WO2020164205A1 - 一种系留无人机收放线缓冲结构及其工作方法 - Google Patents

一种系留无人机收放线缓冲结构及其工作方法 Download PDF

Info

Publication number
WO2020164205A1
WO2020164205A1 PCT/CN2019/089222 CN2019089222W WO2020164205A1 WO 2020164205 A1 WO2020164205 A1 WO 2020164205A1 CN 2019089222 W CN2019089222 W CN 2019089222W WO 2020164205 A1 WO2020164205 A1 WO 2020164205A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
buffer
winding
take
sensor
Prior art date
Application number
PCT/CN2019/089222
Other languages
English (en)
French (fr)
Inventor
毛方海
王秋阳
杨学武
黄桃丽
孙桂祥
陈欣宇
Original Assignee
深圳市赛为智能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市赛为智能股份有限公司 filed Critical 深圳市赛为智能股份有限公司
Publication of WO2020164205A1 publication Critical patent/WO2020164205A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/20Devices for temporarily storing filamentary material during forwarding, e.g. for buffer storage
    • B65H51/22Reels or cages, e.g. cylindrical, with storing and forwarding surfaces provided by rollers or bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/35Ropes, lines

Definitions

  • This application relates to the unmanned aerial vehicle retractable and unwinding structure, more specifically to a tethered UAV retractable and unwinding buffer structure and its working method.
  • Unmanned aircraft is abbreviated as "unmanned aerial vehicle”, which is an unmanned aircraft operated by radio remote control equipment and self-provided program control devices. There is no cockpit on board, but equipment such as autopilot and program control device are installed.
  • the development of tethered UAVs has solved the problem of UAVs' flight time limitation. As the core of tethered UAVs, the tethered rope power system is extremely important.
  • Tethered unmanned aerial vehicles have been widely used in the industry, and the fully automatic tethered retractable and unwinding device has also appeared.
  • the existing automatic take-up and take-up equipment generally has partial defects.
  • the automatic take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up and take-up use the motor forward and reverse rotation to drive the winding drum to rotate to realize the take-up and take-up function, because the winding drum rotates at medium and high speed during work. There is inertia at the moment of stopping. At the moment of stopping, the winding usually continues to rotate for a period of time and then stops.
  • the cable will be entangled or knotted on the reel.
  • the actual drone is frequently affected by the wind speed during the ascent. In the event of an instantaneous stop, the longer the time it takes, the wiring of the entire reel will be disorderly, which will seriously affect the flight safety of the drone, and even cause the retractable and pay-off system to be paralyzed and unusable.
  • the purpose of this application is to overcome the shortcomings of the prior art and provide a tethered UAV retractable line buffer structure and its working method.
  • a tethered UAV retractable line buffer structure including a retractable wheel and a buffer adjustment assembly
  • the buffer assembly includes a buffer wheel, a sliding rail, a slider, and an adjustment assembly
  • a distance for the cable to pass is formed between the retracting wheel and the buffer wheel
  • the adjustment assembly includes a position adjustment structure, a winding control structure for controlling the retracting and unwinding speed of the bobbin, and
  • the slider is connected to the buffer wheel, the slider is located on the slide rail, the position adjustment structure is connected to the slider, the sensor and the position adjustment structure are respectively Connected to the winding control structure; the position of the buffer wheel is detected by the sensor, and the detection signal is transmitted to the winding control structure, and the winding control structure controls the winding drum for winding and unwinding and controlling the winding speed of the winding drum .
  • the position adjustment structure includes a mainspring wheel, a steel wire wheel and a fixed pulley, the spring wheel is provided with an elastic member, the elastic member is connected with the wire wheel, and the wire wheel is provided There is a steel wire, the steel wire goes around the fixed pulley, and the end of the steel wire is connected with the slider.
  • the position adjustment structure further includes an adjustment wheel, and the gear teeth of the adjustment wheel mesh with the gear teeth of the spring wheel.
  • the buffer adjustment structure includes a first transmission wheel and a second transmission wheel, the first transmission wheel is connected to the wire wheel, and the gear teeth of the first transmission wheel are connected to the second transmission wheel.
  • the gear teeth of the wheel mesh, and the sensor is located on the second transmission wheel.
  • the number of the sensors is at least two.
  • the spring wheel is provided with a groove, and the elastic member is placed in the groove.
  • the further technical solution is that the wire wheel is located above the mainspring wheel, and the first transmission wheel is located below the mainspring wheel.
  • the sensor is located above the second transmission wheel.
  • the tethered drone retractable line buffer structure further includes a bottom plate, the fixed pulley is fixedly connected to the bottom plate, and the slide rail is connected to the bottom plate.
  • This application also provides the working method of the retractable line buffer structure of the tethered UAV, including:
  • the cable When the drone is retracting and unwinding at a constant speed, the cable is in a tensioned state, and the buffer wheel presses the cable;
  • the pressure on the buffer wheel will increase and the buffer wheel will move.
  • the sensor detects the movement signal of the buffer wheel and transmits it to the winding control structure.
  • the winding control structure increases the winding speed.
  • the position adjustment structure drives the slider to move on the slide rail so that the buffer wheel moves beyond the set position, and the sensor detects the movement signal of the buffer wheel exceeding the set position and transmits it to Winding control structure, the winding drum is controlled by the winding control structure to take up the wire;
  • the position adjustment structure drives the slider to move on the slide rail to move the buffer wheel beyond the set position, and the sensor detects the movement signal of the buffer wheel exceeding the set position and transmits it to The winding control structure controls the winding drum to stop the winding.
  • the beneficial effect of this application is that the buffer wheel, the sliding rail, the sliding block and the adjustment assembly are used in this application to compress the retracting and unwinding of the cable.
  • the sensor detects the signal of the moving position of the buffer wheel and transmits it to the controller.
  • the controller controls the power unit to rotate in the forward or reverse direction, avoiding the occurrence of cable accumulation, and realizes There will be no entanglement or knotting in the process of winding or lowering the winding, and the entire winding drum is evenly arranged.
  • FIG. 1 is a schematic diagram 1 of a three-dimensional structure of a retractable line buffer structure for a tethered drone provided by a specific embodiment of the application;
  • FIG. 2 is a schematic diagram 2 of the three-dimensional structure of a retractable line buffer structure for a tethered drone provided by a specific embodiment of the application;
  • Figure 3 is a three-dimensional schematic diagram three of a retractable line buffer structure for a tethered drone provided by a specific embodiment of the application (not including the bottom plate);
  • FIG. 4 is a schematic diagram 1 of the three-dimensional structure of the buffer assembly provided by the specific embodiment of the application (with the buffer wheel removed);
  • Fig. 5 is a second schematic diagram of the three-dimensional structure of the buffer assembly provided by the specific embodiment of the application (with the buffer wheel removed).
  • the retractable and unwinding buffer structure of the tethered UAV provided by this embodiment can be used in the retracting and unwinding process of the tethered UAV to realize the raising and unwinding. Or there will be no entanglement or knotting in the process of lowering and winding, and the entire winding drum is evenly arranged.
  • a tethered UAV retractable line buffer structure including a retractable wheel 40 and a buffer adjustment assembly
  • the buffer assembly includes a buffer wheel 40, a sliding rail 50, a slider 51, and an adjustment assembly.
  • a distance for the cable 30 to pass is formed between the unwinding wheel 40 and the buffer wheel 40.
  • the adjustment assembly includes a position adjustment structure, a winding control structure for controlling the winding and unwinding speed of the winding drum, and a detection buffer wheel 40.
  • the position sensor 58, the slider 51 is connected with the buffer wheel 40, the slider 51 is located on the slide rail 50, the position adjustment structure is connected with the slider 51, and the sensor 58 and the position adjustment structure are respectively connected with the winding control structure; detected by the sensor 58
  • the position of the buffer wheel 40 transmits the detection signal to the winding control structure, and the winding control structure controls the winding drum for winding and unwinding and the winding and unwinding speed of the winding drum.
  • the sensor 58 is used to detect the position of the buffer wheel 40, that is, to detect the size of the spacing. With the detection signal as an input signal, the winding control structure controls the winding and unwinding of the winding drum and the winding and unwinding speed of the winding drum to achieve There will be no entanglement or knotting during the ascending pay-off or descending take-up process, and the entire winding drum is evenly arranged.
  • the above-mentioned position adjustment structure includes a spring wheel 55, a wire wheel 54 and a fixed pulley 52.
  • the spring wheel 55 is provided with an elastic member 551, the elastic member 551 and the wire wheel 54 is connected, a steel wire 53 is provided on the steel wire wheel 54, the steel wire 53 passes around the fixed pulley 52, and the end of the steel wire 53 is connected to the slider 51.
  • the elastic member 551 is but not limited to a clockwork spring.
  • the unmanned aerial vehicle's ascending and unwinding process is stable.
  • the process stability means that the unmanned aerial vehicle rises steadily without an instant stop in the middle.
  • the cable 30 has been in a state of being tensioned in the buffer zone.
  • the buffer wheel 40 moves during the movement of the tensioned cable 30.
  • the slider 51 moves with the buffer wheel 40.
  • the moving slider 51 uses the steel wire 53 to drive the steel wire wheel 54 to rotate, and the rotation of the wire wheel 54 elongates
  • the elastic member 551 causes the elastic member 551 to deform.
  • the drone stops instantly during the ascending and unwinding process.
  • the cable 30 will not be tensioned in the buffer zone.
  • the elastic member 551 needs to return to an inelastic state, and the steel wire 53 is used to drive the buffer wheel 40 and the slider 51 to restore elasticity. Move until the elastic member 551 returns to the inelastic state.
  • the position adjusting structure further includes an adjusting wheel 57, and the teeth of the adjusting wheel 57 mesh with the teeth of the mainspring 55.
  • the rotation of the adjusting wheel 57 drives the winding wheel 55 to rotate, and the rotation of the winding wheel 55 can drive the rotation of the wire wheel 54 to adjust the tightness of the wire 53.
  • the above-mentioned buffer adjustment structure includes a first transmission wheel 59 and a second transmission wheel 56.
  • the first transmission wheel 59 is connected to the wire wheel 54, and the gear teeth of the first transmission wheel 59 and the second transmission wheel 56 When engaged, the sensor 58 is located on the second transmission wheel 56.
  • the rotation of the wire wheel 54 is caused by the movement of the sliding block 51 driving the wire 53. That is, when the position of the buffer wheel 40 changes, the wire wheel 54 will rotate. And the angle of rotation is proportional to the distance moved by the buffer wheel 40. Therefore, it is only necessary to detect the rotation angle of the wire wheel 54 to know the distance moved by the buffer wheel 40.
  • the rotation angle of the transmission wheel 59 is proportional. Therefore, it is only necessary to detect the rotation angle of the first transmission wheel 59.
  • the sensor 58 is located on the second transmission wheel 56 and the second transmission wheel 56 will follow the first transmission wheel. The rotation of the transmission wheel 59 rotates, and the rotation angle of the first transmission wheel 59 is detected by the sensor 58.
  • the sensor 58 is mounted on the second transmission wheel 56, and the angle signal of the sensor 58 is set to the zero position when the slider 51 and the buffer wheel 40 are in the middle of the slide rail 50.
  • the slider 51 and the buffer wheel 40 can be made to slide.
  • the sensor 58 turns to be aligned with the wire wheel 54, that is, the wire wheel 54 is detected; when the middle part is shifted, a signal will be sensed, and the sensor 58 cannot detect the wire wheel 54, and the signal is transmitted to the winding Control structure.
  • the number of sensors 58 is at least two, preferably, the number of sensors 58 is three, and the sensor 58 in the middle detects the wire wheel 54 When the slider 51 and the buffer wheel 40 are in the middle of the slide rail 50; if the sensor 58 on the left detects the wire wheel 54, the slider 51 and the buffer wheel 40 have not reached the middle of the slide rail 50; if the sensor 58 on the right detects The wire wheel 54, the slider 51 and the buffer wheel 40 have exceeded the middle part of the slide rail 50.
  • the above-mentioned winding control structure includes a power part and a controller.
  • the above-mentioned sensor 58 and the power part are respectively connected to the controller.
  • the power part is connected to the winding drum, and the power part drives the winding drum to take up or pay off. .
  • the sensor 58 on the left and the sensor 58 on the right will respectively sense two signals in opposite directions to control the forward and reverse rotation of the power element.
  • the faster the drone rises the greater the pressure of the cable 30 on the buffer wheel 40, the greater the distance that the buffer wheel 40 is offset from the guide rail, and the greater the angle signal of the sensor 58.
  • the signal is transmitted to the motor to increase its speed. Will become bigger.
  • the sensor 58 sensing angle signal is always changing, and the rotation speed of the power unit will also be changing. Finally, the ascent speed of the UAV is smoothly synchronized with the retracting and unwinding speed. Security is greatly provided.
  • the cable 30 When the UAV rises and unwinds and stops momentarily, the cable 30 will have no tension pressure in the buffer zone, and the elastic member 551 will immediately restore its inelastic deformation state, driving the buffer wheel 40 to return to elastic movement.
  • the sensor 58 senses the opposite direction signal, and the signal is transmitted to the power unit to make it reversely rotate to drive the winding drum to take up the wire. The greater the reverse movement, the faster the winding drum to take up the wire and make it buffer.
  • the aforementioned buffer zone refers to the area where the retractable wheel 40 and the buffer wheel 40 are located.
  • the above-mentioned spring wheel 55 is provided with a groove, and the elastic member 551 is placed in the groove. Use the elastic deformation of the elastic member 551 to finely adjust the position of the buffer wheel 40.
  • the cable 30 is piled up, use the power member, the controller and the sensor 58 to take up or pay off the wire from the bobbin and control the corresponding speed. .
  • the aforementioned wire wheel 54 is located above the mainspring wheel 55, and the first transmission wheel 59 is located below the mainspring wheel 55.
  • the senor 58 is located above the second transmission wheel 56.
  • the above-mentioned tethered drone retractable line buffer structure further includes a bottom plate 10, the fixed pulley 52 is fixedly connected to the bottom plate 10, and the slide rail 50 is connected to the bottom plate 10.
  • the outer end surface of the bottom plate 10 is provided with a groove, the groove is provided with a through groove, the above-mentioned slide rail 50 is embedded in the through groove, and the above-mentioned retractable wheel 40 and the buffer wheel 40 are placed in the through groove.
  • the aforementioned position adjustment structure is located on the inner end surface of the bottom plate 10.
  • the number of the aforementioned retractable wheels 40 is at least two, preferably, the number of the aforementioned retractable wheels 40 is two, and the aforementioned buffer wheel 40 is located between the two retractable wheels 40. .
  • the inner end surface of the slider 51 is provided with a clamping hole, and the end of the above-mentioned steel wire 53 passes through the clamping hole to carry out the connection between the slider 51 and the steel wire 53. Fixed connection.
  • a connecting shaft 511 is provided on the outer end surface of the aforementioned slider 51, and the connecting shaft 511 is connected to the buffer wheel 40.
  • the above-mentioned connecting shaft 511 is provided with a threaded hole
  • the buffer wheel 40 is provided with a mounting hole
  • the above-mentioned connecting shaft 511 is inserted in the mounting hole
  • a fastener 512 is connected in the threaded hole, and the fastening
  • the piece 512 connects the slider 51 with the buffer wheel 40, and has a simple structure and strong practicability.
  • the above-mentioned tethered drone retractable line buffer structure further includes a wire wheel 60, the wire wheel 60 is located on the bottom plate 10, and the wire wheel 60 is located on the buffer wheel 40
  • One side of the cable 30 is used to guide the retracting and unwinding of the cable 30.
  • a guidance gap is formed between the above-mentioned guide wheel 60 and the buffer wheel 40. The cable 30 passes through the guidance gap and bypasses the guide wheel 60. Connect with drone.
  • the cable 30 When the drone stops momentarily when the drone descends and takes up the wire, the cable 30 will have no tension pressure in the buffer zone, and the elastic member 551 will immediately return to the state of inelastic deformation, driving the buffer wheel 40 to return to elastic movement.
  • the sensor 58 senses the opposite direction signal, and the signal is transmitted to the power unit to stop or reverse rotation to drive the winding drum to pay off. The larger the reverse movement, the faster the winding drum pays off.
  • the buffer cable 30 There is no redundancy in the buffer cable 30, and the cable 30 is evenly routed in the bobbin, and no entanglement occurs.
  • the senor 58 is an angle sensor 58, and the power component is but not limited to a motor.
  • the buffer wheel 40 acts to compress the retractable wire of the cable 30.
  • the sensor 58 detects the signal of the moving position of the buffer wheel 40 and transmits it to the controller to control the forward or reverse rotation of the power unit to avoid the accumulation of cables 30 Occurs, it is realized that there will be no entanglement or knotting during the ascending pay-off or descending take-up process, and the entire winding drum is evenly arranged.
  • a working method of the retractable line buffer structure of the tethered drone including:
  • the cable 30 When the drone is retracting and unwinding at a constant speed, the cable 30 is in a tensioned state, and the buffer wheel 40 presses the cable 30;
  • the control structure increases the winding speed of the winding drum
  • the position adjustment structure drives the slider 51 to move on the slide rail 50 so that the buffer wheel 40 moves beyond the set position, and the sensor 58 detects that the buffer wheel 40 exceeds the set position.
  • the moving signal is transmitted to the winding control structure, and the winding control structure controls the winding drum to take up the wire;
  • the position adjustment structure drives the slider 51 to move on the slide rail 50 so that the buffer wheel 40 moves beyond the set position, and the sensor 58 detects that the buffer wheel 40 exceeds the set position.
  • the moving signal is transmitted to the winding control structure, and the winding control structure controls the winding drum to stop the winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)
  • Electric Cable Installation (AREA)

Abstract

一种系留无人机收放线缓冲结构,包括收放轮(20)以及缓冲调节组件,缓冲组件包括缓冲轮(40)、滑轨(50)、滑块(51)以及调节组件,收放轮(20)与缓冲轮(40)之间形成有供线缆(30)穿过的间距,调节组件包括位置调整结构、用于控制绕线筒的收放线速度的绕线控制结构以及用于检测缓冲轮位置的传感器(58),滑块(51)与缓冲轮(40)连接,滑块(51)位于滑轨(50)上,位置调整结构与滑块(51)连接,传感器(58)以及位置调整结构分别与绕线控制结构连接;通过传感器(58)检测缓冲轮(40)的位置,将检测信号传输至绕线控制结构,由绕线控制结构控制绕线筒进行收放线以及控制绕线筒的收放线速度。该结构在上升放线或下降收线过程中不会出现缠绕或打结,整个绕线筒排线均匀。还公开了系留无人机收放线的方法。

Description

一种系留无人机收放线缓冲结构及其工作方法
本申请是以申请号为201910113097.X,申请日为2019年2月13日的中国专利申请为基础,并主张其优先权,该申请的全部内容在此作为整体引入本申请中。
技术领域
本申请涉及无人机收放线结构,更具体地说是指一种系留无人机收放线缓冲结构及其工作方法。
背景技术
无人驾驶飞机简称“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。机上无驾驶舱,但安装有自动驾驶仪、程序控制装置等设备。系留无人机的发展就很好的解决了无人机具有航时限制的问题,作为系留无人机的核心,系留绳动力系统就极为的重要。
系留无人机目前已经在行业中得到广泛的应用,与之配套的全自动系留收放线装置也随之出现。但目前已有的全自动收放线设备普遍存在局部缺陷,全自动收放线利用电机正反转带动绕线筒旋转从而实现收线和放线功能,因为工作时绕线筒以中高速旋转停止瞬间具有惯性,停止瞬间绕线通常继续旋转一段时间后停止,此时线缆在绕线筒上将出现缠绕或打结现象,实际无人机在上升过程中因风速对线缆的影响频繁出现瞬间停止的状况,时间越长将会出现整个绕线筒的排线杂乱无序,严重影响无人机飞行安全,甚至会导致收放线系统瘫痪无法使用。
因此,有必要设计一种新的结构,实现在上升放线或下降收线过程中不会出现缠绕或打结的现象,整个绕线筒的排线均匀。
申请内容
本申请的目的在于克服现有技术的缺陷,提供一种系留无人机收放线缓冲结构及其工作方法。
为实现上述目的,本申请采用以下技术方案:一种系留无人机收放线缓冲结构,包括收放轮以及缓冲调节组件,所述缓冲组件包括缓冲轮、滑轨、滑块以及 调节组件,所述收放轮与所述缓冲轮之间形成有供线缆穿过的间距,所述调节组件包括位置调整结构、用于控制绕线筒的收放线速度的绕线控制结构以及用于检测缓冲轮位置的传感器,所述滑块与所述缓冲轮连接,所述滑块位于所述滑轨上,所述位置调整结构与所述滑块连接,所述传感器以及位置调整结构分别与所述绕线控制结构连接;通过传感器检测缓冲轮的位置,将检测信号传输至绕线控制结构,由绕线控制结构控制绕线筒进行收放线以及控制绕线筒的收放线速度。
其进一步技术方案为:所述位置调整结构包括发条轮、钢丝轮以及定滑轮,所述发条轮内设有弹性件,所述弹性件与所述钢丝轮连接,所述钢丝轮上设有钢丝,所述钢丝绕过所述定滑轮,所述钢丝的末端与所述滑块连接。
其进一步技术方案为:所述位置调整结构还包括调节轮,所述调节轮的轮齿与所述发条轮的轮齿啮合。
其进一步技术方案为:所述缓冲调节结构包括第一传动轮以及第二传动轮,所述第一传动轮与所述钢丝轮连接,所述第一传动轮的轮齿与所述第二传动轮的轮齿啮合,所述传感器位于所述第二传动轮上。
其进一步技术方案为:所述传感器的个数至少为两个。
其进一步技术方案为:所述发条轮内设有凹槽,所述弹性件置于所述凹槽内。
其进一步技术方案为:所述钢丝轮位于所述发条轮的上方,所述第一传动轮位于所述发条轮的下方。
其进一步技术方案为:所述传感器位于所述第二传动轮的上方。
其进一步技术方案为:所述系留无人机收放线缓冲结构还包括底板,所述定滑轮固定连接于所述底板上,所述滑轨连接于所述底板上。
本申请还提供了系留无人机收放线缓冲结构的工作方法,包括:
当无人机处于匀速收放线时,线缆处于被拉紧状态,缓冲轮压紧线缆;
当无人机处于加速收放放线时,线缆对缓冲轮的压力变大,缓冲轮移动,传感器检测到缓冲轮的移动信号,传输至绕线控制结构,由绕线控制结构增大绕线筒的收放线速度;
当无人机放线过程中瞬间停止,位置调整结构带动滑块在滑轨上运动,以使缓 冲轮移动至超过设定位置时,传感器检测到缓冲轮超过设定位置的移动信号,传输至绕线控制结构,由绕线控制结构控制绕线筒进行收线;
当无人机收线过程中瞬间停止,位置调整结构带动滑块在滑轨上运动,以使缓冲轮移动至超过设定位置时,传感器检测到缓冲轮超过设定位置的移动信号,传输至绕线控制结构,由绕线控制结构控制绕线筒停止收线。
本申请与现有技术相比的有益效果是:本申请通过缓冲轮、滑轨、滑块以及调节组件,由缓冲轮对线缆的收放线起到压紧的作用,当无人机瞬间停止收放线时,由传感器检测缓冲轮的移动位置的信号,并传输至控制器,以控制器控制动力件正向转动或者反向转动,避免出现线缆堆积的现象发生,实现在上升放线或下降收线过程中不会出现缠绕或打结的现象,整个绕线筒的排线均匀。
下面结合附图和具体实施例对本申请作进一步描述。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请具体实施例提供的一种系留无人机收放线缓冲结构的立体结构示意图一;
图2为本申请具体实施例提供的一种系留无人机收放线缓冲结构的立体结构示意图二;
图3为本申请具体实施例提供的一种系留无人机收放线缓冲结构的立体结构示意图三(不包括底板);
图4为本申请具体实施例提供的缓冲组件的立体结构示意图一(去除缓冲轮);
图5为本申请具体实施例提供的缓冲组件的立体结构示意图二(去除缓冲轮)。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如图1~5所示的具体实施例,本实施例提供的一种系留无人机收放线缓冲结构,可以运用在系留无人机的收放线过程中,实现在上升放线或下降收线过程中不会出现缠绕或打结的现象,整个绕线筒的排线均匀。
请参阅图1和图2,一种系留无人机收放线缓冲结构,包括收放轮40以及缓冲调节组件,缓冲组件包括缓冲轮40、滑轨50、滑块51以及调节组件,收放轮40与缓冲轮40之间形成有供线缆30穿过的间距,调节组件包括位置调整结构、用于控制绕线筒的收放线速度的绕线控制结构以及用于检测缓冲轮40位置的传感器58,滑块51与缓冲轮40连接,滑块51位于滑轨50上,位置调整结构与滑块51连接,传感器58以及位置调整结构分别与绕线控制结构连接;通过传感器58检测缓冲轮40的位置,将检测信号传输至绕线控制结构,由绕线控制结构控制绕线筒进行收放线以及控制绕线筒的收放线速度。
利用传感器58检测缓冲轮40的位置,也就是检测间距的大小,以该检测信号作为输入信号,绕线控制结构控制绕线筒进行收放线以及控制绕线筒的收放线速度,进而达到在上升放线或下降收线过程中不会出现缠绕或打结的现象,整个绕线筒的排线均匀。
在一实施例中,请参阅图3至图5,上述的位置调整结构包括发条轮55、钢丝轮54以及定滑轮52,发条轮55内设有弹性件551,弹性件551与钢丝轮54连接,钢丝轮54上设有钢丝53,钢丝53绕过定滑轮52,钢丝53的末端与滑块51连接。
在本实施例中,弹性件551为但不局限于发条弹簧。
无人机上升放线过程稳定,过程稳定是指无人机平稳上升,中间不出现瞬间停止,此过程线缆30一直在缓冲区被拉紧状态,拉紧的线缆30对缓冲轮40产生压力,缓冲轮40在拉紧的线缆30移动的过程中发生移动,滑块51随着缓冲轮40移动,移动的滑块51利用钢丝53带动钢丝轮54转动,钢丝轮54的转动拉长弹性件551,使得弹性件551发生形变。
无人机上升放线过程中瞬间停止,此阶段线缆30在缓冲区将无拉紧作用,此时弹性件551需要恢复无弹性状态,利用钢丝53带动缓冲轮40与滑块51做回复弹性移动,直到弹性件551恢复无弹性状态。
在一实施例中,请参阅图4与图5,位置调整结构还包括调节轮57,调节轮57的轮齿与发条轮55的轮齿啮合。利用调节轮57的旋转,带动发条轮55转动,发条轮55的转动可以带动钢丝轮54的转动,进而调节钢丝53的松紧状态。
更进一步地,上述的缓冲调节结构包括第一传动轮59以及第二传动轮56,第一传动轮59与钢丝轮54连接,第一传动轮59的轮齿与第二传动轮56的轮齿啮合,传感器58位于第二传动轮56上。
由于钢丝轮54与第一传动轮59连接,钢丝轮54转动是由滑块51的移动带动钢丝53移动造成的,也就是当缓冲轮40的位置发生变化时,该钢丝轮54会发生转动,且转动的角度与缓冲轮40移动的距离是呈一定比例的,因此,只需要检测钢丝轮54转动的角度,即可得知缓冲轮40移动的距离,该钢丝轮54转动的角度与第一传动轮59转动的角度是呈一定比例的,因此,只需要检测第一传动轮59转动的角度即可,而传感器58位于第二传动轮56上,由第二传动轮56会随着第一传动轮59的转动而转动,由传感器58检测第一传动轮59的转动角度。
传感器58装在第二传动轮56上,设计滑块51和缓冲轮40在滑轨50中间部位时传感器58角度信号设置为零点位置,为了便于测量,可使得滑块51和缓冲轮40在滑轨50中间部位时,传感器58转到与钢丝轮54对齐,即检测到钢丝轮54;当偏 移中间部位将感应出信号,传感器58无法检测到钢丝轮54,则将该信号传递给绕线控制结构。
在本实施例中,为了准确的检测缓冲轮40的位置,传感器58的个数至少为两个,优选地,传感器58的个数为三个,其中,位于中间的传感器58检测到钢丝轮54时,滑块51和缓冲轮40在滑轨50中间部位;若左边的传感器58检测到钢丝轮54,则滑块51和缓冲轮40未到达滑轨50中间部位;若右边的传感器58检测到钢丝轮54,则滑块51和缓冲轮40已超过滑轨50中间部位。
上述的绕线控制结构包括动力件以及控制器,上述的传感器58与动力件分别与该控制器连接,另外,动力件与绕线筒连接,以动力件驱动绕线筒进行收线或者放线。
当缓冲轮40偏移导轨中间部位时,左边的传感器58以及右边的传感器58分别将感应出两个相反方向不同的信号来控制动力件的正反转。无人机上升速度越快,线缆30对缓冲轮40压力也将越大,使其缓冲轮40偏移导轨的距离越大,传感器58角度信号也越大,信号传递到电机使其转速也会随之变大。整个滑块51和缓冲轮40在导轨做往复滑动时传感器58感应角度信号一直在变化,动力件的转速也将一直在变化,最终实现无人机上升速度与收放线放线速度平稳同步,安全性大大提供。
无人机上升放线时出现瞬间停止时,线缆30在缓冲区将无拉紧压力作用,弹性件551立即要恢复无弹性形变的状态,带动缓冲轮40回复弹性移动,当移动越过直线滑轨50中间位置时,传感器58感应到相反方向信号,信号传递到动力件使其反向旋转带动绕线筒收线,反向移动量越大,绕线筒收线越快,使其缓冲区线缆30不会出现冗余量,线缆30在绕线筒排线均匀,不会出现缠绕现象。上述的缓冲区是指收放轮40与缓冲轮40所在的区域。
在一实施例中,如图5所示,上述的发条轮55内设有凹槽,弹性件551置于凹槽内。利用弹性件551的弹性形变对缓冲轮40的位置进行细微调节,当出现线缆30堆积时,利用动力件、控制器以及传感器58,由绕线筒进行收线或者放线并控制对应的速度。
在本实施例中,上述的钢丝轮54位于发条轮55的上方,第一传动轮59位于发条 轮55的下方。
在本实施例中,传感器58位于所述第二传动轮56的上方。
在一实施例中,请参阅图1,上述的系留无人机收放线缓冲结构还包括底板10,定滑轮52固定连接于底板10上,滑轨50连接于底板10上。
底板10的外端面上设有凹槽,该凹槽内设置有通槽,上述的滑轨50嵌入在通槽内,上述的收放轮40以及缓冲轮40放置在通槽内。
另外,上述的位置调整结构位于底板10的内端面上。
在本实施例中,上述的收放轮40的个数至少为两个,优选地,上述的收放轮40的个数为两个,上述的缓冲轮40位于两个收放轮40之间。
在一实施例中,请参阅图2至图5,上述的滑块51的内端面上设有卡孔,上述的钢丝53线的末端穿过该卡孔,以进行滑块51与钢丝53线的固定连接。
另外,上述的滑块51的外端面上设有连接轴511,该连接轴511与缓冲轮40连接。具体地,上述的连接轴511上设有螺纹孔,该缓冲轮40中设有安装孔,上述的连接轴511插设在安装孔内,且螺纹孔内连接有紧固件512,利用紧固件512将滑块51与缓冲轮40连接,结构简单且实用性强。
在一实施例中,请参阅图2与图3,上述的系留无人机收放线缓冲结构还包括导线轮60,该导线轮60位于底板10上,且该导线轮60位于缓冲轮40的一侧,以对线缆30的收放起到导向的作用,上述的导向轮60与缓冲轮40之间形成有导向间隙,该线缆30穿过该导向间隙,绕过导向轮60后与无人机连接。
无人机下降收线时出现瞬间停止时,线缆30在缓冲区将无拉紧压力作用,弹性件551立即要恢复无弹性形变的状态,带动缓冲轮40回复弹性移动,当移动越过直线滑轨50中间位置时,传感器58感应到相反方向信号,信号传递到动力件使其停止或反向旋转带动绕线筒放线,反向移动量越大,绕线筒放线越快,使其缓冲区线缆30不会出现冗余量,线缆30在绕线筒的排线均匀,不会出现缠绕现象。
实际无人机在上升放线或下降收线过程中瞬间停止现象频繁发生,对无人机下降收线过程与无人机上升放线过程原理相同。
在本实施例中,传感器58为角度传感器58,动力件为但不局限于电机。
上述的系留无人机收放线缓冲结构,通过缓冲轮40、滑轨50、滑块51以及调节组件,由缓冲轮40对线缆30的收放线起到压紧的作用,当无人机瞬间停止收放线时,由传感器58检测缓冲轮40的移动位置的信号,并传输至控制器,以控制器控制动力件正向转动或者反向转动,避免出现线缆30堆积的现象发生,实现在上升放线或下降收线过程中不会出现缠绕或打结的现象,整个绕线筒的排线均匀。
在一实施例中,还提供了系留无人机收放线缓冲结构的工作方法,包括:
当无人机处于匀速收放线时,线缆30处于被拉紧状态,缓冲轮40压紧线缆30;
当无人机处于加速收放放线时,线缆30对缓冲轮40的压力变大,缓冲轮40移动,传感器58检测到缓冲轮40的移动信号,传输至绕线控制结构,由绕线控制结构增大绕线筒的收放线速度;
当无人机放线过程中瞬间停止,位置调整结构带动滑块51在滑轨50上运动,以使缓冲轮40移动至超过设定位置时,传感器58检测到缓冲轮40超过设定位置的移动信号,传输至绕线控制结构,由绕线控制结构控制绕线筒进行收线;
当无人机收线过程中瞬间停止,位置调整结构带动滑块51在滑轨50上运动,以使缓冲轮40移动至超过设定位置时,传感器58检测到缓冲轮40超过设定位置的移动信号,传输至绕线控制结构,由绕线控制结构控制绕线筒停止收线。
需要说明的是,所属领域的技术人员可以清楚地了解到,上述系留无人机收放线缓冲结构的工作方法的具体实现过程,可以参考前述系留无人机收放线缓冲结构实施例中的相应描述,为了描述的方便和简洁,在此不再赘述。
上述仅以实施例来进一步说明本申请的技术内容,以便于读者更容易理解,但不代表本申请的实施方式仅限于此,任何依本申请所做的技术延伸或再创造,均受本申请的保护。本申请的保护范围以权利要求书为准。
发明概述
技术问题
问题的解决方案
发明的有益效果

Claims (10)

  1. 一种系留无人机收放线缓冲结构,其特征在于,包括收放轮以及缓冲调节组件,所述缓冲组件包括缓冲轮、滑轨、滑块以及调节组件,所述收放轮与所述缓冲轮之间形成有供线缆穿过的间距,所述调节组件包括位置调整结构、用于控制绕线筒的收放线速度的绕线控制结构以及用于检测缓冲轮位置的传感器,所述滑块与所述缓冲轮连接,所述滑块位于所述滑轨上,所述位置调整结构与所述滑块连接,所述传感器以及位置调整结构分别与所述绕线控制结构连接;通过传感器检测缓冲轮的位置,将检测信号传输至绕线控制结构,由绕线控制结构控制绕线筒进行收放线以及控制绕线筒的收放线速度。
  2. 根据权利要求1所述的一种系留无人机收放线缓冲结构,其特征在于,所述位置调整结构包括发条轮、钢丝轮以及定滑轮,所述发条轮内设有弹性件,所述弹性件与所述钢丝轮连接,所述钢丝轮上设有钢丝,所述钢丝绕过所述定滑轮,所述钢丝的末端与所述滑块连接。
  3. 根据权利要求2所述的一种系留无人机收放线缓冲结构,其特征在于,所述位置调整结构还包括调节轮,所述调节轮的轮齿与所述发条轮的轮齿啮合。
  4. 根据权利要求3所述的一种系留无人机收放线缓冲结构,其特征在于,所述缓冲调节结构包括第一传动轮以及第二传动轮,所述第一传动轮与所述钢丝轮连接,所述第一传动轮的轮齿与所述第二传动轮的轮齿啮合,所述传感器位于所述第二传动轮上。
  5. 根据权利要求4所述的一种系留无人机收放线缓冲结构,其特征在于,所述传感器的个数至少为两个。
  6. 根据权利要求3所述的一种系留无人机收放线缓冲结构,其特征在于,所述发条轮内设有凹槽,所述弹性件置于所述凹槽内。
  7. 根据权利要求4所述的一种系留无人机收放线缓冲结构,其特征在 于,所述钢丝轮位于所述发条轮的上方,所述第一传动轮位于所述发条轮的下方。
  8. 根据权利要求4所述的一种系留无人机收放线缓冲结构,其特征在于,所述传感器位于所述第二传动轮的上方。
  9. 根据权利要求2至8任一项所述的一种系留无人机收放线缓冲结构,其特征在于,所述系留无人机收放线缓冲结构还包括底板,所述定滑轮固定连接于所述底板上,所述滑轨连接于所述底板上。
  10. 系留无人机收放线缓冲结构的工作方法,其特征在于,包括:当无人机处于匀速收放线时,线缆处于被拉紧状态,缓冲轮压紧线缆;
    当无人机处于加速收放放线时,线缆对缓冲轮的压力变大,缓冲轮移动,传感器检测到缓冲轮的移动信号,传输至绕线控制结构,由绕线控制结构增大绕线筒的收放线速度;
    当无人机放线过程中瞬间停止,位置调整结构带动滑块在滑轨上运动,以使缓冲轮移动至超过设定位置时,传感器检测到缓冲轮超过设定位置的移动信号,传输至绕线控制结构,由绕线控制结构控制绕线筒进行收线;
    当无人机收线过程中瞬间停止,位置调整结构带动滑块在滑轨上运动,以使缓冲轮移动至超过设定位置时,传感器检测到缓冲轮超过设定位置的移动信号,传输至绕线控制结构,由绕线控制结构控制绕线筒停止收线。
PCT/CN2019/089222 2019-02-13 2019-05-30 一种系留无人机收放线缓冲结构及其工作方法 WO2020164205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910113097.X 2019-02-13
CN201910113097.XA CN109607331B (zh) 2019-02-13 2019-02-13 一种系留无人机收放线缓冲结构及其工作方法

Publications (1)

Publication Number Publication Date
WO2020164205A1 true WO2020164205A1 (zh) 2020-08-20

Family

ID=66018923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089222 WO2020164205A1 (zh) 2019-02-13 2019-05-30 一种系留无人机收放线缓冲结构及其工作方法

Country Status (2)

Country Link
CN (1) CN109607331B (zh)
WO (1) WO2020164205A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117963152A (zh) * 2024-03-29 2024-05-03 湖北华中电力科技开发有限责任公司 一种系留无人机的系留方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607331B (zh) * 2019-02-13 2024-02-27 深圳市赛为智能股份有限公司 一种系留无人机收放线缓冲结构及其工作方法
CN110589631B (zh) * 2019-08-30 2021-07-30 成都点阵科技有限公司 无人机系留线缆收放控制系统和控制方法
CN112406911B (zh) * 2020-11-24 2021-07-16 广东技术师范大学 基于索轨结合的林果输运方法、装置和计算机设备
CN113120702B (zh) * 2021-04-22 2023-03-31 中铁西南科学研究院有限公司 一种收放电缆装置
CN113928941A (zh) * 2021-11-04 2022-01-14 北京华商三优新能源科技有限公司 线缆收放线装置和充电桩
CN114044413B (zh) * 2021-11-18 2022-06-28 中国科学院空间应用工程与技术中心 一种用于直线运动的线缆整理机构以及载荷试验装置
CN114153238A (zh) * 2021-11-30 2022-03-08 中天科技海缆股份有限公司 目标线缆的控制方法和装置、存储介质及电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204528877U (zh) * 2015-03-18 2015-08-05 上杭建润电业有限公司 一种电缆收卷缓冲装置
CN105858362A (zh) * 2016-06-08 2016-08-17 常州市禾昌机械有限公司 一种线缆放线装置及其工作方法
CN205555756U (zh) * 2016-04-20 2016-09-07 北京深远世宁科技有限公司 一种系留无人机自动收放线装置
JP2017169395A (ja) * 2016-03-17 2017-09-21 株式会社空撮技研 無人飛行体用の線状体繰出装置
CN207390696U (zh) * 2017-07-18 2018-05-22 深圳市景宏光电科技有限公司 一种应用于系留无人机的智能收放机
CN109607331A (zh) * 2019-02-13 2019-04-12 深圳市赛为智能股份有限公司 一种系留无人机收放线缓冲结构及其工作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB706726A (en) * 1951-10-23 1954-04-07 Glover & Co Ltd W T Apparatus for storing a length of cable or the like long flexible article
FR2645360B1 (fr) * 1989-03-31 1994-03-25 Ifremer Procede et dispositif pour lier in situ un cable de transmission a un cable porteur
JP4996949B2 (ja) * 2007-03-16 2012-08-08 宇部日東化成株式会社 光ファイバ担持用スロット貯線装置および光ファイバ担持用スロット貯線方法
CN202245519U (zh) * 2011-07-28 2012-05-30 河南省通信电缆有限公司 一种线缆生产线及其储线机构
US9290269B2 (en) * 2013-03-15 2016-03-22 CyPhy Works, Inc. Spooler for unmanned aerial vehicle system
CN105173105A (zh) * 2015-08-04 2015-12-23 徐州创航科技有限公司 一种用于系留无人机飞行器的自动收放线装置
KR101640362B1 (ko) * 2016-01-22 2016-07-15 박종모 자율비행로봇을 위한 윈치 장치
CN205931306U (zh) * 2016-08-19 2017-02-08 深圳航天旭飞科技有限公司 无人机的供电控制系统
CN205932769U (zh) * 2016-08-22 2017-02-08 合肥瀚翔智能科技有限公司 一种系留无人机的自动收放线装置
KR20190128191A (ko) * 2017-03-06 2019-11-15 호버플라이 테크놀로지스 인코포레이티드 테더링된 항공기를 위한 지속적인 장력 테더 관리 시스템
CN207645506U (zh) * 2017-09-25 2018-07-24 广州丰泰美华电缆有限公司 一种储线装置
CN108910624A (zh) * 2018-06-05 2018-11-30 中国人民解放军第六九O五工厂 系留无人机收放线方法
CN109052064B (zh) * 2018-08-07 2023-09-08 合肥正阳光电科技有限责任公司 一种绞线车装置
CN209702019U (zh) * 2019-02-13 2019-11-29 深圳市赛为智能股份有限公司 一种系留无人机收放线缓冲结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204528877U (zh) * 2015-03-18 2015-08-05 上杭建润电业有限公司 一种电缆收卷缓冲装置
JP2017169395A (ja) * 2016-03-17 2017-09-21 株式会社空撮技研 無人飛行体用の線状体繰出装置
CN205555756U (zh) * 2016-04-20 2016-09-07 北京深远世宁科技有限公司 一种系留无人机自动收放线装置
CN105858362A (zh) * 2016-06-08 2016-08-17 常州市禾昌机械有限公司 一种线缆放线装置及其工作方法
CN207390696U (zh) * 2017-07-18 2018-05-22 深圳市景宏光电科技有限公司 一种应用于系留无人机的智能收放机
CN109607331A (zh) * 2019-02-13 2019-04-12 深圳市赛为智能股份有限公司 一种系留无人机收放线缓冲结构及其工作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117963152A (zh) * 2024-03-29 2024-05-03 湖北华中电力科技开发有限责任公司 一种系留无人机的系留方法

Also Published As

Publication number Publication date
CN109607331B (zh) 2024-02-27
CN109607331A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
WO2020164205A1 (zh) 一种系留无人机收放线缓冲结构及其工作方法
CN109621330B (zh) 一种力量训练系统及电控方法
CN107161808B (zh) 一种系留无人机收放缆装置及其控制系统
WO2016101499A1 (zh) 一种用于卷筒多层缠绕乱绳的检测装置及方法
WO2019015086A1 (zh) 用于系留无人机的自动收放线装置、系统及其控制方法
CN106081968A (zh) 绞车排缆乱绳自动检测装置
CN201842595U (zh) 一种水文绞车升降控制装置
CN102285557A (zh) 一种线绳的张力放线装置
CN101795957A (zh) 用于控制起重机的方法
CN101905842A (zh) 新型排绳装置
CN106253142A (zh) 电缆的预紧装置
CN110697599B (zh) 卷扬自动排绳控制系统及自动排绳控制方法
CN202130926U (zh) 一种线绳的恒张力放线装置
CN103121605B (zh) 一种超细丝线精密排线边缘的自动检测控制系统及其控制方法
CN218931570U (zh) 一种绳索卷扬张力控制装置
CN111232764A (zh) 一种系留式无人机收放线装置
CN112811335A (zh) 排缆机构、卷扬装置、作业机械及排缆控制方法
CN203382396U (zh) 吊臂伸缩和卷扬钢丝绳放收的控制系统及起重机
CN209702019U (zh) 一种系留无人机收放线缓冲结构
CN209383204U (zh) 一种具有阻尼轮的系留式无人机收放线装置
CN209757567U (zh) 系留无人机用放线长度控制装置、绞盘装置及无人机系统
CN108975069B (zh) 张力控制系统
CN211664483U (zh) 一种自动牵引收放装置
CN110589631B (zh) 无人机系留线缆收放控制系统和控制方法
CN209396715U (zh) 一种具有导线轮的系留式无人机收放线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915410

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19915410

Country of ref document: EP

Kind code of ref document: A1