WO2020162322A1 - Curable composition for light-resistant hard coating - Google Patents

Curable composition for light-resistant hard coating Download PDF

Info

Publication number
WO2020162322A1
WO2020162322A1 PCT/JP2020/003456 JP2020003456W WO2020162322A1 WO 2020162322 A1 WO2020162322 A1 WO 2020162322A1 JP 2020003456 W JP2020003456 W JP 2020003456W WO 2020162322 A1 WO2020162322 A1 WO 2020162322A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
hard coat
mass
film
Prior art date
Application number
PCT/JP2020/003456
Other languages
French (fr)
Japanese (ja)
Inventor
晴希 辻本
将幸 原口
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080013139.3A priority Critical patent/CN113423513B/en
Priority to JP2020571140A priority patent/JP7332988B2/en
Priority to KR1020217026124A priority patent/KR102584186B1/en
Publication of WO2020162322A1 publication Critical patent/WO2020162322A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat

Definitions

  • the present invention relates to a light-resistant hard coat material (curable composition) useful as a material for forming a hard coat layer applied to the surface of various display elements such as touch panel displays and liquid crystal displays.
  • a touch panel display using a liquid crystal display element or an OLED (organic EL) display element that can be operated by a person's finger is provided.
  • the outermost surface of these touch panel displays has scratch resistance to prevent scratches from being generated on the surface of the touch panel by a finger or the like when a finger is operated by a person, and a fingerprint attached when a person touches it with a finger.
  • a high-density crosslinked structure is formed, that is, a crosslinked structure having low molecular mobility is formed to increase the surface hardness and to resist external force.
  • the method of giving is adopted.
  • a material for forming these hard coat layers a polyfunctional acrylate-based material that is three-dimensionally crosslinked by radical polymerization with active energy rays is most used at present.
  • a means for forming a hard coat layer on the surface of the transparent plastic film for example, a solution containing a polyfunctional acrylate, a photopolymerization initiator and an organic solvent is coated on the plastic film by gravure coating or the like, and the organic solvent is dried, followed by UV irradiation.
  • a means for forming a hard coat layer by curing is adopted.
  • the thickness of the hard coat layer is usually 1 ⁇ m to 15 ⁇ m in order to exhibit functions such as hardness and scratch resistance at a level that causes no practical problems.
  • some devices equipped with a touch panel display are used outdoors, and the touch panel surface and hard coat film are exposed to ultraviolet rays.
  • Some transparent plastic films used as a base material for hard coat films are significantly yellowed and deteriorated by being exposed to ultraviolet rays for a short time.
  • the hard coat layer is required to have light resistance in order to prevent yellowing and deterioration of the hard coat film due to ultraviolet rays.
  • a commonly used method is to add an ultraviolet absorber to the curable composition that forms the hard coat layer.
  • the ultraviolet absorber absorbs an active energy ray for causing a curing reaction by radical polymerization, it usually inhibits the formation of a three-dimensional crosslinked structure of a polyfunctional acrylate.
  • the scratch resistance and the light resistance of the hard coat layer are in a trade-off relationship, and it has been an issue to make both properties compatible.
  • a polyfunctional urethane (meth)acrylate oligomer and a triazine-based UV absorber together, a hard coat layer having both constant light resistance and scratch resistance on a plastic film having a problem of light resistance. has been reported (Patent Document 1).
  • Patent Document 1 has relatively high light resistance to ultraviolet rays in the wavelength region of 300 nm or more, it has a problem of insufficient scratch resistance.
  • the present inventors have conducted extensive studies to achieve the above-mentioned object, and as a result, a perfluoropolyether containing a poly(oxyperfluoroalkylene) group, in which poly(oxyalkylene) is present at both ends of its molecular chain.
  • a curable composition containing a perfluoropolyether having an active energy ray-polymerizable group and a specific ultraviolet absorber on a plastic film having a problem in light resistance.
  • the present invention has been completed by discovering that a hard coat layer having excellent light resistance not only to a wavelength of 300 nm or more but also to a wavelength of less than 300 nm and having excellent scratch resistance can be formed.
  • the present invention as a first aspect, (A) 100 parts by mass of active energy ray-curable polyfunctional monomer, (B) A perfluoropolyether containing a poly(oxyperfluoroalkylene) group, which has an active energy ray-polymerizable group at both ends of its molecular chain via urethane bonds (however, 0.05 parts by mass to 10 parts by mass, excluding perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond.
  • a curable composition comprising:
  • the curable composition according to the first aspect wherein the (c) ultraviolet absorber has at least two hydroxy groups.
  • the above-mentioned (b) perfluoropolyether has at least two active energy ray-polymerizable groups via urethane bonds at both ends of its molecular chain. It relates to a curable composition.
  • the curable composition according to the third aspect wherein the (b) perfluoropolyether has at least three active energy ray-polymerizable groups via urethane bonds at both ends of its molecular chain.
  • the poly(oxyperfluoroalkylene) group has both a repeating unit —[OCF 2 ]— and a repeating unit —[OCF 2 CF 2 ]—, and these repeating units are block-bonded or random-bonded.
  • the curable composition according to any one of the first to fourth aspects which is a group formed by a block bond and a random bond.
  • the curable composition according to the fifth aspect wherein the (c) perfluoropolyether has a partial structure represented by the following formula [1].
  • n is the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and represents an integer of 5 to 30,
  • the repeating unit —[OCF 2 CF 2 ]— and the repeating unit —[OCF 2 ]— are bonded by a block bond, a random bond, or a block bond and a random bond.
  • the curable composition according to any one of the first to sixth aspects wherein a part or all of the (a) polyfunctional monomer is a polyfunctional (meth)acrylate compound. ..
  • An eighth aspect relates to the curable composition according to any one of the first to seventh aspects, in which the (a) polyfunctional monomer is an oxyalkylene-modified polyfunctional monomer.
  • the curability according to any one of the first aspect to the eighth aspect wherein the polyfunctional monomer (a) is a polyfunctional monomer having at least three active energy ray-polymerizable groups.
  • Composition As a tenth aspect, the curable composition according to any one of the first to ninth aspects, further including (e) a solvent.
  • An eleventh aspect relates to a cured film obtained from the curable composition according to any one of the first to tenth aspects.
  • a twelfth aspect relates to a hard coat film having a hard coat layer on at least one surface of a film substrate, the hard coat layer comprising the cured film according to the eleventh aspect.
  • a thirteenth aspect is a method for producing a hard coat film having a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is described in any one of the first to tenth aspects. It relates to a method for producing a hard coat film, which comprises the steps of forming a coating film by applying the curable composition of (1) on a film substrate and irradiating the coating film with an active energy ray to cure the coating film.
  • a curable composition which has excellent scratch resistance even in a thin film having a thickness of about 1 ⁇ m to 15 ⁇ m and which is useful in forming a hard coat layer and a hard coat layer having excellent light resistance. it can. Further, according to the present invention, it is possible to provide a hard coat film having a cured film obtained from the curable composition or a hard coat layer formed from the hardened film, which is provided on the surface, and the scratch resistance and the light resistance are improved. An excellent hard coat film can be provided.
  • the present invention has excellent light resistance to ultraviolet rays in a wavelength region of not less than 300 nm and less than 300 nm, which is suitable for application to a substrate surface such as a display surface used outdoors, and has an excellent light resistance. It is possible to provide a hard coat film provided with a hard coat layer having excellent scratch resistance.
  • the curable composition of the present invention specifically comprises (A) 100 parts by mass of active energy ray-curable polyfunctional monomer, (B) A perfluoropolyether containing a poly(oxyperfluoroalkylene) group, which has an active energy ray-polymerizable group at both ends of its molecular chain via urethane bonds (however, 0.05 parts by mass to 10 parts by mass, excluding perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond.
  • the active energy ray-curable polyfunctional monomer of component (a) (hereinafter, also simply referred to as “(a) polyfunctional monomer”) is an activity that causes a polymerization reaction to proceed and cure upon irradiation with active energy rays such as ultraviolet rays. It refers to a monomer having two or more energy ray-polymerizable groups. Examples of the active energy ray-polymerizable group include (meth)acryloyl group and vinyl group.
  • Examples of the preferable (a) active energy ray-curable polyfunctional monomer in the curable composition of the present invention include a monomer selected from the group consisting of polyfunctional (meth)acrylate compounds, and the polyfunctional urethane described below. Examples thereof include a monomer selected from the group consisting of (meth)acrylate compounds and a monomer selected from the group consisting of lactone-modified polyfunctional (meth)acrylate compounds.
  • the (a) active energy ray-curable polyfunctional monomer one kind selected from the group consisting of the polyfunctional (meth)acrylate compounds may be used alone, or two or more kinds may be used in combination.
  • a (meth)acrylate compound means both an acrylate compound and a methacrylate compound.
  • (meth)acrylic acid refers to acrylic acid and methacrylic acid.
  • the polyfunctional monomer (a) may be an oxyalkylene-modified polyfunctional monomer, and examples of the oxyalkylene modification include oxymethylene modification, oxyethylene modification, and oxypropylene modification.
  • examples of the oxyalkylene-modified polyfunctional monomer include compounds obtained by modifying the above polyfunctional (meth)acrylate compound (or polyfunctional urethane (meth)acrylate compound) with oxyalkylene.
  • the oxyalkylene-modified polyfunctional monomer may be used alone or in combination of two or more.
  • the (a) polyfunctional monomer a polyfunctional monomer having at least 3 active energy ray-polymerizable groups, for example, at least 4 can be used.
  • a monomer selected from the group consisting of oxyalkylene-modified polyfunctional (meth)acrylate compounds having at least three active energy ray-polymerizable groups can be used.
  • Examples of the polyfunctional (meth)acrylate compound include trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol di(meth)acrylate, penta Erythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, glycerin tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate , Ethoxylated pentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol hexa(meth)acrylate, ethoxylated glycerin tri(meth)acrylate,
  • preferable polyfunctional (meth)acrylate compounds include pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like. ..
  • Examples of the oxyalkylene-modified polyfunctional (meth)acrylate compound include (oxy)alkylene-modified (meth)acrylate compounds of polyols.
  • Examples of the polyol include glycerin, diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, decaglycerin, polyglycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol and the like.
  • the polyfunctional urethane (meth)acrylate compound is a compound having a plurality of acryloyl groups or methacryloyl groups in one molecule and one or more urethane bond (—NHCOO—).
  • Examples of the polyfunctional urethane (meth)acrylate compound include those obtained by reacting a polyfunctional isocyanate with a (meth)acrylate having a hydroxy group, a polyfunctional isocyanate, a (meth)acrylate having a hydroxy group, and a polyol. Examples thereof include those obtained by the reaction, but the polyfunctional urethane (meth)acrylate compound usable in the present invention is not limited to these examples.
  • Examples of the polyfunctional isocyanate include tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, and the like.
  • Examples of the (meth)acrylate having a hydroxy group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate. Examples thereof include acrylate and tripentaerythritol hepta(meth)acrylate.
  • polystyrene resin examples include diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol; these diols and succinic acid, maleic acid.
  • diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol; these diols and succinic acid, maleic acid.
  • polyester polyols, polyether polyols, polycarbonate diols and the like which are reaction products of aliphatic dicarboxylic acids such as acids and adipic acid or dicarboxylic acid anhydrides.
  • the active energy ray polyfunctional monomer may be a lactone modified polyfunctional (meth)acrylate compound, and ⁇ -caprolactone is preferable as the lactone to be modified.
  • the lactone-modified polyfunctional (meth)acrylate compound include ⁇ -caprolactone-modified pentaerythritol tri(meth)acrylate, ⁇ -caprolactone-modified pentaerythritol tetra(meth)acrylate, ⁇ -caprolactone-modified dipentaerythritol penta(meth). Examples thereof include acrylates and ⁇ -caprolactone-modified dipentaerythritol hexa(meth)acrylate.
  • (B) A perfluoropolyether containing a poly(oxyperfluoroalkylene) group, which has active energy ray-polymerizable groups at both ends of its molecular chain via urethane bonds (provided that , Except for perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond.)]
  • the component (b) is a perfluoropolyether containing a poly(oxyperfluoroalkylene) group, and a urethane bond is introduced at both ends of the molecular chain thereof without interposing the poly(oxyalkylene) group.
  • a perfluoropolyether having an active energy ray-polymerizable group (hereinafter, also simply referred to as “(b) perfluoropolyether having a polymerizable group at both ends of a molecular chain”) is used.
  • the component (b) serves as a surface modifier in the hard coat layer to which the curable composition of the present invention is applied. Further, the component (b) has excellent compatibility with the component (a), thereby suppressing the clouding of the hard coat layer and enabling the formation of a hard coat layer having a transparent appearance.
  • the above poly(oxyalkylene) group means a group in which the number of repeating units of the oxyalkylene group is 2 or more and the alkylene group in the oxyalkylene group is an unsubstituted alkylene group.
  • the number of carbon atoms of the alkylene group in the above poly(oxyperfluoroalkylene) group is not particularly limited, but it is preferably 1 to 4 carbon atoms. That is, the poly(oxyperfluoroalkylene) group refers to a group having a structure in which a divalent fluorocarbon group having 1 to 4 carbon atoms and an oxygen atom are alternately linked, and the oxyperfluoroalkylene group is a carbon atom. It refers to a group having a structure in which a divalent fluorocarbon group of formulas 1 to 4 and an oxygen atom are linked.
  • examples thereof include groups such as -1,3-diyl group) and -[OCF 2 C(CF 3 )F]-(oxyperfluoropropane-1,2-diyl group).
  • the above oxyperfluoroalkylene groups may be used alone or in combination of two or more, and in that case, the bonds of plural kinds of oxyperfluoroalkylene groups are a block bond and a random bond. Either of them may be used.
  • poly(oxyperfluoroalkylene) groups -[OCF 2 ]-(oxyperfluoromethylene group) and -[OCF 2 CF 2 ] are used. It is preferable to use a group having both —(oxyperfluoroethylene group) as a repeating unit.
  • repeating units: -[OCF 2 ]- and -[OCF 2 CF 2 ]- are in a molar ratio of [repeating unit: -[OCF 2 ]-]:
  • [repeat Unit: —[OCF 2 CF 2 ]—] is preferably a group containing at a ratio of 2:1 to 1:2, and more preferably a group containing at a ratio of about 1:1.
  • the bond of these repeating units may be either a block bond or a random bond.
  • the total number of repeating units of the oxyperfluoroalkylene group is preferably in the range of 5 to 30, and more preferably in the range of 7 to 21.
  • the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the above poly(oxyperfluoroalkylene) group in terms of polystyrene is 1,000 to 5,000, preferably 1,500 to 3, It is 000.
  • the perfluoropolyether having a polymerizable group at both ends of the molecular chain (b) is not limited to one having one active energy ray-polymerizable group such as a (meth)acryloyl group at both ends of the molecular chain. It may have one or more active energy ray-polymerizable groups at both ends of the molecular chain.
  • the terminal structure containing the active energy ray-polymerizable groups the following formulas [A1] to [A A5] and the structures in which the acryloyl group in these structures is substituted with a methacryloyl group.
  • Examples of such a perfluoropolyether having a polymerizable group at both ends of the molecular chain (b) include compounds represented by the following formula [2].
  • A represents one of the structures represented by the formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is substituted with a methacryloyl group
  • PFPE represents Represents a poly(oxyperfluoroalkylene) group (provided that the side directly bonded to L 1 is an oxy terminal and the side bonded to an oxygen atom is a perfluoroalkylene terminal), and L 1 is 1 to 3 fluorine atoms.
  • alkylene group of the fluorine atom 1 to carbon atoms substituted with three 2 or 3, -CH 2 CHF -, - CH 2 CF 2 -, - CHFCF 2 -, - CH 2 CH 2 CHF-, Examples thereof include —CH 2 CH 2 CF 2 — and —CH 2 CHFCF 2 —, and —CH 2 CF 2 — is preferable.
  • Examples of the partial structure (A-NHC( ⁇ O)O) m L 2 — in the compound represented by the above formula [2] include structures represented by the following formulas [B1] to [B12].
  • A represents one of the structures represented by the above formulas [A1] to [A5] and the structure in which the acryloyl group in these structures is substituted with a methacryloyl group.
  • the structure represented by the formula [B3] is preferable, and the combination of the formula [B3] and the formula [A3] is particularly preferable.
  • n represents the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and is preferably an integer in the range of 5 to 30, An integer in the range of 7 to 21 is more preferable.
  • the ratio of the number of repeating units —[OCF 2 CF 2 ]— to the number of repeating units —[OCF 2 ]— is preferably in the range of 2:1 to 1:2, and is approximately 1 It is more preferable that the ratio is in the range of 1:1.
  • the bond of these repeating units may be either a block bond or a random bond.
  • the perfluoropolyether having a polymerizable group at both ends of the molecular chain is 0.05 to 10 parts by mass with respect to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. It is used in an amount of 0.1 part by mass, preferably 0.1 part by mass to 5 parts by mass. (B) By using the perfluoropolyether having a polymerizable group at both ends of the molecular chain in a proportion of 0.05 parts by mass or more, sufficient scratch resistance can be imparted to the hard coat layer.
  • the perfluoropolyether having a polymerizable group at both ends of the molecular chain in a proportion of 10 parts by mass or less, it is sufficiently compatible with (a) the active energy ray-curable polyfunctional monomer.
  • a hard coat layer with less white turbidity can be obtained.
  • the perfluoropolyether having a polymerizable group at both ends of the molecular chain (b) is, for example, a compound represented by the following formula [3].
  • PFPE, L 1 , L 2 and m have the same meanings as those in the formula [2].
  • a polymerizable group for the hydroxy group present at both terminals of the compound represented by the formula [2].
  • An isocyanate compound having, that is, a compound in which an isocyanato group is bonded to a bond in a structure represented by the above formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is replaced with a methacryloyl group for example, It can be obtained by reacting 2-(meth)acryloyloxyethyl isocyanate, 1,1-bis((meth)acryloyloxymethyl)ethyl isocyanate, etc.) to form a urethane bond.
  • the curable composition of the present invention comprises (b) a poly(oxyperfluoroalkylene) group which is a perfluoropolyether, and has active energy ray-polymerizable properties at both ends of its molecular chain via urethane bonds.
  • poly(oxyperfluoroalkylene) A perfluoropolyether containing a group, which has an active energy ray-polymerizable group at one end (one end) of its molecular chain through a urethane bond, and the other end of the molecular chain (the other end).
  • a perfluoropolyether having a hydroxy group at the end (provided that the poly(oxyperfluoroalkylene) group is between the urethane bond and the poly(oxyperfluoroalkylene) group is between the hydroxy group. No. oxyalkylene) group) or a poly(oxyperfluoroalkylene) group-containing perfluoropolyether represented by the above formula [3], in which hydroxy groups are present at both ends of the molecular chain.
  • Group-containing perfluoropolyether (provided that there is no poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the hydroxy group.) [has an active energy ray-polymerizable group No compound] may be included.
  • the curable composition of the present invention is characterized by using an ultraviolet absorber having a benzophenone skeleton as the component (c).
  • an ultraviolet absorber having a benzophenone skeleton As the component (c).
  • a compound having at least two hydroxy groups that is, a compound in which at least two hydrogen atoms in two benzene rings constituting the benzophenone skeleton are substituted with a hydroxy group is used. It is preferable to adopt.
  • a hard coat layer having excellent light resistance not only to wavelengths of 300 nm or more but also to wavelengths of less than 300 nm can be formed.
  • the hard coat film including the hard coat layer can be a hard coat film having excellent light resistance, which is suitable for application to the surface of a base material such as a display surface used outdoors.
  • Examples of the ultraviolet absorber having a benzophenone skeleton include 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ',4,4'-Tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone (oxybenzone-3), 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2-hydroxy-4-methoxybenzophenone-5
  • Examples thereof include sulfonate, 4-phenylbenzophenone, 2-ethylhexyl-4′-phenylbenzophenone-2-carboxylate, 2-hydroxy-4-n-octoxybenzophenone and 4-hydroxy-3-carboxybenzophenone.
  • the ultraviolet absorber (c) having a benzophenone skeleton is 0.1 to 30 parts by mass, preferably 1 part by mass with respect to 100 parts by mass of the active energy ray-curable polyfunctional monomer (a). It is desirable to use it in a proportion of about 15 parts by mass.
  • a polymerization initiator that generates a radical by a preferable active energy ray is, for example, an active energy such as an electron beam, an ultraviolet ray or an X-ray. It is a polymerization initiator that generates radicals by irradiation of rays, especially by irradiation of ultraviolet rays.
  • Examples of the (d) polymerization initiator include benzoins, alkylphenones, thioxanthones, azos, azides, diazos, o-quinonediazides, acylphosphine oxides, oxime esters, organic peroxides, and benzophenone. And biscoumarins, bisimidazoles, titanocenes, thiols, halogenated hydrocarbons, trichloromethyltriazines, and onium salts such as iodonium salts and sulfonium salts. You may use these individually by 1 type or in mixture of 2 or more types.
  • acylphosphine oxides and alkylphenones as the (d) polymerization initiator from the viewpoints of transparency, surface curability, and thin film curability.
  • acylphosphine oxides and the alkylphenones By using the acylphosphine oxides and the alkylphenones, a cured film having further improved scratch resistance can be obtained.
  • acylphosphine oxides examples include phenylbis(2,4,6-trimethoxybenzoyl)phosphine oxide and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide.
  • alkylphenones examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl) ⁇ -hydroxy such as 2-methylpropan-1-one and 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one
  • Alkylphenones 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one And ⁇ -aminoalkylphenones; 2,2-dimethoxy-1,2-diphenylethan-1-one; methyl phenylglyoxylate and the like.
  • the proportion of the polymerization initiator (d) is 1 part by mass to 20 parts by mass, preferably 2 parts by mass to 10 parts by mass, relative to 100 parts by mass of the active energy ray-curable polyfunctional monomer (a). It is desirable to use.
  • the curable composition of the present invention may further contain (e) a solvent, that is, in the form of a varnish (film forming material).
  • a solvent that is, in the form of a varnish (film forming material).
  • the above solvent is appropriately dissolved in the above components (a) to (d) in consideration of workability at the time of coating for forming a cured film (hard coat layer) described later and drying property before and after curing. Just select it.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirits and cyclohexane; methyl chloride, methyl bromide, Halides such as methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene; ethyl acetate, propyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene Esters or ester ethers such as glycol monomethyl ether acetate (PGMEA); diethyl ether, tetrahydrofuran (THF), 1,4-dio
  • Solvents may be mentioned.
  • the amount of the solvent (e) used is not particularly limited, it is used at a concentration such that the solid content concentration in the curable composition of the present invention is 1% by mass to 70% by mass, preferably 5% by mass to 50% by mass.
  • the solid content concentration also referred to as non-volatile content concentration
  • the solid content concentration means the solid content with respect to the total mass (total mass) of the components (a) to (d) (and optionally other additives) of the curable composition of the present invention. Indicates the content of the component (all components excluding the solvent component).
  • additives generally added as necessary, for example, a polymerization accelerator, a polymerization inhibitor, a photosensitizer, leveling Agents, surfactants, adhesion promoters, plasticizers, ultraviolet absorbers other than the above, light stabilizers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, etc. Good.
  • inorganic fine particles such as titanium oxide or organic fine particles such as polymethylmethacrylate particles may be blended.
  • the curable composition of the present invention can form a cured film by applying (coating) on a substrate to form a coating film, and irradiating the coating film with an active energy ray to polymerize (curing).
  • the cured film is also an object of the present invention.
  • the hard coat layer in the hard coat film described later can be made of the cured film.
  • the base material in this case examples include various resins (polycarbonate, polymethacrylate, polystyrene, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polyolefin, polyamide, Polyimide, epoxy resin, melamine resin, triacetyl cellulose (TAC), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), norbornene-based resin, etc.), metal, wood, paper, glass , Slate and the like.
  • the shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
  • the coating method on the substrate is a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a spray coating method, a bar coating method, a die coating method, an inkjet method, a printing method (a relief printing method).
  • An intaglio printing method, a lithographic printing method, a screen printing method, etc. can be appropriately selected, and among them, it can be used for a roll-to-roll method, and from the viewpoint of thin film coating properties, a relief printing method can be used.
  • the curable composition is filtered in advance using a filter having a pore size of about 0.2 ⁇ m and then applied to the coating.
  • a solvent may be further added to the curable composition, if necessary.
  • the various solvents mentioned in the above [(e) solvent] can be mentioned.
  • the coating film is preliminarily dried by a heating means such as a hot plate or an oven to remove the solvent, if necessary (solvent removing step).
  • the conditions for heat drying at this time are preferably, for example, 40° C. to 120° C. and about 30 seconds to 10 minutes.
  • the coating film is cured by irradiating with active energy rays such as ultraviolet rays.
  • active energy rays include ultraviolet rays, electron beams, and X-rays, and ultraviolet rays are particularly preferable.
  • a light source used for ultraviolet ray irradiation sun rays, chemical lamps, low pressure mercury lamps, high pressure mercury lamps, metal halide lamps, xenon lamps, UV-LEDs and the like can be used.
  • the polymerization may be completed by performing post-baking, specifically, heating with a heating means such as a hot plate or an oven.
  • the thickness of the formed cured film is usually 0.01 ⁇ m to 50 ⁇ m, preferably 0.05 ⁇ m to 20 ⁇ m after drying and curing.
  • a hard coat film having a hard coat layer on at least one surface (surface) of a film substrate can be produced.
  • the hard coat film is also an object of the present invention, and the hard coat film is preferably used for protecting the surface of various display elements such as touch panels and liquid crystal displays.
  • the hard coat layer in the hard coat film of the present invention comprises a step of applying the curable composition of the present invention onto a film substrate to form a coating film, and irradiating the coating film with active energy rays such as ultraviolet rays. It can be formed by a method including a step of curing the coating film.
  • a method for producing a hard coat film having a hard coat layer on at least one surface of a film base, including these steps, is also an object of the present invention.
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polycarbonate, polymethacrylate, polystyrene, polyolefin, Examples thereof include films of polyamide, polyimide, triacetyl cellulose (TAC) and the like.
  • the method described in the above ⁇ cured film> should be used.
  • the curable composition of the present invention contains a solvent (in the form of varnish)
  • a step of drying the coating film and removing the solvent may be included after the coating film forming step, if necessary.
  • the coating film drying method (solvent removing step) described in the above ⁇ cured film> can be used.
  • the layer thickness (film thickness) of the hard coat layer thus obtained is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m.
  • HLC-8220GPC Column: Shodex (registered trademark) GPC K-804L, GPC K-805L manufactured by Showa Denko KK Column temperature: 40°C Eluent: Tetrahydrofuran Detector: RI (5) Scratch resistance test device: Reciprocating abrasion tester TRIBOGEAR TYPE: 30S manufactured by Shinto Kagaku Co., Ltd. Scanning speed: 4,500 mm/min Scanning distance: 50 mm (6) Light resistance test device: Q-Lab Co. accelerated weather resistance tester QUV (registered trademark)/se Light source: UVB-313 type lamp Test conditions: 0.89 W/cm 2 , 50° C. Test time: 6 hours (7) Color difference meter device: Konica Minolta Co., Ltd. spectrophotometer CM-700d Measurement mode: Transmission mode
  • A1 Oxyethylene-modified polyfunctional acrylate [Aronix (registered trademark) MT-3553 manufactured by Toagosei Co., Ltd.]
  • A2 Oxyethylene-modified pentaerythritol tetraacrylate [KAYARAD (registered trademark) RP-1040 manufactured by Nippon Kayaku Co., Ltd.]
  • A3 Mixture of dipentaerythritol pentaacrylate/dipentaerythritol hexaacrylate [KAYARAD (registered trademark) DN-0075 manufactured by Nippon Kayaku Co., Ltd.]
  • A4 10 functional urethane acrylate [ART RESIN (registered trademark) UN-904 manufactured by Negami Kogyo Co., Ltd.]
  • A5 Caprolactone-modified dipentaerythritol hexaacrylate [KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku
  • Examples 1 to 12, Comparative Examples 1 to 10 The following components were mixed according to the description in Table 1 to prepare a curable composition.
  • “parts” means “parts by mass”.
  • This curable composition was applied onto the film base material (A4 size) shown in Table 1 by a bar coater to obtain a coating film.
  • the coating film was dried in an oven at 65° C. for 3 minutes to remove the solvent.
  • a film was made.
  • the scratch resistance and light resistance of the obtained hard coat film were evaluated.
  • the procedure for evaluation of scratch resistance and light resistance is shown below.
  • the results are also shown in Table 2.
  • [Scratch resistance] The surface of the hard coat layer of the hard coat film was applied with steel wool [Bonster (registered trademark) #0000 (superfine) manufactured by Bonster Sales Co., Ltd.] attached to the reciprocating abrasion tester under a load of 350 g/cm 2 to obtain 10 Two-way rubbing, the degree of scratches (number and length) were visually confirmed and evaluated according to the following criteria A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable.
  • the yellowness index (YI2) was measured by the same method using the color difference meter.
  • the difference (YI2-YI1) in the yellowness index between before the light resistance test and after the light resistance test was defined as ⁇ YI and evaluated according to the following criteria A and C.
  • Hard coat films (Examples 1 to 12) provided with a hard coat layer prepared by using a curable composition in which perfluoropolyether SM having four acryloyl groups through a bond are respectively incorporated are scratch resistant. It was shown that the light resistance is not impaired, and excellent light resistance in the UVB (ultraviolet B wave) region can be exhibited in any film substrate of TPU and PC.
  • Comparative Example 1 and Comparative Example 4 curing of Comparative Example 1 and Comparative Example 4 using A1 as a polyfunctional monomer, UVA-3 having a triazine skeleton as an ultraviolet absorber, SM as a surface modifier, and TPU and PC as a film substrate, respectively. It was shown that the hard coat film including the hard coat layer prepared from the functional composition has excellent light resistance but inferior scratch resistance.
  • a UVA-5 having a cyanoacrylate skeleton is used as an ultraviolet absorber
  • the hard coat film was shown to have poor light resistance.
  • the hard coat film including the hard coat layer prepared from the composition was excellent in scratch resistance, but was inferior in light resistance because the ultraviolet absorber was not added.
  • Comparative Example 9 and Comparative Example 10 in which A1 was used as a polyfunctional monomer UVA-1 having a benzophenone skeleton was used as an ultraviolet absorber, a surface modifier was not added, and TPU and PC were used as film base materials, respectively.
  • the hard coat film including the hard coat layer prepared from the curable composition was excellent in light resistance, but was inferior in scratch resistance because the surface modifier was not added.
  • the hardenability satisfying the scratch resistance and the light resistance can be obtained only when the curable composition is a combination of the polyfunctional monomer, the ultraviolet absorber having the benzophenone skeleton and the perfluoropolyether.
  • a coated film can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a material for forming a hard coat layer that exhibits high scratch resistance and light resistance. [Solution] Provided is a curable composition that contains: (a) 100 parts by mass of an active energy ray-curable polyfunctional monomer; (b) 0.05-10 parts by mass of a perfluoropolyether which contains a poly(oxyperfluoroalkylene) group and in which an active energy ray-polymerizable group-containing perfluoropolyether is bonded to both terminals of the molecular chain via a urethane bond (excluding a perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond); (c) 0.1-30 parts by mass of an ultraviolet radiation absorber having a benzophenone skeleton; and (d) 1-20 parts by mass of a polymerization initiator that generates a radical upon exposure to active energy rays. Also provided is a hard coat film comprising a hard coat layer formed from the composition.

Description

耐光性ハードコート用硬化性組成物Curable composition for light-resistant hard coat
 本発明は、タッチパネルディスプレイ、液晶ディスプレイ等の各種表示素子等の表面に適用されるハードコート層の形成材料として有用な耐光性ハードコート材(硬化性組成物)に関する。 The present invention relates to a light-resistant hard coat material (curable composition) useful as a material for forming a hard coat layer applied to the surface of various display elements such as touch panel displays and liquid crystal displays.
 テレビなどの家電機器、携帯電話などの通信機器、コピー機などの事務機器、ゲーム機などの娯楽機器、X線撮影装置などの医療機器、電子レンジなどの生活機器などの多くの電子機器には、人が指で操作可能な液晶表示素子又はOLED(有機EL)表示素子を用いたタッチパネルディスプレイが設けられている。これらタッチパネルディスプレイの最表面には、人が指で操作する際に、爪等でタッチパネルの表面に傷が発生するのを防ぐための耐擦傷性、及び人が指で触れた際に付着する指紋汚れを付着しにくく且つ拭き取り易くするための防汚性を有するハードコート層を、基材である透明プラスチックフィルム上に備えたハードコートフィルムが用いられている。 For many electronic devices such as home electric appliances such as televisions, communication devices such as mobile phones, office equipment such as copy machines, entertainment equipment such as game machines, medical equipment such as X-ray imaging devices, and household equipment such as microwave ovens. A touch panel display using a liquid crystal display element or an OLED (organic EL) display element that can be operated by a person's finger is provided. The outermost surface of these touch panel displays has scratch resistance to prevent scratches from being generated on the surface of the touch panel by a finger or the like when a finger is operated by a person, and a fingerprint attached when a person touches it with a finger. There is used a hard coat film having a hard coat layer having a stain-proof property for preventing stains from adhering easily and being easily wiped off, on a transparent plastic film as a base material.
 一般に、ハードコート層に耐擦傷性を付与する手法として、例えば、高密度の架橋構造を形成する、すなわち分子運動性の低い架橋構造を形成することで表面硬度を高め、外力への抵抗性を与える手法が採られる。これらのハードコート層を形成する材料として、現在、活性エネルギー線によるラジカル重合により3次元架橋する多官能アクリレート系材料が最も用いられている。さらに、透明プラスチックフィルム表面にハードコート層を形成する手段として、例えば多官能アクリレート、光重合開始剤及び有機溶媒を含む溶液をプラスチックフィルムにグラビアコートなどでコーティングを行い、有機溶媒を乾燥後、紫外線により硬化し、ハードコート層を形成する手段が採用される。形成したハードコート層において、硬度、耐擦傷性などの機能を実用上問題の無い水準で発現させるために、通常、ハードコート層の厚さは1μm~15μmで形成されている。 Generally, as a method for imparting scratch resistance to the hard coat layer, for example, a high-density crosslinked structure is formed, that is, a crosslinked structure having low molecular mobility is formed to increase the surface hardness and to resist external force. The method of giving is adopted. As a material for forming these hard coat layers, a polyfunctional acrylate-based material that is three-dimensionally crosslinked by radical polymerization with active energy rays is most used at present. Further, as a means for forming a hard coat layer on the surface of the transparent plastic film, for example, a solution containing a polyfunctional acrylate, a photopolymerization initiator and an organic solvent is coated on the plastic film by gravure coating or the like, and the organic solvent is dried, followed by UV irradiation. A means for forming a hard coat layer by curing is adopted. In the formed hard coat layer, the thickness of the hard coat layer is usually 1 μm to 15 μm in order to exhibit functions such as hardness and scratch resistance at a level that causes no practical problems.
 ところで、タッチパネルディスプレイが設けられた機器の中には、屋外で使用するものもあり、タッチパネル表面及びハードコートフィルムは紫外線に曝露される。ハードコートフィルムの基材に使用される透明プラスチックフィルムの中には、短時間紫外線に曝露されることで、著しく黄変、劣化するものがある。タッチパネルディスプレイにおいて、ハードコートフィルムには高い透明性が求められることから、紫外線による該ハードコートフィルムの黄変、劣化を防止するために、ハードコート層には耐光性を有することが求められる。ハードコート層に耐光性を付与するには、一般的に用いられる手法として、ハードコート層を形成する硬化性組成物中に、紫外線吸収剤を添加しておく手法がある。しかし、紫外線吸収剤は、ラジカル重合による硬化反応を起こすための活性エネルギー線を吸収するため、通常、多官能アクリレートの3次元架橋構造の形成を阻害する。このように、ハードコート層の耐擦傷性と耐光性とはトレードオフの関係にあり、両者の特性を両立させることが課題となっていた。一方、多官能ウレタン(メタ)アクリレートオリゴマーとトリアジン系紫外線吸収剤とを併用することで、耐光性に課題のあるプラスチックフィルム上で、一定の耐光性と耐擦傷性とが両立されたハードコート層の技術が報告されている(特許文献1)。 By the way, some devices equipped with a touch panel display are used outdoors, and the touch panel surface and hard coat film are exposed to ultraviolet rays. Some transparent plastic films used as a base material for hard coat films are significantly yellowed and deteriorated by being exposed to ultraviolet rays for a short time. In a touch panel display, since the hard coat film is required to have high transparency, the hard coat layer is required to have light resistance in order to prevent yellowing and deterioration of the hard coat film due to ultraviolet rays. In order to impart light resistance to the hard coat layer, a commonly used method is to add an ultraviolet absorber to the curable composition that forms the hard coat layer. However, since the ultraviolet absorber absorbs an active energy ray for causing a curing reaction by radical polymerization, it usually inhibits the formation of a three-dimensional crosslinked structure of a polyfunctional acrylate. As described above, the scratch resistance and the light resistance of the hard coat layer are in a trade-off relationship, and it has been an issue to make both properties compatible. On the other hand, by using a polyfunctional urethane (meth)acrylate oligomer and a triazine-based UV absorber together, a hard coat layer having both constant light resistance and scratch resistance on a plastic film having a problem of light resistance. Has been reported (Patent Document 1).
特許第6020670号公報Japanese Patent No. 6020670
 しかし、特許文献1に記載のハードコート層では、波長300nm以上の領域の紫外線に対して比較的高い耐光性を有するものの、耐擦傷性が不足している課題があった。 However, although the hard coat layer described in Patent Document 1 has relatively high light resistance to ultraviolet rays in the wavelength region of 300 nm or more, it has a problem of insufficient scratch resistance.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端に、ポリ(オキシアルキレン)基を介さずにウレタン結合を介して、活性エネルギー線重合性基を有するパーフルオロポリエーテルと、特定の紫外線吸収剤とを含む硬化性組成物が、耐光性に課題のあるプラスチックフィルム上で、波長300nm以上のみならず300nm未満の領域の紫外線に対しても優れた耐光性を有し、且つ耐擦傷性に優れたハードコート層を形成可能なことを見出し、本発明を完成させた。 The present inventors have conducted extensive studies to achieve the above-mentioned object, and as a result, a perfluoropolyether containing a poly(oxyperfluoroalkylene) group, in which poly(oxyalkylene) is present at both ends of its molecular chain. Via a urethane bond without a group, a curable composition containing a perfluoropolyether having an active energy ray-polymerizable group and a specific ultraviolet absorber, on a plastic film having a problem in light resistance, The present invention has been completed by discovering that a hard coat layer having excellent light resistance not only to a wavelength of 300 nm or more but also to a wavelength of less than 300 nm and having excellent scratch resistance can be formed.
 すなわち本発明は、第1観点として、
(a)活性エネルギー線硬化性多官能モノマー100質量部、
(b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端に、ウレタン結合を介して、活性エネルギー線重合性基を有するパーフルオロポリエーテル(但し、前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合との間にポリ(オキシアルキレン)基を有するパーフルオロポリエーテルを除く。)0.05質量部~10質量部、
(c)ベンゾフェノン骨格を有する紫外線吸収剤0.1質量部~30質量部、及び
(d)活性エネルギー線によりラジカルを発生する重合開始剤1質量部~20質量部、
を含む、硬化性組成物に関する。
 第2観点として、前記(c)紫外線吸収剤が、ヒドロキシ基を少なくとも2つ有する、第1観点に記載の硬化性組成物に関する。
 第3観点として、前記(b)パーフルオロポリエーテルは、その分子鎖の両末端それぞれにウレタン結合を介して活性エネルギー線重合性基を少なくとも2つ有する、第1観点又は第2観点に記載の硬化性組成物に関する。
 第4観点として、前記(b)パーフルオロポリエーテルは、その分子鎖の両末端それぞれにウレタン結合を介して活性エネルギー線重合性基を少なくとも3つ有する、第3観点に記載の硬化性組成物に関する。
 第5観点として、前記ポリ(オキシパーフルオロアルキレン)基が、繰り返し単位-[OCF]-及び繰り返し単位-[OCFCF]-の双方を有し、これら繰り返し単位をブロック結合、ランダム結合、又は、ブロック結合及びランダム結合にて結合してなる基である、第1観点乃至第4観点のうち何れか一つに記載の硬化性組成物に関する。
 第6観点として、前記(c)パーフルオロポリエーテルが下記式[1]で表される部分構造を有する、第5観点に記載の硬化性組成物に関する。
Figure JPOXMLDOC01-appb-C000002
(上記式[1]中、
nは、繰り返し単位-[OCFCF]-の数と、繰り返し単位-[OCF]-の数との総数であって5~30の整数を表し、
前記繰り返し単位-[OCFCF]-と、前記繰り返し単位-[OCF]-は、ブロック結合、ランダム結合、又は、ブロック結合及びランダム結合の何れかにて結合してなる。)
 第7観点として、前記(a)多官能モノマーの一部又は全部が、多官能(メタ)アクリレート化合物である、第1観点乃至第6観点のうち何れか一つに記載の硬化性組成物に関する。
 第8観点として、前記(a)多官能モノマーが、オキシアルキレン変性多官能モノマーである、第1観点乃至第7観点のうち何れか一つに記載の硬化性組成物に関する。
 第9観点として、前記記(a)多官能モノマーが、活性エネルギー線重合性基を少なくとも3つ有する多官能モノマーである、第1観点乃至第8観点のうち何れか一つに記載の硬化性組成物。
 第10観点として、さらに(e)溶媒を含む、第1観点乃至第9観点のうち何れか一つに記載の硬化性組成物に関する。
 第11観点として、第1観点乃至第10観点のうち何れか一つに記載の硬化性組成物より得られる硬化膜に関する。
 第12観点として、フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムであって、該ハードコート層が第11観点に記載の硬化膜からなる、ハードコートフィルムに関する。
 第13観点として、フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムの製造方法であって、該ハードコート層が、第1観点乃至第10観点のうち何れか一つに記載の硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程と、該塗膜に活性エネルギー線を照射し硬化する工程とを含む、ハードコートフィルムの製造方法に関する。
That is, the present invention, as a first aspect,
(A) 100 parts by mass of active energy ray-curable polyfunctional monomer,
(B) A perfluoropolyether containing a poly(oxyperfluoroalkylene) group, which has an active energy ray-polymerizable group at both ends of its molecular chain via urethane bonds (however, 0.05 parts by mass to 10 parts by mass, excluding perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond.
(C) 0.1 part by mass to 30 parts by mass of an ultraviolet absorber having a benzophenone skeleton, and (d) 1 part by mass to 20 parts by mass of a polymerization initiator that generates a radical by an active energy ray.
And a curable composition comprising:
As a second aspect, the curable composition according to the first aspect, wherein the (c) ultraviolet absorber has at least two hydroxy groups.
As a third aspect, the above-mentioned (b) perfluoropolyether has at least two active energy ray-polymerizable groups via urethane bonds at both ends of its molecular chain. It relates to a curable composition.
As a fourth aspect, the curable composition according to the third aspect, wherein the (b) perfluoropolyether has at least three active energy ray-polymerizable groups via urethane bonds at both ends of its molecular chain. Regarding
As a fifth aspect, the poly(oxyperfluoroalkylene) group has both a repeating unit —[OCF 2 ]— and a repeating unit —[OCF 2 CF 2 ]—, and these repeating units are block-bonded or random-bonded. Or the curable composition according to any one of the first to fourth aspects, which is a group formed by a block bond and a random bond.
As a sixth aspect, the curable composition according to the fifth aspect, wherein the (c) perfluoropolyether has a partial structure represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000002
(In the above formula [1],
n is the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and represents an integer of 5 to 30,
The repeating unit —[OCF 2 CF 2 ]— and the repeating unit —[OCF 2 ]— are bonded by a block bond, a random bond, or a block bond and a random bond. )
As a seventh aspect, the curable composition according to any one of the first to sixth aspects, wherein a part or all of the (a) polyfunctional monomer is a polyfunctional (meth)acrylate compound. ..
An eighth aspect relates to the curable composition according to any one of the first to seventh aspects, in which the (a) polyfunctional monomer is an oxyalkylene-modified polyfunctional monomer.
As a ninth aspect, the curability according to any one of the first aspect to the eighth aspect, wherein the polyfunctional monomer (a) is a polyfunctional monomer having at least three active energy ray-polymerizable groups. Composition.
As a tenth aspect, the curable composition according to any one of the first to ninth aspects, further including (e) a solvent.
An eleventh aspect relates to a cured film obtained from the curable composition according to any one of the first to tenth aspects.
A twelfth aspect relates to a hard coat film having a hard coat layer on at least one surface of a film substrate, the hard coat layer comprising the cured film according to the eleventh aspect.
A thirteenth aspect is a method for producing a hard coat film having a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is described in any one of the first to tenth aspects. It relates to a method for producing a hard coat film, which comprises the steps of forming a coating film by applying the curable composition of (1) on a film substrate and irradiating the coating film with an active energy ray to cure the coating film.
 本発明によれば、厚さ1μm~15μm程度の薄膜においても優れた耐擦傷性を有し、且つ耐光性に優れる硬化膜及びハードコート層の形成に有用な硬化性組成物を提供することができる。
 また、本発明によれば、前記硬化性組成物より得られる硬化膜又はそれより形成されるハードコート層が表面に付与されたハードコートフィルムを提供することができ、耐擦傷性及び耐光性に優れるハードコートフィルムを提供することができる。
 特に本発明によれば、屋外で使用するディスプレイ表面等の基材表面への適用に好適となる、波長300nm以上のみならず300nm未満の波長領域の紫外線に対する優れた耐光性を有し、且つ耐擦傷性に優れたハードコート層を備えたハードコートフィルムを提供することができる。
According to the present invention, it is possible to provide a curable composition which has excellent scratch resistance even in a thin film having a thickness of about 1 μm to 15 μm and which is useful in forming a hard coat layer and a hard coat layer having excellent light resistance. it can.
Further, according to the present invention, it is possible to provide a hard coat film having a cured film obtained from the curable composition or a hard coat layer formed from the hardened film, which is provided on the surface, and the scratch resistance and the light resistance are improved. An excellent hard coat film can be provided.
In particular, according to the present invention, it has excellent light resistance to ultraviolet rays in a wavelength region of not less than 300 nm and less than 300 nm, which is suitable for application to a substrate surface such as a display surface used outdoors, and has an excellent light resistance. It is possible to provide a hard coat film provided with a hard coat layer having excellent scratch resistance.
<硬化性組成物>
 本発明の硬化性組成物は、詳細には、
(a)活性エネルギー線硬化性多官能モノマー100質量部、
(b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端に、ウレタン結合を介して、活性エネルギー線重合性基を有するパーフルオロポリエーテル(但し、前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合との間にポリ(オキシアルキレン)基を有するパーフルオロポリエーテルを除く。)0.05質量部~10質量部、
(c)ベンゾフェノン骨格を有する紫外線吸収剤0.1質量部~30質量部、及び
(d)活性エネルギー線によりラジカルを発生する重合開始剤1質量部~20質量部、
を含む、硬化性組成物に関する。
 以下、まず上記(a)~(d)の各成分について説明する。
<Curable composition>
The curable composition of the present invention specifically comprises
(A) 100 parts by mass of active energy ray-curable polyfunctional monomer,
(B) A perfluoropolyether containing a poly(oxyperfluoroalkylene) group, which has an active energy ray-polymerizable group at both ends of its molecular chain via urethane bonds (however, 0.05 parts by mass to 10 parts by mass, excluding perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond.
(C) 0.1 part by mass to 30 parts by mass of an ultraviolet absorber having a benzophenone skeleton, and (d) 1 part by mass to 20 parts by mass of a polymerization initiator that generates a radical by an active energy ray.
And a curable composition comprising:
Hereinafter, each of the components (a) to (d) will be described first.
[(a)活性エネルギー線硬化性多官能モノマー]
 (a)成分の活性エネルギー線硬化性多官能モノマー(以下、単に「(a)多官能モノマー」とも称する)とは、紫外線等の活性エネルギー線を照射することで重合反応が進行し硬化する活性エネルギー線重合性基を2つ以上有するモノマーを指す。前記活性エネルギー線重合性基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 本発明の硬化性組成物において好ましい(a)活性エネルギー線硬化性多官能モノマーとしては、多官能(メタ)アクリレート化合物からなる群から選択されるモノマーを挙げることができ、また後述する多官能ウレタン(メタ)アクリレート化合物からなる群から選択されるモノマーや、ラクトン変性多官能(メタ)アクリレート化合物からなる群から選択されるモノマーを挙げることができる。本発明では、上記(a)活性エネルギー線硬化性多官能モノマーとして、上記多官能(メタ)アクリレート化合物からなる群から一種を単独で、或いは二種以上を組合せて使用することができる。
 なお、本発明において(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
 また上記(a)多官能モノマーはオキシアルキレン変性多官能モノマーであってよく、該オキシアルキレン変性としては、オキシメチレン変性、オキシエチレン変性、オキシプロピレン変性等が挙げられる。該オキシアルキレン変性多官能モノマーとしては上記の多官能(メタ)アクリレート化合物(または多官能ウレタン(メタ)アクリレート化合物)においてオキシアルキレン変性した化合物を挙げることができる。該オキシアルキレン変性多官能モノマーも一種を単独で、或いは二種以上を組合せて使用することができる。
 また本発明では、上記(a)多官能モノマーとして、活性エネルギー線重合性基を少なくとも3つ、例えば少なくとも4つ有する多官能モノマーを使用することができる。
 例えば本発明では、上記(a)多官能モノマーとして、活性エネルギー線重合性基を少なくとも3つ有する、オキシアルキレン変性多官能(メタ)アクリレート化合物からなる群から選択されるモノマーを用いることができる。
[(A) Active energy ray curable polyfunctional monomer]
The active energy ray-curable polyfunctional monomer of component (a) (hereinafter, also simply referred to as “(a) polyfunctional monomer”) is an activity that causes a polymerization reaction to proceed and cure upon irradiation with active energy rays such as ultraviolet rays. It refers to a monomer having two or more energy ray-polymerizable groups. Examples of the active energy ray-polymerizable group include (meth)acryloyl group and vinyl group.
Examples of the preferable (a) active energy ray-curable polyfunctional monomer in the curable composition of the present invention include a monomer selected from the group consisting of polyfunctional (meth)acrylate compounds, and the polyfunctional urethane described below. Examples thereof include a monomer selected from the group consisting of (meth)acrylate compounds and a monomer selected from the group consisting of lactone-modified polyfunctional (meth)acrylate compounds. In the present invention, as the (a) active energy ray-curable polyfunctional monomer, one kind selected from the group consisting of the polyfunctional (meth)acrylate compounds may be used alone, or two or more kinds may be used in combination.
In addition, in this invention, a (meth)acrylate compound means both an acrylate compound and a methacrylate compound. For example, (meth)acrylic acid refers to acrylic acid and methacrylic acid.
The polyfunctional monomer (a) may be an oxyalkylene-modified polyfunctional monomer, and examples of the oxyalkylene modification include oxymethylene modification, oxyethylene modification, and oxypropylene modification. Examples of the oxyalkylene-modified polyfunctional monomer include compounds obtained by modifying the above polyfunctional (meth)acrylate compound (or polyfunctional urethane (meth)acrylate compound) with oxyalkylene. The oxyalkylene-modified polyfunctional monomer may be used alone or in combination of two or more.
Further, in the present invention, as the (a) polyfunctional monomer, a polyfunctional monomer having at least 3 active energy ray-polymerizable groups, for example, at least 4 can be used.
For example, in the present invention, as the polyfunctional monomer (a), a monomer selected from the group consisting of oxyalkylene-modified polyfunctional (meth)acrylate compounds having at least three active energy ray-polymerizable groups can be used.
 上記多官能(メタ)アクリレート化合物(ウレタン結合を有していない化合物)としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ビス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ビス[4-(メタ)アクリロイルチオフェニル]スルフィド、ビス[2-(メタ)アクリロイルチオエチル]スルフィド、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等を挙げることができる。
 中でも好ましい多官能(メタ)アクリレート化合物として、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。
Examples of the polyfunctional (meth)acrylate compound (compound having no urethane bond) include trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol di(meth)acrylate, penta Erythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, glycerin tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate , Ethoxylated pentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol hexa(meth)acrylate, ethoxylated glycerin tri(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, 1,3-propanediol di(meth ) Acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-methyl-1,8-octanediol di (Meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth) ) Acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, bis(2-hydroxyethyl)isocyanurate di(meth ) Acrylate, tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate, tricyclo[5.2.1.0 2,6 ]decanedimethanol di(meth)acrylate, dioxane glycol di(meth)acrylate, 2- Hydroxy-1-acryloyloxy-3-methacryloyloxypropane, 2-hydroxy-1,3-di(meth)acryloyloxypropane, 9,9-bis[4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene , Bis[4-(meth)acryloylthiophenyl] sulfide, bis[2-(meth)acryloylthioethyl] sulfide, 1,3-adama Examples include ethanediol di(meth)acrylate, 1,3-adamantan dimethanol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, and the like.
Among them, preferable polyfunctional (meth)acrylate compounds include pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like. ..
 また上記オキシアルキレン変性多官能(メタ)アクリレート化合物としては、例えば、オキシアルキレンで変性されたポリオールの(メタ)アクリレート化合物が挙げられる。
 該ポリオールとしては、例えば、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ペンタグリセリン、ヘキサグリセリン、デカグリセリン、ポリグリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
Examples of the oxyalkylene-modified polyfunctional (meth)acrylate compound include (oxy)alkylene-modified (meth)acrylate compounds of polyols.
Examples of the polyol include glycerin, diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, decaglycerin, polyglycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol and the like.
 上記多官能ウレタン(メタ)アクリレート化合物は、1分子内にアクリロイル基又はメタクリロイル基を複数有し、ウレタン結合(-NHCOO-)を一つ以上有する化合物である。
 上記多官能ウレタン(メタ)アクリレート化合物としては、例えば、多官能イソシアネートとヒドロキシ基を有する(メタ)アクリレートとの反応により得られるもの、多官能イソシアネートとヒドロキシ基を有する(メタ)アクリレートとポリオールとの反応により得られるものなどが挙げられるが、本発明で使用可能な多官能ウレタン(メタ)アクリレート化合物はかかる例示のみに限定されるものではない。
The polyfunctional urethane (meth)acrylate compound is a compound having a plurality of acryloyl groups or methacryloyl groups in one molecule and one or more urethane bond (—NHCOO—).
Examples of the polyfunctional urethane (meth)acrylate compound include those obtained by reacting a polyfunctional isocyanate with a (meth)acrylate having a hydroxy group, a polyfunctional isocyanate, a (meth)acrylate having a hydroxy group, and a polyol. Examples thereof include those obtained by the reaction, but the polyfunctional urethane (meth)acrylate compound usable in the present invention is not limited to these examples.
 なお上記多官能イソシアネートとしては、例えば、トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
 また上記ヒドロキシ基を有する(メタ)アクリレートとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート等が挙げられる。
 そして上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール等のジオール類;これらジオール類とコハク酸、マレイン酸、アジピン酸等の脂肪族ジカルボン酸類又はジカルボン酸無水物類との反応生成物であるポリエステルポリオール;ポリエーテルポリオール;ポリカーボネートジオール等が挙げられる。
Examples of the polyfunctional isocyanate include tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, and the like.
Examples of the (meth)acrylate having a hydroxy group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate. Examples thereof include acrylate and tripentaerythritol hepta(meth)acrylate.
Examples of the above-mentioned polyol include diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol; these diols and succinic acid, maleic acid. Examples thereof include polyester polyols, polyether polyols, polycarbonate diols and the like, which are reaction products of aliphatic dicarboxylic acids such as acids and adipic acid or dicarboxylic acid anhydrides.
 (a)活性エネルギー線多官能モノマーはラクトン変性多官能(メタ)アクリレート化合物であってもよく、変性するラクトンとしてε-カプロラクトンが好ましい。該ラクトン変性多官能(メタ)アクリレート化合物としては、例えば、ε-カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 (A) The active energy ray polyfunctional monomer may be a lactone modified polyfunctional (meth)acrylate compound, and ε-caprolactone is preferable as the lactone to be modified. Examples of the lactone-modified polyfunctional (meth)acrylate compound include ε-caprolactone-modified pentaerythritol tri(meth)acrylate, ε-caprolactone-modified pentaerythritol tetra(meth)acrylate, ε-caprolactone-modified dipentaerythritol penta(meth). Examples thereof include acrylates and ε-caprolactone-modified dipentaerythritol hexa(meth)acrylate.
[(b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端に、ウレタン結合を介して、活性エネルギー線重合性基を有するパーフルオロポリエーテル(但し、前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合との間にポリ(オキシアルキレン)基を有するパーフルオロポリエーテルを除く。)]
 本発明では、(b)成分として、ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端に、ポリ(オキシアルキレン)基を介さずにウレタン結合を介して、活性エネルギー線重合性基を有するパーフルオロポリエーテル(以降、単に「(b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテル」とも称する)を使用する。(b)成分は、本発明の硬化性組成物を適用するハードコート層における表面改質剤としての役割を果たす。
 また、(b)成分は、(a)成分との相溶性に優れ、それにより、ハードコート層が白濁するのを抑制して、透明な外観を呈するハードコート層の形成を可能とする。
 尚、上記のポリ(オキシアルキレン)基とは、オキシアルキレン基の繰り返し単位数が2以上であり且つオキシアルキレン基におけるアルキレン基は無置換のアルキレン基である基を意図する。
[(B) A perfluoropolyether containing a poly(oxyperfluoroalkylene) group, which has active energy ray-polymerizable groups at both ends of its molecular chain via urethane bonds (provided that , Except for perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond.)]
In the present invention, the component (b) is a perfluoropolyether containing a poly(oxyperfluoroalkylene) group, and a urethane bond is introduced at both ends of the molecular chain thereof without interposing the poly(oxyalkylene) group. Then, a perfluoropolyether having an active energy ray-polymerizable group (hereinafter, also simply referred to as “(b) perfluoropolyether having a polymerizable group at both ends of a molecular chain”) is used. The component (b) serves as a surface modifier in the hard coat layer to which the curable composition of the present invention is applied.
Further, the component (b) has excellent compatibility with the component (a), thereby suppressing the clouding of the hard coat layer and enabling the formation of a hard coat layer having a transparent appearance.
The above poly(oxyalkylene) group means a group in which the number of repeating units of the oxyalkylene group is 2 or more and the alkylene group in the oxyalkylene group is an unsubstituted alkylene group.
 上記ポリ(オキシパーフルオロアルキレン)基におけるアルキレン基の炭素原子数は特に限定されないが、炭素原子数1~4であることが好ましい。すなわち、上記ポリ(オキシパーフルオロアルキレン)基は、炭素原子数1~4の2価のフッ化炭素基と酸素原子が交互に連結した構造を有する基を指し、オキシパーフルオロアルキレン基は炭素原子数1~4の2価のフッ化炭素基と酸素原子が連結した構造を有する基を指す。具体的には、-[OCF]-(オキシパーフルオロメチレン基)、-[OCFCF]-(オキシパーフルオロエチレン基)、-[OCFCFCF]-(オキシパーフルオロプロパン-1,3-ジイル基)、-[OCFC(CF)F]-(オキシパーフルオロプロパン-1,2-ジイル基)等の基が挙げられる。
 上記オキシパーフルオロアルキレン基は、一種を単独で使用してもよく、或いは二種以上を組み合わせて使用してもよく、その場合、複数種のオキシパーフルオロアルキレン基の結合はブロック結合及びランダム結合の何れであってもよい。
The number of carbon atoms of the alkylene group in the above poly(oxyperfluoroalkylene) group is not particularly limited, but it is preferably 1 to 4 carbon atoms. That is, the poly(oxyperfluoroalkylene) group refers to a group having a structure in which a divalent fluorocarbon group having 1 to 4 carbon atoms and an oxygen atom are alternately linked, and the oxyperfluoroalkylene group is a carbon atom. It refers to a group having a structure in which a divalent fluorocarbon group of formulas 1 to 4 and an oxygen atom are linked. Specifically, -[OCF 2 ]-(oxyperfluoromethylene group), -[OCF 2 CF 2 ]-(oxyperfluoroethylene group), -[OCF 2 CF 2 CF 2 ]-(oxyperfluoropropane Examples thereof include groups such as -1,3-diyl group) and -[OCF 2 C(CF 3 )F]-(oxyperfluoropropane-1,2-diyl group).
The above oxyperfluoroalkylene groups may be used alone or in combination of two or more, and in that case, the bonds of plural kinds of oxyperfluoroalkylene groups are a block bond and a random bond. Either of them may be used.
 これらの中でも、耐擦傷性が良好となる硬化膜が得られる観点から、ポリ(オキシパーフルオロアルキレン)基として、-[OCF]-(オキシパーフルオロメチレン基)と-[OCFCF]-(オキシパーフルオロエチレン基)の双方を繰り返し単位として有する基を用いることが好ましい。
 中でも上記ポリ(オキシパーフルオロアルキレン)基として、繰り返し単位:-[OCF]-と-[OCFCF]-とが、モル比率で[繰り返し単位:-[OCF]-]:[繰り返し単位:-[OCFCF]-]=2:1~1:2となる割合で含む基であることが好ましく、およそ1:1となる割合で含む基であることがより好ましい。これら繰り返し単位の結合は、ブロック結合及びランダム結合の何れであってもよい。
 上記オキシパーフルオロアルキレン基の繰り返し単位数は、その繰り返し単位数の総計として5~30の範囲であることが好ましく、7~21の範囲であることがより好ましい。
 また、上記ポリ(オキシパーフルオロアルキレン)基のゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算で測定される重量平均分子量(Mw)は、1,000~5,000、好ましくは1,500~3,000である。
Among these, from the viewpoint of obtaining a cured film having good scratch resistance, as poly(oxyperfluoroalkylene) groups, -[OCF 2 ]-(oxyperfluoromethylene group) and -[OCF 2 CF 2 ] are used. It is preferable to use a group having both —(oxyperfluoroethylene group) as a repeating unit.
Among them, as the above poly(oxyperfluoroalkylene) group, repeating units: -[OCF 2 ]- and -[OCF 2 CF 2 ]- are in a molar ratio of [repeating unit: -[OCF 2 ]-]: [repeat Unit: —[OCF 2 CF 2 ]—] is preferably a group containing at a ratio of 2:1 to 1:2, and more preferably a group containing at a ratio of about 1:1. The bond of these repeating units may be either a block bond or a random bond.
The total number of repeating units of the oxyperfluoroalkylene group is preferably in the range of 5 to 30, and more preferably in the range of 7 to 21.
The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the above poly(oxyperfluoroalkylene) group in terms of polystyrene is 1,000 to 5,000, preferably 1,500 to 3, It is 000.
 上記活性エネルギー線重合性基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。 As the above-mentioned active energy ray-polymerizable group, a (meth)acryloyl group, a vinyl group and the like can be mentioned.
 (b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテルは、(メタ)アクリロイル基等の活性エネルギー線重合性基を1つ該分子鎖の両末端に有するものに限られず、2つ以上の活性エネルギー線重合性基を該分子鎖の両末端に有するものであってもよく、例えば、活性エネルギー線重合性基を含む末端構造としては、以下に示す式[A1]~式[A5]の構造、及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造が挙げられる。 The perfluoropolyether having a polymerizable group at both ends of the molecular chain (b) is not limited to one having one active energy ray-polymerizable group such as a (meth)acryloyl group at both ends of the molecular chain. It may have one or more active energy ray-polymerizable groups at both ends of the molecular chain. For example, as the terminal structure containing the active energy ray-polymerizable groups, the following formulas [A1] to [A A5] and the structures in which the acryloyl group in these structures is substituted with a methacryloyl group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 このような(b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテルとしては、例えば、以下の式[2]で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
(式[2]中、Aは前記式[A1]~式[A5]で表される構造及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造のうちの1つを表し、PFPEは前記ポリ(オキシパーフルオロアルキレン)基を表し(ただし、Lと直接結合する側がオキシ末端であり、酸素原子と結合する側がパーフルオロアルキレン末端である。)、Lは、フッ素原子1個~3個で置換された炭素原子数2又は3のアルキレン基を表し、mはそれぞれ独立して1~5の整数を表し、Lは、m+1価のアルコールからOHを除いたm+1価の残基を表す。)
Examples of such a perfluoropolyether having a polymerizable group at both ends of the molecular chain (b) include compounds represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000004
(In the formula [2], A represents one of the structures represented by the formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is substituted with a methacryloyl group, and PFPE represents Represents a poly(oxyperfluoroalkylene) group (provided that the side directly bonded to L 1 is an oxy terminal and the side bonded to an oxygen atom is a perfluoroalkylene terminal), and L 1 is 1 to 3 fluorine atoms. Represents an alkylene group having 2 or 3 carbon atoms, each of which is independently substituted with m, independently represents an integer of 1 to 5, and L 2 represents an m+1-valent residue obtained by removing OH from an m+1-valent alcohol. Represents.)
 上記フッ素原子1個~3個で置換された炭素原子数2又は3のアルキレン基としては、-CHCHF-、-CHCF-、-CHFCF-、-CHCHCHF-、-CHCHCF-、-CHCHFCF-等が挙げられ、-CHCF-が好ましい。 The alkylene group of the fluorine atom 1 to carbon atoms substituted with three 2 or 3, -CH 2 CHF -, - CH 2 CF 2 -, - CHFCF 2 -, - CH 2 CH 2 CHF-, Examples thereof include —CH 2 CH 2 CF 2 — and —CH 2 CHFCF 2 —, and —CH 2 CF 2 — is preferable.
 上記式[2]で表される化合物における部分構造(A-NHC(=O)O)-としては、以下に示す式[B1]~式[B12]で表される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(式[B1]~式[B12]中、Aは前記式[A1]~式[A5]で表される構造及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造のうちの1つを表す。)
 上記式[B1]~式[B12]で表される構造の中で、式[B1]及び式[B2]がm=1の場合に相当し、式[B3]~式[B6]がm=2の場合に相当し、式[B7]~式[B9]がm=3の場合に相当し、式[B10]~式[B12]がm=5の場合に相当する。
 これらの中でも、式[B3]で表される構造が好ましく、特に式[B3]と式[A3]の組合せが好ましい。
Examples of the partial structure (A-NHC(═O)O) m L 2 — in the compound represented by the above formula [2] include structures represented by the following formulas [B1] to [B12]. To be
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(In the formulas [B1] to [B12], A represents one of the structures represented by the above formulas [A1] to [A5] and the structure in which the acryloyl group in these structures is substituted with a methacryloyl group. Represents.)
In the structures represented by the above formulas [B1] to [B12], the formula [B1] and the formula [B2] correspond to the case where m=1, and the formulas [B3] to [B6] are m= This corresponds to the case of 2, the expression [B7] to the expression [B9] correspond to the case of m=3, and the expression [B10] to the expression [B12] correspond to the case of m=5.
Among these, the structure represented by the formula [B3] is preferable, and the combination of the formula [B3] and the formula [A3] is particularly preferable.
 好ましい、(b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテルとしては、下記式[1]で表される部分構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式[1]で表される部分構造は、前記式[2]で表される化合物から、A-NHC(=O)を除いた部分に相当する。
 上記式[1]中のnは、繰り返し単位-[OCFCF]-の数と、繰り返し単位-[OCF]-の数との総数を表し、5~30の範囲の整数が好ましく、7~21の範囲の整数がより好ましい。また、前記繰り返し単位-[OCFCF]-の数と、前記繰り返し単位-[OCF]-の数との比率は、2:1~1:2の範囲であることが好ましく、およそ1:1の範囲とすることがより好ましい。これら繰り返し単位の結合は、ブロック結合及びランダム結合の何れであってもよい。
As the preferable (b) perfluoropolyether having a polymerizable group at both ends of the molecular chain, a compound having a partial structure represented by the following formula [1] can be mentioned.
Figure JPOXMLDOC01-appb-C000007
The partial structure represented by the above formula [1] corresponds to a portion obtained by removing A—NHC(═O) from the compound represented by the above formula [2].
In the above formula [1], n represents the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and is preferably an integer in the range of 5 to 30, An integer in the range of 7 to 21 is more preferable. The ratio of the number of repeating units —[OCF 2 CF 2 ]— to the number of repeating units —[OCF 2 ]— is preferably in the range of 2:1 to 1:2, and is approximately 1 It is more preferable that the ratio is in the range of 1:1. The bond of these repeating units may be either a block bond or a random bond.
 本発明において(b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテルは、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、0.05質量部~10質量部、好ましくは0.1質量部~5質量部の割合で使用する。
 (b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテルを0.05質量部以上の割合で使用することで、ハードコート層に十分な耐擦傷性を付与することができる。また、(b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテルを10質量部以下の割合で使用することにより、(a)活性エネルギー線硬化性多官能モノマーと十分に相溶し、より白濁の少ないハードコート層を得ることができる。
In the present invention, (b) the perfluoropolyether having a polymerizable group at both ends of the molecular chain is 0.05 to 10 parts by mass with respect to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. It is used in an amount of 0.1 part by mass, preferably 0.1 part by mass to 5 parts by mass.
(B) By using the perfluoropolyether having a polymerizable group at both ends of the molecular chain in a proportion of 0.05 parts by mass or more, sufficient scratch resistance can be imparted to the hard coat layer. Further, by using (b) the perfluoropolyether having a polymerizable group at both ends of the molecular chain in a proportion of 10 parts by mass or less, it is sufficiently compatible with (a) the active energy ray-curable polyfunctional monomer. A hard coat layer with less white turbidity can be obtained.
 上記(b)分子鎖の両末端に重合性基を有するパーフルオロポリエーテルは、例えば、下記式[3]
Figure JPOXMLDOC01-appb-C000008
(式[3]中、PFPE、L、L及びmは、前記式[2]と同じ意味を表す。)で表される化合物の両末端に存在するヒドロキシ基に対して、重合性基を有するイソシアネート化合物、即ち、前記式[A1]~式[A5]で表される構造及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造における結合手にイソシアナト基が結合した化合物(例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等)を反応させてウレタン結合を形成することにより得ることができる。
The perfluoropolyether having a polymerizable group at both ends of the molecular chain (b) is, for example, a compound represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000008
(In the formula [3], PFPE, L 1 , L 2 and m have the same meanings as those in the formula [2].) A polymerizable group for the hydroxy group present at both terminals of the compound represented by the formula [2]. An isocyanate compound having, that is, a compound in which an isocyanato group is bonded to a bond in a structure represented by the above formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is replaced with a methacryloyl group (for example, It can be obtained by reacting 2-(meth)acryloyloxyethyl isocyanate, 1,1-bis((meth)acryloyloxymethyl)ethyl isocyanate, etc.) to form a urethane bond.
 なお本発明の硬化性組成物には、(b)ポリ(オキシパーフルオロアルキレン)基をパーフルオロポリエーテルであって、その分子鎖の両末端に、ウレタン結合を介して、活性エネルギー線重合性基を有するパーフルオロポリエーテル(但し、前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合との間にポリ(オキシアルキレン)基を有さない。)に加えて、ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の片末端(一方の末端)にウレタン結合を介して、活性エネルギー線重合性基を有し、且つ該分子鎖の他端(もう一方の末端)にヒドロキシ基を有するパーフルオロポリエーテル(但し、前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合との間並びに前記ポリ(オキシパーフルオロアルキレン)基と前記ヒドロキシ基との間にポリ(オキシアルキレン)基を有さない。)や、上記式[3]で表されるような、ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端にヒドロキシ基を有するパーフルオロポリエーテル(但し、前記ポリ(オキシパーフルオロアルキレン)基と前記ヒドロキシ基との間にポリ(オキシアルキレン)基を有さない。)[活性エネルギー線重合性基を有していない化合物]が含まれていてもよい。 The curable composition of the present invention comprises (b) a poly(oxyperfluoroalkylene) group which is a perfluoropolyether, and has active energy ray-polymerizable properties at both ends of its molecular chain via urethane bonds. In addition to a perfluoropolyether having a group (provided that the poly(oxyperfluoroalkylene) group and the urethane bond do not have a poly(oxyalkylene) group), poly(oxyperfluoroalkylene) A perfluoropolyether containing a group, which has an active energy ray-polymerizable group at one end (one end) of its molecular chain through a urethane bond, and the other end of the molecular chain (the other end). A perfluoropolyether having a hydroxy group at the end (provided that the poly(oxyperfluoroalkylene) group is between the urethane bond and the poly(oxyperfluoroalkylene) group is between the hydroxy group. No. oxyalkylene) group) or a poly(oxyperfluoroalkylene) group-containing perfluoropolyether represented by the above formula [3], in which hydroxy groups are present at both ends of the molecular chain. Group-containing perfluoropolyether (provided that there is no poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the hydroxy group.) [has an active energy ray-polymerizable group No compound] may be included.
[(c)ベンゾフェノン骨格を有する紫外線吸収剤]
 本発明の硬化性組成物には(c)成分としてベンゾフェノン骨格を有する紫外線吸収剤を使用することを特徴とする。
 特に本発明では、上記ベンゾフェノン骨格を有する紫外線吸収剤の中でもヒドロキシ基を少なくとも2つ有する化合物、すなわち、ベンゾフェノン骨格を構成する2つのベンゼン環において少なくとも2つの水素原子がヒドロキシ基で置換された化合物を採用することが好適である。
 このように、本発明において、(c)ベンゾフェノン骨格を有する紫外線吸収剤を採用することにより、波長300nm以上のみならず300nm未満の領域の紫外線に対する優れた耐光性を有するハードコート層を形成することができる。そして該ハードコート層を備えるハードコートフィルムは、屋外で使用するディスプレイ表面等の基材表面への適用が好適となる、耐光性に優れたハードコートフィルムとすることができる。
[(C) Ultraviolet absorber having benzophenone skeleton]
The curable composition of the present invention is characterized by using an ultraviolet absorber having a benzophenone skeleton as the component (c).
Particularly in the present invention, among the ultraviolet absorbers having a benzophenone skeleton, a compound having at least two hydroxy groups, that is, a compound in which at least two hydrogen atoms in two benzene rings constituting the benzophenone skeleton are substituted with a hydroxy group is used. It is preferable to adopt.
As described above, in the present invention, by adopting (c) an ultraviolet absorber having a benzophenone skeleton, a hard coat layer having excellent light resistance not only to wavelengths of 300 nm or more but also to wavelengths of less than 300 nm can be formed. You can The hard coat film including the hard coat layer can be a hard coat film having excellent light resistance, which is suitable for application to the surface of a base material such as a display surface used outdoors.
 上記ベンゾフェノン骨格を有する紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン(オキシベンゾン-3)、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸塩、4-フェニルベンゾフェノン、2-エチルヘキシル-4’-フェニルベンゾフェノン-2-カルボキシレート、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、4-ヒドロキシ-3-カルボキシベンゾフェノンなどが挙げられる。 Examples of the ultraviolet absorber having a benzophenone skeleton include 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ',4,4'-Tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone (oxybenzone-3), 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2-hydroxy-4-methoxybenzophenone-5 Examples thereof include sulfonate, 4-phenylbenzophenone, 2-ethylhexyl-4′-phenylbenzophenone-2-carboxylate, 2-hydroxy-4-n-octoxybenzophenone and 4-hydroxy-3-carboxybenzophenone.
 本発明において(c)ベンゾフェノン骨格を有する紫外線吸収剤は、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、0.1質量部~30質量部、好ましくは1質量部~15質量部の割合で使用することが望ましい。 In the present invention, the ultraviolet absorber (c) having a benzophenone skeleton is 0.1 to 30 parts by mass, preferably 1 part by mass with respect to 100 parts by mass of the active energy ray-curable polyfunctional monomer (a). It is desirable to use it in a proportion of about 15 parts by mass.
[(d)活性エネルギー線によりラジカルを発生する重合開始剤]
 本発明の硬化性組成物において好ましい活性エネルギー線によりラジカルを発生する重合開始剤(以下、単に「(d)重合開始剤」とも称する)は、例えば、電子線、紫外線、X線等の活性エネルギー線により、特に紫外線照射によりラジカルを発生する重合開始剤である。
 上記(d)重合開始剤としては、例えばベンゾイン類、アルキルフェノン類、チオキサントン類、アゾ類、アジド類、ジアゾ類、o-キノンジアジド類、アシルホスフィンオキシド類、オキシムエステル類、有機過酸化物、ベンゾフェノン類、ビスクマリン類、ビスイミダゾール類、チタノセン類、チオール類、ハロゲン化炭化水素類、トリクロロメチルトリアジン類、及びヨードニウム塩、スルホニウム塩などのオニウム塩類等が挙げられる。これらは一種単独で或いは二種以上を混合して用いてもよい。
 中でも本発明では、透明性、表面硬化性、薄膜硬化性の観点から、(d)重合開始剤として、アシルホスフィンオキシド類、アルキルフェノン類を使用することが好ましい。アシルホスフィンオキシド類、アルキルフェノン類を使用することにより、耐擦傷性がより向上した硬化膜を得ることができる。
[(D) Polymerization initiator that generates radicals by active energy rays]
In the curable composition of the present invention, a polymerization initiator that generates a radical by a preferable active energy ray (hereinafter, also simply referred to as “(d) polymerization initiator”) is, for example, an active energy such as an electron beam, an ultraviolet ray or an X-ray. It is a polymerization initiator that generates radicals by irradiation of rays, especially by irradiation of ultraviolet rays.
Examples of the (d) polymerization initiator include benzoins, alkylphenones, thioxanthones, azos, azides, diazos, o-quinonediazides, acylphosphine oxides, oxime esters, organic peroxides, and benzophenone. And biscoumarins, bisimidazoles, titanocenes, thiols, halogenated hydrocarbons, trichloromethyltriazines, and onium salts such as iodonium salts and sulfonium salts. You may use these individually by 1 type or in mixture of 2 or more types.
Among them, in the present invention, it is preferable to use acylphosphine oxides and alkylphenones as the (d) polymerization initiator from the viewpoints of transparency, surface curability, and thin film curability. By using the acylphosphine oxides and the alkylphenones, a cured film having further improved scratch resistance can be obtained.
 上記アシルホスフィンオキシド類としては、例えば、フェニルビス(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシドなどが挙げられる。 Examples of the acylphosphine oxides include phenylbis(2,4,6-trimethoxybenzoyl)phosphine oxide and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide.
 上記アルキルフェノン類としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチルプロパン-1-オン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン等のα-ヒドロキシアルキルフェノン類;2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン等のα-アミノアルキルフェノン類;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン;フェニルグリオキシル酸メチルなどが挙げられる。 Examples of the alkylphenones include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl) Α-hydroxy such as 2-methylpropan-1-one and 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one Alkylphenones; 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one And α-aminoalkylphenones; 2,2-dimethoxy-1,2-diphenylethan-1-one; methyl phenylglyoxylate and the like.
 本発明において(d)重合開始剤は、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、1質量部~20質量部、好ましくは2質量部~10質量部の割合で使用することが望ましい。 In the present invention, the proportion of the polymerization initiator (d) is 1 part by mass to 20 parts by mass, preferably 2 parts by mass to 10 parts by mass, relative to 100 parts by mass of the active energy ray-curable polyfunctional monomer (a). It is desirable to use.
[(e)溶媒]
 本発明の硬化性組成物は、更に(e)溶媒を含んでいてもよく、すなわちワニス(膜形成材料)の形態としてもよい。
 上記溶媒としては、前記(a)成分~(d)成分を溶解し、また後述する硬化膜(ハードコート層)形成にかかる塗工時の作業性や硬化前後の乾燥性等を考慮して適宜選択すればよい。例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族又は脂環式炭化水素類;塩化メチル、臭化メチル、ヨウ化メチル、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、o-ジクロロベンゼン等のハロゲン化物類;酢酸エチル、酢酸プロピル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のエステル類又はエステルエーテル類;ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル等のエーテル類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジ-n-ブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、tert-ブチルアルコール、2-エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール等のアルコール類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド類;ジメチルスルホキシド(DMSO)等のスルホキシド類、並びにこれらの溶媒のうち2種以上を混合した溶媒が挙げられる。
 (e)溶媒の使用量は特に限定されないが、例えば本発明の硬化性組成物における固形分濃度が1質量%~70質量%、好ましくは5質量%~50質量%となる濃度で使用する。ここで固形分濃度(不揮発分濃度とも称する)とは、本発明の硬化性組成物の前記(a)成分~(d)成分(及び所望によりその他添加剤)の総質量(合計質量)に対する固形分(全成分から溶媒成分を除いたもの)の含有量を表す。
[(E) solvent]
The curable composition of the present invention may further contain (e) a solvent, that is, in the form of a varnish (film forming material).
The above solvent is appropriately dissolved in the above components (a) to (d) in consideration of workability at the time of coating for forming a cured film (hard coat layer) described later and drying property before and after curing. Just select it. For example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirits and cyclohexane; methyl chloride, methyl bromide, Halides such as methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene; ethyl acetate, propyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene Esters or ester ethers such as glycol monomethyl ether acetate (PGMEA); diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl Ethers such as ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol mono-n-butyl ether; acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), di-n-butyl ketone, cyclohexanone Such as ketones; alcohols such as methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, tert-butyl alcohol, 2-ethylhexyl alcohol, benzyl alcohol, ethylene glycol; N,N-dimethylformamide ( DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and other amides; dimethylsulfoxide (DMSO) and other sulfoxides, and two or more of these solvents were mixed. Solvents may be mentioned.
Although the amount of the solvent (e) used is not particularly limited, it is used at a concentration such that the solid content concentration in the curable composition of the present invention is 1% by mass to 70% by mass, preferably 5% by mass to 50% by mass. Here, the solid content concentration (also referred to as non-volatile content concentration) means the solid content with respect to the total mass (total mass) of the components (a) to (d) (and optionally other additives) of the curable composition of the present invention. Indicates the content of the component (all components excluding the solvent component).
[その他添加物]
 また、本発明の硬化性組成物には、本発明の効果を損なわない限り、必要に応じて一般的に添加される添加剤、例えば、重合促進剤、重合禁止剤、光増感剤、レベリング剤、界面活性剤、密着性付与剤、可塑剤、上記以外の紫外線吸収剤、光安定剤、酸化防止剤、貯蔵安定剤、帯電防止剤、無機充填剤、顔料、染料等を適宜配合してよい。
 また、硬化膜のヘーズ値を制御する目的で、酸化チタン等の無機微粒子やポリメタクリル酸メチル粒子等の有機微粒子を配合してもよい。
[Other additives]
Further, the curable composition of the present invention, unless impairing the effects of the present invention, additives generally added as necessary, for example, a polymerization accelerator, a polymerization inhibitor, a photosensitizer, leveling Agents, surfactants, adhesion promoters, plasticizers, ultraviolet absorbers other than the above, light stabilizers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, etc. Good.
Further, for the purpose of controlling the haze value of the cured film, inorganic fine particles such as titanium oxide or organic fine particles such as polymethylmethacrylate particles may be blended.
<硬化膜>
 本発明の硬化性組成物は、基材上に塗布(コーティング)して塗膜を形成し、該塗膜に活性エネルギー線を照射して重合(硬化)させることにより、硬化膜を形成できる。該硬化膜も本発明の対象である。また後述するハードコートフィルムにおけるハードコート層を該硬化膜からなるものとすることができる。
 この場合の前記基材としては、例えば、各種樹脂(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル、ポリウレタン、熱可塑性ポリウレタン(TPU)、ポリオレフィン、ポリアミド、ポリイミド、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース(TAC)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-スチレン共重合体(AS)、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、スレート等を挙げることができる。これら基材の形状は板状、フィルム状又は3次元成形体でもよい。
<Cured film>
The curable composition of the present invention can form a cured film by applying (coating) on a substrate to form a coating film, and irradiating the coating film with an active energy ray to polymerize (curing). The cured film is also an object of the present invention. Further, the hard coat layer in the hard coat film described later can be made of the cured film.
Examples of the base material in this case include various resins (polycarbonate, polymethacrylate, polystyrene, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polyolefin, polyamide, Polyimide, epoxy resin, melamine resin, triacetyl cellulose (TAC), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), norbornene-based resin, etc.), metal, wood, paper, glass , Slate and the like. The shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
 前記基材上への塗布方法は、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、スプレーコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版印刷法、凹版印刷法、平版印刷法、スクリーン印刷法等)等を適宜選択し得、中でもロール・ツー・ロール(roll-to-roll)法に利用でき、また薄膜塗布性の観点から、凸版印刷法、特にグラビアコート法を用いることが望ましい。なお事前に孔径が0.2μm程度のフィルタなどを用いて硬化性組成物を濾過した後、塗布に供することが好ましい。なお塗布する際、必要に応じて該硬化性組成物に溶剤をさらに添加してもよい。この場合の溶剤としては前述の[(e)溶媒]で挙げた種々の溶媒を挙げることができる。
 基材上に硬化性組成物を塗布し塗膜を形成した後、必要に応じてホットプレート、オーブン等の加熱手段で塗膜を予備乾燥して溶媒を除去する(溶媒除去工程)。この際の加熱乾燥の条件としては、例えば、40℃~120℃で、30秒~10分程度とすることが好ましい。
 乾燥後、紫外線等の活性エネルギー線を照射して、塗膜を硬化させる。活性エネルギー線としては、紫外線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線照射に用いる光源としては、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、UV-LED等が使用できる。
 さらにその後、ポストベークを行うことにより、具体的にはホットプレート、オーブン等の加熱手段を用いて加熱することにより重合を完結させてもよい。
 なお、形成される硬化膜の厚さは、乾燥、硬化後において、通常0.01μm~50μm、好ましくは0.05μm~20μmである。
The coating method on the substrate is a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a spray coating method, a bar coating method, a die coating method, an inkjet method, a printing method (a relief printing method). , An intaglio printing method, a lithographic printing method, a screen printing method, etc. can be appropriately selected, and among them, it can be used for a roll-to-roll method, and from the viewpoint of thin film coating properties, a relief printing method can be used. In particular, it is desirable to use the gravure coating method. It is preferable that the curable composition is filtered in advance using a filter having a pore size of about 0.2 μm and then applied to the coating. When applying, a solvent may be further added to the curable composition, if necessary. As the solvent in this case, the various solvents mentioned in the above [(e) solvent] can be mentioned.
After the curable composition is applied on a substrate to form a coating film, the coating film is preliminarily dried by a heating means such as a hot plate or an oven to remove the solvent, if necessary (solvent removing step). The conditions for heat drying at this time are preferably, for example, 40° C. to 120° C. and about 30 seconds to 10 minutes.
After drying, the coating film is cured by irradiating with active energy rays such as ultraviolet rays. Examples of active energy rays include ultraviolet rays, electron beams, and X-rays, and ultraviolet rays are particularly preferable. As a light source used for ultraviolet ray irradiation, sun rays, chemical lamps, low pressure mercury lamps, high pressure mercury lamps, metal halide lamps, xenon lamps, UV-LEDs and the like can be used.
After that, the polymerization may be completed by performing post-baking, specifically, heating with a heating means such as a hot plate or an oven.
The thickness of the formed cured film is usually 0.01 μm to 50 μm, preferably 0.05 μm to 20 μm after drying and curing.
<ハードコートフィルム>
 本発明の硬化性組成物を用いて、フィルム基材の少なくとも一方の面(表面)にハードコート層を備えるハードコートフィルムを製造することができる。該ハードコートフィルムも本発明の対象であり、該ハードコートフィルムは、例えばタッチパネルや液晶ディスプレイ等の各種表示素子等の表面を保護するために好適に用いられる。
<Hard coat film>
By using the curable composition of the present invention, a hard coat film having a hard coat layer on at least one surface (surface) of a film substrate can be produced. The hard coat film is also an object of the present invention, and the hard coat film is preferably used for protecting the surface of various display elements such as touch panels and liquid crystal displays.
 本発明のハードコートフィルムにおけるハードコート層は、前述の本発明の硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程と、該塗膜に紫外線等の活性エネルギー線を照射し該塗膜を硬化させる工程を含む方法により形成することができる。これら工程を含む、フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムの製造方法も本発明の対象である。 The hard coat layer in the hard coat film of the present invention comprises a step of applying the curable composition of the present invention onto a film substrate to form a coating film, and irradiating the coating film with active energy rays such as ultraviolet rays. It can be formed by a method including a step of curing the coating film. A method for producing a hard coat film having a hard coat layer on at least one surface of a film base, including these steps, is also an object of the present invention.
 前記フィルム基材としては、前述の<硬化膜>で挙げた基材のうち、光学用途に使用可能な各種の透明な樹脂製フィルムが用いられる。好ましい樹脂製フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリウレタン、熱可塑性ポリウレタン(TPU)、ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリオレフィン、ポリアミド、ポリイミド、トリアセチルセルロース(TAC)等のフィルムが挙げられる。
 また前記フィルム基材上への硬化性組成物の塗布方法(塗膜形成工程)及び塗膜への活性エネルギー線照射方法(硬化工程)は、前述の<硬化膜>に挙げた方法を用いることができる。また本発明の硬化性組成物に溶媒が含まれる(ワニス形態の)場合、塗膜形成工程の後、必要に応じて該塗膜を乾燥し溶媒除去する工程を含むことができる。その場合、前述の<硬化膜>に挙げた塗膜の乾燥方法(溶媒除去工程)を用いることができる。
 こうして得られたハードコート層の層厚(膜厚)は、好ましくは1μm~20μm、より好ましくは1μm~10μmである。
As the film base material, various transparent resin films that can be used for optical applications, among the base materials listed in the above <cured film>, are used. Examples of preferable resin films include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polycarbonate, polymethacrylate, polystyrene, polyolefin, Examples thereof include films of polyamide, polyimide, triacetyl cellulose (TAC) and the like.
Further, as the method for applying the curable composition on the film substrate (coating film forming step) and the method for irradiating the coating film with active energy rays (curing step), the method described in the above <cured film> should be used. You can When the curable composition of the present invention contains a solvent (in the form of varnish), a step of drying the coating film and removing the solvent may be included after the coating film forming step, if necessary. In that case, the coating film drying method (solvent removing step) described in the above <cured film> can be used.
The layer thickness (film thickness) of the hard coat layer thus obtained is preferably 1 μm to 20 μm, more preferably 1 μm to 10 μm.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1)バーコーターによる塗布
 装置:(株)エスエムテー製 PM-9050MC
 バー:オーエスジーシステムプロダクツ(株)製 A-Bar OSP-22、最大ウエット膜厚22μm(ワイヤーバー#9相当)
 塗布速度:4m/分
(2)オーブン
 装置:アドバンテック東洋(株)製 無塵乾燥器 DRC433FA
(3)UV硬化
 装置:ヘレウス(株)製 CV-110QC-G
 ランプ:ヘレウス(株)製 高圧水銀ランプH-bulb
(4)ゲル浸透クロマトグラフィー(GPC)
 装置:東ソー(株)製 HLC-8220GPC
 カラム:昭和電工(株)製 Shodex(登録商標)GPC K-804L、GPC K-805L
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 検出器:RI
(5)耐擦傷性試験
 装置:新東科学(株)製 往復摩耗試験機 TRIBOGEAR TYPE:30S
 走査速度:4,500mm/分
 走査距離:50mm
(6)耐光性試験
 装置:Q-Lab社製 促進耐候性試験機 QUV(登録商標)/se
 光源:UVB-313型ランプ
 試験条件:0.89W/cm、50℃
 試験時間:6時間 
(7)色差計
 装置:コニカミノルタ(株)製 分光測色計 CM-700d
 測定モード:透過モード
(1) Coating with a bar coater: PM-9050MC manufactured by SMT Co., Ltd.
Bar: A-Bar OSP-22 manufactured by OSG System Products, maximum wet film thickness 22 μm (corresponding to wire bar #9)
Coating speed: 4m/min (2) Oven device: Advantech Toyo Co., Ltd. dust-free dryer DRC433FA
(3) UV curing device: Heraeus Co., Ltd. CV-110QC-G
Lamp: Heraeus High Pressure Mercury Lamp H-bulb
(4) Gel permeation chromatography (GPC)
Equipment: Tosoh Corp. HLC-8220GPC
Column: Shodex (registered trademark) GPC K-804L, GPC K-805L manufactured by Showa Denko KK
Column temperature: 40°C
Eluent: Tetrahydrofuran Detector: RI
(5) Scratch resistance test device: Reciprocating abrasion tester TRIBOGEAR TYPE: 30S manufactured by Shinto Kagaku Co., Ltd.
Scanning speed: 4,500 mm/min Scanning distance: 50 mm
(6) Light resistance test device: Q-Lab Co. accelerated weather resistance tester QUV (registered trademark)/se
Light source: UVB-313 type lamp Test conditions: 0.89 W/cm 2 , 50° C.
Test time: 6 hours
(7) Color difference meter device: Konica Minolta Co., Ltd. spectrophotometer CM-700d
Measurement mode: Transmission mode
 また、略記号は以下の意味を表す。
A1:オキシエチレン変性多官能アクリレート[東亞合成(株)製 アロニックス(登録商標)MT-3553]
A2:オキシエチレン変性ペンタエリスリトールテトラアクリレート[日本化薬(株)製 KAYARAD(登録商標)RP-1040]
A3:ジペンタエリスリトールペンタアクリレート/ジペンタエリスリトールヘキサアクリレート混合物[日本化薬(株)製 KAYARAD(登録商標)DN-0075]
A4:10官能ウレタンアクリレート[根上工業(株)製 ART RESIN(登録商標)UN-904]
A5:カプロラクトン変性ジペンタエリスリトールヘキサアクリレート[日本化薬(株)製 KAYARAD(登録商標)DPCA-20]
PFPE:分子鎖の両末端それぞれにポリ(オキシアルキレン)基を介さずヒドロキシ基を2つ有するパーフルオロポリエーテル[ソルベイスペシャルティポリマーズ社製 Fomblin(登録商標)T4]
BEI:1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート[昭和電工(株)製 カレンズ(登録商標)BEI]
DOTDD:ジネオデカン酸ジオクチル錫[日東化成(株)製 ネオスタン(登録商標)U-830]
O819:ビス(2,4,6-トリメトキシベンゾイル)フェニルホスフィンオキシド[IGM Resins社製 OMNIRAD(登録商標)819]
O2959:2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチルプロパン-1-オン[IGM Resins社製 OMNIRAD(登録商標)2959]
UVA-1:2,4-ジヒドロキシベンゾフェノン[東京化成工業(株)製]
UVA-2:2,2,4,4-テトラヒドロキシベンゾフェノン[BASFジャパン(株)製 UVINUL(登録商標)3050]
UVA-3:2-(4-((2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ)-2-ヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン/2-(4-((2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ)-2-ヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン[BASFジャパン(株)製 TINUVIN(登録商標)400]
UVA-4:3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパン酸オクチル[BASFジャパン(株)製 TINUVIN(登録商標)384-2]
UVA-5:2-シアノ-3,3-ジフェニルアクリル酸2-エチルヘキシル[BASFジャパン(株)製 UVINUL(登録商標)3039]
MEK:メチルエチルケトン
MeOH:メタノール
TPU:ポリウレタンエラストマーフィルム[シーダム(株)製 ハイグレスDUS605-CER、厚み100μm]
PC:ポリカーボネートフィルム[三菱ガス化学(株)製 ユーピロン(登録商標)フィルム FS-2000、厚み100μm]
The abbreviations have the following meanings.
A1: Oxyethylene-modified polyfunctional acrylate [Aronix (registered trademark) MT-3553 manufactured by Toagosei Co., Ltd.]
A2: Oxyethylene-modified pentaerythritol tetraacrylate [KAYARAD (registered trademark) RP-1040 manufactured by Nippon Kayaku Co., Ltd.]
A3: Mixture of dipentaerythritol pentaacrylate/dipentaerythritol hexaacrylate [KAYARAD (registered trademark) DN-0075 manufactured by Nippon Kayaku Co., Ltd.]
A4:10 functional urethane acrylate [ART RESIN (registered trademark) UN-904 manufactured by Negami Kogyo Co., Ltd.]
A5: Caprolactone-modified dipentaerythritol hexaacrylate [KAYARAD (registered trademark) DPCA-20 manufactured by Nippon Kayaku Co., Ltd.]
PFPE: Perfluoropolyether having two hydroxy groups at both ends of the molecular chain without interposing poly(oxyalkylene) groups [Fomblin (registered trademark) T4 manufactured by Solvay Specialty Polymers]
BEI: 1,1-bis(acryloyloxymethyl)ethyl isocyanate [Karenzu (registered trademark) BEI manufactured by Showa Denko KK]
DOTDD: Dioctyltin dineodecanoate [Neostan (registered trademark) U-830 manufactured by Nitto Kasei Co., Ltd.]
O819: Bis(2,4,6-trimethoxybenzoyl)phenylphosphine oxide [OMNIRAD (registered trademark) 819 manufactured by IGM Resins]
O2959: 2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl)-2-methylpropan-1-one [OMNIRAD (registered trademark) 2959 manufactured by IGM Resins]
UVA-1: 2,4-dihydroxybenzophenone [Tokyo Chemical Industry Co., Ltd.]
UVA-2: 2,2,4,4-tetrahydroxybenzophenone [UVINUL (registered trademark) 3050 manufactured by BASF Japan Ltd.]
UVA-3: 2-(4-((2-hydroxy-3-dodecyloxypropyl)oxy)-2-hydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5- Triazine/2-(4-((2-hydroxy-3-tridecyloxypropyl)oxy)-2-hydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine [BASF Japan TINUVIN (registered trademark) 400]
UVA-4: 3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy-octyl benzenepropanoate [TINUVIN (registered trademark) 384-manufactured by BASF Japan Ltd.] 2]
UVA-5: 2-Ethylhexyl 2-cyano-3,3-diphenylacrylate [UVINUL (registered trademark) 3039 manufactured by BASF Japan Ltd.]
MEK: Methyl ethyl ketone MeOH: Methanol TPU: Polyurethane elastomer film [High-Dress DUS605-CER manufactured by Cidum Co., Ltd., thickness 100 μm]
PC: Polycarbonate film [Upilon (registered trademark) film FS-2000 manufactured by Mitsubishi Gas Chemical Co., Inc., thickness 100 μm]
[参考例1]表面改質剤SMの製造
 スクリュー管に、PFPE 1.19g(0.5mmol)、BEI 0.52g(2.0mmol)、DOTDD 0.017g(PFPE及びBEIの合計質量の0.01倍量)、及びMEK 1.67gを仕込んだ。この混合物を、スターラーチップを用いて室温(およそ23℃)で24時間撹拌して、目的化合物である表面改質剤SMの50質量%MEK溶液を得た。得られたSMのGPCによるポリスチレン換算で測定される重量平均分子量:Mwは3,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.2であった。
[Reference Example 1] Production of surface modifier SM In a screw tube, 1.19 g (0.5 mmol) of PFPE, 0.52 g (2.0 mmol) of BEI, and 0.017 g of DOTDD (0.1% of total mass of PFPE and BEI). (01 times the amount), and 1.67 g of MEK were charged. The mixture was stirred at room temperature (about 23° C.) for 24 hours using a stirrer chip to obtain a 50% by mass MEK solution of the surface modifier SM, which was the target compound. The weight average molecular weight: Mw of the obtained SM measured by GPC in terms of polystyrene was 3,000, and the dispersity: Mw (weight average molecular weight)/Mn (number average molecular weight) was 1.2.
[実施例1~実施例12、比較例1~比較例10]
 表1の記載に従って以下の各成分を混合し、硬化性組成物を調製した。表1中、[部]とは[質量部]を表す。この硬化性組成物を、表1に記載のフィルム基材(A4サイズ)上にバーコーターにより塗布し、塗膜を得た。この塗膜を65℃のオーブンで3分間乾燥させ溶媒を除去した。得られた膜を、窒素雰囲気下、露光量300mJ/cmのUV光を照射し露光することで、およそ5μmの層厚(膜厚)を有するハードコート層(硬化膜)を有する、ハードコートフィルムを作製した。
[Examples 1 to 12, Comparative Examples 1 to 10]
The following components were mixed according to the description in Table 1 to prepare a curable composition. In Table 1, “parts” means “parts by mass”. This curable composition was applied onto the film base material (A4 size) shown in Table 1 by a bar coater to obtain a coating film. The coating film was dried in an oven at 65° C. for 3 minutes to remove the solvent. A hard coat having a hard coat layer (cured film) having a layer thickness (film thickness) of about 5 μm by irradiating the obtained film with UV light having an exposure dose of 300 mJ/cm 2 in a nitrogen atmosphere. A film was made.
 得られたハードコートフィルムの、耐擦傷性及び耐光性を評価した。耐擦傷性及び耐光性の評価の手順を以下に示す。結果を表2に併せて示す。
[耐擦傷性]
 ハードコートフィルムのハードコート層表面を、前記往復摩耗試験機に取り付けたスチールウール[ボンスター販売(株)製 ボンスター(登録商標)#0000(超極細)]で350g/cmの荷重を掛けて10往復擦り、傷の程度(本数及び長さ)を目視で確認し、以下の基準A、B及びCに従い評価した。なおハードコート層として実際の使用を想定した場合、少なくともBであることが求められ、Aであることが望ましい。
A:傷無し
B:長さ5mm未満の傷5本未満発生
C:長さ5mm未満の傷5本以上発生、又は長さ5mm以上の傷1本以上発生
[耐光性]
 耐光性試験前に、ハードコートフィルムの裏面(ハードコート層が形成されていない面)に白色のあて板[L=86.6、a=-1.0、b=-0.4]を置き、前記色差計を用いて黄色度指数(Yellow Index、D1925)(YI1)を測定した。前記促進耐候性試験機を用いて耐光性試験後、前記色差計を用いた同様の方法で黄色度指数(YI2)を測定した。耐光性試験前と耐光性試験後との黄色度指数の差(YI2-YI1)をΔYIとし、以下の基準A及びCに従い評価した。
A:ΔYI<1.0
C:ΔYI≧1.0
The scratch resistance and light resistance of the obtained hard coat film were evaluated. The procedure for evaluation of scratch resistance and light resistance is shown below. The results are also shown in Table 2.
[Scratch resistance]
The surface of the hard coat layer of the hard coat film was applied with steel wool [Bonster (registered trademark) #0000 (superfine) manufactured by Bonster Sales Co., Ltd.] attached to the reciprocating abrasion tester under a load of 350 g/cm 2 to obtain 10 Two-way rubbing, the degree of scratches (number and length) were visually confirmed and evaluated according to the following criteria A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable.
A: No scratch B: Less than 5 scratches with a length of less than 5 mm C: Five or more scratches with a length of less than 5 mm occur, or one or more scratches with a length of 5 mm or more occur [light resistance]
Before the light resistance test, a white backing plate [L * =86.6, a * =-1.0, b * =-0.4] was applied to the back surface (the surface on which the hardcoat layer was not formed) of the hardcoat film. ], and the yellowness index (Yellow Index, D1925) (YI1) was measured using the color difference meter. After the light resistance test using the accelerated weather resistance tester, the yellowness index (YI2) was measured by the same method using the color difference meter. The difference (YI2-YI1) in the yellowness index between before the light resistance test and after the light resistance test was defined as ΔYI and evaluated according to the following criteria A and C.
A: ΔYI<1.0
C: ΔYI≧1.0
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2に示すように、多官能モノマーとしてA1、A2、A3、A4又はA5、紫外線吸収剤としてベンゾフェノン骨格を有するUVA-1又はUVA-2、表面改質剤として分子鎖の両末端それぞれにウレタン結合を介してアクリロイル基を4つ有するパーフルオロポリエーテルSMを、それぞれ配合した硬化性組成物を用いて作製したハードコート層を備えるハードコートフィルム(実施例1~実施例12)は、耐擦傷性を損なうことがなく、またTPU及びPCの何れのフィルム基材においても、UVB(紫外線B波)領域における優れた耐光性を発現できることが示された。 As shown in Table 2, A1, A2, A3, A4 or A5 as a polyfunctional monomer, UVA-1 or UVA-2 having a benzophenone skeleton as an ultraviolet absorber, and urethane at both ends of the molecular chain as a surface modifier. Hard coat films (Examples 1 to 12) provided with a hard coat layer prepared by using a curable composition in which perfluoropolyether SM having four acryloyl groups through a bond are respectively incorporated are scratch resistant. It was shown that the light resistance is not impaired, and excellent light resistance in the UVB (ultraviolet B wave) region can be exhibited in any film substrate of TPU and PC.
 一方、多官能モノマーとしてA1、紫外線吸収剤としてトリアジン骨格を有するUVA-3、表面改質剤としてSMを使用し、フィルム基材としてTPU及びPCをそれぞれ用いた比較例1及び比較例4の硬化性組成物から作製したハードコート層を備えるハードコートフィルムは、耐光性に優れるものの、耐擦傷性に劣ることが示された。また、紫外線吸収剤としてベンゾトリアゾール骨格を有するUVA-4を使用し、フィルム基材としてTPU及びPCをそれぞれ用いた比較例2及び比較例5の硬化性組成物から作製したハードコート層を備えるハードコートフィルムは、耐擦傷性及び耐光性に劣ることが示された。同様に、紫外線吸収剤としてシアノアクリレート骨格を有するUVA-5を使用し、フィルム基材としてTPU及びPCをそれぞれ用いた比較例3及び比較例6の硬化性組成物から作製したハードコート層を備えるハードコートフィルムは、耐光性に劣ることが示された。次に、多官能モノマーとしてA1を使用し、紫外線吸収剤未添加とし、表面改質剤としてSMを使用し、フィルム基材としてTPU及びPCをそれぞれ用いた比較例7及び比較例8の硬化性組成物から作製したハードコート層を備えるハードコートフィルムは、耐擦傷性に優れるものの、紫外線吸収剤未添加のため、耐光性に劣ることが示された。更に、多官能モノマーとしてA1、紫外線吸収剤としてベンゾフェノン骨格を有するUVA-1を使用し、表面改質剤未添加とし、フィルム基材としてTPU及びPCをそれぞれ用いた比較例9及び比較例10の硬化性組成物から作製したハードコート層を備えるハードコートフィルムは、耐光性に優れるものの、表面改質剤未添加のため、耐擦傷性に劣ることが示された。 On the other hand, curing of Comparative Example 1 and Comparative Example 4 using A1 as a polyfunctional monomer, UVA-3 having a triazine skeleton as an ultraviolet absorber, SM as a surface modifier, and TPU and PC as a film substrate, respectively. It was shown that the hard coat film including the hard coat layer prepared from the functional composition has excellent light resistance but inferior scratch resistance. In addition, a hard coat layer made of the curable compositions of Comparative Example 2 and Comparative Example 5 in which UVA-4 having a benzotriazole skeleton is used as an ultraviolet absorber and TPU and PC are used as film base materials, respectively. The coated film was shown to be inferior in scratch resistance and light resistance. Similarly, a UVA-5 having a cyanoacrylate skeleton is used as an ultraviolet absorber, and a hard coat layer prepared from the curable compositions of Comparative Example 3 and Comparative Example 6 using TPU and PC as a film base, respectively. The hard coat film was shown to have poor light resistance. Next, the curability of Comparative Example 7 and Comparative Example 8 in which A1 was used as a polyfunctional monomer, an ultraviolet absorber was not added, SM was used as a surface modifier, and TPU and PC were used as film base materials, respectively. The hard coat film including the hard coat layer prepared from the composition was excellent in scratch resistance, but was inferior in light resistance because the ultraviolet absorber was not added. Further, in Comparative Example 9 and Comparative Example 10 in which A1 was used as a polyfunctional monomer, UVA-1 having a benzophenone skeleton was used as an ultraviolet absorber, a surface modifier was not added, and TPU and PC were used as film base materials, respectively. The hard coat film including the hard coat layer prepared from the curable composition was excellent in light resistance, but was inferior in scratch resistance because the surface modifier was not added.
 以上、実施例の結果に示すように、多官能モノマー、ベンゾフェノン骨格を有する紫外線吸収剤及びパーフルオロポリエーテルを組み合わせた硬化性組成物とすることで初めて、耐擦傷性及び耐光性を満足するハードコートフィルムを得ることができる。 As described above, as shown in the results of the examples, the hardenability satisfying the scratch resistance and the light resistance can be obtained only when the curable composition is a combination of the polyfunctional monomer, the ultraviolet absorber having the benzophenone skeleton and the perfluoropolyether. A coated film can be obtained.

Claims (13)

  1. (a)活性エネルギー線硬化性多官能モノマー100質量部、
    (b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端に、ウレタン結合を介して、活性エネルギー線重合性基を有するパーフルオロポリエーテル(但し、前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合との間にポリ(オキシアルキレン)基を有するパーフルオロポリエーテルを除く。)0.05質量部~10質量部、
    (c)ベンゾフェノン骨格を有する紫外線吸収剤0.1質量部~30質量部、及び
    (d)活性エネルギー線によりラジカルを発生する重合開始剤1質量部~20質量部、
    を含む、硬化性組成物。
    (A) 100 parts by mass of active energy ray-curable polyfunctional monomer,
    (B) A perfluoropolyether containing a poly(oxyperfluoroalkylene) group, which has an active energy ray-polymerizable group at both ends of its molecular chain via urethane bonds (however, 0.05 parts by mass to 10 parts by mass, excluding perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond.
    (C) 0.1 part by mass to 30 parts by mass of an ultraviolet absorber having a benzophenone skeleton, and (d) 1 part by mass to 20 parts by mass of a polymerization initiator that generates a radical by an active energy ray.
    Curable composition containing.
  2. 前記(c)紫外線吸収剤が、ヒドロキシ基を少なくとも2つ有する、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the ultraviolet absorber (c) has at least two hydroxy groups.
  3. 前記(b)パーフルオロポリエーテルは、その分子鎖の両末端それぞれにウレタン結合を介して活性エネルギー線重合性基を少なくとも2つ有する、請求項1又は請求項2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the (b) perfluoropolyether has at least two active energy ray-polymerizable groups at both ends of its molecular chain via urethane bonds.
  4. 前記(b)パーフルオロポリエーテルは、その分子鎖の両末端それぞれにウレタン結合を介して活性エネルギー線重合性基を少なくとも3つ有する、請求項3に記載の硬化性組成物。 The curable composition according to claim 3, wherein the (b) perfluoropolyether has at least three active energy ray-polymerizable groups via urethane bonds at both ends of its molecular chain.
  5. 前記ポリ(オキシパーフルオロアルキレン)基が、繰り返し単位-[OCF]-及び繰り返し単位-[OCFCF]-の双方を有し、これら繰り返し単位をブロック結合、ランダム結合、又は、ブロック結合及びランダム結合にて結合してなる基である、請求項1乃至請求項4のうち何れか一項に記載の硬化性組成物。 The poly(oxyperfluoroalkylene) group has both a repeating unit —[OCF 2 ]— and a repeating unit —[OCF 2 CF 2 ]—, and these repeating units are block-bonded, random-bonded, or block-bonded. And the curable composition according to any one of claims 1 to 4, which is a group formed by bonding with a random bond.
  6. 前記(c)パーフルオロポリエーテルが下記式[1]で表される部分構造を有する、請求項5に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式[1]中、
    nは、繰り返し単位-[OCFCF]-の数と、繰り返し単位-[OCF]-の数との総数であって5~30の整数を表し、
    前記繰り返し単位-[OCFCF]-と、前記繰り返し単位-[OCF]-は、ブロック結合、ランダム結合、又は、ブロック結合及びランダム結合の何れかにて結合してなる。)
    The curable composition according to claim 5, wherein the perfluoropolyether (c) has a partial structure represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula [1],
    n is the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and represents an integer of 5 to 30,
    The repeating unit —[OCF 2 CF 2 ]— and the repeating unit —[OCF 2 ]— are bonded by a block bond, a random bond, or a block bond and a random bond. )
  7. 前記(a)多官能モノマーの一部又は全部が、多官能(メタ)アクリレート化合物である、請求項1乃至請求項6のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, wherein a part or all of the (a) polyfunctional monomer is a polyfunctional (meth)acrylate compound.
  8. 前記(a)多官能モノマーが、オキシアルキレン変性多官能モノマーである、請求項1乃至請求項7のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 7, wherein the (a) polyfunctional monomer is an oxyalkylene-modified polyfunctional monomer.
  9. 前記(a)多官能モノマーが、活性エネルギー線重合性基を少なくとも3つ有する多官能モノマーである、請求項1乃至請求項8のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, wherein the polyfunctional monomer (a) is a polyfunctional monomer having at least three active energy ray-polymerizable groups.
  10. さらに(e)溶媒を含む、請求項1乃至請求項9のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 9, further comprising (e) a solvent.
  11. 請求項1乃至請求項10のうち何れか一項に記載の硬化性組成物より得られる硬化膜。 A cured film obtained from the curable composition according to any one of claims 1 to 10.
  12. フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムであって、該ハードコート層が請求項11に記載の硬化膜からなる、ハードコートフィルム。 A hard coat film comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer comprises the cured film according to claim 11.
  13. フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムの製造方法であって、該ハードコート層が、請求項1乃至請求項10のうち何れか一項に記載の硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程と、該塗膜に活性エネルギー線を照射し硬化する工程とを含む、ハードコートフィルムの製造方法。 A method for producing a hard coat film comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is the curable composition according to any one of claims 1 to 10. A method for producing a hard coat film, comprising the steps of: applying a film onto a film substrate to form a coating film;
PCT/JP2020/003456 2019-02-06 2020-01-30 Curable composition for light-resistant hard coating WO2020162322A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080013139.3A CN113423513B (en) 2019-02-06 2020-01-30 Light-resistant hard coating curable composition
JP2020571140A JP7332988B2 (en) 2019-02-06 2020-01-30 Curable composition for light resistant hard coat
KR1020217026124A KR102584186B1 (en) 2019-02-06 2020-01-30 Curable composition for light-resistant hard coats

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-020170 2019-02-06
JP2019020170 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162322A1 true WO2020162322A1 (en) 2020-08-13

Family

ID=71948085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003456 WO2020162322A1 (en) 2019-02-06 2020-01-30 Curable composition for light-resistant hard coating

Country Status (5)

Country Link
JP (1) JP7332988B2 (en)
KR (1) KR102584186B1 (en)
CN (1) CN113423513B (en)
TW (1) TWI843800B (en)
WO (1) WO2020162322A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023842A1 (en) * 1995-02-01 1996-08-08 Mitsui Petrochemical Industries, Ltd. Hardenable coating resin composition, coated materials and containers, and process for producing them
JP2006051633A (en) * 2004-08-10 2006-02-23 Mitsubishi Engineering Plastics Corp Laminate made of synthetic resin and its manufacturing method
JP2009256597A (en) * 2008-03-26 2009-11-05 Jsr Corp Compound having perfluoropolyether group, urethane group and (meth) acryloyl group
JP2015160902A (en) * 2014-02-27 2015-09-07 デクセリアルズ株式会社 Surface control agent and article using the same
JP2016016338A (en) * 2014-07-04 2016-02-01 旭硝子株式会社 Method of manufacturing resin substrate with hard coat layer
JP2017008128A (en) * 2015-06-16 2017-01-12 ユニマテック株式会社 Active energy ray curable resin composition
WO2019045096A1 (en) * 2017-09-01 2019-03-07 日産化学株式会社 Curable composition for extensible, scratch-resistant coating
WO2020008937A1 (en) * 2018-07-05 2020-01-09 日産化学株式会社 Curable composition for flexible coating

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020670U (en) 1983-07-15 1985-02-13 ニチメン株式会社 integrated circuit card
JP4779293B2 (en) * 2003-10-21 2011-09-28 Tdk株式会社 Hard coating agent composition and optical information medium using the same
JP4737401B2 (en) * 2004-10-13 2011-08-03 信越化学工業株式会社 Antireflection film, coating composition for forming antireflection film, and article provided with antireflection film
JP2006119476A (en) * 2004-10-22 2006-05-11 Nippon Zeon Co Ltd Anti-reflection stack and optical member
TW200927771A (en) * 2007-08-31 2009-07-01 Dow Corning Toray Co Ltd Light curing resin composition
KR101553079B1 (en) * 2008-04-28 2015-09-14 미쓰비시 가가꾸 가부시키가이샤 Active energy ray-curable resin composition cured film laminate optical recording medium and method for producing cured film
JP2012133079A (en) * 2010-12-21 2012-07-12 Konica Minolta Advanced Layers Inc Hard coat film, production method of the same, antireflection film, polarizing plate and image display device
JP2013076029A (en) * 2011-09-30 2013-04-25 Tdk Corp Hard coat agent composition and hard coat film using the same
EP2631254A1 (en) * 2012-02-27 2013-08-28 Cytec Surface Specialties, S.A. Fluorinated water-oil repellency agents
JP2013119553A (en) * 2011-12-06 2013-06-17 Mitsubishi Chemicals Corp Coating for lower layer formation used as groundwork of hard coat layer, and laminate formed by applying the coating for lower layer formation
KR102031048B1 (en) * 2015-02-25 2019-10-15 동우 화인켐 주식회사 Hard Coating Composition and Hard Coating Film Using the Same
TWI736530B (en) * 2015-04-07 2021-08-21 日商日產化學工業股份有限公司 Coating curable composition having marring resistance
JP6822792B2 (en) * 2016-07-08 2021-01-27 中国塗料株式会社 A method for producing a photocurable resin composition, a cured coating and a coated base material formed from the composition, and a cured coating and a coated base material.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023842A1 (en) * 1995-02-01 1996-08-08 Mitsui Petrochemical Industries, Ltd. Hardenable coating resin composition, coated materials and containers, and process for producing them
JP2006051633A (en) * 2004-08-10 2006-02-23 Mitsubishi Engineering Plastics Corp Laminate made of synthetic resin and its manufacturing method
JP2009256597A (en) * 2008-03-26 2009-11-05 Jsr Corp Compound having perfluoropolyether group, urethane group and (meth) acryloyl group
JP2015160902A (en) * 2014-02-27 2015-09-07 デクセリアルズ株式会社 Surface control agent and article using the same
JP2016016338A (en) * 2014-07-04 2016-02-01 旭硝子株式会社 Method of manufacturing resin substrate with hard coat layer
JP2017008128A (en) * 2015-06-16 2017-01-12 ユニマテック株式会社 Active energy ray curable resin composition
WO2019045096A1 (en) * 2017-09-01 2019-03-07 日産化学株式会社 Curable composition for extensible, scratch-resistant coating
WO2020008937A1 (en) * 2018-07-05 2020-01-09 日産化学株式会社 Curable composition for flexible coating

Also Published As

Publication number Publication date
TWI843800B (en) 2024-06-01
CN113423513B (en) 2023-08-15
JPWO2020162322A1 (en) 2020-08-13
KR102584186B1 (en) 2023-10-05
KR20210123323A (en) 2021-10-13
CN113423513A (en) 2021-09-21
TW202045551A (en) 2020-12-16
JP7332988B2 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
TWI736530B (en) Coating curable composition having marring resistance
JP6908896B2 (en) Light-resistant hard coat material
JP7041405B2 (en) Curable Composition for Stretchable Scratch Resistant Coating
JPWO2018056370A1 (en) Scratch resistant hard coat material
WO2020162324A1 (en) Curable composition for antistatic hard coating
WO2020162323A1 (en) Curable composition for flexible hard coating
JP5858318B2 (en) Fluorine-containing urethane (meth) acrylate, curable composition and antireflection film
JP7332988B2 (en) Curable composition for light resistant hard coat
JP7265226B2 (en) Curable composition for flexible hard coat
JP7569021B2 (en) Curable composition for hard coat
KR102593819B1 (en) Curable composition for anti-glare hard coat
JP7260857B2 (en) Curable composition for antiglare flexible hard coat
WO2022190937A1 (en) Curable composition for hard coat
WO2022203060A1 (en) Curable composition containing two perfluoropolyethers
JP2024041281A (en) Curable composition containing fluorine-based surface modifier
WO2020162329A1 (en) Curable composition for hard coating
JP6060522B2 (en) Coating material and molded product surface-modified thereby
JP2016114918A (en) Fluorine-containing urethane (meth)acrylate, curable composition, and anti-reflection film
JP2015120676A (en) Fluorine-containing urethane (meth)acrylate, curable composition, and antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752553

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020571140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026124

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20752553

Country of ref document: EP

Kind code of ref document: A1