminator GK-13DX (manufactured by Lamy Corporation) at a laminating temperature of 40° C., and a UV exposure device for the pre-UV irradiation sample. (ML-320FSAT manufactured by Mikasa Co., Ltd.) was used to irradiate the expanding tape with ultraviolet rays under the conditions of an ultraviolet wavelength of 365 nm and an exposure amount of 300 mJ/cm 2 to prepare a sample after UV irradiation. The peel strength of each of the sample before UV irradiation and the sample after UV irradiation was measured by a method according to JIS C 5016 (1994-strength of peeling of conductor).
(i)ダイシングテープからエキスパンドテープへの半導体チップの転写率評価
 工程1において、ダイシングテープからエキスパンドテープに半導体チップを転写した際の転写率は、目視で転写残りのチップを数えることで評価した。なお、半導体チップが100%転写されていた場合をA、転写残りがあった場合をBとした。
(ii)エキスパンド時のチップ飛び評価
 エキスパンド時のチップ飛びは、工程2終了後、目視でチップ飛びを数えることで評価した。なお、チップ飛びがなかった場合をA、チップ飛びがあった場合をBとした。
(iii)エキスパンドテープから仮固定材への半導体チップの転写率評価
 工程4及び5において、エキスパンドテープから仮固定材に半導体チップを転写した際の転写率は、目視で転写残りのチップを数えることで評価した。なお、半導体チップが100%転写されていた場合をA、転写残りがあった場合をBとした。
(I) Evaluation of Transfer Rate of Semiconductor Chip from Dicing Tape to Expanding Tape In step 1, the transfer rate when the semiconductor chip was transferred from the dicing tape to the expanding tape was evaluated by visually counting the untransferred chips. The case where the semiconductor chip was 100% transferred was designated as A, and the case where there was transfer residue was designated as B.
(Ii) Evaluation of chip jump during expansion The chip jump during expansion was evaluated by visually counting the chip skips after step 2. In addition, the case where there was no chip flying was A, and the case where there was chip flying was B.
(Iii) Evaluation of Transfer Rate of Semiconductor Chip from Expanded Tape to Temporary Fixing Material In steps 4 and 5, the transfer rate when the semiconductor chip is transferred from the expanding tape to the temporary fixing material is to visually count the untransferred chips. It was evaluated by. The case where the semiconductor chip was 100% transferred was designated as A, and the case where there was transfer residue was designated as B.
 以上の評価方法で実施例1~3及び比較例1~3を評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the results of evaluating Examples 1 to 3 and Comparative Examples 1 to 3 by the above evaluation method.
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかであるように、所定のエキスパンドテープを用いた実施例1~3によれば、チップサイズが0.49~1.00mm程度と小さい場合であっても、ダイシングテープからエキスパンドテープへの半導体チップの転写率、エキスパンド時のチップ飛び抑制、エキスパンドテープから仮固定材への半導体チップの転写率の全てにおいて良好である。 As is clear from the results in Table 1, according to Examples 1 to 3 using the predetermined expand tape, even when the chip size was as small as 0.49 to 1.00 mm 2 , the dicing tape was used. The transfer rate of the semiconductor chip to the expand tape, the suppression of chip jump during expansion, and the transfer rate of the semiconductor chip from the expand tape to the temporary fixing material are all good.
 1…エキスパンドテープ、1a…粘着層、1b…基材フィルム、2…半導体チップ、3…パッド(回路)、4…固定用ジグ、5…キャリア。 1... Expanded tape, 1a... Adhesive layer, 1b... Base film, 2... Semiconductor chip, 3... Pad (circuit), 4... Fixing jig, 5... Carrier.

Claims (8)

  1.  エキスパンドテープを加熱しながら延伸することにより、当該エキスパンドテープ上に固定された複数の半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、延伸された前記エキスパンドテープに紫外線を照射する紫外線照射工程と、紫外線が照射された前記エキスパンドテープを複数の前記半導体チップから剥離する剥離工程とを備える半導体装置の製造方法に用いられるエキスパンドテープであって、
     前記エキスパンドテープの紫外線照射前のピール強度が6N/25mm以上であり、且つ紫外線照射後のピール強度が0.4N/25mm以下であるエキスパンドテープ。
    A tape expanding step of expanding the interval between the plurality of semiconductor chips fixed on the expanded tape from 100 μm or less to 300 μm or more by drawing the expanded tape while heating, and an ultraviolet ray for irradiating the drawn expanded tape with ultraviolet rays. An expanding tape used in a method of manufacturing a semiconductor device, comprising an irradiation step and a peeling step of peeling the expanded tape irradiated with ultraviolet rays from a plurality of the semiconductor chips,
    An expanded tape in which the peel strength of the expanded tape before irradiation with ultraviolet rays is 6 N/25 mm or more and the peel strength after irradiation of ultraviolet rays is 0.4 N/25 mm or less.
  2.  基材層及び粘着層を有する、請求項1に記載のエキスパンドテープ。 The expanded tape according to claim 1, which has a base material layer and an adhesive layer.
  3.  前記粘着層が紫外線硬化型の粘着剤から構成される、請求項2に記載のエキスパンドテープ。 The expanded tape according to claim 2, wherein the adhesive layer is composed of an ultraviolet curable adhesive.
  4.  前記粘着層は、主鎖に対して放射線硬化性炭素-炭素二重結合含有基及び水酸基を有するアクリル系共重合体と、水酸基と反応し得る官能基を2つ以上有する架橋剤と、光重合開始剤とを含み、前記架橋剤の含有量が前記アクリル系共重合体100質量部に対し0.05~0.3質量部である、請求項2に記載のエキスパンドテープ。 The adhesive layer comprises an acrylic copolymer having a radiation-curable carbon-carbon double bond-containing group and a hydroxyl group in the main chain, a cross-linking agent having two or more functional groups capable of reacting with the hydroxyl group, and photopolymerization. The expand tape according to claim 2, further comprising an initiator, wherein the content of the cross-linking agent is 0.05 to 0.3 parts by mass with respect to 100 parts by mass of the acrylic copolymer.
  5.  前記架橋剤は、2つ以上のイソシアネート基を有する架橋剤である、請求項4に記載のエキスパンドテープ。 The expanded tape according to claim 4, wherein the cross-linking agent is a cross-linking agent having two or more isocyanate groups.
  6.  前記光重合開始剤の含有量は、前記アクリル系共重合体100質量部に対し0.5~1.5質量部である、請求項4又は5に記載のエキスパンドテープ。 The expanded tape according to claim 4 or 5, wherein the content of the photopolymerization initiator is 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the acrylic copolymer.
  7.  請求項1~6のいずれか一項に記載のエキスパンドテープを加熱しながら延伸することにより、当該エキスパンドテープ上に固定された複数の半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、延伸された前記エキスパンドテープに紫外線を照射する紫外線照射工程と、紫外線が照射された前記エキスパンドテープを複数の前記半導体チップから剥離する剥離工程とを備える、半導体装置の製造方法。 A tape expanding step of expanding the interval between a plurality of semiconductor chips fixed on the expand tape from 100 μm or less to 300 μm or more by stretching the expand tape according to any one of claims 1 to 6 while heating. A method of manufacturing a semiconductor device, comprising: an ultraviolet irradiation step of irradiating the stretched expanded tape with ultraviolet rays; and a peeling step of peeling the expanded tape irradiated with ultraviolet rays from the plurality of semiconductor chips.
  8.  半導体チップを有する半導体装置の製造方法であって、
     請求項1~6のいずれか一項に記載のエキスパンドテープ、及び当該エキスパンドテープ上に固定された複数の半導体チップを準備する準備工程と、
     前記エキスパンドテープを延伸することにより、前記エキスパンドテープ上に固定された複数の前記半導体チップの間隔を100μm以下から300μm以上に広げるテープエキスパンド工程と、
     延伸された前記エキスパンドテープのテンションを保持するテンション保持工程と、
     延伸された前記エキスパンドテープに紫外線を照射する紫外線照射工程と、
     キャリアに、複数の前記半導体チップの、延伸された前記エキスパンドテープ上に固定された面とは反対側の面が固定されるように転写する転写工程と、
     紫外線が照射された前記エキスパンドテープを前記半導体チップから剥離する剥離工程と、
    を備える半導体装置の製造方法。
    A method of manufacturing a semiconductor device having a semiconductor chip, comprising:
    A preparatory step of preparing the expand tape according to any one of claims 1 to 6, and a plurality of semiconductor chips fixed on the expand tape,
    A tape-expanding step of expanding the interval between the plurality of semiconductor chips fixed on the expandable tape from 100 μm or less to 300 μm or more by stretching the expandable tape,
    A tension holding step of holding the tension of the stretched expanded tape,
    An ultraviolet irradiation step of irradiating the stretched expanded tape with ultraviolet rays,
    A transfer step of transferring to the carrier so that the surface of the plurality of semiconductor chips opposite to the surface fixed on the stretched expand tape is fixed.
    A peeling step of peeling the expanded tape irradiated with ultraviolet rays from the semiconductor chip,
    A method for manufacturing a semiconductor device, comprising:
PCT/JP2019/006351 2019-02-20 2019-02-20 Manufacturing method for semiconductor device, and expand tape WO2020170366A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/006351 WO2020170366A1 (en) 2019-02-20 2019-02-20 Manufacturing method for semiconductor device, and expand tape
PCT/JP2020/006351 WO2020171084A1 (en) 2019-02-20 2020-02-18 Manufacturing method for semiconductor device, and expand tape
TW109105220A TW202040657A (en) 2019-02-20 2020-02-18 Manufacturing method for semiconductor device, and expand tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006351 WO2020170366A1 (en) 2019-02-20 2019-02-20 Manufacturing method for semiconductor device, and expand tape

Publications (1)

Publication Number Publication Date
WO2020170366A1 true WO2020170366A1 (en) 2020-08-27

Family

ID=72143672

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/006351 WO2020170366A1 (en) 2019-02-20 2019-02-20 Manufacturing method for semiconductor device, and expand tape
PCT/JP2020/006351 WO2020171084A1 (en) 2019-02-20 2020-02-18 Manufacturing method for semiconductor device, and expand tape

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006351 WO2020171084A1 (en) 2019-02-20 2020-02-18 Manufacturing method for semiconductor device, and expand tape

Country Status (2)

Country Link
TW (1) TW202040657A (en)
WO (2) WO2020170366A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786212A (en) * 1993-07-27 1995-03-31 Lintec Corp Adhesive sheet for sticking of wafer
WO2018216621A1 (en) * 2017-05-22 2018-11-29 日立化成株式会社 Semiconductor device manufacturing method and expand tape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786212A (en) * 1993-07-27 1995-03-31 Lintec Corp Adhesive sheet for sticking of wafer
WO2018216621A1 (en) * 2017-05-22 2018-11-29 日立化成株式会社 Semiconductor device manufacturing method and expand tape

Also Published As

Publication number Publication date
WO2020171084A1 (en) 2020-08-27
TW202040657A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
JP5786505B2 (en) Dicing and die bonding integrated tape
JP6287200B2 (en) Dicing tape for dicing and die bonding integrated tape
EP1752507A1 (en) Pressure-sensitive adhesive sheet and process for preparing it
CN110235222B (en) Method for producing electronic component, resin composition for temporary protection, and resin film for temporary protection
JP6007576B2 (en) Manufacturing method of semiconductor device
JP5027321B2 (en) Semiconductor processing tape
JP2014154704A (en) Dicing/die bonding integrated tape
WO2011125683A1 (en) Adhesive sheet for semiconductor wafer processing
JP6264917B2 (en) Dicing tape
JP2002371262A (en) Self-adhesive for wafer-processing self-adhesive sheet and wafer-processing self-adhesive sheet
CN111655811B (en) Adhesive sheet for temporary attachment and method of manufacturing semiconductor device using the same
JP6265296B2 (en) Dicing tape, dicing die bonding integrated tape, and method for manufacturing semiconductor device using dicing die bonding integrated tape
JP6217872B2 (en) Dicing tape for dicing and die bonding integrated tape
JP2019102745A (en) Manufacturing method of electronic component, resin roll for temporal protection, and resin film for temporal protection
JP7384168B2 (en) Semiconductor device manufacturing method and adhesive film for semiconductor wafer processing
JP6547408B2 (en) Method for producing ground substrate, and film-like pressure-sensitive adhesive and laminate used therefor
WO2020171084A1 (en) Manufacturing method for semiconductor device, and expand tape
JP6436199B2 (en) Manufacturing method of dicing die bonding integrated tape
KR101378352B1 (en) Photo-curing psa composition comprising modified graphene and manufacturing thereof
JP2022030091A (en) Manufacturing method of semiconductor device, and expanded tape and manufacturing method thereof
JP2013073975A (en) Tape for semiconductor wafer processing
US20230197630A1 (en) Method for manufacturing electronic component, resin composition for temporary protection, and resin film for temporary protection
JP6187715B2 (en) Dicing tape
JP2019140201A (en) Manufacturing method for electronic component, resin composition for temporary protection, and resin film for temporary protection
WO2023047592A1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11-11-2021)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19915624

Country of ref document: EP

Kind code of ref document: A1