WO2020168405A1 - Sistema gerador de ressonância e método para captar sinais oscilatórios - Google Patents

Sistema gerador de ressonância e método para captar sinais oscilatórios Download PDF

Info

Publication number
WO2020168405A1
WO2020168405A1 PCT/BR2020/050047 BR2020050047W WO2020168405A1 WO 2020168405 A1 WO2020168405 A1 WO 2020168405A1 BR 2020050047 W BR2020050047 W BR 2020050047W WO 2020168405 A1 WO2020168405 A1 WO 2020168405A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
oscillation
pickup
fact
Prior art date
Application number
PCT/BR2020/050047
Other languages
English (en)
French (fr)
Inventor
Luis Fernando PIGOSO DESTRO
William Norberto ALOISE
Vanderlei GONÇALVES
Original Assignee
Ibbx Inovação Em Sistemas De Software E Hardware Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102019003283-9A external-priority patent/BR102019003283B1/pt
Application filed by Ibbx Inovação Em Sistemas De Software E Hardware Ltda filed Critical Ibbx Inovação Em Sistemas De Software E Hardware Ltda
Priority to US17/428,264 priority Critical patent/US11990763B2/en
Priority to BR112021009347A priority patent/BR112021009347A2/pt
Publication of WO2020168405A1 publication Critical patent/WO2020168405A1/pt

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils

Definitions

  • the present invention relates to a resonance generating system suitable for use in signal capture systems.
  • Such resonant circuits are composed of inductors and capacitors, configured in order to tune to a specific frequency.
  • Such circuits are also known that use elements of variable value, for example, variable capacitors, used to tune in a “band” of frequencies, instead of a single frequency.
  • circuits are usually used in order to transmit and capture information and data through the air.
  • An example of this would be the transmission and reception of AM and / or FM radio.
  • resonant circuits are configured to transmit / receive the signal with the best possible quality.
  • the circuit responsible for capturing the signal is configured to provide the user with the best possible transmission quality, so that the user can hear the audio with the least amount of noise. possible.
  • the resonant circuits already known in the state of the art are developed and configured with a focus on the quality of the transmitted signal, in which several optimization parameters are used, for example, a low signal-to-noise ratio, a high rate signal sampling, etc.
  • the present invention solves such a problem in the state of the art through a resonance generating system and a method to capture oscillatory signals that allow the captured oscillatory signal, such as an electromagnetic wave transmitted in the air, to be converted into a rectified signal showing high performance.
  • the present invention does not refer to a system and method with a focus on obtaining a resulting signal with high quality, being focused only on providing means of obtaining a rectified signal with high power gain.
  • a first objective of the present invention lies in the provision of a resonance generating system.
  • a second objective of the present invention resides in the provision of an oscillation capture module in conjunction with at least one capture antenna.
  • a third objective of the present invention lies in the provision of a signal amplifier module.
  • a fourth objective of the present invention lies in the provision of a phase alignment module.
  • a fifth objective of the present invention lies in the provision of an oscillation emitting module.
  • a resonance generator system comprising a signal input, a signal output, an oscillation pickup module, a signal amplifier module, a phase aligner module, an oscillation emitter module, at least one pickup antenna , a power source and at least one switching element, the system being configured to pick up oscillatory signals at the signal input of the system through at least one pickup antenna and the oscillation pickup module, the signal amplifier module comprising at least one between an amplifier system and an inductive transformer system, said signal amplifier module being configured to amplify the signal captured by the oscillation pickup module at least once, the phase aligner module comprising at least one arrangement of capacitive and / or inductive elements said phase aligner module being configured to align the phases of the amplified signal by the signal amplifier module to the phase of the signal present in the signal output of the resonance generator system, the oscillation emitting module comprising at least one semiconductor arrangement, configured to operate as switches, and the power source being configured to electrically feed the oscillation capturing module and the signal amplifier module
  • the objectives of the invention are also achieved by means of a method to capture oscillatory signals through a resonance generating system, said resonance generating system comprising a signal input, a signal output, an oscillation capturing module, a signal amplifier module, a phase aligner module, an oscillation emitting module, at least one pickup antenna, a power source and at least one switching element, the method comprising the steps of
  • step (c) send the at least one signal captured in step (b) to the signal amplifier module and amplify it at least once
  • step (d) send the at least one amplified signal in step (c) to the phase aligner module and align the signal phase
  • step (e) send the at least one signal aligned in phase in step (d) to the oscillation emitting module and transmit the signal in a pulsed form to the signal output of the resonance generator system
  • Figure 1 - illustrates an example of carrying out the invention
  • Figure 2 - illustrates an example of an embodiment of the invention applied to a rectification and load storage system.
  • Figure 3 - illustrates an example of resonance between signals.
  • Figure 4 - illustrates a preferred embodiment of the invention.
  • the present invention relates to a resonance generator system 10 capable of being used in signal capture systems.
  • the resonance generator system 10 comprises an oscillation pickup module 11, a signal amplifier module 12, a phase alignment module 13, an oscillation emitter module 14 and at least one pickup antenna 15.
  • the the resonance generating system 10 further comprises a signal input from a signal output.
  • the resonance generator system 10 comprises at least one switching element CH1, CH2, CH3 and a power source 16.
  • power source 16 is electrically connected to the oscillation pickup module 1 1 and the signal amplifier module 12, supplying power to them.
  • At least one pickup antenna 15 is a magnetic antenna configured to allow the capture of oscillatory signals of different frequencies.
  • the frequency of the signal that will be captured is directly linked to the dimensions of the antenna and its material, as well as to other electrical properties, according to the topology of the antenna chosen.
  • At least one pickup antenna 15 can be arranged in different topologies.
  • the at least one pickup antenna 15 is a self-adjusting virtual flat antenna.
  • at least one pickup antenna 15 can be a helical, telescopic antenna, among others, and may or may not be a self-adjusting virtual antenna.
  • the at least one pickup antenna 15 can be a virtual self-adjusting antenna.
  • At least one pickup antenna 15 can be manufactured with different materials, such as copper, brass, silver, oxide, among others.
  • at least one pickup antenna 15 is made of copper.
  • At least one pickup antenna 15 can be made in different ways.
  • at least one pickup antenna 15 can be printed on conventional laminated fiberglass (FR4) plates copper, as well as other dielectrics.
  • At least one pickup antenna 15 can also be made in a three-dimensional form, without the use of dielectrics such as, for example, 3D antennas printed on 3D metal printers.
  • a self-adjusting virtual antenna comprises a physical portion of the antenna 15a, that is, an embodiment of the magnetic antenna as examples above and a load compensation portion 15b, as will be described below.
  • the physical size of an antenna is given as a function of the wavelength or the frequency of the magnetic oscillation to be captured.
  • a load compensation portion 15b is used as mentioned above, said portion 15b being responsible for "simulating" a physical size of an antenna in order to compensate for the size of the actual antenna.
  • said load portion comprises an association of at least one inductive element and a capacitive element, which are associated with a control device 15c.
  • the capacitive element is a variable capacitor and the control device 15c is a microcontroller.
  • the control device 15c is configured to change the capacitance of the capacitive element by sending control signals.
  • the capacitive element can be any element capable of having its capacitance modified in function of a control signal, for example, a d “varicap” iodine.
  • control device 15c will analyze the frequency / period of the magnetic oscillation captured by the physical portion 15a of the capture antenna 15 and will send a command signal to the capacitive element in order to change its capacitance.
  • the capacitance of the capacitive element of the load compensation portion 15b the impedance and total reactance ratio of the antenna will be changed, in order to enable the signal to be tuned by the capture antenna 15.
  • the resonance generator system 10 also comprises an oscillation pickup module 11, which comprises at least one signal input, capable of receiving the signal picked up by at least one pickup antenna 15.
  • the pickup module of oscillations 1 1 is configured in such a way that it directly influences the operation of at least one pickup antenna 15.
  • the resonance generator system 10 when the resonance generator system 10 is energized, at least one pickup antenna 15 will intercept oscillatory signals of different frequencies. In order for the antenna to pick up signals at one or more specific frequencies, the oscillation pickup module 11 is used.
  • tuner circuits also called LC or RLC circuits, oscillatory circuits, etc.
  • Such resonant circuits comprise associations, in series and parallel, of capacitors, inductors and resistors.
  • One of the simplest examples of a tuner circuit is the simple parallel association of a capacitor with an inductor.
  • Resonant circuits have the so-called “resonant frequency”. Such frequency is the natural frequency of this circuit in which both electrical components have the same reactance. In other words, the resonant frequency is the frequency at which the circuit tends to oscillate exactly at the desired frequency.
  • the resonant frequency of a tuner circuit can be calculated using the expression below:
  • L represents the inductance value of the inductor and C represents the capacitance value of the capacitor.
  • resonant circuits are configured to “select” a desired frequency, in order to allow only signals with that frequency to be processed.
  • a tuner circuit when there is an association of a tuner circuit with an antenna, which may or may not be a resonant antenna, we basically have the operation as mentioned above. That is, the antenna will intercept signals of different frequencies, transmitting them to the resonance circuit. In turn, the resonance circuit will select (or tune) only signals with the same frequency as its resonance frequency.
  • the oscillation pickup module 1 1 assumes the same function as a tuner circuit. That is, the oscillation pickup module 11 is configured to allow the selection of a specific desired frequency, which will be tuned and picked up by at least one pickup antenna 15.
  • the oscillation pickup module 1 1 is configured in such a way as to allow the captured signal to be fully utilized.
  • the impedance of the oscillations 1 1 is “matched” to the desired signal impedance. This allows the signal with the desired frequency to be captured with the least possible losses / reflections, thus increasing the performance of the resonance generator system 10.
  • an impedance matching circuit is used.
  • the impedance matching circuit is composed of a microcontroller module, which is configured to analyze the impedance (resistance and reactances) of the oscillatory signal captured by at least one pickup antenna 15 and a set of dimming diodes. capacitance or a bank of switched capacitors and an inductor set.
  • the microcontroller module When the oscillatory signal enters the microcontroller module, its impedance is analyzed and, for each impedance value, the microcontroller sends a signal to the capacitance-changing diodes so that its capacitance is changed. In this way, the input impedance of the circuit is changed according to each signal received, ensuring maximum power transfer in the circuit.
  • the components that make up the oscillation capture module 1 1 do not necessarily have to be components of fixed values.
  • the electrical components that make up the oscillation pickup module 1 1 can be components with adjustable values such as, for example, variable capacitors, potentiometers, varying capacitance diodes, variable inductors, etc.
  • Such components of variable values can be used, especially, when there is more than one frequency of the signals to be captured.
  • the use of components with variable values it allows a greater flexibility of design and adjustment of the system, allowing the signal to be captured is transferred with maximum efficiency to the other modules.
  • the resonance generating system 10 comprises at least one switching element CH1, CH2, CH3. Specifically, in a possible embodiment, which is illustrated by figure 1, the resonance generating system 10 comprises a first switching element CH1, which is disposed between the oscillation capturing module 11 and at least one pickup antenna 15. Said first switching element CH1 operates as a switch configured to change between an “open” position and a “closed” position. Such switching is done with a predetermined frequency, defined by a user.
  • the at least one switching element CH1, CH2 and CH3 are transistors.
  • the at least one switching element CH1, CH2 and CH3 can be any elements that operate as switches, for example, electromechanical switches, diodes, etc.
  • the first switching element CH1 will now release, sometimes block the passage of the oscillatory signal captured by at least one pickup antenna 15 to the oscillation pickup module 1 1.
  • the resonance generator system 10 comprises a signal amplifier module 12, which is configured to amplify the signal tuned / captured by the oscillation capturing module 1 1.
  • the signal amplifier module 12 comprises an amplifier system and an inductive transformer system. Only preferably, the system amplifier is a PNP and / or NPN junction amplifier system.
  • the PNP and / or NPN junction amplifier system can be, for example, a transistor, an operational amplifier, or any other known oscillatory signal amplification system.
  • the system receives the oscillatory signal at its input and amplifies it at its output, this operation being possible because the power source 16 is electrically connected to this system.
  • a fully valid embodiment of the inductive transformer system is that of a standard transformer, as already known from the state of the art.
  • a standard transformer as already known from the state of the art.
  • Such a system comprises a core and at least one winding, configured in such a way as to make it possible to modify the voltage and current levels of the input signal, amplifying them at their output.
  • a signal amplifier module 12 allows the resonance between the oscillatory signals captured to happen more sharply, as will be described below. In this sense, such a signal amplifier module 12 operates as a “catalyst” in the system, ensuring that the signal obtained at the output of the resonance generator system 10 has the maximum useful power utilized, in relation to the signal initially captured.
  • the signal amplifier module 12 amplifies the signal captured by the oscillation pickup module 1 1 and amplifies it at least once, subsequently transmitting it to the phase aligner module 13. It is up to note that the signal captured can be amplified more than once by the signal amplifier module 12, so that the number of times that the signal will be amplified is given according to several factors, such as predetermined values of the energy of the signals that if you want to capture, system design parameters, among others. Thus, the above description should not be understood as a limitation of the present invention, so that the signal can be amplified as many times as necessary.
  • phase aligner module 13 is configured to align the phase of the signals that are transmitted by this module.
  • the resonance generator system 10 further comprises a second switching element CH2, which is arranged between the signal amplifier module 12 and the signal output of the system.
  • a second switching element CH2 which is arranged between the signal amplifier module 12 and the signal output of the system.
  • Said second switching element CH2 operates as a switch configured to change between an “open” position and a “closed” position. Such switching is done with a predetermined frequency, defined by a user.
  • the signal present at the output of the resonance generator system 10 will be added to other oscillatory signals that continue to be picked up by at least one pickup antenna 15 and by the oscillation pickup module 1 1, such signals added and then being added again amplified by the signal amplifier module and transmitted to the phase aligner module 13. This sum of signals occurs in the electrical conductor itself that connects the signal amplifier module 12 to the output of the resonance generator system 10.
  • wave 03 is the wave resulting from the sum of wave 01 and wave 02.
  • the amplitude of the resulting wave 03 is the sum of the amplitudes of waves 01 and 02. It should be noted that, for the resonance or overlapping signals occur, the frequencies and phases of the added signals must be the same.
  • At least one arrangement of capacitive and / or inductive elements is used.
  • a concept known from the state of the art refers to the fact that capacitive loads advance the current of a signal in relation to its voltage and inductive loads delay the current of a signal in relation to its voltage.
  • the at least one arrangement of capacitive and / or inductive elements of the phase aligner module 13 is configured to align the phases of the current / voltage of the signals that are transmitted through such phase aligner module 13.
  • the phase aligner module 13 comprises at least one arrangement of capacitive and / or inductive elements.
  • this realization should not be understood as a limitation of the present invention, so that the phase alignment module 13 can be formed by any components capable of advancing and / or delaying the phases of the current / voltage of the signals.
  • the phase aligner module 13 can be any active power factor correction circuit (Power Fator Correction - PFC).
  • the resonance generator system 10 also comprises an oscillation emitting module 14, configured to generate a resonance between two oscillation systems originally equal in frequency and amplitude, but at this time with only equal frequencies and different amplitudes.
  • said oscillation emitting module 14 comprises at least one semiconductor arrangement, configured in order to operate as “ON / OFF” switches, transmitting the signal, with the phase previously aligned by the phase 13 aligner module, pulsed / oscillated form for the system output.
  • the at least one semiconductor array is PNP and / or NPN semiconductors such as, for example, transistors operating as “ON / OFF” switches.
  • the resonance generator system 10 can further comprise a third switching element CH3, disposed between at least one pickup antenna 15 and the output of the resonance generator system 10.
  • Said third switching element CH3 operates as a switch configured to change between an “open” position and a “closed” position. Such switching is done with a predetermined frequency, defined by a user.
  • This third switching element CH3 is specially configured to prevent the return of energy to the input of the system.
  • the third switching element CH3 is a diode.
  • the integration of at least one pickup antenna 15 with an oscillation pickup module 11, a signal amplifier module 12, a phase aligner module 13 and an oscillation emitter module 14, such integration configuring the generator system resonance 10 of the present invention allows the capture of oscillatory signals of various desired frequencies, in order to obtain the maximum energy efficiency at the output of the system.
  • the present invention provides a system configured to capture and convert oscillatory signals of different frequencies, for example, electromagnetic radiation, and convert them into switched (alternating) electrical signals at their output, such conversion being carried out in order to take full advantage of the signal received, thus obtaining an optimal operating performance.
  • the resonating generator system 10 is associated with a rectifier element 17 and a charge element 18.
  • the rectifier element 17 can be any signal rectifier device already known from the state of the art, which converts an alternating signal into a continuous signal.
  • the charge element 18 can be, by way of example only, any energy storage element.
  • the charge element 18 can be any charge capable of using the rectified signal, captured by the resonance generating system 10 now proposed.
  • the present invention relates to a method for capturing oscillatory signals through a resonance generating system 10, said resonance generating system 10 comprising a signal input, a signal output, an oscillation capturing module 1 1 , a signal amplifier module 12, a phase aligner module 13, an oscillation emitting module 14, at least one pickup antenna 15, a power source 16 and at least one switching element CH1, CH2, CH3, the method understanding the steps of (a) energize the signal amplifier module 12 and the phase aligner module 13,
  • step (c) send the at least one signal captured in step (b) to the signal amplifier module 12 and amplify it at least once
  • step (d) sending the at least one amplified signal in step (c) to the phase aligner module 13 and aligning the signal phase
  • step (e) sending the at least one signal aligned in phase in step (d) to the oscillation emitting module 14 and transmitting the signal in a pulsed form to the signal output of the resonance generator system 10, and
  • the oscillation pickup block 11 and the pickup antenna 15 are realized through at least one physical antenna A1, A2, A3, at least one inductor L, a capacitor C and a resistor R associated to each of at least one antenna A1, A2, A3 and an inductor L1 associated in parallel to a variable capacitor C2.
  • the signal amplifier module 12 is realized by means of a DCCURRENT power source, associated with a capacitor C3, a diode D5 and a transistor T1. Note that the transistor T1 also corresponds to the first switching element CH1.
  • the phase aligner module 13 is realized by means of a DCCURRENT power source associated with a C4 capacitor, and a microcontroller associated with a C5 capacitor and an L2 inductor.
  • the oscillation emitting module 14 is realized by means of a T3 transistor. Note that such transistor T3 also corresponds to the third switching element CH3.
  • the circuit illustrated in figure 4 also reveals a transistor T2 associated with a rectifier bridge, composed of diodes D1, D2, D3 and D4 and capacitor C6. Additionally, the resistor R5 shown in the figure illustrates the system load to be supplied. Note that the transistor T2 corresponds to the second switching element CH2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Transmitters (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

A presente invenção refere-se a um sistema gerador de ressonância (10) apto a ser utilizado em sistemas de captação de sinais. O sistema gerador de ressonância (10) compreende uma entrada de sinal, uma saída de sinal, um módulo captador de oscilações (11), um módulo amplificador de sinais (12), um módulo alinhador de fases (13), um módulo emissor de oscilação (14), ao menos uma antena de captação (15) e uma fonte de energia (16). A presente invenção refere- se ainda a um método para captar sinais oscilatórios através de um sistema gerador de ressonância (10).

Description

Relatório Descritivo da Patente de Invenção para “SISTEMA GERADOR DE RESSONÂNCIA E MÉTODO PARA CAPTAR SINAIS OSCILATÓRIOS”.
[0001] A presente invenção refere-se a um sistema gerador de ressonância apto a ser utilizado em sistemas de captação de sinais. Descrição do Estado da Técnica
[0002] A utilização de circuitos ressonantes associados a antenas já é largamente conhecida no estado da técnica.
[0003] Usualmente, tais circuitos ressonantes são compostos por indutores e capacitores, configurados de forma a sintonizarem em uma frequência específica. Também são conhecidos tais circuitos que utilizam elementos de valor variável como, por exemplo, capacitores variáveis, usados para sintonizarem uma“faixa” de frequências, ao invés de uma frequência única.
[0004] De toda forma, tais circuito são, usualmente, utilizados a fim de se transmitir e captar informações e dados através do ar. Um exemplo disso seria a transmissão e recepção de rádio AM e/ou FM.
[0005] Neste cenário, circuitos ressonantes são configurados para transmitir/receber o sinal com a melhor qualidade possível. Por exemplo, quando um usuário sintoniza uma rádio FM específica, o circuito responsável pela captação do sinal é configurado de forma a fornecer para o usuário a melhor qualidade de transmissão possível, de modo que o usuário consiga escutar o áudio com a menor quantidade de ruídos possível.
[0006] Ou seja, os circuitos ressonantes já conhecidos do estado da técnica são desenvolvidos e configurados com foco na qualidade do sinal transmitido, em que diversos parâmetros de otimização são utilizados como, por exemplo, uma relação sinal-ruído baixa, uma alta taxa de amostragem do sinal, etc.
[0007] Contudo, não se observa no estado da técnica um sistema configurado de forma a se obter, em sua saída, um sinal retificado com máxima potência possível. Em outras palavras, não é conhecido do estado da técnica um sistema que possibilite a conversão de sinais oscilatórios presentes no ambiente, isto é, sinais eletromagnéticos que permeiam o meio de transmissão (por exemplo, o ar), de modo que tal sistema seja apto a converter o sinal oscilatório em um sinal retificado de alta potência.
[0008] A presente invenção soluciona tal problema do estado da técnica através de um sistema gerador de ressonância e de um método para captar sinais oscilatórios que permitem que o sinal oscilatório captado, como por exemplo uma onda eletromagnética transmitida no ar, seja convertido em um sinal retificado apresentando alto rendimento.
[0009] Ademais, a presente invenção não se refere a um sistema e método com foco na obtenção de um sinal resultante com alta qualidade, sendo focado tão somente em prover meios de se obter um sinal retificado com alto ganho de potência.
Objetivos da Invenção
[0010] Um primeiro objetivo da presente invenção reside na provisão de um sistema gerador de ressonância.
[001 1 ] Um segundo objetivo da presente invenção reside na provisão de um módulo captador de oscilações em conjunto com ao menos uma antena de captação.
[0012] Um terceiro objetivo da presente invenção reside na provisão de um módulo amplificador de sinais.
[0013] Um quarto objetivo da presente invenção reside na provisão de um módulo alinhador de fases.
[0014] Um quinto objetivo da presente invenção reside na provisão de um módulo emissor de oscilação.
Breve Descrição da Invenção
[0015] Os objetivos da presente invenção são alcançados por meio de um sistema gerador de ressonância, o sistema compreendendo uma entrada de sinal, uma saída de sinal, um módulo captador de oscilações, um módulo amplificador de sinais, um módulo alinhador de fases, um módulo emissor de oscilação, ao menos uma antena de captação, uma fonte de energia e ao menos um elemento de chaveamento, o sistema sendo configurado para captar sinais oscilatórios na entrada de sinal do sistema através da ao menos uma antena de captação e do módulo captador de oscilações, o módulo amplificador de sinais compreendendo ao menos um entre um sistema amplificador e um sistema transformador indutivo, dito módulo amplificador de sinais sendo configurado para amplificar o sinal captado pelo módulo captador de oscilações ao menos uma vez, o módulo alinhador de fases compreendendo ao menos um arranjo de elementos capacitivos e/ou indutivos, dito módulo alinhador de fases sendo configurado para alinhar as fases do sinal amplificado pelo módulo amplificador de sinais à fase do sinal presente na saída de sinal do sistema gerador de ressonância, o módulo emissor de oscilações compreendendo ao menos um arranjo de semicondutores, configurados de forma a operarem como chaves, e a fonte de energia sendo configurada para alimentar eletricamente o módulo captador de oscilações e o módulo amplificador de sinais.
[0016] Os objetivos da invenção são alcançados ainda por meio de um método para captar sinais oscilatórios através de um sistema gerador de ressonância, dito sistema gerador de ressonância compreendendo uma entrada de sinal, uma saída de sinal, um módulo captador de oscilações, um módulo amplificador de sinais, um módulo alinhador de fases, um módulo emissor de oscilação, ao menos uma antena de captação, uma fonte de energia e ao menos um elemento de chaveamento, o método compreendendo as etapas de
(a) energizar o módulo amplificador de sinais e o módulo alinhador de fases, (b) captar, na entrada de sinal do sistema gerador de ressonância, ao menos um sinal oscilatório através da ao menos uma antena de captação e do módulo captador de oscilações,
(c) enviar o ao menos um sinal captado na etapa (b) para o módulo amplificador de sinais e amplifica-lo ao menos uma vez,
(d) enviar o ao menos um sinal amplificado na etapa (c) para o módulo alinhador de fases e alinhar a fase do sinal,
(e) enviar o ao menos um sinal alinhado em fase na etapa (d) para o módulo emissor de oscilações e transmitir o sinal de forma pulsada para a saída de sinal do sistema gerador de ressonância, e
(f) realimentar o sinal presente na saída de sinal do sistema para o módulo amplificador de oscilações.
Descrição Resumida dos Desenhos
[0017] A presente invenção será, a seguir, mais detalhadamente descrita com base em um exemplo de execução representado nos desenhos. As figuras mostram:
[0018] Figura 1 - ilustra um exemplo de realização da invenção;
[0019] Figura 2 - ilustra um exemplo de concretização da invenção aplicado a um sistema de retificação e armazenamento de carga.
[0020] Figura 3 - ilustra um exemplo de ressonância entre sinais.
[0021 ] Figura 4 - ilustra uma concretização preferencial da invenção.
Descrição Detalhada das Figuras
[0022] A presente invenção refere-se a um sistema gerador de ressonância 10 apto a ser utilizado em sistemas de captação de sinais. Conforme pode ser observado da figura 1 , em uma realização preferencial da invenção, o sistema gerador de ressonância 10 compreende um módulo captador de oscilações 1 1 , um módulo amplificador de sinais 12, um módulo alinhador de fases 13, um módulo emissor de oscilação 14 e ao menos uma antena de captação 15. O sistema gerador de ressonância 10 compreende ainda uma entrada de sinal de uma saída de sinal.
[0023] Adicionalmente, o sistema gerador de ressonância 10 compreende ao menos um elemento de chaveamento CH1 , CH2, CH3 e uma fonte de energia 16. Em uma concretização apenas preferencial, a fonte de energia 16 é eletricamente conectada ao módulo captador de oscilações 1 1 e ao módulo amplificador de sinais 12, fornecendo energia a estes.
[0024] A ao menos uma antena de captação 15 é uma antena magnética configurada para possibilitar a captação de sinais oscilatórios de diversas frequências. A frequência do sinal que será captado está diretamente atrelada às dimensões da antena e ao seu material, bem como a outras propriedades elétricas, conforme a topologia da antena escolhida.
[0025] A ao menos uma antena de captação 15 pode ser arranjada em diversas topologias. Preferencialmente, a ao menos uma antena de captação 15 é uma antena plana virtual auto ajustável. Alternativamente, a ao menos uma antena de captação 15 pode ser uma antena helicoidal, telescópica, entre outras, podendo ou não ser uma antena virtual auto ajustável. Ademais, em uma possível concretização alternativa, a ao menos uma antena de captação 15 pode ser uma antena virtual auto ajustável.
[0026] Ademais, a ao menos uma antena de captação 15 pode ser fabricada com diversos materiais como, por exemplo, cobre, latão, prata, óxido de fero, entre outros. De forma apenas preferencial, a ao menos uma antena de captação 15 é fabricada de cobre.
[0027] Adicionalmente, a ao menos uma antena de captação 15 pode ser confeccionada de diversas formas. De forma apenas exemplificativa, a ao menos uma antena de captação 15 pode ser impressa em placas convencionais de fibra de vidro (FR4) laminadas em cobre, bem como em outros dielétricos. A ao menos uma antena de captação 15 pode também ser confeccionada de forma tridimensional, sem a utilização de dielétricos como, por exemplo, antenas 3D impressas em impressoras 3D de metais.
[0028] Uma antena virtual auto ajustável compreende uma porção física da antena 15a, isto é, uma concretização da antena magnética conforme exemplos acima e uma porção de compensação de carga 15b, conforme será descrita adiante.
[0029] Como já conhecido do estado da técnica, o tamanho físico de uma antena é dado em função do comprimento de onda ou da frequência da oscilação magnética a qual deseja-se captar.
[0030] Em situações nas quais o comprimento da onda magnética é grande, isto é, na qual a oscilação magnética possui uma frequência baixa, construir uma antena com um tamanho correspondente a tal onda seria impraticável, uma vez que a antena pode ter dezenas de metros.
[0031 ] Assim, para resolver tal problema, utiliza-se uma porção de compensação de carga 15b conforme mencionada acima, dita porção 15b sendo responsável por“simular” um tamanho físico de uma antena a fim de compensar o tamanho da antena real.
[0032] Em uma concretização possível, dita porção de carga compreende uma associação de ao menos um elemento indutivo e um elemento capacitivo, os quais são associados a um dispositivo de controle 15c. Preferencialmente, o elemento capacitivo é um capacitor variável e o dispositivo de controle 15c é um microcontrolador. O dispositivo de controle 15c é configurado para alterar a capacitância do elemento capacitivo através do envio de sinais de controle.
[0033] Contudo, tal concretização não deve ser entendida como uma limitação da presente invenção, de forma que o elemento capacitivo pode ser qualquer elemento apto a ter sua capacitância modificada em função de um sinal de controle como, por exemplo, um d iodo“varicap”.
[0034] Assim, o dispositivo de controle 15c irá analisar a frequência/período da oscilação magnética captada pela porção física 15a da antena de captação 15 e irá enviar um sinal de comando ao elemento capacitivo a fim de alterar sua capacitância. Dessa forma, ao alterar a capacitância do elemento capacitivo da porção de compensação de carga 15b, a relação de impedâncias e reatâncias totais da antena será alterada, de forma a possibilitar a captação do sinal a ser sintonizado pela antena de captação 15.
[0035] O sistema gerador de ressonância 10 compreende ainda um módulo captador de oscilações 1 1 , o qual compreende ao menos uma entrada de sinal, apto a receber o sinal captado pela ao menos uma antena de captação 15. Ademais, o módulo captador de oscilações 1 1 é configurado de tal forma que este influencia diretamente o funcionamento da ao menos uma antena de captação 15.
[0036] Especificamente, quando o sistema gerador de ressonância 10 é energizado, a ao menos uma antena de captação 15 irá interceptar sinais oscilatórios de diversas frequências. Para que a antena capte os sinais em uma ou mais frequências específicas desejadas, o módulo captador de oscilações 1 1 é utilizado.
[0037] Para que antenas sejam sintonizadas em frequências específicas, uma ferramenta largamente utilizada são circuitos sintonizadores, também chamados de circuitos LC ou RLC, circuitos oscilatórios, etc.
[0038] Tais circuitos ressonantes compreendem associações, em série e paralelo, de capacitores, indutores e resistores. Um dos exemplos mais simples de um circuito sintonizador é a simples associação em paralelo de um capacitor com um indutor.
[0039] Circuitos ressonantes possuem a chamada“frequência de ressonância”. Tal frequência é a frequência natural deste circuito na qual ambos componentes elétricos possuem a mesma reatância. Em outras palavras, a frequência de ressonância é a frequência na qual o circuito tende a oscilar exatamente na frequência desejada.
[0040] A frequência de ressonância de um circuito sintonizador pode ser calculada através da expressão abaixo:
Figure imgf000010_0001
[0041 ] onde L representa o valor de indutância do indutor e C representa o valor da capacitância do capacitor.
[0042] Assim, caso um circuito sintonizador seja alimentado com sinais de diversas frequências, apenas o sinal com a mesma frequência da frequência de ressonância do circuito será captado. Em outras palavras, circuitos ressonantes são configurados para“selecionar” uma frequência desejada, a fim de permitir que apenas sinais com essa frequência sejam processados.
[0043] Neste sentido, quando há a associação de um circuito sintonizador com uma antena, que pode ou não ser uma antena ressonante, temos basicamente o funcionamento como mencionado acima. Isto é, a antena irá interceptar sinais de diversas frequências, transmitindo-os para o circuito de ressonância. Por sua vez, o circuito de ressonância irá selecionar (ou sintonizar) somente sinais com a mesma frequência de sua frequência de ressonância.
[0044] Portanto, e com base nas informações acima expostas, o módulo captador de oscilações 1 1 assume a mesma função de um circuito sintonizador. Isto é, o módulo captador de oscilações 1 1 é configurado para permitir a seleção de uma frequência específica desejada, a qual será sintonizada e captada pela ao menos uma antena de captação 15.
[0045] Ademais, o módulo captador de oscilações 1 1 é configurado de forma a permitir que o sinal captado seja aproveitado ao máximo. Em outras palavras, a impedância do módulo captador de oscilações 1 1 é“casada” à impedância do sinal desejado. Isto permite que o sinal com a frequência desejada seja captado com o mínimo de perdas/reflexões possíveis, aumentando assim o rendimento do sistema gerador de ressonância 10.
[0046] Nesse sentido, para que o casamento entre a impedância do sinal oscilatório captado e a impedância do módulo captador de oscilações 1 1 possa ocorre, um circuito de casamento de impedância é utilizado. Em uma possível concretização, o circuito de casamento de impedância é composto por um módulo microcontrolador, o qual é configurado para analisar a impedância (resistência e reatâncias) do sinal oscilatório captado pela ao menos uma antena de captação 15 e um conjunto de diodos variadores de capacitância ou um banco de capacitores chaveados e um conjunto indutor.
[0047] Quando o sinal oscilatório entra no módulo microcontrolador, a sua impedância é analisada e, para cada valor de impedância, o microcontrolador envia ao um sinal aos diodos variadores de capacitância para que sua capacitância seja alterada. Deste modo, a impedância de entrada do circuito é alterada em função de cada sinal recebido, garantindo a máxima transferência de potência no circuito.
[0048] Alternativamente, salienta-se que os componentes que compõe o módulo captador de oscilações 1 1 não precisam ser, necessariamente, componentes de valores fixos. Apenas de forma exemplificativa e não limitativa, os componentes elétricos que compõe o módulo captador de oscilações 1 1 podem ser componentes com valores ajustáveis como, por exemplo, capacitores variáveis, potenciômetros, diodos variados de capacitância, indutores variáveis, etc.
[0049] Tais componentes de valores variáveis podem ser utilizados, especialmente, quando há mais de uma frequência dos sinais as quais se desejam captar. Além disso, a utilização de componentes com valores variáveis permite uma maior flexibilidade de projeto e ajuste do sistema, permitindo que o sinal o qual se deseja captar seja transferido com a máxima eficiência para os demais módulos.
[0050] Conforme mencionado anteriormente, o sistema gerador de ressonância 10 compreende ao menos um elemento de chaveamento CH1 , CH2, CH3. Especificamente, em uma concretização possível, que é ilustrada pela figura 1 , o sistema gerador de ressonância 10 compreende um primeiro elemento de chaveamento CH1 , o qual é disposto entre o módulo captador de oscilações 1 1 e a ao menos uma antena de captação 15. Dito primeiro elemento de chaveamento CH1 opera como uma chave configurada para alterar entre uma posição “aberta” e uma posição“fechada”. Tal chaveamento é feito com uma frequência predeterminada, definida por um usuário.
[0051 ] Em uma possível realização, os ao menos um elemento de chaveamento CH1 , CH2 e CH3 são transístores. Contudo, tal realização não deve ser entendida como uma limitação da presente invenção, de modo que os ao menos um elemento de chaveamento CH1 , CH2 e CH3 podem ser quaisquer elementos que operem como chaves como, por exemplo, chaves eletromecânicas, diodos, etc.
[0052] Assim, o primeiro elemento de chaveamento CH1 irá ora liberar, ora bloquear a passagem do sinal oscilatório captado pela ao menos uma antena de captação 15 para o módulo captador de oscilações 1 1 .
[0053] Adicionalmente, e conforme mencionado anteriormente, o sistema gerador de ressonância 10 compreende um módulo amplificador de sinais 12, o qual é configurado para amplificar o sinal sintonizado/captado pelo módulo captador de oscilações 1 1.
[0054] Em uma realização preferencial, o módulo amplificador de sinais 12 compreende um sistema amplificador e um sistema transformador indutivo. Apenas preferencialmente, o sistema amplificador é um sistema amplificador de junções PNP e/ou NPN.
[0055] O sistema amplificador de junções PNP e/ou NPN pode ser, por exemplo, um transístor, um amplificador operacional, ou qualquer outro sistema de amplificação de sinais oscilatórios conhecido. Quando em funcionamento, o sistema recebe o sinal oscilatório em sua entrada e o amplifica em sua saída, tal operação sendo possível pelo fato da fonte de energia 16 estar eletricamente conectada a este sistema.
[0056] Uma concretização plenamente válida do sistema transformador indutivo é a de um transformador padrão, como já conhecido do estado da técnica. Tal sistema compreende um núcleo e ao menos um enrolamento, configurados de modo a possibilitar a modificação dos níveis de tensão e corrente do sinal de entrada, amplificando-os em sua saída.
[0057] A provisão de um módulo amplificador de sinais 12 permite que a ressonância entre os sinais oscilatórios captados aconteça de forma mais acentuada, conforme será descrito adiante. Neste sentido, tal módulo amplificador de sinais 12 opera como um“catalisador” no sistema, garantindo que o sinal obtido na saída do sistema gerador de ressonância 10 tenha o máximo de potência útil aproveitada, em relação ao sinal inicialmente captado.
[0058] Assim, em harmonia com a descrição acima, o módulo amplificador de sinais 12 amplifica o sinal captado pelo módulo captador de oscilações 1 1 e o amplifica ao menos uma vez, posteriormente transmitindo-o para o módulo alinhador de fases 13. Cabe ressaltar que o sinal captado pode ser amplificado mais de uma vez pelo módulo amplificador de sinais 12, de modo que a quantidade de vezes que o sinal será amplificado é dado em função de diversos fatores como, por exemplo, valores predeterminados da energia dos sinais que se deseja captar, parâmetros de projeto do sistema, entre outros. Assim, a descrição acima não deve ser entendida como uma limitação da presente invenção, de forma que o sinal pode ser amplificado quantas vezes forem necessárias.
[0059] Como mencionado acima, o sinal amplificado pelo módulo amplificador de sinais 12 é transmitido para o módulo alinhador de fases 13. Tal módulo alinhador de fases 13 é configurado para alinhar a fase dos sinais que são transmitidos por este módulo.
[0060] Conforme será detalhado adiante, o sistema gerador de ressonância 10 compreende ainda um segundo elemento de chaveamento CH2, o qual é disposto entre o módulo amplificador de sinais 12 e a saída de sinal do sistema. Em outras palavras, há uma realimentação do sinal de saída do sistema para a entrada do módulo amplificador de sinais 12, com o segundo elemento de chaveamento CH2 entre estes. Dito segundo elemento de chaveamento CH2 opera como uma chave configurada para alterar entre uma posição“aberta” e uma posição“fechada”. Tal chaveamento é feito com uma frequência predeterminada, definida por um usuário.
[0061 ] Assim, o sinal presente na saída do sistema gerador de ressonância 10 será somado a outros sinais oscilatórios que continuam a ser captados pela ao menos uma antena de captação 15 e pelo módulo captador de oscilações 1 1 , tais sinais somados sendo então novamente amplificados pelo módulo amplificador de sinais e transmitidos para o módulo alinhador de fases 13. Dita soma de sinais ocorre no próprio condutor elétrico que conecta o módulo amplificador de sinais 12 à saída do sistema gerador de ressonância 10.
[0062] Ademais, a soma de sinais acima mencionada é também denominada de ressonância entre sinais ou superposição de sinais. A figura 3 ilustra um exemplo de ressonância entre sinais. Como pode ser visto de tal figura, a onda 03 é a onda resultante da soma entre a onda 01 e a onda 02. A amplitude da onda resultante 03 é a soma das amplitudes das ondas 01 e 02. Cumpre notar que, para que o fenômeno de ressonância ou superposição de sinais ocorra, as frequências e as fases dos sinais somados devem ser iguais.
[0063] Para realizar o alinhamento das fases dos sinais que entram no módulo alinhador de fases 13, ao menos um arranjo de elementos capacitivos e/ou indutivo é utilizado.
[0064] Um conceito conhecido do estado da técnica refere-se ao fato de que cargas capacitivas adiantam a corrente de um sinal em relação a sua tensão e cargas indutivas atrasam a corrente de um sinal em relação a sua tensão.
[0065] Neste sentido, o ao menos um arranjo de elementos capacitivos e/ou indutivos do módulo alinhador de fases 13 é configurado para alinhar as fases da corrente/tensão dos sinais que são transmitidos através de tal módulo alinhador de fases 13.
[0066] Conforme abordado anteriormente, o alinhamento das fases da corrente/tensão dos sinais resulta na interferência construtiva destes. Em outras palavras, uma vez que as fases dos sinais estejam alinhadas, os semi ciclos positivo e negativo de cada sinal captado e amplificado se somam, resultando em um ganho de potência aumentado na saída do módulo alinhador de fases 13 e, consequentemente, no sistema gerador de ressonância 10.
[0067] Em uma realização preferencial, e conforme abordado acima, o módulo alinhador de fases 13 compreende ao menos um arranjo de elementos capacitivos e/ou indutivos. Contudo, tal realização não deve ser entendida como uma limitação da presente invenção, de modo que o módulo alinhador de fases 13 pode ser formado por quaisquer componentes aptos a adiantarem e/ou atrasarem as fases da corrente/tensão dos sinais.
[0068] Apenas de forma exemplificativa, o módulo alinhador de fases 13 pode ser qualquer circuito ativo de correção de fator de potência (Power Fator Correction - PFC). [0069] Por fim, o sistema gerador de ressonância 10 compreende também um módulo emissor de oscilações 14, configurado para gerar uma ressonância entre dois sistemas de oscilações originalmente iguais em frequência e amplitude, porém neste momento com apenas frequências iguais e amplitudes diferentes.
[0070] Para isto, dito módulo emissor de oscilações 14 compreende ao menos um arranjo de semicondutores, configurados de forma a operarem como chaves“ON/OFF”, transmitindo o sinal, com a fase previamente alinhada pelo módulo alinhador de fase 13, de forma pulsada/oscilada para a saída do sistema. Apenas preferencialmente, o ao menos um arranjo de semicondutores são semicondutores PNP e/ou NPN como, por exemplo, transístores operando como chaves “ON/OFF”.
[0071 ] Adicionalmente, o sistema gerador de ressonância 10 pode compreender ainda um terceiro elemento de chaveamento CH3, disposto entre a ao menos uma antena de captação 15 e a saída do sistema gerador de ressonância 10. Dito terceiro elemento de chaveamento CH3 opera como uma chave configurada para alterar entre uma posição“aberta” e uma posição“fechada”. Tal chaveamento é feito com uma frequência predeterminada, definida por um usuário.
[0072] Dito terceiro elemento de chaveamento CH3 é configurado especialmente para impedir o retorno de energia para a entrada do sistema. Em uma possível realização, o terceiro elemento de chaveamento CH3 é um diodo.
[0073] Assim, a integração de ao menos uma antena de captação 15 com um módulo captador de oscilações 11 , um módulo amplificador de sinais 12, um módulo alinhador de fases 13 e um módulo emissor de oscilação 14, tal integração configurando o sistema gerador de ressonância 10 da presente invenção, possibilita a captação de sinais oscilatórios de diversas frequências desejadas, de forma a obter o máximo rendimento energético na saída do sistema. Em outras palavras, a presente invenção provê um sistema configurado para captar e converter sinais oscilatórios de diversas frequências como, por exemplo, radiações eletromagnéticas, e convertê-los em sinais elétricos chaveados (alternados) em sua saída, tal conversão sendo realizada de modo a aproveitar integralmente o sinal captado, obtendo assim um rendimento ótimo de operação.
[0074] O sistema gerador de ressonância 10 ora proposto pode ser utilizado em conjunto com outros sistemas já conhecidos do estado da técnica.
[0075] Apenas de forma exemplificativa, e conforme ilustrado na figura 2, o sistema gerador de ressonância 10 é associado a um elemento retificador 17 e a um elemento de carga 18. Apenas exemplificativamente, o elemento retificador 17 pode ser qualquer dispositivo retificador de sinais já conhecido do estado da técnica, que converte um sinal alternado em um sinal contínuo.
[0076] Ademais, o elemento de carga 18 pode ser, de forma apenas exemplificativa, qualquer elemento armazenador de energia. Alternativamente, o elemento de carga 18 pode ser qualquer carga apta a utilizar o sinal retificado, captado pelo sistema gerador de ressonância 10 ora proposto.
[0077] Adicionalmente, a presente invenção se refere a um método para captar sinais oscilatórios através de um sistema gerador de ressonância 10, dito sistema gerador de ressonância 10 compreendendo uma entrada de sinal, uma saída de sinal, um módulo captador de oscilações 1 1 , um módulo amplificador de sinais 12, um módulo alinhador de fases 13, um módulo emissor de oscilação 14, ao menos uma antena de captação 15, uma fonte de energia 16 e ao menos um elemento de chaveamento CH1 , CH2, CH3, o método compreendendo as etapas de (a) energizar o módulo amplificador de sinais 12 e o módulo alinhador de fases 13,
(b) captar, na entrada de sinal do sistema gerador de ressonância 10, ao menos um sinal oscilatório através da ao menos uma antena de captação 15 e do módulo captador de oscilações 11 ,
(c) enviar o ao menos um sinal captado na etapa (b) para o módulo amplificador de sinais 12 e amplifica-lo ao menos uma vez,
(d) enviar o ao menos um sinal amplificado na etapa (c) para o módulo alinhador de fases 13 e alinhar a fase do sinal,
(e) enviar o ao menos um sinal alinhado em fase na etapa (d) para o módulo emissor de oscilações 14 e transmitir o sinal de forma pulsada para a saída de sinal do sistema gerador de ressonância 10, e
(f) realimentar o sinal presente na saída de sinal do sistema 10 para o módulo amplificador de oscilações 12.
[0078] Por fim, e em harmonia com as informações ora apresentadas, descreve-se a seguir uma concretização preferencial da invenção, a qual é ilustrada na figura 4.
[0079] Tomando como referência os elementos apresentados na figura 4, nota-se que o bloco captador de oscilações 11 e a antena de captação 15 são concretizados através de ao menos uma antena física A1 , A2, A3, ao menos um indutor L, um capacitor C e um resistor R associado a cada uma das ao menos uma antena A1 , A2, A3 e um indutor L1 associado em paralelo a um capacitor variável C2.
[0080] Já o módulo amplificador de sinais 12 é concretizado por meio de uma fonte de energia DCCURRENT, associada a um capacitor C3, a um diodo D5 e a um transístor T1 . Nota-se que o transístor T1 corresponde também ao primeiro elemento de chaveamento CH1 .
[0081 ] O módulo alinhador de fases 13 é concretizado por meio de uma fonte de energia DCCURRENT associada a um capacitor C4, e a um microcontrolador associado a um capacitor C5 e a um indutor L2. [0082] Por fim, o módulo emissor de oscilações 14 é concretizado por meio de um transístor T3. Nota-se que tal transístor T3 corresponde também ao terceiro elemento de chaveamento CH3.
[0083] Ainda, o circuito ilustrado na figura 4 revela também um transístor T2 associado a uma ponte retificadora, composta pelos díodos D1 , D2, D3 e D4 e pelo capacitor C6. Adicionalmente, o resistor R5 representado na figura ilustra a carga do sistema a ser alimentada. Nota-se que o transístor T2 corresponde ao segundo elemento de chaveamento CH2.
[0084] Demais componentes do circuito estão presentes a fim de possibilitar o seu correto funcionamento de acordo com os ensinamentos da presente invenção.
[0085] Tendo sido descrito um exemplo de concretização preferido, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1. Sistema gerador de ressonância (10), o sistema sendo caracterizado pelo fato de compreender uma entrada de sinal, uma saída de sinal, um módulo captador de oscilações (1 1 ), um módulo amplificador de sinais (12), um módulo alinhador de fases (13), um módulo emissor de oscilação (14), ao menos uma antena de captação (15), uma fonte de energia (16) e ao menos um elemento de chaveamento (CH1 , CH2, CH3),
o sistema sendo configurado para captar sinais oscilatórios na entrada de sinal do sistema através da ao menos uma antena de captação (15) e do módulo captador de oscilações (1 1),
o módulo amplificador de sinais (12) compreendendo ao menos um entre um sistema amplificador e um sistema transformador indutivo, dito módulo amplificador de sinais (12) sendo configurado para amplificar o sinal captado pelo módulo captador de oscilações (1 1 ) ao menos uma vez,
o módulo alinhador de fases (13) compreendendo ao menos um arranjo de elementos capacitivos e/ou indutivos, dito módulo alinhador de fases (13) sendo configurado para alinhar as fases do sinal amplificado pelo módulo amplificador de sinais (12) à fase do sinal presente na saída de sinal do sistema gerador de ressonância (10), o módulo emissor de oscilações (14) compreendendo ao menos um arranjo de semicondutores, configurados de forma a operarem como chaves, e
a fonte de energia (16) sendo configurada para alimentar eletricamente o módulo captador de oscilações (1 1 ) e o módulo amplificador de sinais (12).
2. Sistema, de acordo com a reivindicação 1 , caracterizado pelo fato de que o módulo captador de oscilações (11 ), o módulo amplificador de sinais (12), o módulo alinhador de fases (13), o módulo emissor de oscilação (14), e a ao menos uma antena de captação (15) são eletricamente associados entre si.
3. Sistema, de acordo com a reivindicação 1 , caracterizado pelo fato de que os ao menos um elemento de chaveamento (CH1 , CH2, CH3) é ao menos um entre um primeiro elemento de chaveamento (CH1), um segundo elemento de chaveamento (CH2) e um terceiro elemento de chaveamento (CH3).
4. Sistema, de acordo com as reivindicações 1 e 3, caracterizado pelo fato de o primeiro elemento de chaveamento (CH1) está disposto entre a ao menos uma antena de captação (15) e o módulo captador de oscilações (1 1).
5. Sistema, de acordo com as reivindicações 1 e 3, caracterizado pelo fato de que o segundo elemento de chaveamento (CH2) está disposto entre a saída de sinal do sistema (10) e o módulo amplificador de sinais (12).
6. Sistema, de acordo com as reivindicações 1 e 3, caracterizado pelo fato de o terceiro elemento de chaveamento (CH3) está disposto entre a saída de sinal do sistema (10) e a ao menos uma antena de captação (15).
7. Sistema, de acordo com a reivindicação 1 , caracterizado pelo fato de que a fonte de energia (16) é eletricamente associada ao módulo captador de oscilações (11) e ao módulo amplificador de sinais (12).
8. Sistema, de acordo com a reivindicação 1 , caracterizado pelo fato de que o sistema amplificador presente no módulo amplificador de sinais (12) é um sistema amplificador semicondutor de junção NPN/PNP.
9. Sistema, de acordo com a reivindicação 1 , caracterizado pelo fato de que o módulo alinhador de fases (13) é um circuito de correção de fator de potência.
10. Sistema, de acordo com a reivindicação 1 , caracterizado pelo fato de que o ao menos um arranjo de semicondutores compreendido no módulo emissor de oscilações (14) é um arranjo de semicondutores de junção NPN/PNP.
1 1. Método para captar sinais oscilatórios através de um sistema gerador de ressonância (10), dito sistema gerador de ressonância (10) compreendendo uma entrada de sinal, uma saída de sinal, um módulo captador de oscilações (1 1 ), um módulo amplificador de sinais (12), um módulo alinhador de fases (13), um módulo emissor de oscilação (14), ao menos uma antena de captação (15), uma fonte de energia (16) e ao menos um elemento de chaveamento (CH1 , CH2, CH3),
o método sendo caracterizado pelo fato de compreender as etapas de
(a) energizar o módulo amplificador de sinais (12) e o módulo alinhador de fases (13),
(b) captar, na entrada de sinal do sistema gerador de ressonância (10), ao menos um sinal oscilatório através da ao menos uma antena de captação (15) e do módulo captador de oscilações (1 1 ),
(c) enviar o ao menos um sinal captado na etapa (b) para o módulo amplificador de sinais (12) e amplifica-lo ao menos uma vez,
(d) enviar o ao menos um sinal amplificado na etapa (c) para o módulo alinhador de fases (13) e alinhar a fase do sinal,
(e) enviar o sinal alinhado em fase na etapa (d) para o módulo emissor de oscilações (14) e transmitir o sinal de forma pulsada para a saída de sinal do sistema gerador de ressonância (10), e
(f) realimentar o sinal presente na saída de sinal do sistema (10) para o módulo amplificador de oscilações (12).
12. Método, de acordo com a reivindicação 7, caracterizado pelo fato de que a etapa (a) é realizada pela fonte de energia (16).
13. Método, de acordo com a reivindicação 7, caracterizado pelo fato de que um primeiro elemento de chaveamento (CH1), disposto entre a ao menos uma antena de captação (15) e o módulo captador de oscilações (1 1), permite a captação da etapa (b).
14. Método, de acordo com a reivindicação 7, caracterizado pelo fato de que a realimentação da etapa (f) ocorre por meio de um segundo elemento de chaveamento (CH2).
15. Método, de acordo com a reivindicação 14, caracterizado pelo fato de que durante a etapa (f), soma-se o sinal realimentado através do segundo elemento de chaveamento (CH2) ao sinal captado na entrada de sinal do sistema gerador de ressonância (10).
16. Método, de acordo com a reivindicação 7, caracterizado pelo fato de compreender ainda uma etapa (g) de impedir o retorno de energia através de um terceiro elemento de chaveamento (CH3).
PCT/BR2020/050047 2019-02-18 2020-02-18 Sistema gerador de ressonância e método para captar sinais oscilatórios WO2020168405A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/428,264 US11990763B2 (en) 2019-02-18 2020-02-18 Resonance generator system and method for capturing oscillatory signals
BR112021009347A BR112021009347A2 (pt) 2019-02-18 2020-02-18 Sistema gerador de ressonância e método para captar sinais oscilatórios

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102019003283-9 2019-02-18
BR102019003283-9A BR102019003283B1 (pt) 2019-02-18 Sistema e método de captação e conversão de energia eletromagnética

Publications (1)

Publication Number Publication Date
WO2020168405A1 true WO2020168405A1 (pt) 2020-08-27

Family

ID=70227743

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/BR2020/050046 WO2020168404A1 (pt) 2019-02-18 2020-02-18 Sistema e método para otimização de captura de ondas eletromagnéticas
PCT/BR2020/050047 WO2020168405A1 (pt) 2019-02-18 2020-02-18 Sistema gerador de ressonância e método para captar sinais oscilatórios

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/BR2020/050046 WO2020168404A1 (pt) 2019-02-18 2020-02-18 Sistema e método para otimização de captura de ondas eletromagnéticas

Country Status (3)

Country Link
US (2) US11990763B2 (pt)
BR (2) BR112021009347A2 (pt)
WO (2) WO2020168404A1 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990763B2 (en) * 2019-02-18 2024-05-21 Ibbx Inovação Em Sistemas De Software E Hardware Ltda Resonance generator system and method for capturing oscillatory signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229281A1 (en) * 2006-03-15 2007-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100019778A1 (en) * 2008-07-20 2010-01-28 Jin Woo Park Physical property sensor with active electronic circuit and wireless power and data transmission
US20110175461A1 (en) * 2010-01-07 2011-07-21 Audiovox Corporation Method and apparatus for harvesting energy

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065455A (en) * 1958-10-07 1962-11-20 Wilfred Roth Detection apparatus
NL274229A (pt) * 1961-02-02
US3965416A (en) * 1974-05-28 1976-06-22 Tylan Corporation Dielectric-constant measuring apparatus
US4758803A (en) * 1987-07-13 1988-07-19 General Electric Company Marginal oscillator for acoustic monitoring of curing of plastics
JP4138424B2 (ja) * 2002-09-25 2008-08-27 セイコーエプソン株式会社 クロック変換器およびそのクロック変換器を備えた電子機器
US20080143192A1 (en) 2006-12-14 2008-06-19 Sample Alanson P Dynamic radio frequency power harvesting
US7633311B2 (en) * 2008-01-08 2009-12-15 National Semiconductor Corporation PECL/LVPECL input buffer that employs positive feedback to provide input hysteresis, symmetric headroom, and high noise immunity
US8432070B2 (en) * 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
GB0900747D0 (en) * 2009-01-16 2009-03-04 Isis Innovation Mechanical oscillator
US8525370B2 (en) * 2009-11-30 2013-09-03 Broadcom Corporation Wireless power circuit board and assembly
US8390249B2 (en) * 2009-11-30 2013-03-05 Broadcom Corporation Battery with integrated wireless power receiver and/or RFID
US20120013296A1 (en) 2010-07-15 2012-01-19 Soudeh Heydari Method and system for harvesting rf signals and wirelessly charging a device
JP5653137B2 (ja) * 2010-08-31 2015-01-14 キヤノン株式会社 給電装置及び方法
US9825674B1 (en) * 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10320234B2 (en) * 2013-08-02 2019-06-11 Integrated Device Technology, Inc. Multimode wireless power receivers and related methods
US9389079B2 (en) * 2014-02-21 2016-07-12 University Of Rochester Optomechanical disk vibratory gyroscopes
US9007015B1 (en) * 2014-07-03 2015-04-14 The Noco Company Portable vehicle battery jump start apparatus with safety protection
EP3243117B1 (en) * 2015-01-08 2021-01-06 Hewlett-Packard Development Company, L.P. Supplying power to a computer accessory from a captured wifi signal
US10523033B2 (en) * 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US11710321B2 (en) * 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US20170093168A1 (en) * 2015-09-24 2017-03-30 Qualcomm Incorporated Wireless power transfer receiver having closed loop voltage control
US9985442B2 (en) * 2015-09-24 2018-05-29 Qualcomm Incorporated Wireless power transfer receiver having closed loop voltage control
US10079515B2 (en) * 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
DE102016006989A1 (de) * 2016-06-07 2017-12-07 Daimler Ag Verfahren zur Regelung von zumindest zwei mechanischen Schwingern
AU2018403192B2 (en) * 2017-12-14 2022-02-10 The Noco Company Portable vehicle battery jump starter with air pump
CN113597723A (zh) * 2019-01-28 2021-11-02 艾诺格思公司 用于无线电力传输的小型化天线的系统和方法
US11990763B2 (en) * 2019-02-18 2024-05-21 Ibbx Inovação Em Sistemas De Software E Hardware Ltda Resonance generator system and method for capturing oscillatory signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229281A1 (en) * 2006-03-15 2007-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100019778A1 (en) * 2008-07-20 2010-01-28 Jin Woo Park Physical property sensor with active electronic circuit and wireless power and data transmission
US20110175461A1 (en) * 2010-01-07 2011-07-21 Audiovox Corporation Method and apparatus for harvesting energy

Also Published As

Publication number Publication date
BR102019003283A2 (pt) 2020-09-29
US20210257854A1 (en) 2021-08-19
BR112021009347A2 (pt) 2021-11-23
US20220123780A1 (en) 2022-04-21
WO2020168404A1 (pt) 2020-08-27
BR112021009214A2 (pt) 2022-01-11
US11990763B2 (en) 2024-05-21
US11349340B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
US20220385062A1 (en) Method and apparatus for high efficiency rectification for various loads
JP6560972B2 (ja) 多帯域での高周波(rf)エネルギーハーベスティングを行うための整流回路
JP6586361B2 (ja) 適応性のあるアンテナを用いる多帯域での高周波(rf)エネルギーハーベスティング
US7535133B2 (en) Methods and apparatus for resistance compression networks
US8830709B2 (en) Transmission-line resistance compression networks and related techniques
US8965315B2 (en) Impedance circuit and method for signal transformation
JP6486938B2 (ja) 高効率電圧モードd級トポロジ
JP4750106B2 (ja) 中心タップを備える差動モードインダクタ
WO2008073218A1 (en) Rf power extracting circuit and related techniques
US5945768A (en) Piezoelectric drive circuit
JP2009232076A (ja) 高周波電力増幅器
WO2020168405A1 (pt) Sistema gerador de ressonância e método para captar sinais oscilatórios
JP6315109B2 (ja) 給電装置
TW201042871A (en) Wireless power-supply devices
CN104485755A (zh) 一种基于分形平面线圈的多频谐振无线电能传输系统
US20220368375A1 (en) System and method for energy transmission and reception from near-field electromagnetic waves
US11843257B2 (en) Power transmission apparatus and wireless power transmission system
US20200044556A1 (en) High-frequency half-wave rectifier system of low-harmonicity and high-efficiency
JPS63503431A (ja) 自励発振高周波電力コンバ−タ
JP2020129712A (ja) 電力増幅回路
US20230124799A1 (en) Wireless power transfer system
Kopru Broadband Matching of PA-to-PCB Interconnection for X-band Wireless Power Transfer
JP2010136114A (ja) 無線通信装置
JP2007288742A (ja) 小型広帯域アンテナ装置
WO2013046495A1 (ja) 大気圧プラズマ発生装置及び大気圧プラズマ発生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20717749

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009347

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021009347

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210513

122 Ep: pct application non-entry in european phase

Ref document number: 20717749

Country of ref document: EP

Kind code of ref document: A1