WO2020162323A1 - Curable composition for flexible hard coating - Google Patents

Curable composition for flexible hard coating Download PDF

Info

Publication number
WO2020162323A1
WO2020162323A1 PCT/JP2020/003467 JP2020003467W WO2020162323A1 WO 2020162323 A1 WO2020162323 A1 WO 2020162323A1 JP 2020003467 W JP2020003467 W JP 2020003467W WO 2020162323 A1 WO2020162323 A1 WO 2020162323A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
active energy
modified
energy ray
Prior art date
Application number
PCT/JP2020/003467
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 脇田
将幸 原口
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020217026174A priority Critical patent/KR20210123324A/en
Priority to CN202080013146.3A priority patent/CN113396127A/en
Priority to JP2020571141A priority patent/JPWO2020162323A1/en
Publication of WO2020162323A1 publication Critical patent/WO2020162323A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to a curable composition useful as a material for forming a hard coat layer applied to the surface of various display elements such as a flexible display, which has excellent scratch resistance and stretchability, and further has antistatic property and/or antistatic property.
  • the present invention relates to a curable composition capable of forming a hard coat layer capable of imparting antiglare properties.
  • Smartphones have become popular as the most common form of mobile phone, and have become an indispensable part of our daily lives.
  • a cover glass is used on the surface of the smartphone to prevent the display from being scratched.
  • bendable displays so-called flexible displays
  • the flexible display is expected to have a wide range of applications as a display that can be deformed such as bent and wound.
  • glass since glass is generally hard and difficult to bend back, it cannot be applied to flexible displays. Therefore, instead of glass, it has been attempted to apply a plastic film having a hard coat layer having scratch resistance for scratch protection to the surface of a flexible display.
  • a method of imparting scratch resistance to the hard coat layer for example, by forming a high-density crosslinked structure, that is, by forming a crosslinked structure having low molecular mobility, surface hardness is increased and resistance to external force is increased.
  • the method of giving is adopted.
  • a material for forming these hard coat layers a polyfunctional acrylate-based material that is three-dimensionally crosslinked by radicals is currently most used.
  • the polyfunctional acrylate-based material is usually inferior in stretchability due to its high crosslink density.
  • the stretchability of the hard coat layer and the scratch resistance are in a trade-off relationship, and it is an issue to make both properties compatible.
  • Patent Document 1 a method of imparting slipperiness to the cured film surface by mixing a curable composition for forming a hard coat layer with a silicone or fluorine-based surface modifier has been known. ing.
  • Patent Document 1 a technique of a hard coat layer that achieves both scratch resistance and stretchability by using a polyfunctional acrylate in combination with high hardness silica fine particles has been reported.
  • the surface resistance value is about 10 10 ⁇ / ⁇ .
  • a curable composition containing silica particles and a perfluoropolyether containing a poly(oxyperfluoroalkylene) group as a surface modifier forms a hard coat layer capable of improving stretchability while maintaining scratch resistance. They have found that they can be formed and can also impart antistatic performance and/or antiglare properties, and have completed the present invention.
  • the first aspect of the present invention is as follows.
  • An active energy ray-curable polyfunctional monomer selected from the group consisting of (a) (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer and (a-2) active energy ray-curable lactone-modified polyfunctional monomer.
  • the nitrogen-containing proton-donating functional group is at least one group selected from the group consisting of an amino group, an amide group, a urea group, a thiourea group, a urethane group, a thiourethane group, a ureido group, and a thioureido group.
  • the curable composition according to the first aspect wherein the nitrogen-containing proton donating functional group is at least one group selected from the group consisting of an amino group, a urea group, a thiourea group, and a ureido group.
  • a fourth aspect relates to the curable composition according to any one of the first to third aspects, wherein the (c) silica particles are silica fine particles having an average particle diameter of 40 nm to 500 nm.
  • the (b) perfluoropolyether has an active energy ray-polymerizable group at the end of its molecular chain via a urethane bond, according to any one of the first to fourth aspects.
  • the above-mentioned (b) perfluoropolyether has at least two active energy ray-polymerizable groups via urethane bonds at the ends of its molecular chain.
  • the above-mentioned (b) perfluoropolyether has at least two active energy ray-polymerizable groups at one end of its molecular chain via a urethane bond.
  • One relates to the curable composition.
  • the curable composition according to any one of the above.
  • the poly(oxyperfluoroalkylene) group has both a repeating unit —[OCF 2 ]— and a repeating unit —[OCF 2 CF 2 ]—, and these repeating units are block-bonded or random-bonded.
  • the curable composition according to any one of the first to eighth aspects which is a group formed by a block bond and a random bond.
  • the curable composition according to the ninth aspect, wherein the (b) perfluoropolyether has a partial structure represented by the following formula [1].
  • n is the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and represents an integer of 5 to 30,
  • the repeating unit —[OCF 2 CF 2 ]— and the repeating unit —[OCF 2 ]— are bonded by a block bond, a random bond, or a block bond and a random bond.
  • a part or all of the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer is composed of an oxyethylene-modified polyfunctional (meth)acrylate compound.
  • the curable composition according to any one of the above.
  • a twelfth aspect is that the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer is a monomer having 3 or more active energy ray-polymerizable groups in one molecule, and has an average oxyethylene-modified amount of
  • the curable composition according to any one of the first to eleventh aspects, which is a monomer of less than 3 mol per 1 mol of the active energy ray-polymerizable group.
  • the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer is a monomer having an average oxyethylene-modified amount of less than 2 mol with respect to 1 mole of the active energy ray-polymerizable group.
  • any one of the first to thirteenth aspects wherein a part or all of (a-2) the active energy ray-curable lactone-modified polyfunctional monomer is composed of a lactone-modified polyfunctional (meth)acrylate compound.
  • a fifteenth aspect relates to the curable composition according to the fourteenth aspect, wherein part or all of the (a-2) active energy ray-curable lactone-modified polyfunctional monomer is an ⁇ -caprolactone-modified polyfunctional monomer.
  • the (c) silica particles are silica particles whose surface is modified with a silane coupling agent having a thiourea group or a ureido group
  • a seventeenth aspect relates to the curable composition according to the sixteenth aspect, which comprises metal oxide particles as the (e) antistatic agent.
  • the curable composition according to the seventeenth aspect, wherein the metal oxide particles contain an oxide of at least one element selected from the group consisting of tin, zinc, and indium.
  • a nineteenth aspect relates to the curable composition according to the eighteenth aspect, wherein the metal oxide particles contain tin oxide.
  • the metal oxide particles contain at least one of phosphorus-doped tin oxide and tin oxide whose surface is coated with antimony pentoxide.
  • the curable composition according to any one of the first to twentieth aspects further including (f) 1 part by mass to 40 parts by mass of fine particles having an average particle size of 0.2 ⁇ m to 15 ⁇ m.
  • a twenty-second aspect relates to the curable composition according to the twenty-first aspect, wherein (f) the fine particles having an average particle size of 0.2 ⁇ m to 15 ⁇ m are organic fine particles.
  • a twenty-third aspect relates to the curable composition according to the twenty-second aspect, wherein the organic fine particles are polymethylmethacrylate fine particles.
  • a twenty-fourth aspect relates to the curable composition according to any one of the first to twenty-third aspects, further including (g) a solvent.
  • a twenty-fifth aspect relates to a cured film obtained from the curable composition according to any one of the first to twenty-fourth aspects.
  • a twenty-sixth aspect relates to a hard coat film having a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer comprises the cured film according to the twenty-fifth aspect.
  • a 27th aspect relates to the hardcoat film according to the 26th aspect, wherein the hard coat layer has a layer thickness of 1 ⁇ m to 10 ⁇ m.
  • a twenty-eighth aspect is a method for producing a hard coat film, comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is described in any one of the first to twenty-fourth aspects. It relates to a method for producing a hard coat film, which comprises a step of forming a coating film by applying the curable composition of 1. to a film substrate and a step of irradiating the coating film with an active energy ray to cure the coating film.
  • a twenty-ninth aspect relates to silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group.
  • a thirtieth aspect relates to the silica particles according to the twenty-ninth aspect, which have an average particle diameter of 40 nm to 500 nm.
  • a 31st aspect relates to the silica particles according to the 29th aspect or the 30th aspect, wherein the nitrogen-containing proton-donating functional group is a thiourea group or a thiourethane group.
  • a curable composition which is useful for forming a cured film and a hard coat layer that have both excellent scratch resistance and high stretchability even in a thin film having a thickness of about 1 ⁇ m to 10 ⁇ m. ..
  • a hard coat film having a cured film obtained from the curable composition or a hard coat layer formed from the cured film provided on the surface, scratch resistance, and stretching A hard coat film having excellent properties can be provided.
  • a curable composition useful for forming a hardened film and a hard coat layer having antistatic properties and/or antiglare properties, and a hard coat layer excellent in these properties is possible to provide a hard coat film having a surface coated with.
  • the curable composition of the present invention specifically comprises An active energy ray-curable polyfunctional monomer selected from the group consisting of (a) (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer and (a-2) active energy ray-curable lactone-modified polyfunctional monomer.
  • (A) Active energy ray curable polyfunctional monomer In the present invention, as the active energy ray-curable polyfunctional monomer of the component (a), (a-1) an active energy ray-curable oxyethylene-modified polyfunctional monomer or (a-2) an active energy ray-curable lactone described later is used. A modified polyfunctional monomer is used. These (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomers and (a-2) active energy ray-curable lactone-modified polyfunctional monomers may be used in combination.
  • the component (a) has two or more active energy ray-polymerizable groups that undergo a polymerization reaction to be cured by irradiation with an active energy ray such as ultraviolet rays, and also has a group derived from an oxyethylene group or a lactone. It is a functional monomer.
  • active energy ray-polymerizable group include (meth)acryloyl group and vinyl group.
  • the active energy ray-curable oxyethylene-modified polyfunctional monomer used in the present invention is a monomer having two or more active energy ray-polymerizable groups.
  • the average amount of modified oxyethylene is less than 3 mol per 1 mol of the active energy ray-polymerizable group.
  • the preferable (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer in the curable composition of the present invention has at least three active energy ray-polymerizable groups and has an average oxyethylene-modified amount of the above-mentioned active energy.
  • a (meth)acrylate compound means both an acrylate compound and a methacrylate compound.
  • (meth)acrylic acid refers to acrylic acid and methacrylic acid.
  • Examples of the oxyethylene-modified polyfunctional (meth)acrylate compound include (oxy)ethylene-modified polyol (meth)acrylate compounds.
  • Examples of the polyol include glycerin, diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, decaglycerin, polyglycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol and the like.
  • the average oxyethylene-modified amount is less than 3 mol with respect to 1 mol of the active energy ray-polymerizable group contained in the monomer, and preferably the monomer Can be less than 2 mol per 1 mol of the active energy ray-polymerizable group.
  • the average oxyethylene modification amount is larger than 0 mol with respect to 1 mol of the active energy ray-polymerizable group contained in the monomer, preferably 0.1 mol or more with respect to 1 mol of the active energy ray-polymerizable group contained in the monomer, More preferably, it can be 0.5 mol or more.
  • the addition number of oxyethylene to 1 molecule of the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer can be 1 to 30, preferably 1 to 12.
  • one type of the above (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer can be used alone, or two or more types can be used in combination.
  • the (a-2) active energy ray-curable lactone-modified polyfunctional monomer used in the present invention is a lactone-modified polyfunctional monomer which undergoes a polymerization reaction upon irradiation with an active energy ray such as ultraviolet rays and is cured.
  • an active energy ray such as ultraviolet rays
  • the preferable (a) active energy ray-curable lactone-modified polyfunctional monomer in the curable composition of the present invention is a monomer selected from the group consisting of lactone-modified polyfunctional (meth)acrylate compounds.
  • lactone-modified polyfunctional (meth)acrylate compound examples include polyols modified with lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone (that is, ring-opening addition or ring-opening addition polymerization of lactone).
  • lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone (that is, ring-opening addition or ring-opening addition polymerization of lactone).
  • a (meth)acrylate compound of polythiol can be used.
  • polyol examples include trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, glycerin, bisphenol A, ethoxylated trimethylolpropane, ethoxylated pentaerythritol, ethoxylated dipentaerythritol, ethoxylated glycerin, ethoxylated.
  • Bisphenol A 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1 ,10-decanediol, tricyclo[5.2.1.0 2,6 ]decane dimethanol, 1,3-adamantane diol, 1,3-adamantane dimethanol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol , Polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, neopentyl glycol, dioxane glycol, bis(2-hydroxyethyl)isocyanurate, tris(2-hydroxyethyl)isocyanurate, 9,9-bis(4-hydroxy) Examples thereof include phenyl)fluorene and 9,9-bis[
  • lactone-modified polyfunctional (meth)acrylate compound examples include lactone-modified trimethylolpropane tri(meth)acrylate, lactone-modified ditrimethylolpropane tetra(meth)acrylate, lactone-modified pentaerythritol di(meth)acrylate, and lactone.
  • lactone-modified polyfunctional (meth)acrylate compounds include, for example, ⁇ -caprolactone-modified pentaerythritol tri(meth)acrylate, ⁇ -caprolactone-modified pentaerythritol tetra(meth)acrylate, ⁇ -caprolactone-modified dipentaerythritol penta(meth). ) Acrylate, ⁇ -caprolactone-modified dipentaerythritol hexa(meth)acrylate and the like.
  • lactone-modified polyfunctional (meth)acrylate compound examples include lactone-modified polyfunctional urethane (meth)acrylate compounds.
  • the lactone-modified polyfunctional urethane (meth)acrylate compound has a plurality of (meth)acryloyl groups in one molecule, and has a urethane bond (-NHCOO-) and, for example, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - It is a compound having a ring-opening structure of a lactone such as caprolactone.
  • lactone-modified polyfunctional urethane (meth)acrylate those obtained by reacting a polyfunctional isocyanate with a lactone-modified (meth)acrylate having a hydroxy group
  • a polyfunctional isocyanate having a hydroxy group (meth) examples thereof include those obtained by reacting an acrylate with a polyol modified with a lactone, but the lactone-modified polyfunctional urethane (meth)acrylate compound usable in the present invention is not limited to these examples.
  • Examples of the polyfunctional isocyanate include tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, and the like.
  • Examples of the (meth)acrylate having a hydroxy group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate. Examples thereof include acrylate and tripentaerythritol hepta(meth)acrylate.
  • polystyrene resin examples include diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol; these diols and succinic acid, maleic acid.
  • diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol; these diols and succinic acid, maleic acid.
  • polyester polyols, polyether polyols, polycarbonate diols and the like which are reaction products of aliphatic dicarboxylic acids such as acids and adipic acid or dicarboxylic acid anhydrides.
  • the active energy ray-curable lactone-modified polyfunctional monomer (a-2) may be used alone or in combination of two or more.
  • the number of carbon atoms of the alkylene group in the above poly(oxyperfluoroalkylene) group is not particularly limited, but it is preferably 1 to 4 carbon atoms. That is, the poly(oxyperfluoroalkylene) group refers to a group having a structure in which a divalent fluorocarbon group having 1 to 4 carbon atoms and an oxygen atom are alternately linked, and the oxyperfluoroalkylene group is a carbon atom. It refers to a group having a structure in which a divalent fluorocarbon group of formulas 1 to 4 and an oxygen atom are linked.
  • examples thereof include groups such as -1,3-diyl group) and -[OCF 2 C(CF 3 )F]-(oxyperfluoropropane-1,2-diyl group).
  • the above oxyperfluoroalkylene groups may be used alone or in combination of two or more, and in that case, the bonds of plural kinds of oxyperfluoroalkylene groups are a block bond and a random bond. Either of them may be used.
  • poly(oxyperfluoroalkylene) groups -[OCF 2 ]-(oxyperfluoromethylene group) and -[OCF 2 CF 2 ] are used. It is preferable to use a group having both —(oxyperfluoroethylene group) as a repeating unit.
  • repeating units: -[OCF 2 ]- and -[OCF 2 CF 2 ]- are in a molar ratio of [repeating unit: -[OCF 2 ]-]:
  • [repeat Unit: —[OCF 2 CF 2 ]—] is preferably a group containing at a ratio of 2:1 to 1:2, and more preferably a group containing at a ratio of about 1:1.
  • the bond of these repeating units may be either a block bond or a random bond.
  • the total number of repeating units of the oxyperfluoroalkylene group is preferably in the range of 5 to 30, and more preferably in the range of 7 to 21.
  • the weight average molecular weight (Mw) of the poly(oxyperfluoroalkylene) group measured by gel permeation chromatography in terms of polystyrene is 1,000 to 5,000, preferably 1,500 to 3,000. ..
  • the component (b) is a perfluoropolyether containing a poly(oxyperfluoroalkylene) group, the perfluoropolyether having an active energy ray-polymerizable group at the end of its molecular chain via a urethane bond.
  • a polyether hereinafter, also simply referred to as “(b) perfluoropolyether having a polymerizable group at the end of the molecular chain” can be used.
  • the terminals of the molecular chain of the perfluoropolyether may be all terminals or some terminals of the molecular chain.
  • the molecular chain of the perfluoropolyether is linear, all ends and some ends of the molecular chain are both ends and one end of the linear molecular chain, respectively.
  • a perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond can be excluded.
  • the component (b) serves as a surface modifier in the hard coat layer to which the curable composition of the present invention is applied. Further, the component (b) has excellent compatibility with the component (a), thereby suppressing the clouding of the hard coat layer and enabling the formation of a hard coat layer having a transparent appearance.
  • the perfluoropolyether having a polymerizable group at the terminal of the molecular chain is not limited to one having one active energy ray-polymerizable group at the terminal of the molecular chain, but may be two or more active energy ray-polymerizable groups. May be present at the end of the molecular chain.
  • the terminal structure containing an active energy ray-polymerizable group the structures of formulas [A1] to [A5] shown below, and And a structure in which the acryloyl group of is substituted with a methacryloyl group.
  • Examples of such (b) perfluoropolyether having a polymerizable group at the end of the molecular chain include compounds represented by the following formula [2].
  • A represents one of the structures represented by the formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is substituted with a methacryloyl group
  • PFPE represents Represents a poly(oxyperfluoroalkylene) group (provided that the side directly bonded to L 1 is an oxy terminal and the side bonded to an oxygen atom is a perfluoroalkylene terminal), and L 1 is 1 to 3 fluorine atoms.
  • alkylene group of the fluorine atom 1 to carbon atoms substituted with three 2 or 3, -CH 2 CHF -, - CH 2 CF 2 -, - CHFCF 2 -, - CH 2 CH 2 CHF-, Examples thereof include —CH 2 CH 2 CF 2 — and —CH 2 CHFCF 2 —, and —CH 2 CF 2 — is preferable.
  • Examples of the partial structure (A-NHC( ⁇ O)O) m L 2 — in the compound represented by the above formula [2] include structures represented by the following formulas [B1] to [B12].
  • A represents one of the structures represented by the above formulas [A1] to [A5] and the structure in which the acryloyl group in these structures is substituted with a methacryloyl group.
  • the structure represented by the formula [B3] is preferable, and the combination of the formula [B3] and the formula [A3] is particularly preferable.
  • n represents the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and preferably an integer in the range of 5 to 30, An integer in the range of to 21 is more preferable.
  • the ratio of the number of repeating units -[OCF 2 CF 2 ]- to the number of repeating units -[OCF 2 ]- is preferably in the range of 2:1 to 1:2, and is approximately 1:1. It is more preferable to set the range to.
  • the bond of these repeating units may be either a block bond or a random bond.
  • the perfluoropolyether having a polymerizable group at the terminal of the molecular chain is 0.05 to 10 parts by mass with respect to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Parts, preferably 0.1 to 5 parts by weight.
  • the perfluoropolyether having a polymerizable group at the end of the molecular chain (b) is, for example, one represented by the following formula [3] (In the formula [3], PFPE, L 1 , L 2 and m have the same meanings as those in the formula [2].) A polymerizable group for the hydroxy group present at both terminals of the compound represented by the formula [2].
  • An isocyanate compound having, that is, a compound in which an isocyanato group is bonded to a bond in a structure represented by the above formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is replaced with a methacryloyl group for example, It can be obtained by reacting 2-(meth)acryloyloxyethyl isocyanate, 1,1-bis((meth)acryloyloxymethyl)ethyl isocyanate, etc.) to form a urethane bond.
  • the (b) perfluoropolyether containing a poly(oxyperfluoroalkylene) group of the curable composition of the present invention is a perfluoropolyether containing a poly(oxyperfluoroalkylene) group and has a molecular chain of A perfluoropolyether having an active energy ray-polymerizable group at one end (one end) via a urethane bond and a hydroxy group at the other end (the other end) of the molecular chain, or the above formula
  • a perfluoropolyether having a poly(oxyperfluoroalkylene) group as represented by [3], which has hydroxy groups at both ends of its molecular chain [active energy ray-polymerizable group A compound having no.] may be included. Adding a condition that there is no poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond and between the poly(oxyperfluoroalkylene) group and
  • the component (c) is a silica particle whose surface has been modified with a silane coupling agent having a nitrogen-containing proton donating functional group described below (hereinafter, also simply referred to as “(c) silica particle”).
  • (c) silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group has scratch resistance due to interaction with (a) a polyfunctional monomer. The stretchability can be imparted without impairing.
  • the shape of the silica particles themselves is not particularly limited, for example, may be a bead-like substantially spherical shape, may be an irregular shape such as powder, but a substantially spherical shape is preferable, more preferably,
  • the particles are substantially spherical particles having an aspect ratio of 1.5 or less, and most preferably spherical particles.
  • the average particle size of the silica particles used in the present invention is in the range of 40 nm to 500 nm, for example, 40 nm to 350 nm, preferably 60 nm to 250 nm, or 70 nm to 250 nm.
  • the average particle diameter (nm) is a 50% volume diameter (median diameter) obtained by measurement by a laser diffraction/scattering method based on Mie theory.
  • the particle size distribution of the silica particles is not particularly limited, but monodisperse particles having a uniform particle size are preferable.
  • silica particles for example, colloidal silica having the above average particle diameter can be preferably used, and as the colloidal silica, silica sol can be used.
  • silica sol an aqueous silica sol produced by a known method using an aqueous solution of sodium silicate and an organosilica sol obtained by substituting water as a dispersion medium of the aqueous silica sol with an organic solvent can be used.
  • alkoxysilanes such as methyl silicate and ethyl silicate are hydrolyzed and condensed in the presence of a catalyst (for example, ammonia, an organic amine compound, an alkali catalyst such as sodium hydroxide) in an organic solvent such as alcohol to obtain
  • a catalyst for example, ammonia, an organic amine compound, an alkali catalyst such as sodium hydroxide
  • an organic solvent such as alcohol
  • organic solvent in the above-mentioned organosilica sol examples include lower alcohols such as methanol, ethanol and 2-propanol; ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK); N,N-dimethylformamide (DMF), Linear amides such as N,N-dimethylacetamide (DMAc); cyclic amides such as N-methyl-2-pyrrolidone (NMP); ethers such as ⁇ -butyrolactone; glycols such as ethyl cellosolve and ethylene glycol; Acetonitrile etc. are mentioned.
  • lower alcohols such as methanol, ethanol and 2-propanol
  • ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK)
  • Linear amides such as N,N-di
  • Substitution of water, which is a dispersion medium of the aqueous silica sol, or another target organic solvent can be performed by a usual method such as a distillation method or an ultrafiltration method.
  • the viscosity of the above organosilica sol is about 0.6 mPa ⁇ s to 100 mPa ⁇ s at 20°C.
  • aqueous silica sol and organo silica sol for example, Seahoster (registered trademark) KE series [manufactured by Nippon Shokubai Co., Ltd.], Snowtex (registered trademark) series [manufactured by Nissan Kagaku Co., Ltd.] and the like are used. You can
  • a silane coupling agent having a nitrogen-containing proton donating functional group is used for surface modification of silica particles.
  • an amino group, a urea group, a thiourea group and a ureido group are preferable, and a urea group, a thiourea group and a ureido group are particularly preferable in view of the transparency of the cured film.
  • the silane coupling agent used for the surface modification of the silica particles used in the present invention may have one or more of the above nitrogen-containing proton-donating functional groups, may have two or more thereof, or a plurality of types. It may have a nitrogen-containing proton donating functional group.
  • the silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group are prepared by mixing the silane coupling agent having a nitrogen-containing proton-donating functional group with silica fine particles in the presence of water or alcohol. It can be prepared by A silane coupling agent having a nitrogen-containing proton-donating functional group is a silane having a nitrogen-containing proton-donating functional group, which forms a silanol group by hydrolysis and is condensed and bound to a silanol group existing on the surface of silica particles. It is believed that silica particles, the surface of which is modified by the coupling agent, are formed.
  • a silane coupling agent having a nitrogen-containing proton donating functional group can be obtained.
  • Surface modified silica particles can be prepared.
  • the colloidal solution and the silane coupling agent may be mixed at room temperature or while heating. From the viewpoint of reaction efficiency, it is preferable to perform mixing while heating.
  • the heating temperature can be appropriately selected depending on the solvent and the like. The heating temperature can be, for example, 30° C. or higher.
  • the mixing ratio of the silane coupling agent having a nitrogen-containing proton-donating functional group and the silica particles depends on the size of the silica particles and the type of the nitrogen-containing proton-donating functional group.
  • the amount of the silane coupling agent molecule can be 0.01 to 5, preferably 0.05 to 2, and more preferably 0.1 to 1 with respect to 2).
  • the surface area of the silica particles is calculated from the specific surface area measured by the nitrogen adsorption method (BET method).
  • the silica particles (c) are 10 parts by mass to 65 parts by mass, for example, 10 parts by mass to 50 parts by mass, preferably 10 parts by mass, relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. It is used in a proportion of from 45 to 45 parts by mass.
  • the present invention also covers silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group.
  • silica particles whose surface is modified with a silane coupling agent having a thiourea group or a ureido group when used in combination with an antistatic agent (e) described later, not only imparts scratch resistance and stretchability to a cured film, It is preferable from the viewpoint of imparting the antistatic property of the cured film and obtaining a good coating film surface (appearance).
  • silica particles whose surface is modified with a silane coupling agent having a thiourea group or a thiourethane group can be mentioned.
  • a polymerization initiator that generates a radical by a preferable active energy ray is, for example, an active energy such as an electron beam, an ultraviolet ray or an X-ray. It is a polymerization initiator that generates radicals by irradiation of rays, especially by irradiation of ultraviolet rays.
  • Examples of the (d) polymerization initiator include benzoins, alkylphenones, thioxanthones, azos, azides, diazos, o-quinonediazides, acylphosphine oxides, oxime esters, organic peroxides, and benzophenone. And biscoumarins, bisimidazoles, titanocenes, thiols, halogenated hydrocarbons, trichloromethyltriazines, and onium salts such as iodonium salts and sulfonium salts. You may use these individually by 1 type or in mixture of 2 or more types.
  • alkylphenones as the (d) polymerization initiator from the viewpoint of transparency, surface curability, and thin film curability.
  • a cured film having further improved scratch resistance can be obtained.
  • alkylphenones examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl) ⁇ -hydroxy such as 2-methylpropan-1-one and 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one
  • Alkylphenones 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one And ⁇ -aminoalkylphenones; 2,2-dimethoxy-1,2-diphenylethan-1-one; methyl phenylglyoxylate and the like.
  • the proportion of the polymerization initiator (d) is 1 part by mass to 20 parts by mass, preferably 2 parts by mass to 10 parts by mass, relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Used in.
  • the curable composition of the present invention may further contain metal oxide particles as the (e) antistatic agent.
  • the metal oxide particles are contained, the hard particles formed from the curable composition by using silica particles whose surface is modified with a silane coupling agent having a thiourea group or a ureido group as the (c) silica particles. It is possible to achieve both antistatic performance in the coat layer and good coating film surface (appearance).
  • the metal oxide particles can be fine particles having a primary particle diameter of 4 nm to 100 nm.
  • the primary particle diameter in a metal oxide particle refers to the particle diameter of each particle observed using a transmission electron microscope.
  • the metal oxide particles can include, for example, an oxide of at least one element selected from the group consisting of tin, zinc, and indium.
  • tin oxide (SnO 2 ) tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), gallium-doped zinc oxide (GZO), aluminum
  • Examples thereof include doped zinc oxide (AlZO), antimony-doped zinc oxide (AZO), indium-doped zinc oxide or zinc oxide-doped indium oxide (IZO), and indium gallium zinc oxide (IGZO), of which phosphorus-doped tin oxide (PTO) is preferable.
  • the above-mentioned metal oxide particles may also include surface-coated metal oxide particles having a metal oxide as a nucleus and the surface of which is coated with an acidic or basic oxide.
  • the nucleus include titanium oxide, a titanium oxide-tin oxide composite, a zirconium oxide-tin oxide composite, a tungsten oxide-tin oxide composite, a titanium oxide-zirconium oxide-, in addition to the metal oxide particles such as tin oxide. Mention may be made of tin oxide composites.
  • the acidic or basic oxides include antimony pentoxide, silicon oxide-antimony pentoxide composite, and silicon oxide-tin oxide composite.
  • the metal oxide particles (e) when the metal oxide particles (e) are contained, 10 parts by mass to 55 parts by mass, preferably 10 parts by mass to 45 parts by mass relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Included in the ratio of parts by mass.
  • the curable composition of the present invention may further contain (f) fine particles having an average particle diameter of 0.2 ⁇ m to 15 ⁇ m (hereinafter, simply referred to as “(f) fine particles”).
  • the fine particles (f) impart an antiglare property by making the surface of the hard coat layer formed from the curable composition uneven.
  • organic fine particles it is preferable to use organic fine particles as the fine particles (f).
  • the organic fine particles can also play a role of controlling the haze value of the hard coat layer by controlling the difference between the refractive index and the refractive index of the curable composition that is the material for forming the hard coat layer.
  • the shape of the organic fine particles is not particularly limited, but may be, for example, a bead-shaped substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and an aspect is more preferable.
  • the particles are substantially spherical particles having a ratio of 1.5 or less, and most preferably spherical particles.
  • organic fine particles examples include polymethylmethacrylate fine particles (PMMA fine particles), silicone fine particles, polystyrene fine particles, polycarbonate fine particles, acrylic styrene fine particles, benzoguanamine fine particles, melamine fine particles, polyolefin fine particles, polyester fine particles, polyamide fine particles, polyimide fine particles, and polyfluorine fine particles. Ethylene oxide fine particles and the like. These organic fine particles may be used alone or in combination of two or more. Among them, polymethylmethacrylate fine particles can be preferably used as the organic fine particles.
  • the average particle diameter of the organic fine particles used in the present invention is in the range of 0.2 ⁇ m to 15 ⁇ m, and preferably in the range of 1 ⁇ m to 10 ⁇ m.
  • the average particle diameter ( ⁇ m) is a 50% volume diameter (median diameter) obtained by a laser diffraction/scattering method based on Mie theory.
  • the particle size distribution of the organic fine particles is not particularly limited, but monodisperse fine particles having a uniform particle size are preferable.
  • the organic fine particles are preferably organic fine particles having a refractive index that is 0 to 0.20 in difference in refractive index from the cured product of the active energy ray-curable polyfunctional monomer (a).
  • the difference in refractive index is preferably 0 to 0.10.
  • organic fine particles commercially available products can be preferably used, and examples thereof include Techpolymer (registered trademark) MBX series, SBX series, MSX series, SMX series, SSX series, BMX series, ABX series, ARX series, AFX series, MB series, MBP series, MB-C series, ACX series, ACP series [above, Sekisui Plastics Co., Ltd.]; Tospearl (registered trademark) series [Momentive ⁇ Performance Materials Japan (same)]; Eposter (registered trademark) series, same MA series, same ST series, same MX series [above, Nippon Shokubai Co., Ltd.]; Optobeads (registered trademark) series [ Nissan Chemical Co., Ltd.]; Flow Bead Series [Sumitomo Seika Co., Ltd.]; Trepearl (registered trademark) PPS, PAI, PES, EP [above, Toray Industries, Inc.
  • the fine particles (f) are 1 part by mass to 40 parts by mass, for example, 5 parts by mass to 30 parts by mass, preferably 5 parts by mass, relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. It is used in a ratio of 1 part to 25 parts by mass.
  • the curable composition of the present invention may further contain (g) a solvent, that is, in the form of a varnish (film forming material).
  • a solvent that is, in the form of a varnish (film forming material).
  • the components (a) to (d), optionally the components (e) and (f) are dissolved/dispersed, and a coating for forming a cured film (hard coat layer) described later is applied. It may be appropriately selected in consideration of workability at the time, drying property before and after curing, and the like.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirits and cyclohexane; methyl chloride, methyl bromide, Halides such as methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene; ethyl acetate, propyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene Esters or ester ethers such as glycol monomethyl ether acetate (PGMEA); diethyl ether, tetrahydrofuran (THF), 1,4-dio
  • a solvent having a high boiling point can be used for the purpose of controlling the dispersibility of the fine particles at the time of drying after coating.
  • a solvent include cyclohexyl acetate, propylene glycol diacetate, 1,3-butynylene glycol diacetate, 1,4-butanediol diacetate, 1,6-hexanediol diacetate, ethylene glycol monobutyl ether acetate.
  • the amount of the solvent (g) used is not particularly limited, but for example, the curable composition of the present invention is used at a concentration such that the solid content concentration is 1% by mass to 70% by mass, preferably 5% by mass to 50% by mass.
  • the solid content concentration also referred to as non-volatile content concentration
  • additives generally added as necessary, for example, a polymerization accelerator, a polymerization inhibitor, a photosensitizer, leveling Agents, surfactants, adhesion promoters, plasticizers, ultraviolet absorbers, light stabilizers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes and the like may be appropriately mixed.
  • the curable composition of the present invention can form a cured film by applying (coating) on a substrate to form a coating film, and irradiating the coating film with an active energy ray to polymerize (curing).
  • the cured film is also an object of the present invention.
  • the hard coat layer in the hard coat film described later can be made of the cured film.
  • the base material in this case examples include various resins (polycarbonate, polymethacrylate, polystyrene, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polyolefin, polyamide, Polyimide, epoxy resin, melamine resin, triacetyl cellulose (TAC), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), norbornene-based resin, etc.), metal, wood, paper, glass , Slate and the like.
  • the shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
  • the coating method on the substrate is a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a spray coating method, a bar coating method, a die coating method, an inkjet method, a printing method (a relief printing method).
  • An intaglio printing method, a lithographic printing method, a screen printing method, etc. can be appropriately selected, and among them, it can be used for a roll-to-roll method, and from the viewpoint of thin film coating properties, a relief printing method can be used.
  • the curable composition is filtered in advance using a filter having a pore size of about 0.2 ⁇ m and then applied to the coating.
  • a solvent may be further added to the curable composition, if necessary.
  • the various solvents mentioned in the above [(g) solvent] can be mentioned.
  • the coating film is preliminarily dried by a heating means such as a hot plate or an oven to remove the solvent, if necessary (solvent removing step).
  • the conditions for heat drying at this time are preferably, for example, 40° C. to 120° C. and about 30 seconds to 10 minutes.
  • the coating film is cured by irradiating with active energy rays such as ultraviolet rays.
  • active energy rays include ultraviolet rays, electron beams, and X-rays, and ultraviolet rays are particularly preferable.
  • a light source used for ultraviolet ray irradiation sun rays, chemical lamps, low pressure mercury lamps, high pressure mercury lamps, metal halide lamps, xenon lamps, UV-LEDs and the like can be used.
  • the polymerization may be completed by performing post-baking, specifically, heating with a heating means such as a hot plate or an oven.
  • the thickness of the formed cured film is usually 0.01 ⁇ m to 50 ⁇ m, preferably 0.05 ⁇ m to 20 ⁇ m after drying and curing.
  • a hard coat film having a hard coat layer on at least one surface (surface) of a film substrate can be produced.
  • the hard coat film is also an object of the present invention, and the hard coat film is preferably used for protecting the surface of various display elements such as touch panels and liquid crystal displays.
  • the hard coat layer in the hard coat film of the present invention a step of forming a coating film by applying the curable composition of the present invention on a film substrate, and a step of removing the solvent by heating if necessary, It can be formed by a method including a step of irradiating the coating film with an active energy ray such as ultraviolet rays to cure the coating film.
  • a method for producing a hard coat film having a hard coat layer on at least one surface of a film substrate including these steps is also an object of the present invention.
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polycarbonate, polymethacrylate, polystyrene, polyolefin, Examples thereof include films of polyamide, polyimide, triacetyl cellulose (TAC) and the like.
  • the method described in the above ⁇ cured film> should be used.
  • the curable composition of the present invention contains a solvent (in the form of varnish)
  • a step of drying the coating film and removing the solvent may be included after the coating film forming step, if necessary.
  • the coating film drying method (solvent removing step) described in the above ⁇ cured film> can be used.
  • the layer thickness (film thickness) of the hard coat layer thus obtained is preferably set to be 1 to 100 times the average particle diameter of the (c) silica particles.
  • the thickness of the hard coat layer is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m.
  • HLC-8220GPC Column: Shodex (registered trademark) GPC K-804L, GPC K-805L manufactured by Showa Denko KK Column temperature: 40°C Eluent: Tetrahydrofuran Detector: RI (5) Scratch resistance test device: Reciprocating abrasion tester TRIBOGEAR TYPE: 30S manufactured by Shinto Kagaku Co., Ltd.
  • A1 Oxyethylene-modified diglycerin tetraacrylate [Aronix (registered trademark) M-460, active energy ray-polymerizable group 4 mol, oxyethylene group 4 mol, manufactured by Toagosei Co., Ltd.]
  • A2 Caprolactone-modified dipentaerythritol hexaacrylate [KAYARAD DPCA-30 manufactured by Nippon Kayaku Co., Ltd.]
  • Surface modifier SM-2 Perfluoropolyether having two (meth)acryloyl groups at one end of the molecular chain [Fingerprint adhesion inhibitor Optool (registered trademark) DAC-HP manufactured by Daikin Industries, Ltd., nonvolatile content 20] Mass% solution]
  • Silica fine particles s-1 Silica fine particles having an average particle size of 200 nm [Organic silica sol MEK-ST-2040 (manufactured by Nissan Chemical Industries, Ltd., solid content concentration 40
  • Silane coupling agent c-3 3-ureidopropyltriethoxysilane [Tokyo Chemical Industry Co., Ltd., solid content concentration 50% alcohol solution]
  • Silane coupling agent c-4 N-(2-aminoethyl)-8-aminooctyltrimethoxysilane [Shin-Etsu Chemical Co., Ltd.
  • Silane coupling agent c-5 n-hexyltrimethoxysilane [Shin-Etsu Silicone (registered trademark) KBM-3063 manufactured by Shin-Etsu Chemical Co., Ltd.]
  • Silane coupling agent c-6 3-acryloylpropyltrimethoxysilane [Shin-Etsu Silicone (registered trademark) KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.]
  • PFPE Perfluoropolyether having two hydroxy groups at both ends of the molecular chain without interposing poly(oxyalkylene) groups [Fomblin (registered trademark) T4 manufactured by Solvay Specialty Polymers]
  • BEI 1,1-bis(acryloyloxymethyl)ethyl isocyanate [Karenzu (registered trademark) BEI manufactured by Showa Denko KK]
  • DOTDD Dioctylt
  • the particle size was measured by dripping a sol with a transmission electron microscope onto a copper mesh, drying it, and observing it with a transmission electron microscope (JEM-1020, manufactured by JEOL Ltd.) at an acceleration voltage of 100 kV. The measured and averaged value was determined as the average primary particle diameter.
  • Antistatic agent e-2 Core-shell particles having a primary particle diameter of 30 nm to 40 nm whose core is tin oxide and whose surface is coated with antimony pentoxide 30% by mass methanol dispersion sol [Cernax (registered trademark) manufactured by Nissan Chemical Industries, Ltd.] HX-307M1]
  • FP1 Cross-linked polymethylmethacrylate true spherical particles [Techpolymer (registered trademark) SSX-101 manufactured by Sekisui Plastics Co., Ltd., average particle diameter 1 ⁇ m]
  • Examples 1 to 8 and Comparative Examples 1 to 6 The following components were mixed according to the description in Table 1 to prepare a curable composition having the solid content concentration shown in Table 1.
  • the solid content refers to components other than the solvent.
  • “parts” means “parts by mass” and “%” means “mass %”.
  • This curable composition was applied onto an A4 size double-sided easy-adhesion-treated PET film [Lumirror (registered trademark) U403 manufactured by Toray Industries, Inc., thickness 100 ⁇ m] with a bar coater to obtain a coating film. The coating film was dried in an oven at 65° C. for 3 minutes to remove the solvent.
  • the scratch resistance and stretchability of the obtained hard coat film were evaluated. The procedure is shown below. The results are shown in Table 2 together with the haze value (reference value).
  • [Scratch resistance] The surface of the hard coat layer of the hard coat film was rubbed with steel wool [BONSTAR (registered trademark) #0000 (ultrafine)] attached to a reciprocating abrasion tester under a load of 500 g/cm 2 for 10 reciprocations to scratch the surface. was visually confirmed and evaluated according to the following criteria A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable.
  • the hard coat film was cut into a rectangle having a length of 60 mm and a width of 10 mm to prepare a test piece.
  • the hard coat film after the tensile test was visually observed to confirm the maximum stretch ratio at which no crack was generated in the hard coat layer of the test piece.
  • the stretchability was evaluated according to the following criteria A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable. A: 125% or more B: More than 100% and less than 125% C: 100% or less
  • silica fine particles s obtained by modifying the surface of silica fine particles having an average particle diameter of 40 nm, 80 nm or 200 nm with an oxyethylene-modified polyfunctional monomer A1 with a silane coupling agent having a nitrogen-containing proton donating functional group.
  • a silane coupling agent having a nitrogen-containing proton donating functional group.
  • a hard coat film having a hard coat layer obtained from the curable compositions of Examples 1 to 6 in which SM-1 was used was obtained from the curable composition of Comparative Example 1 in which silica fine particles were not added.
  • silica fine particles modified with a silane coupling agent having a urea group (s-4), a thiourea group (s-5, s-10) or a ureido group (s-6) as a nitrogen-containing proton donating functional group are used. When it was present, it was shown that the transparency was also excellent.
  • silica fine particles s-10 having an average particle diameter of 80 nm whose surface is modified with a silane coupling agent having a thiourea group on the oxyethylene-modified polyfunctional monomer A1 and two
  • the hard coat film provided with the hard coat layer obtained from the curable composition of Example 8 using the perfluoropolyether SM-2 having a (meth)acryloyl group had a curability of Comparative Example 1 in which silica fine particles were not added.
  • excellent stretchability was exhibited without impairing scratch resistance.
  • the hard coat film provided with the hard coat layer obtained from the curable composition of Comparative Example 2 using the unmodified silica fine particles s-1 as the silica particles is inferior in scratch resistance, and has a poor scratch resistance.
  • a hard coat film having a hard coat layer obtained from the curable composition of Comparative Example 3 in which an n-hexyl group is adopted as a surface modifying group of silica particles (silica fine particles: s-8) is also used as acrylate and silica fine particles. It was shown that the interaction between them was weak and the scratch resistance was poor.
  • the hard coat film provided with the hard coat layer obtained from the curable composition of Comparative Example 4 in which the acryloyl group was adopted as the surface modifying group of the silica particles (silica fine particles: s-9) was prepared from the acrylate and the silica fine particles. It was shown that the action is strong and the scratch resistance is excellent, but the stretchability is poor. Then, the hard coat film including the hard coat layer of the curable composition of Comparative Example 6 having a layer thickness (film thickness) of 5 ⁇ m had a high surface friction coefficient because the surface modifier was not added. It was found that the scratch resistance was inferior.
  • the obtained hard coat film was evaluated for appearance and surface resistance in addition to the evaluations of [scratch resistance] and [stretchability] described above.
  • the procedure of appearance and surface resistance evaluation is shown below.
  • the results are shown in Table 4 together with the haze value (reference value).
  • [appearance] The appearance of the hard coat film was visually confirmed and evaluated according to the following criteria A and C.
  • C Many foreign matters occur over the entire hard coat layer
  • Table 4 it contains oxyethylene-modified polyfunctional monomer A1, a surface modifier containing perfluoropolyether SM-1 having four acryloyl groups through urethane bonds at both ends of the molecular chain, and A silane coupling agent (s-5, s-10, or s-6) having a thiourea group (Examples 9 and 11) or a ureido group (Example 10) is used for surface modification of silica particles to prevent static electricity.
  • the hard coat film provided with the hard coat layer obtained from the curable composition further containing the agents (e-1, e-2) has excellent scratch resistance and stretchability, and does not impair a good appearance, It has been shown that excellent antistatic properties can be imparted.
  • silica fine particles (s-7) having a surface modified with a silane coupling agent having an amino group were used as the silica particles (Reference Example 10)
  • good appearance and antistatic property could be imparted.
  • silica fine particles (s-4) whose surface is modified with a silane coupling agent having a urea group are used (Reference Example 11)
  • the scratch resistance and stretchability are adversely affected.
  • the antistatic property could be imparted, it was confirmed that the scratch resistance and the appearance were affected.
  • the selection of metal oxide particles and silica particles is important so as not to adversely affect the scratch resistance and stretchability, and the surface appearance of the cured film. The result was
  • Examples 12 and 13 The following components were mixed according to the description in Table 5 to prepare a curable composition having a solid content concentration shown in Table 5.
  • the solid content refers to components other than the solvent.
  • “part” means “part by mass”
  • “%” means “% by mass”.
  • This curable composition was applied onto an A4 size double-sided easy-adhesion-treated PET film [Lumirror (registered trademark) U403 manufactured by Toray Industries, Inc., thickness 100 ⁇ m] with a bar coater to obtain a coating film. The coating film was dried in an oven at 65° C. for 3 minutes to remove the solvent.
  • the obtained hard coat film was evaluated for antiglare property in addition to the evaluation of [surface resistance] described above.
  • the procedure for evaluating the antiglare property is shown below. The results are shown in Table 6 together with the haze value and the total light transmittance (reference value).
  • [Anti-glare property] The obtained hard coat film was placed on a black base having a gloss Gs (60°) of 11.8, and the gloss Gs (60°) of the hard coat layer surface of the hard coat film was measured. Evaluation was performed according to A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable.
  • C Gs (60°)>125
  • oxyethylene-modified polyfunctional monomer A1 as a polyfunctional monomer was modified with a silane coupling agent having a thiourea group as a nitrogen-containing proton-donating functional group on the surface of silica fine particles having an average particle diameter of 80 nm.
  • silica fine particles as a surface modifier, perfluoropolyether SM-1 having four acryloyl groups through urethane bonds at both ends of the molecular chain, phosphorus-doped tin oxide as metal oxide particles as an antistatic agent It was shown that the hard coat films obtained from the curable compositions of Example 12 and Example 13 using e-1 and organic fine particles FP1 respectively have antiglare properties and antistatic properties.
  • metal oxide particles as an antistatic agent in the above composition, particularly by using silica particles surface-modified with a silane coupling agent having a thiourea group or a ureido group as a nitrogen-containing proton-donating functional group, It is possible to prepare a hard coat film that does not deteriorate scratch resistance and stretchability, and has a good appearance and excellent antistatic properties. Furthermore, by using fine particles having an average particle diameter of 0.2 ⁇ m to 15 ⁇ m in the above composition, a hard coat film having antiglare properties can be prepared.

Abstract

[Problem] To provide a material for forming a hard coat layer having excellent abrasion-resistance and stretchability. [Solution] The present invention pertains to: a curable composition containing (a) 100 parts by mass of an active energy ray-curable polyfunctional monomer selected from the group consisting of (a-1) active energy ray-curable oxyethylene modified polyfunctional monomers and (a-2) active energy ray-curable lactone modified polyfunctional monomers, (b) 0.05-10 parts by mass of a perfluoropolyether including a poly(oxy perfluoro alkylene) group, (c) 10-65 parts by mass of silica particles having respective surfaces thereof modified with a silane coupling agent including a nitrogen-containing proton-donating functional group, and (d) 1-20 parts by mass of a polymerization initiator that generates radicals by active energy rays; and a hard coat film provided with a hard coat layer formed by said curable composition.

Description

フレキシブルハードコート用硬化性組成物Curable composition for flexible hard coat
 本発明は、フレキシブルディスプレイ等の各種表示素子等の表面に適用されるハードコート層の形成材料として有用な硬化性組成物に関し、耐擦傷性及び延伸性に優れ、さらには帯電防止性及び/又は防眩性をも付与可能なハードコート層を形成可能な硬化性組成物に関する。 The present invention relates to a curable composition useful as a material for forming a hard coat layer applied to the surface of various display elements such as a flexible display, which has excellent scratch resistance and stretchability, and further has antistatic property and/or antistatic property. The present invention relates to a curable composition capable of forming a hard coat layer capable of imparting antiglare properties.
 スマートフォンは今や最も一般的な携帯電話の形態として普及し、我々の日常生活においてなくてはならないものとなった。スマートフォンの表面には、ディスプレイの傷付き防止のため、カバーガラスが使用されている。近年、上記のディスプレイとして、屈曲可能なディスプレイ、いわゆるフレキシブルディスプレイの開発が行われている。フレキシブルディスプレイは、屈曲及び巻取等の変形が可能なディスプレイとして、幅広い用途が期待されている。しかし一般にガラスは硬く、曲げ戻しが難しいために、フレキシブルディスプレイには応用出来ない。そのため、ガラスに代えて、傷付き防止のための耐擦傷性を有するハードコート層を備えたプラスチックフィルムを、フレキシブルディスプレイの表面に適用することが試みられている。ハードコート層を備えたプラスチックフィルムを表面に適用したフレキシブルディスプレイを、そのディスプレイ側を外側にして(すなわちハードコート層を外側にして)湾曲させた場合、最表面のハードコート層には引張方向の応力が生じることから、該ハードコート層には、一定の延伸性を有することが求められる。 Smartphones have become popular as the most common form of mobile phone, and have become an indispensable part of our daily lives. A cover glass is used on the surface of the smartphone to prevent the display from being scratched. In recent years, bendable displays, so-called flexible displays, have been developed as the above displays. The flexible display is expected to have a wide range of applications as a display that can be deformed such as bent and wound. However, since glass is generally hard and difficult to bend back, it cannot be applied to flexible displays. Therefore, instead of glass, it has been attempted to apply a plastic film having a hard coat layer having scratch resistance for scratch protection to the surface of a flexible display. When a flexible display applied with a plastic film having a hard coat layer on its surface is curved with its display side facing outward (that is, with the hard coat layer facing outward), the outermost hard coat layer has Since the stress is generated, the hard coat layer is required to have a certain stretchability.
 また一般にハードコート層に耐擦傷性を付与する手法として、例えば、高密度の架橋構造を形成する、すなわち分子運動性の低い架橋構造を形成することで表面硬度を高め、外力への抵抗性を与える手法が採られる。これらのハードコート層を形成する材料として、現在、ラジカルにより3次元架橋する多官能アクリレート系材料が最も用いられている。しかし、多官能アクリレート系材料は、その高い架橋密度のため、通常、延伸性に劣る。このように、ハードコート層の延伸性と耐擦傷性とはトレードオフの関係にあり、両者の特性を両立させることが課題となる。 Further, generally, as a method of imparting scratch resistance to the hard coat layer, for example, by forming a high-density crosslinked structure, that is, by forming a crosslinked structure having low molecular mobility, surface hardness is increased and resistance to external force is increased. The method of giving is adopted. As a material for forming these hard coat layers, a polyfunctional acrylate-based material that is three-dimensionally crosslinked by radicals is currently most used. However, the polyfunctional acrylate-based material is usually inferior in stretchability due to its high crosslink density. As described above, the stretchability of the hard coat layer and the scratch resistance are in a trade-off relationship, and it is an issue to make both properties compatible.
 これまで耐擦傷性を向上させる手法の一つとして、ハードコート層を形成する硬化性組成物にシリコーン又はフッ素系の表面改質剤を混ぜ、硬化膜表面に滑り性を付与する手法が知られている。
 また、多官能アクリレートと高硬度なシリカ微粒子とを併用することにより、耐擦傷性と延伸性との両立を図ったハードコート層の技術が報告されている(特許文献1)。
As one of the methods for improving scratch resistance, a method of imparting slipperiness to the cured film surface by mixing a curable composition for forming a hard coat layer with a silicone or fluorine-based surface modifier has been known. ing.
In addition, a technique of a hard coat layer that achieves both scratch resistance and stretchability by using a polyfunctional acrylate in combination with high hardness silica fine particles has been reported (Patent Document 1).
 一方、ディスプレイのフロント保護材としてハードコートフィルムが用いられる場合、ラミネート時に発生した静電気による埃等の付着抑制、及びディスプレイの誤動作防止のため、帯電防止性の付与が求められることがある。こうした静電気対策としては、表面抵抗値が1010Ω/□程度であることが望ましい。 On the other hand, when a hard coat film is used as a front protective material for a display, antistatic property may be required in order to suppress adhesion of dust and the like due to static electricity generated during lamination and to prevent malfunction of the display. As a countermeasure against such static electricity, it is desirable that the surface resistance value is about 10 10 Ω/□.
特開2011-131409号公報JP, 2011-131409, A
 これまでに提案された特許文献1に記載のシリカ微粒子添加ハードコート層では、多官能アクリレート及びシリカ微粒子間の物理的相互作用が弱く、十分な耐擦傷性を得ることが困難であり、延伸性も満足行く水準では無かった。 In the silica particle-added hard coat layer described in Patent Document 1 proposed so far, the physical interaction between the polyfunctional acrylate and the silica particles is weak, and it is difficult to obtain sufficient scratch resistance, and the stretchability is improved. Was not at a satisfactory level.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、オキシエチレン変性或いはラクトン変性の多官能モノマーと、含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子と、表面改質剤としてポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルとを含む硬化性組成物が、耐擦傷性を維持しつつ、延伸性を向上可能なハードコート層を形成可能であること、さらには帯電防止性能及び/又は防眩性をも付与可能であることを見出し、本発明を完成させた。 The present inventors have conducted extensive studies to achieve the above object, and as a result, the surface was modified with an oxyethylene-modified or lactone-modified polyfunctional monomer and a silane coupling agent having a nitrogen-containing proton-donating functional group. A curable composition containing silica particles and a perfluoropolyether containing a poly(oxyperfluoroalkylene) group as a surface modifier forms a hard coat layer capable of improving stretchability while maintaining scratch resistance. They have found that they can be formed and can also impart antistatic performance and/or antiglare properties, and have completed the present invention.
 すなわち、本発明は第1観点として、
(a)(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマー、及び(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーからなる群から選択される、活性エネルギー線硬化性多官能モノマー100質量部、
(b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテル0.05質量部~10質量部、
(c)含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子10質量部~65質量部、及び、
(d)活性エネルギー線によりラジカルを発生する重合開始剤1質量部~20質量部
を含む、硬化性組成物に関する。
 第2観点として、含窒素プロトン供与性官能基が、アミノ基、アミド基、ウレア基、チオウレア基、ウレタン基、チオウレタン基、ウレイド基、及びチオウレイド基からなる群から選択される少なくとも1つの基である、第1観点に記載の硬化性組成物に関する。
 第3観点として、含窒素プロトン供与性官能基が、アミノ基、ウレア基、チオウレア基、及びウレイド基からなる群から選択される少なくとも1つの基である、第2観点に記載の硬化性組成物に関する。
 第4観点として、前記(c)シリカ粒子が、40nm~500nmの平均粒子径を有するシリカ微粒子である、第1観点乃至第3観点のうち何れか一つに記載の硬化性組成物に関する。
 第5観点として、前記(b)パーフルオロポリエーテルは、その分子鎖の末端にウレタン結合を介して活性エネルギー線重合性基を有する、第1観点乃至第4観点のうち何れか一つに記載の硬化性組成物に関する。
 第6観点として、前記(b)パーフルオロポリエーテルは、その分子鎖の末端にウレタン結合を介して活性エネルギー線重合性基を少なくとも2つ有する、第1観点乃至第5観点のうち何れか一つに記載の硬化性組成物に関する。
 第7観点として、前記(b)パーフルオロポリエーテルは、その分子鎖の片末端にウレタン結合を介して活性エネルギー線重合性基を少なくとも2つ有する、第1観点乃至第6観点のうち何れか一つに記載の硬化性組成物に関する。
 第8観点として、前記(b)パーフルオロポリエーテルは、その分子鎖の両末端それぞれにウレタン結合を介して活性エネルギー線重合性基を少なくとも3つ有する、第1観点乃至第6観点のうち何れか一つに記載の硬化性組成物に関する。
 第9観点として、前記ポリ(オキシパーフルオロアルキレン)基が、繰り返し単位-[OCF]-及び繰り返し単位-[OCFCF]-の双方を有し、これら繰り返し単位をブロック結合、ランダム結合、又は、ブロック結合及びランダム結合にて結合してなる基である、第1観点乃至第8観点のうち何れか一つに記載の硬化性組成物に関する。
 第10観点として、前記(b)パーフルオロポリエーテルが、下記式[1]で表される部分構造を有する、第9観点に記載の硬化性組成物に関する。
Figure JPOXMLDOC01-appb-C000002
(上記式[1]中、
nは、繰り返し単位-[OCFCF]-の数と、繰り返し単位-[OCF]-の数との総数であって5~30の整数を表し、
前記繰り返し単位-[OCFCF]-と、前記繰り返し単位-[OCF]-は、ブロック結合、ランダム結合、又は、ブロック結合及びランダム結合の何れかにて結合してなる。)
 第11観点として、前記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーの一部又は全部が、オキシエチレン変性多官能(メタ)アクリレート化合物からなる、第1観点乃至第10観点のうち何れか一つに記載の硬化性組成物に関する。
 第12観点として、前記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーは、活性エネルギー線重合性基を1分子中に3以上有するモノマーであって、平均オキシエチレン変性量が該活性エネルギー線重合性基1molに対し3mol未満のモノマーである、第1観点乃至第11観点のうち何れか一つに記載の硬化性組成物に関する。
 第13観点として、前記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーは、平均オキシエチレン変性量が前記活性エネルギー線重合性基1molに対し2mol未満のモノマーである、第12観点に記載の硬化性組成物に関する。
 第14観点として、前記(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーの一部又は全部が、ラクトン変性多官能(メタ)アクリレート化合物からなる、第1観点乃至第13観点のうち何れか一つに記載の硬化性組成物に関する。
 第15観点として、前記(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーの一部又は全部が、ε-カプロラクトン変性多官能モノマーである、第14観点に記載の硬化性組成物に関する。
 第16観点として、前記(c)シリカ粒子が、チオウレア基又はウレイド基を有するシランカップリング剤で表面が修飾されたシリカ粒子であり、且つ、
(e)帯電防止剤10質量部~55質量部をさらに含む、第1観点乃至第15観点のうち何れか一つに記載の硬化性組成物に関する。
 第17観点として、前記(e)帯電防止剤として金属酸化物粒子を含む、第16観点に記載の硬化性組成物に関する。
 第18観点として、前記金属酸化物粒子は、スズ、亜鉛、及びインジウムからなる群から選ばれる少なくとも1つの元素の酸化物を含む、第17観点に記載の硬化性組成物に関する。
 第19観点として、前記金属酸化物粒子は酸化スズを含む、第18観点に記載の硬化性組成物に関する。
 第20観点として、前記金属酸化物粒子は、リンドープ酸化スズ及び表面が五酸化アンチモンで被覆された酸化スズのうち少なくとも1つを含む、第17観点乃至第19観点のうち何れか一つに記載の硬化性組成物に関する。
 第21観点として、さらに(f)0.2μm~15μmの平均粒子径を有する微粒子1質量部~40質量部を含む、第1観点乃至第20観点のうち何れか一つに記載の硬化性組成物に関する。
 第22観点として、前記(f)0.2μm~15μmの平均粒子径を有する微粒子が有機微粒子である、第21観点に記載の硬化性組成物に関する。
 第23観点として、前記有機微粒子がポリメタクリル酸メチル微粒子である、第22観点に記載の硬化性組成物に関する。
 第24観点として、さらに(g)溶媒を含む、第1観点乃至第23観点のうち何れか一つに記載の硬化性組成物に関する。
 第25観点として、第1観点乃至第24観点のうち何れか一つに記載の硬化性組成物より得られる硬化膜に関する。
 第26観点として、フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムであって、該ハードコート層が第25観点に記載の硬化膜からなる、ハードコートフィルムに関する。
 第27観点として、前記ハードコート層が1μm~10μmの層厚を有する、第26観点に記載のハードコートフィルムに関する。
 第28観点として、フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムの製造方法であって、該ハードコート層が、第1観点乃至第24観点のうち何れか一つに記載の硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程と、該塗膜に活性エネルギー線を照射し硬化する工程とを含む、ハードコートフィルムの製造方法に関する。
 第29観点として、含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子に関する。
 第30観点として、40nm~500nmの平均粒子径を有する第29観点に記載のシリカ粒子に関する。
 第31観点として、前記含窒素プロトン供与性官能基が、チオウレア基又はチオウレタン基である、第29観点又は第30観点に記載のシリカ粒子に関する。
That is, the first aspect of the present invention is as follows.
An active energy ray-curable polyfunctional monomer selected from the group consisting of (a) (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer and (a-2) active energy ray-curable lactone-modified polyfunctional monomer. 100 parts by mass of functional monomer,
(B) 0.05 to 10 parts by mass of perfluoropolyether containing a poly(oxyperfluoroalkylene) group,
(C) 10 to 65 parts by mass of silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton donating functional group, and
(D) A curable composition containing 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays.
As a second aspect, the nitrogen-containing proton-donating functional group is at least one group selected from the group consisting of an amino group, an amide group, a urea group, a thiourea group, a urethane group, a thiourethane group, a ureido group, and a thioureido group. Which is a curable composition according to the first aspect.
As a third aspect, the curable composition according to the second aspect, wherein the nitrogen-containing proton donating functional group is at least one group selected from the group consisting of an amino group, a urea group, a thiourea group, and a ureido group. Regarding
A fourth aspect relates to the curable composition according to any one of the first to third aspects, wherein the (c) silica particles are silica fine particles having an average particle diameter of 40 nm to 500 nm.
As a fifth aspect, the (b) perfluoropolyether has an active energy ray-polymerizable group at the end of its molecular chain via a urethane bond, according to any one of the first to fourth aspects. Of the curable composition.
As a sixth aspect, the above-mentioned (b) perfluoropolyether has at least two active energy ray-polymerizable groups via urethane bonds at the ends of its molecular chain. And a curable composition according to item 1.
As a seventh aspect, the above-mentioned (b) perfluoropolyether has at least two active energy ray-polymerizable groups at one end of its molecular chain via a urethane bond. One relates to the curable composition.
As an eighth aspect, any one of the first to sixth aspects, wherein the (b) perfluoropolyether has at least three active energy ray-polymerizable groups via urethane bonds at both ends of its molecular chain. The curable composition according to any one of the above.
As a ninth aspect, the poly(oxyperfluoroalkylene) group has both a repeating unit —[OCF 2 ]— and a repeating unit —[OCF 2 CF 2 ]—, and these repeating units are block-bonded or random-bonded. Or the curable composition according to any one of the first to eighth aspects, which is a group formed by a block bond and a random bond.
As a tenth aspect, the curable composition according to the ninth aspect, wherein the (b) perfluoropolyether has a partial structure represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000002
(In the above formula [1],
n is the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and represents an integer of 5 to 30,
The repeating unit —[OCF 2 CF 2 ]— and the repeating unit —[OCF 2 ]— are bonded by a block bond, a random bond, or a block bond and a random bond. )
As an eleventh aspect, in the first to tenth aspects, a part or all of the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer is composed of an oxyethylene-modified polyfunctional (meth)acrylate compound. The curable composition according to any one of the above.
A twelfth aspect is that the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer is a monomer having 3 or more active energy ray-polymerizable groups in one molecule, and has an average oxyethylene-modified amount of The curable composition according to any one of the first to eleventh aspects, which is a monomer of less than 3 mol per 1 mol of the active energy ray-polymerizable group.
As a thirteenth aspect, the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer is a monomer having an average oxyethylene-modified amount of less than 2 mol with respect to 1 mole of the active energy ray-polymerizable group. And the curable composition described in 1.
As a fourteenth aspect, any one of the first to thirteenth aspects, wherein a part or all of (a-2) the active energy ray-curable lactone-modified polyfunctional monomer is composed of a lactone-modified polyfunctional (meth)acrylate compound. The curable composition according to any one of the above.
A fifteenth aspect relates to the curable composition according to the fourteenth aspect, wherein part or all of the (a-2) active energy ray-curable lactone-modified polyfunctional monomer is an ε-caprolactone-modified polyfunctional monomer.
As a sixteenth aspect, the (c) silica particles are silica particles whose surface is modified with a silane coupling agent having a thiourea group or a ureido group, and
(E) The curable composition according to any one of the first to fifteenth aspects, further including 10 parts by mass to 55 parts by mass of the antistatic agent.
A seventeenth aspect relates to the curable composition according to the sixteenth aspect, which comprises metal oxide particles as the (e) antistatic agent.
As an eighteenth aspect, the curable composition according to the seventeenth aspect, wherein the metal oxide particles contain an oxide of at least one element selected from the group consisting of tin, zinc, and indium.
A nineteenth aspect relates to the curable composition according to the eighteenth aspect, wherein the metal oxide particles contain tin oxide.
As a twentieth aspect, the metal oxide particles contain at least one of phosphorus-doped tin oxide and tin oxide whose surface is coated with antimony pentoxide. Of the curable composition.
As a twenty-first aspect, the curable composition according to any one of the first to twentieth aspects further including (f) 1 part by mass to 40 parts by mass of fine particles having an average particle size of 0.2 μm to 15 μm. Regarding things.
A twenty-second aspect relates to the curable composition according to the twenty-first aspect, wherein (f) the fine particles having an average particle size of 0.2 μm to 15 μm are organic fine particles.
A twenty-third aspect relates to the curable composition according to the twenty-second aspect, wherein the organic fine particles are polymethylmethacrylate fine particles.
A twenty-fourth aspect relates to the curable composition according to any one of the first to twenty-third aspects, further including (g) a solvent.
A twenty-fifth aspect relates to a cured film obtained from the curable composition according to any one of the first to twenty-fourth aspects.
A twenty-sixth aspect relates to a hard coat film having a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer comprises the cured film according to the twenty-fifth aspect.
A 27th aspect relates to the hardcoat film according to the 26th aspect, wherein the hard coat layer has a layer thickness of 1 μm to 10 μm.
A twenty-eighth aspect is a method for producing a hard coat film, comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is described in any one of the first to twenty-fourth aspects. It relates to a method for producing a hard coat film, which comprises a step of forming a coating film by applying the curable composition of 1. to a film substrate and a step of irradiating the coating film with an active energy ray to cure the coating film.
A twenty-ninth aspect relates to silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group.
A thirtieth aspect relates to the silica particles according to the twenty-ninth aspect, which have an average particle diameter of 40 nm to 500 nm.
A 31st aspect relates to the silica particles according to the 29th aspect or the 30th aspect, wherein the nitrogen-containing proton-donating functional group is a thiourea group or a thiourethane group.
 本発明によれば、厚さ1μm~10μm程度の薄膜においても優れた耐擦傷性と高い延伸性とを両立する硬化膜及びハードコート層の形成に有用な硬化性組成物を提供することができる。
 また、本発明によれば、前記硬化性組成物より得られる硬化膜又は該硬化膜より形成されるハードコート層が表面に付与されたハードコートフィルムを提供することができ、耐擦傷性、延伸性に優れるハードコートフィルムを提供することができる。
 更に本発明によれば、上記の性能に加え、帯電防止性及び/又は防眩性をも付与した硬化膜及びハードコート層の形成に有用な硬化性組成物、並びにこれら性能に優れるハードコート層が表面に付与されたハードコートフィルムを提供することができる。
According to the present invention, it is possible to provide a curable composition which is useful for forming a cured film and a hard coat layer that have both excellent scratch resistance and high stretchability even in a thin film having a thickness of about 1 μm to 10 μm. ..
Further, according to the present invention, it is possible to provide a hard coat film having a cured film obtained from the curable composition or a hard coat layer formed from the cured film provided on the surface, scratch resistance, and stretching. A hard coat film having excellent properties can be provided.
Furthermore, according to the present invention, in addition to the above-mentioned properties, a curable composition useful for forming a hardened film and a hard coat layer having antistatic properties and/or antiglare properties, and a hard coat layer excellent in these properties. It is possible to provide a hard coat film having a surface coated with.
<硬化性組成物>
 本発明の硬化性組成物は、詳細には、
(a)(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマー、及び(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーからなる群から選択される、活性エネルギー線硬化性多官能モノマー100質量部、
(b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテル0.05質量部~10質量部、
(c)含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子10質量部~65質量部、及び、
(d)活性エネルギー線によりラジカルを発生する重合開始剤1質量部~20質量部
を含む、硬化性組成物を含む、硬化性組成物に関する
 以下、まず上記(a)~(d)の各成分について説明する。
<Curable composition>
The curable composition of the present invention specifically comprises
An active energy ray-curable polyfunctional monomer selected from the group consisting of (a) (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer and (a-2) active energy ray-curable lactone-modified polyfunctional monomer. 100 parts by mass of functional monomer,
(B) 0.05 to 10 parts by mass of perfluoropolyether containing a poly(oxyperfluoroalkylene) group,
(C) 10 to 65 parts by mass of silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton donating functional group, and
(D) Relating to a curable composition containing a curable composition containing 1 part by mass to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays. First, each component of the above (a) to (d) Will be described.
[(a)活性エネルギー線硬化性多官能モノマー]
 本発明では(a)成分の活性エネルギー線硬化性多官能モノマーとして、後述する(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマー、又は、(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーを使用する。これら(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーと(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーを併用してもよい。
 (a)成分は、紫外線等の活性エネルギー線を照射することで重合反応が進行し硬化する活性エネルギー線重合性基を2つ以上有し、且つ、オキシエチレン基又はラクトン由来の基を有する多官能モノマーである。前記活性エネルギー線重合性基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
[(A) Active energy ray curable polyfunctional monomer]
In the present invention, as the active energy ray-curable polyfunctional monomer of the component (a), (a-1) an active energy ray-curable oxyethylene-modified polyfunctional monomer or (a-2) an active energy ray-curable lactone described later is used. A modified polyfunctional monomer is used. These (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomers and (a-2) active energy ray-curable lactone-modified polyfunctional monomers may be used in combination.
The component (a) has two or more active energy ray-polymerizable groups that undergo a polymerization reaction to be cured by irradiation with an active energy ray such as ultraviolet rays, and also has a group derived from an oxyethylene group or a lactone. It is a functional monomer. Examples of the active energy ray-polymerizable group include (meth)acryloyl group and vinyl group.
[(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマー]
 本発明で使用する(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーは、活性エネルギー線重合性基を2以上有するモノマーである。好ましくは、平均オキシエチレン変性量が前記活性エネルギー線重合性基1molに対し3mol未満のモノマーである。
[(A-1) Active energy ray-curable oxyethylene-modified polyfunctional monomer]
The active energy ray-curable oxyethylene-modified polyfunctional monomer used in the present invention is a monomer having two or more active energy ray-polymerizable groups. Preferably, the average amount of modified oxyethylene is less than 3 mol per 1 mol of the active energy ray-polymerizable group.
 本発明の硬化性組成物において好ましい(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーとしては、活性エネルギー線重合性基を少なくとも3つ有し、平均オキシエチレン変性量が前記活性エネルギー線重合性基1molに対し3mol未満である、オキシエチレン変性多官能(メタ)アクリレート化合物からなる群から選択されるモノマーであり、また例えばオキシエチレン変性多官能ウレタン(メタ)アクリレート化合物からなる群から選択されるモノマーを挙げることができる。
 なお、本発明において(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
The preferable (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer in the curable composition of the present invention has at least three active energy ray-polymerizable groups and has an average oxyethylene-modified amount of the above-mentioned active energy. A monomer selected from the group consisting of oxyethylene-modified polyfunctional (meth)acrylate compounds, which is less than 3 mol with respect to 1 mol of the linear polymerizable group, and, for example, from the group consisting of oxyethylene-modified polyfunctional urethane (meth)acrylate compounds. Mention may be made of the monomers selected.
In addition, in this invention, a (meth)acrylate compound means both an acrylate compound and a methacrylate compound. For example, (meth)acrylic acid refers to acrylic acid and methacrylic acid.
 上記オキシエチレン変性多官能(メタ)アクリレート化合物としては、例えば、オキシエチレンで変性されたポリオールの(メタ)アクリレート化合物が挙げられる。
 該ポリオールとしては、例えば、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ペンタグリセリン、ヘキサグリセリン、デカグリセリン、ポリグリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
Examples of the oxyethylene-modified polyfunctional (meth)acrylate compound include (oxy)ethylene-modified polyol (meth)acrylate compounds.
Examples of the polyol include glycerin, diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, decaglycerin, polyglycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol and the like.
 また上記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーにおいて、平均オキシエチレン変性量は、該モノマーが有する活性エネルギー線重合性基1molに対し3mol未満であり、好ましくは、該モノマーが有する活性エネルギー線重合性基1molに対し2mol未満とすることができる。また、前記平均オキシエチレン変性量は、該モノマーが有する活性エネルギー線重合性基1molに対して0molより大きく、好ましくは、該モノマーが有する活性エネルギー線重合性基1molに対して0.1mol以上、より好ましくは0.5mol以上とすることができる。
 さらに、(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマー1分子に対する、オキシエチレンの付加数は、1~30、好ましくは1~12とすることができる。
In the active energy ray-curable oxyethylene-modified polyfunctional monomer (a-1), the average oxyethylene-modified amount is less than 3 mol with respect to 1 mol of the active energy ray-polymerizable group contained in the monomer, and preferably the monomer Can be less than 2 mol per 1 mol of the active energy ray-polymerizable group. The average oxyethylene modification amount is larger than 0 mol with respect to 1 mol of the active energy ray-polymerizable group contained in the monomer, preferably 0.1 mol or more with respect to 1 mol of the active energy ray-polymerizable group contained in the monomer, More preferably, it can be 0.5 mol or more.
Further, the addition number of oxyethylene to 1 molecule of the (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer can be 1 to 30, preferably 1 to 12.
 本発明では、上記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーとして一種を単独で、或いは二種以上を組合せて使用することができる。 In the present invention, one type of the above (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer can be used alone, or two or more types can be used in combination.
[(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマー]
 本発明で使用する(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーとは、紫外線等の活性エネルギー線を照射することで重合反応が進行し、硬化する、ラクトンで変性された多官能モノマーを指す。
 本発明の硬化性組成物において好ましい(a)活性エネルギー線硬化性ラクトン変性多官能モノマーとしては、ラクトン変性多官能(メタ)アクリレート化合物からなる群から選択されるモノマーである。
[(A-2) active energy ray-curable lactone-modified polyfunctional monomer]
The (a-2) active energy ray-curable lactone-modified polyfunctional monomer used in the present invention is a lactone-modified polyfunctional monomer which undergoes a polymerization reaction upon irradiation with an active energy ray such as ultraviolet rays and is cured. Refers to monomers.
The preferable (a) active energy ray-curable lactone-modified polyfunctional monomer in the curable composition of the present invention is a monomer selected from the group consisting of lactone-modified polyfunctional (meth)acrylate compounds.
 上記ラクトン変性多官能(メタ)アクリレート化合物としては、例えば、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等のラクトンで変性された(すなわちラクトンを開環付加又は開環付加重合させた)ポリオール又はポリチオールの(メタ)アクリレート化合物が挙げられる。
 該ポリオールとしては、例えば、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、グリセリン、ビスフェノールA、エトキシ化トリメチロールプロパン、エトキシ化ペンタエリスリトール、エトキシ化ジペンタエリスリトール、エトキシ化グリセリン、エトキシ化ビスフェノールA、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、トリシクロ[5.2.1.02,6]デカンジメタノール、1,3-アダマンタンジオール、1,3-アダマンタンジメタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、ジオキサングリコール、ビス(2-ヒドロキシエチル)イソシアヌレート、トリス(2-ヒドロキシエチル)イソシアヌレート、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン等が挙げられる。
 また、該チオールとしては、ビス(2-メルカプトエチル)スルフィド、ビス(4-メルカプトフェニル)スルフィド等が挙げられる。
Examples of the lactone-modified polyfunctional (meth)acrylate compound include polyols modified with lactones such as γ-butyrolactone, δ-valerolactone, ε-caprolactone (that is, ring-opening addition or ring-opening addition polymerization of lactone). Alternatively, a (meth)acrylate compound of polythiol can be used.
Examples of the polyol include trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, glycerin, bisphenol A, ethoxylated trimethylolpropane, ethoxylated pentaerythritol, ethoxylated dipentaerythritol, ethoxylated glycerin, ethoxylated. Bisphenol A, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1 ,10-decanediol, tricyclo[5.2.1.0 2,6 ]decane dimethanol, 1,3-adamantane diol, 1,3-adamantane dimethanol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol , Polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, neopentyl glycol, dioxane glycol, bis(2-hydroxyethyl)isocyanurate, tris(2-hydroxyethyl)isocyanurate, 9,9-bis(4-hydroxy) Examples thereof include phenyl)fluorene and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene.
Further, examples of the thiol include bis(2-mercaptoethyl)sulfide and bis(4-mercaptophenyl)sulfide.
 このようなラクトン変性多官能(メタ)アクリレート化合物としては、例えば、ラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ラクトン変性ジトリメチロールプロパンテトラ(メタ)アクリレート、ラクトン変性ペンタエリスリトールジ(メタ)アクリレート、ラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、ラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、ラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、ラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ラクトン変性2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、ラクトン変性2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、ラクトン変性グリセリントリ(メタ)アクリレート、ラクトン変性ビスフェノールAジ(メタ)アクリレート、ラクトン変性エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ラクトン変性エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ラクトン変性エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート、ラクトン変性エトキシ化グリセリントリ(メタ)アクリレート、ラクトン変性エトキシ化ビスフェノールAジ(メタ)アクリレート、ラクトン変性1,3-プロパンジオールジ(メタ)アクリレート、ラクトン変性1,3-ブタンジオールジ(メタ)アクリレート、ラクトン変性1,4-ブタンジオールジ(メタ)アクリレート、ラクトン変性1,6-ヘキサンジオールジ(メタ)アクリレート、ラクトン変性2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、ラクトン変性1,9-ノナンジオールジ(メタ)アクリレート、ラクトン変性1,10-デカンジオールジ(メタ)アクリレート、ラクトン変性トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、ラクトン変性1,3-アダマンタンジオールジ(メタ)アクリレート、ラクトン変性1,3-アダマンタンジメタノールジ(メタ)アクリレート、ラクトン変性エチレングリコールジ(メタ)アクリレート、ラクトン変性ジエチレングリコールジ(メタ)アクリレート、ラクトン変性トリエチレングリコールジ(メタ)アクリレート、ラクトン変性テトラエチレングリコールジ(メタ)アクリレート、ラクトン変性ポリエチレングリコールジ(メタ)アクリレート、ラクトン変性プロピレングリコールジ(メタ)アクリレート、ラクトン変性ジプロピレングリコールジ(メタ)アクリレート、ラクトン変性ポリプロピレングリコールジ(メタ)アクリレート、ラクトン変性ネオペンチルグリコールジ(メタ)アクリレート、ラクトン変性ジオキサングリコールジ(メタ)アクリレート、ラクトン変性ビス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、ラクトン変性トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、ラクトン変性9,9-ビス(4-(メタ)アクリロイルオキシフェニル)フルオレン、ラクトン変性9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ラクトン変性ビス[2-(メタ)アクリロイルチオエチル]スルフィド、ラクトン変性ビス[4-(メタ)アクリロイルチオフェニル]スルフィド等が挙げられる。 Examples of such a lactone-modified polyfunctional (meth)acrylate compound include lactone-modified trimethylolpropane tri(meth)acrylate, lactone-modified ditrimethylolpropane tetra(meth)acrylate, lactone-modified pentaerythritol di(meth)acrylate, and lactone. Modified pentaerythritol tri(meth)acrylate, lactone modified pentaerythritol tetra(meth)acrylate, lactone modified dipentaerythritol penta(meth)acrylate, lactone modified dipentaerythritol hexa(meth)acrylate, lactone modified 2-hydroxy-1,3 -Di(meth)acryloyloxypropane, lactone modified 2-hydroxy-1-acryloyloxy-3-methacryloyloxypropane, lactone modified glycerin tri(meth)acrylate, lactone modified bisphenol A di(meth)acrylate, lactone modified ethoxylated tri Methylolpropane tri(meth)acrylate, lactone modified ethoxylated pentaerythritol tetra(meth)acrylate, lactone modified ethoxylated dipentaerythritol hexa(meth)acrylate, lactone modified ethoxylated glycerin tri(meth)acrylate, lactone modified ethoxylated bisphenol A Di(meth)acrylate, lactone-modified 1,3-propanediol di(meth)acrylate, lactone-modified 1,3-butanediol di(meth)acrylate, lactone-modified 1,4-butanediol di(meth)acrylate, lactone-modified 1,6-hexanediol di(meth)acrylate, lactone-modified 2-methyl-1,8-octanediol di(meth)acrylate, lactone-modified 1,9-nonanediol di(meth)acrylate, lactone-modified 1,10- Decanediol di(meth)acrylate, lactone modified tricyclo[5.2.1.0 2,6 ]decane dimethanol di(meth)acrylate, lactone modified 1,3-adamantane diol di(meth)acrylate, lactone modified 1, 3-adamantane dimethanol di(meth)acrylate, lactone modified ethylene glycol di(meth)acrylate, lactone modified diethylene glycol di(meth)acrylate, lactone modified triethylene glycol di(meth)acrylate, lactone modified tetraethylene glycol di(meth)acrylate Acrylate, lactone modified polyethylene glycol di (Meth)acrylate, lactone modified propylene glycol di(meth)acrylate, lactone modified dipropylene glycol di(meth)acrylate, lactone modified polypropylene glycol di(meth)acrylate, lactone modified neopentyl glycol di(meth)acrylate, lactone modified dioxane Glycol di(meth)acrylate, lactone-modified bis(2-hydroxyethyl)isocyanurate di(meth)acrylate, lactone-modified tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate, lactone-modified 9,9-bis(4 -(Meth)acryloyloxyphenyl)fluorene, lactone-modified 9,9-bis[4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene, lactone-modified bis[2-(meth)acryloylthioethyl]sulfide, lactone Examples thereof include modified bis[4-(meth)acryloylthiophenyl]sulfide.
 中でも、変性するラクトンとしてはε-カプロラクトンが好ましく、例えば、上記のラクトン変性多官能(メタ)アクリレート化合物のラクトンがε-カプロラクトンである化合物が好ましい。
 より好ましいラクトン変性多官能(メタ)アクリレート化合物としては、例えば、ε-カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
Among them, ε-caprolactone is preferable as the lactone to be modified, and for example, a compound in which the lactone of the lactone-modified polyfunctional (meth)acrylate compound is ε-caprolactone is preferable.
More preferable lactone-modified polyfunctional (meth)acrylate compounds include, for example, ε-caprolactone-modified pentaerythritol tri(meth)acrylate, ε-caprolactone-modified pentaerythritol tetra(meth)acrylate, ε-caprolactone-modified dipentaerythritol penta(meth). ) Acrylate, ε-caprolactone-modified dipentaerythritol hexa(meth)acrylate and the like.
 また、ラクトン変性多官能(メタ)アクリレート化合物として、ラクトン変性多官能ウレタン(メタ)アクリレート化合物を挙げることができる。上記ラクトン変性多官能ウレタン(メタ)アクリレート化合物は、1分子内に(メタ)アクリロイル基を複数有し、ウレタン結合(-NHCOO-)、及び、例えば、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等のラクトンの開環構造を有する化合物である。
 例えば上記ラクトン変性多官能ウレタン(メタ)アクリレートとしては、多官能イソシアネートとラクトンで変性されたヒドロキシ基を有する(メタ)アクリレートとの反応により得られるもの、多官能イソシアネートとヒドロキシ基を有する(メタ)アクリレートとラクトンで変性されたポリオールとの反応により得られるものなどが挙げられるが、本発明で使用可能なラクトン変性多官能ウレタン(メタ)アクリレート化合物は、かかる例示のみに限定されるものではない。
Examples of the lactone-modified polyfunctional (meth)acrylate compound include lactone-modified polyfunctional urethane (meth)acrylate compounds. The lactone-modified polyfunctional urethane (meth)acrylate compound has a plurality of (meth)acryloyl groups in one molecule, and has a urethane bond (-NHCOO-) and, for example, γ-butyrolactone, δ-valerolactone, ε- It is a compound having a ring-opening structure of a lactone such as caprolactone.
For example, as the lactone-modified polyfunctional urethane (meth)acrylate, those obtained by reacting a polyfunctional isocyanate with a lactone-modified (meth)acrylate having a hydroxy group, a polyfunctional isocyanate having a hydroxy group (meth) Examples thereof include those obtained by reacting an acrylate with a polyol modified with a lactone, but the lactone-modified polyfunctional urethane (meth)acrylate compound usable in the present invention is not limited to these examples.
 なお上記多官能イソシアネートとしては、例えば、トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
 また上記ヒドロキシ基を有する(メタ)アクリレートとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート等が挙げられる。
 そして上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール等のジオール類;これらジオール類とコハク酸、マレイン酸、アジピン酸等の脂肪族ジカルボン酸類又はジカルボン酸無水物類との反応生成物であるポリエステルポリオール;ポリエーテルポリオール;ポリカーボネートジオール等が挙げられる。
Examples of the polyfunctional isocyanate include tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, and the like.
Examples of the (meth)acrylate having a hydroxy group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate. Examples thereof include acrylate and tripentaerythritol hepta(meth)acrylate.
Examples of the above-mentioned polyol include diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol; these diols and succinic acid, maleic acid. Examples thereof include polyester polyols, polyether polyols, polycarbonate diols and the like, which are reaction products of aliphatic dicarboxylic acids such as acids and adipic acid or dicarboxylic acid anhydrides.
 本発明では、上記(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーとして一種を単独で、或いは二種以上を組合せて使用することができる。 In the present invention, the active energy ray-curable lactone-modified polyfunctional monomer (a-2) may be used alone or in combination of two or more.
[(b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテル]
 上記ポリ(オキシパーフルオロアルキレン)基におけるアルキレン基の炭素原子数は特に限定されないが、炭素原子数1~4であることが好ましい。すなわち、上記ポリ(オキシパーフルオロアルキレン)基は、炭素原子数1~4の2価のフッ化炭素基と酸素原子が交互に連結した構造を有する基を指し、オキシパーフルオロアルキレン基は炭素原子数1~4の2価のフッ化炭素基と酸素原子が連結した構造を有する基を指す。具体的には、-[OCF]-(オキシパーフルオロメチレン基)、-[OCFCF]-(オキシパーフルオロエチレン基)、-[OCFCFCF]-(オキシパーフルオロプロパン-1,3-ジイル基)、-[OCFC(CF)F]-(オキシパーフルオロプロパン-1,2-ジイル基)等の基が挙げられる。
 上記オキシパーフルオロアルキレン基は、一種を単独で使用してもよく、或いは二種以上を組み合わせて使用してもよく、その場合、複数種のオキシパーフルオロアルキレン基の結合はブロック結合及びランダム結合の何れであってもよい。
[(B) Perfluoropolyether containing poly(oxyperfluoroalkylene) group]
The number of carbon atoms of the alkylene group in the above poly(oxyperfluoroalkylene) group is not particularly limited, but it is preferably 1 to 4 carbon atoms. That is, the poly(oxyperfluoroalkylene) group refers to a group having a structure in which a divalent fluorocarbon group having 1 to 4 carbon atoms and an oxygen atom are alternately linked, and the oxyperfluoroalkylene group is a carbon atom. It refers to a group having a structure in which a divalent fluorocarbon group of formulas 1 to 4 and an oxygen atom are linked. Specifically, -[OCF 2 ]-(oxyperfluoromethylene group), -[OCF 2 CF 2 ]-(oxyperfluoroethylene group), -[OCF 2 CF 2 CF 2 ]-(oxyperfluoropropane Examples thereof include groups such as -1,3-diyl group) and -[OCF 2 C(CF 3 )F]-(oxyperfluoropropane-1,2-diyl group).
The above oxyperfluoroalkylene groups may be used alone or in combination of two or more, and in that case, the bonds of plural kinds of oxyperfluoroalkylene groups are a block bond and a random bond. Either of them may be used.
 これらの中でも、耐擦傷性が良好となる硬化膜が得られる観点から、ポリ(オキシパーフルオロアルキレン)基として、-[OCF]-(オキシパーフルオロメチレン基)と-[OCFCF]-(オキシパーフルオロエチレン基)の双方を繰り返し単位として有する基を用いることが好ましい。
 中でも上記ポリ(オキシパーフルオロアルキレン)基として、繰り返し単位:-[OCF]-と-[OCFCF]-とが、モル比率で[繰り返し単位:-[OCF]-]:[繰り返し単位:-[OCFCF]-]=2:1~1:2となる割合で含む基であることが好ましく、およそ1:1となる割合で含む基であることがより好ましい。これら繰り返し単位の結合は、ブロック結合及びランダム結合の何れであってもよい。
 上記オキシパーフルオロアルキレン基の繰り返し単位数は、その繰り返し単位数の総計として5~30の範囲であることが好ましく、7~21の範囲であることがより好ましい。
 また、上記ポリ(オキシパーフルオロアルキレン)基のゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(Mw)は、1,000~5,000、好ましくは1,500~3,000である。
Among these, from the viewpoint of obtaining a cured film having good scratch resistance, as poly(oxyperfluoroalkylene) groups, -[OCF 2 ]-(oxyperfluoromethylene group) and -[OCF 2 CF 2 ] are used. It is preferable to use a group having both —(oxyperfluoroethylene group) as a repeating unit.
Among them, as the above poly(oxyperfluoroalkylene) group, repeating units: -[OCF 2 ]- and -[OCF 2 CF 2 ]- are in a molar ratio of [repeating unit: -[OCF 2 ]-]: [repeat Unit: —[OCF 2 CF 2 ]—] is preferably a group containing at a ratio of 2:1 to 1:2, and more preferably a group containing at a ratio of about 1:1. The bond of these repeating units may be either a block bond or a random bond.
The total number of repeating units of the oxyperfluoroalkylene group is preferably in the range of 5 to 30, and more preferably in the range of 7 to 21.
The weight average molecular weight (Mw) of the poly(oxyperfluoroalkylene) group measured by gel permeation chromatography in terms of polystyrene is 1,000 to 5,000, preferably 1,500 to 3,000. ..
 本発明では、(b)成分として、ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の末端に、ウレタン結合を介して活性エネルギー線重合性基を有するパーフルオロポリエーテル(以降、単に「(b)分子鎖の末端に重合性基を有するパーフルオロポリエーテル」とも称する)を使用することができる。前記パーフルオロポリエーテルの分子鎖の末端は、該分子鎖の全ての末端及び一部の末端、いずれでもよい。前記パーフルオロポリエーテルの分子鎖が直鎖状である場合、前記分子鎖の全ての末端及び一部の末端は、それぞれ該直鎖状の分子鎖の両末端及び片末端である。(b)成分は、前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合との間にポリ(オキシアルキレン)基を有するパーフルオロポリエーテルを除外することができる。(b)成分は、本発明の硬化性組成物を適用するハードコート層における表面改質剤としての役割を果たす。
 また、(b)成分は、(a)成分との相溶性に優れ、それにより、ハードコート層が白濁するのを抑制して、透明な外観を呈するハードコート層の形成を可能とする。
In the present invention, the component (b) is a perfluoropolyether containing a poly(oxyperfluoroalkylene) group, the perfluoropolyether having an active energy ray-polymerizable group at the end of its molecular chain via a urethane bond. A polyether (hereinafter, also simply referred to as “(b) perfluoropolyether having a polymerizable group at the end of the molecular chain”) can be used. The terminals of the molecular chain of the perfluoropolyether may be all terminals or some terminals of the molecular chain. When the molecular chain of the perfluoropolyether is linear, all ends and some ends of the molecular chain are both ends and one end of the linear molecular chain, respectively. As the component (b), a perfluoropolyether having a poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond can be excluded. The component (b) serves as a surface modifier in the hard coat layer to which the curable composition of the present invention is applied.
Further, the component (b) has excellent compatibility with the component (a), thereby suppressing the clouding of the hard coat layer and enabling the formation of a hard coat layer having a transparent appearance.
 上記活性エネルギー線重合性基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。 As the above-mentioned active energy ray-polymerizable group, a (meth)acryloyl group, a vinyl group and the like can be mentioned.
 (b)分子鎖の末端に重合性基を有するパーフルオロポリエーテルは、1つの活性エネルギー線重合性基を該分子鎖の末端に有するものに限られず、2つ以上の活性エネルギー線重合性基を該分子鎖の末端に有するものであってもよく、例えば、活性エネルギー線重合性基を含む末端構造としては、以下に示す式[A1]~式[A5]の構造、及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造が挙げられる。 (B) The perfluoropolyether having a polymerizable group at the terminal of the molecular chain is not limited to one having one active energy ray-polymerizable group at the terminal of the molecular chain, but may be two or more active energy ray-polymerizable groups. May be present at the end of the molecular chain. For example, as the terminal structure containing an active energy ray-polymerizable group, the structures of formulas [A1] to [A5] shown below, and And a structure in which the acryloyl group of is substituted with a methacryloyl group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 このような(b)分子鎖の末端に重合性基を有するパーフルオロポリエーテルとしては、例えば、以下の式[2]で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
(式[2]中、Aは前記式[A1]~式[A5]で表される構造及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造のうちの1つを表し、PFPEは前記ポリ(オキシパーフルオロアルキレン)基を表し(ただし、Lと直接結合する側がオキシ末端であり、酸素原子と結合する側がパーフルオロアルキレン末端である。)、Lは、フッ素原子1個~3個で置換された炭素原子数2又は3のアルキレン基を表し、mはそれぞれ独立して1~5の整数を表し、Lは、m+1価のアルコールからOHを除いたm+1価の残基を表す。)
Examples of such (b) perfluoropolyether having a polymerizable group at the end of the molecular chain include compounds represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000004
(In the formula [2], A represents one of the structures represented by the formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is substituted with a methacryloyl group, and PFPE represents Represents a poly(oxyperfluoroalkylene) group (provided that the side directly bonded to L 1 is an oxy terminal and the side bonded to an oxygen atom is a perfluoroalkylene terminal), and L 1 is 1 to 3 fluorine atoms. Represents an alkylene group having 2 or 3 carbon atoms, each of which is independently substituted with m, independently represents an integer of 1 to 5, and L 2 represents an m+1-valent residue obtained by removing OH from an m+1-valent alcohol. Represents.)
 上記フッ素原子1個~3個で置換された炭素原子数2又は3のアルキレン基としては、-CHCHF-、-CHCF-、-CHFCF-、-CHCHCHF-、-CHCHCF-、-CHCHFCF-等が挙げられ、-CHCF-が好ましい。 The alkylene group of the fluorine atom 1 to carbon atoms substituted with three 2 or 3, -CH 2 CHF -, - CH 2 CF 2 -, - CHFCF 2 -, - CH 2 CH 2 CHF-, Examples thereof include —CH 2 CH 2 CF 2 — and —CH 2 CHFCF 2 —, and —CH 2 CF 2 — is preferable.
 上記式[2]で表される化合物における部分構造(A-NHC(=O)O)-としては、以下に示す式[B1]~式[B12]で表される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(式[B1]~式[B12]中、Aは前記式[A1]~式[A5]で表される構造及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造のうちの1つを表す。)
 上記式[B1]~式[B12]で表される構造の中で、式[B1]及び式[B2]がm=1の場合に相当し、式[B3]~式[B6]がm=2の場合に相当し、式[B7]~式[B9]がm=3の場合に相当し、式[B10]~式[B12]がm=5の場合に相当する。
 これらの中でも、式[B3]で表される構造が好ましく、特に式[B3]と式[A3]の組合せが好ましい。
Examples of the partial structure (A-NHC(═O)O) m L 2 — in the compound represented by the above formula [2] include structures represented by the following formulas [B1] to [B12]. To be
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(In the formulas [B1] to [B12], A represents one of the structures represented by the above formulas [A1] to [A5] and the structure in which the acryloyl group in these structures is substituted with a methacryloyl group. Represents.)
In the structures represented by the above formulas [B1] to [B12], the formula [B1] and the formula [B2] correspond to the case where m=1, and the formulas [B3] to [B6] are m= This corresponds to the case of 2, the expression [B7] to the expression [B9] correspond to the case of m=3, and the expression [B10] to the expression [B12] correspond to the case of m=5.
Among these, the structure represented by the formula [B3] is preferable, and the combination of the formula [B3] and the formula [A3] is particularly preferable.
 (b)分子鎖の末端に重合性基を有するパーフルオロポリエーテルのうち特に好ましいものとして、下記式[1]で表される部分構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式[1]で表される部分構造は、式[2]で表される化合物から、A-NHC(=O)を除いた部分に相当する。
 式[1]中のnは、繰り返し単位-[OCFCF]-の数と、繰り返し単位-[OCF]-の数との総数を表し、5~30の範囲の整数が好ましく、7~21の範囲の整数がより好ましい。また、繰り返し単位-[OCFCF]-の数と、繰り返し単位-[OCF]-の数との比率は、2:1~1:2の範囲であることが好ましく、およそ1:1の範囲とすることがより好ましい。これら繰り返し単位の結合は、ブロック結合及びランダム結合の何れであってもよい。
Among the perfluoropolyethers having a polymerizable group at the end of the molecular chain (b), particularly preferred are compounds having a partial structure represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000007
The partial structure represented by the formula [1] corresponds to a portion obtained by removing A—NHC(═O) from the compound represented by the formula [2].
In the formula [1], n represents the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and preferably an integer in the range of 5 to 30, An integer in the range of to 21 is more preferable. The ratio of the number of repeating units -[OCF 2 CF 2 ]- to the number of repeating units -[OCF 2 ]- is preferably in the range of 2:1 to 1:2, and is approximately 1:1. It is more preferable to set the range to. The bond of these repeating units may be either a block bond or a random bond.
 本発明において(b)分子鎖の末端に重合性基を有するパーフルオロポリエーテルは、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、0.05質量部~10質量部、好ましくは0.1質量部~5質量部の割合で使用する。
 (b)分子鎖の末端に重合性基を有するパーフルオロポリエーテルを0.05質量部以上の割合で使用することで、ハードコート層に十分な耐擦傷性を付与することができる。また、(b)分子鎖の末端に重合性基を有するパーフルオロポリエーテルを10質量部以下の割合で使用することにより、(a)活性エネルギー線硬化性多官能モノマーと十分に相溶し、より白濁の少ないハードコート層を得ることができる。
In the present invention, (b) the perfluoropolyether having a polymerizable group at the terminal of the molecular chain is 0.05 to 10 parts by mass with respect to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Parts, preferably 0.1 to 5 parts by weight.
(B) By using perfluoropolyether having a polymerizable group at the end of the molecular chain in a proportion of 0.05 parts by mass or more, sufficient scratch resistance can be imparted to the hard coat layer. Further, by using (b) the perfluoropolyether having a polymerizable group at the end of the molecular chain in a proportion of 10 parts by mass or less, it is sufficiently compatible with (a) the active energy ray-curable polyfunctional monomer, A hard coat layer with less white turbidity can be obtained.
 上記(b)分子鎖の末端に重合性基を有するパーフルオロポリエーテルは、例えば、下記式[3]
Figure JPOXMLDOC01-appb-C000008
(式[3]中、PFPE、L、L及びmは、前記式[2]と同じ意味を表す。)で表される化合物の両末端に存在するヒドロキシ基に対して、重合性基を有するイソシアネート化合物、即ち、前記式[A1]~式[A5]で表される構造及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造における結合手にイソシアナト基が結合した化合物(例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等)を反応させてウレタン結合を形成することにより得ることができる。
The perfluoropolyether having a polymerizable group at the end of the molecular chain (b) is, for example, one represented by the following formula [3]
Figure JPOXMLDOC01-appb-C000008
(In the formula [3], PFPE, L 1 , L 2 and m have the same meanings as those in the formula [2].) A polymerizable group for the hydroxy group present at both terminals of the compound represented by the formula [2]. An isocyanate compound having, that is, a compound in which an isocyanato group is bonded to a bond in a structure represented by the above formulas [A1] to [A5] and a structure in which an acryloyl group in these structures is replaced with a methacryloyl group (for example, It can be obtained by reacting 2-(meth)acryloyloxyethyl isocyanate, 1,1-bis((meth)acryloyloxymethyl)ethyl isocyanate, etc.) to form a urethane bond.
 なお本発明の硬化性組成物の(b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルは、ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の片末端(一方の末端)にウレタン結合を介して、活性エネルギー線重合性基を有し、且つその分子鎖の他端(もう一方の末端)にヒドロキシ基を有するパーフルオロポリエーテルや、上記式[3]で表されるような、ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテルであって、その分子鎖の両末端にヒドロキシ基を有するパーフルオロポリエーテル[活性エネルギー線重合性基を有していない化合物]が含まれていてもよい。前記ポリ(オキシパーフルオロアルキレン)基と前記ウレタン結合の間、並びに前記ポリ(オキシパーフルオロアルキレン)基と前記ヒドロキシ基との間にポリ(オキシアルキレン)基を有さないという条件を付加することができる。 The (b) perfluoropolyether containing a poly(oxyperfluoroalkylene) group of the curable composition of the present invention is a perfluoropolyether containing a poly(oxyperfluoroalkylene) group and has a molecular chain of A perfluoropolyether having an active energy ray-polymerizable group at one end (one end) via a urethane bond and a hydroxy group at the other end (the other end) of the molecular chain, or the above formula A perfluoropolyether having a poly(oxyperfluoroalkylene) group as represented by [3], which has hydroxy groups at both ends of its molecular chain [active energy ray-polymerizable group A compound having no.] may be included. Adding a condition that there is no poly(oxyalkylene) group between the poly(oxyperfluoroalkylene) group and the urethane bond and between the poly(oxyperfluoroalkylene) group and the hydroxy group. You can
[(c)含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子]
 (c)成分は、後述する含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子(以下、単に「(c)シリカ粒子」とも称する)である。
 本発明の硬化性組成物において、(c)含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子は、(a)多官能モノマーとの相互作用により、耐擦傷性を損なうことなく延伸性を付与することができる。
[(C) Silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group]
The component (c) is a silica particle whose surface has been modified with a silane coupling agent having a nitrogen-containing proton donating functional group described below (hereinafter, also simply referred to as “(c) silica particle”).
In the curable composition of the present invention, (c) silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group has scratch resistance due to interaction with (a) a polyfunctional monomer. The stretchability can be imparted without impairing.
 上記シリカ粒子自体の形状は特に限定されないが、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは真球状粒子である。 The shape of the silica particles themselves is not particularly limited, for example, may be a bead-like substantially spherical shape, may be an irregular shape such as powder, but a substantially spherical shape is preferable, more preferably, The particles are substantially spherical particles having an aspect ratio of 1.5 or less, and most preferably spherical particles.
 本発明で使用するシリカ粒子自体の平均粒子径は40nm~500nmの範囲であり、例えば40nm~350nm、好ましくは60nm~250nm、又は70nm~250nmの範囲にあることが好ましい。ここで平均粒子径(nm)とは、Mie理論に基づくレーザー回折・散乱法により測定して得られる50%体積径(メジアン径)である。前記シリカ粒子の平均粒子径を上記数値範囲内とすることにより耐擦傷性に優れる硬化膜を得ることができる。
 なお前記シリカ粒子は、その粒度分布については特に限定されないが、粒子径の揃った単分散の微粒子であることが好ましい。
 また、前記シリカ粒子は、その平均粒子径が、後述する本発明の硬化性組成物より得られる硬化膜の膜厚に対して、シリカ微粒子の平均粒子径b/膜厚a=0.01~1.0の範囲を満たすように選択することが好ましい。
The average particle size of the silica particles used in the present invention is in the range of 40 nm to 500 nm, for example, 40 nm to 350 nm, preferably 60 nm to 250 nm, or 70 nm to 250 nm. Here, the average particle diameter (nm) is a 50% volume diameter (median diameter) obtained by measurement by a laser diffraction/scattering method based on Mie theory. By setting the average particle diameter of the silica particles within the above numerical range, a cured film having excellent scratch resistance can be obtained.
The particle size distribution of the silica particles is not particularly limited, but monodisperse particles having a uniform particle size are preferable.
The average particle size of the silica particles is such that the average particle size b of silica fine particles/film thickness a=0.01 to the film thickness of the cured film obtained from the curable composition of the present invention described later. It is preferable to select it so as to satisfy the range of 1.0.
 上記シリカ粒子としては、例えば、上記平均粒子径の値を有するコロイダルシリカを好適に使用でき、該コロイダルシリカとしては、シリカゾルを用いることができる。シリカゾルとしては、ケイ酸ナトリウム水溶液を原料として公知の方法により製造される水性シリカゾル及び該水性シリカゾルの分散媒である水を有機溶媒に置換して得られるオルガノシリカゾルを使用することができる。
 また、メチルシリケートやエチルシリケート等のアルコキシシランを、アルコール等の有機溶媒中で触媒(例えば、アンモニア、有機アミン化合物、水酸化ナトリウム等のアルカリ触媒)の存在下において加水分解し、縮合して得られるシリカゾル、又はそのシリカゾルを他の有機溶媒に溶媒置換したオルガノシリカゾルも用いることができる。
As the silica particles, for example, colloidal silica having the above average particle diameter can be preferably used, and as the colloidal silica, silica sol can be used. As the silica sol, an aqueous silica sol produced by a known method using an aqueous solution of sodium silicate and an organosilica sol obtained by substituting water as a dispersion medium of the aqueous silica sol with an organic solvent can be used.
In addition, alkoxysilanes such as methyl silicate and ethyl silicate are hydrolyzed and condensed in the presence of a catalyst (for example, ammonia, an organic amine compound, an alkali catalyst such as sodium hydroxide) in an organic solvent such as alcohol to obtain The silica sol to be used, or an organo silica sol obtained by substituting the silica sol with another organic solvent can also be used.
 上述のオルガノシリカゾルにおける有機溶媒の例としては、メタノール、エタノール、2-プロパノール等の低級アルコール;メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)等の直鎖アミド類;N-メチル-2-ピロリドン(NMP)等の環状アミド類;γ-ブチロラクトン等のエーテル類;エチルセロソルブ、エチレングリコール等のグリコール類;アセトニトリル等が挙げられる。
 水性シリカゾルの分散媒である水の置換や、目的とする別の有機溶媒への置換は、蒸留法、限外濾過法等による通常の方法により行うことができる。
 上記のオルガノシリカゾルの粘度は、20℃で、0.6mPa・s~100mPa・s程度である。
Examples of the organic solvent in the above-mentioned organosilica sol include lower alcohols such as methanol, ethanol and 2-propanol; ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK); N,N-dimethylformamide (DMF), Linear amides such as N,N-dimethylacetamide (DMAc); cyclic amides such as N-methyl-2-pyrrolidone (NMP); ethers such as γ-butyrolactone; glycols such as ethyl cellosolve and ethylene glycol; Acetonitrile etc. are mentioned.
Substitution of water, which is a dispersion medium of the aqueous silica sol, or another target organic solvent can be performed by a usual method such as a distillation method or an ultrafiltration method.
The viscosity of the above organosilica sol is about 0.6 mPa·s to 100 mPa·s at 20°C.
 上記水性シリカゾル、オルガノシリカゾルの市販品の例としては、例えばシーホスター(登録商標)KEシリーズ[(株)日本触媒製]、スノーテックス(登録商標)シリーズ[日産化学(株)製]等を用いることができる。 As examples of commercially available products of the above aqueous silica sol and organo silica sol, for example, Seahoster (registered trademark) KE series [manufactured by Nippon Shokubai Co., Ltd.], Snowtex (registered trademark) series [manufactured by Nissan Kagaku Co., Ltd.] and the like are used. You can
 本発明において、シリカ粒子の表面修飾には、含窒素プロトン供与性官能基を有するシランカップリング剤を用いる。
 上記含窒素プロトン供与性官能基としては、アミノ基、アミド基(-C(=O)NH-)、ウレア基(-NHC(=O)NH-)、チオウレア基(-NHC(=S)NH-)、ウレタン基(-NHC(=O)O-)、チオウレタン基(-NHC(=S)S-)、ウレイド基(-NHC(=O)NH)、チオウレイド基(-NHC(=S)NH)などが挙げられ、中でも、アミノ基、ウレア基、チオウレア基、ウレイド基が好ましく、硬化膜の透明性を考慮すると特にウレア基、チオウレア基、ウレイド基が好ましい。
 本発明で使用する、シリカ粒子の表面修飾に用いるシランカップリング剤は、上記含窒素プロトン供与性官能基を1以上有していればよく、2以上有していてもよく、或いは複数種の含窒素プロトン供与性官能基を有していてもよい。
In the present invention, a silane coupling agent having a nitrogen-containing proton donating functional group is used for surface modification of silica particles.
Examples of the nitrogen-containing proton donating functional group include an amino group, an amide group (-C(=O)NH-), a urea group (-NHC(=O)NH-), and a thiourea group (-NHC(=S)NH. -), urethane group (-NHC(=O)O-), thiourethane group (-NHC(=S)S-), ureido group (-NHC(=O)NH 2 ), thioureido group (-NHC(= S) NH 2 ), etc., among them, an amino group, a urea group, a thiourea group and a ureido group are preferable, and a urea group, a thiourea group and a ureido group are particularly preferable in view of the transparency of the cured film.
The silane coupling agent used for the surface modification of the silica particles used in the present invention may have one or more of the above nitrogen-containing proton-donating functional groups, may have two or more thereof, or a plurality of types. It may have a nitrogen-containing proton donating functional group.
 含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子は、上記含窒素プロトン供与性官能基を有するシランカップリング剤とシリカ微粒子とを水分もしくはアルコール存在下で混合させることで調製することができる。含窒素プロトン供与性官能基を有するシランカップリング剤は、加水分解によりシラノール基を生成し、シリカ粒子表面に存在するシラノール基と縮合反応して結合し、含窒素プロトン供与性官能基を有するシランカップリング剤によって表面が修飾された、シリカ粒子が形成されると考えられる。
 具体的には、例えば、シリカ粒子のコロイド溶液(シリカゾル)と含窒素プロトン供与性官能基を有するシランカップリング剤とを混合することで、含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子を調製することができる。コロイド溶液と該シランカップリング剤の混合は常温で行ってもよく、加熱しながら行ってもよい。反応効率の観点から、混合は加熱しながら行うことが好ましい。混合を加熱しながら行う場合、その加熱温度は溶媒等に応じて適宜選択することができる。加熱温度は例えば、30℃以上とすることができる。
 含窒素プロトン供与性官能基を有するシランカップリング剤とシリカ粒子との混合割合は、シリカ粒子の大きさや含窒素プロトン供与性官能基の種類にもよるが、例えばシリカ粒子表面の単位面積(1nm)に対しシランカップリング剤分子が0.01個~5個、好ましくは0.05個~2個、より好ましくは0.1個~1個となる量とすることができる。ここで、シリカ粒子の表面積は、窒素吸着法(BET法)により測定された比表面積より算出する。
The silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group are prepared by mixing the silane coupling agent having a nitrogen-containing proton-donating functional group with silica fine particles in the presence of water or alcohol. It can be prepared by A silane coupling agent having a nitrogen-containing proton-donating functional group is a silane having a nitrogen-containing proton-donating functional group, which forms a silanol group by hydrolysis and is condensed and bound to a silanol group existing on the surface of silica particles. It is believed that silica particles, the surface of which is modified by the coupling agent, are formed.
Specifically, for example, by mixing a colloidal solution of silica particles (silica sol) with a silane coupling agent having a nitrogen-containing proton donating functional group, a silane coupling agent having a nitrogen-containing proton donating functional group can be obtained. Surface modified silica particles can be prepared. The colloidal solution and the silane coupling agent may be mixed at room temperature or while heating. From the viewpoint of reaction efficiency, it is preferable to perform mixing while heating. When the mixing is performed while heating, the heating temperature can be appropriately selected depending on the solvent and the like. The heating temperature can be, for example, 30° C. or higher.
The mixing ratio of the silane coupling agent having a nitrogen-containing proton-donating functional group and the silica particles depends on the size of the silica particles and the type of the nitrogen-containing proton-donating functional group. The amount of the silane coupling agent molecule can be 0.01 to 5, preferably 0.05 to 2, and more preferably 0.1 to 1 with respect to 2). Here, the surface area of the silica particles is calculated from the specific surface area measured by the nitrogen adsorption method (BET method).
 本発明において(c)シリカ粒子は、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、10質量部~65質量部、例えば10質量部~50質量部、好ましくは10質量部~45質量部の割合で使用する。 In the present invention, the silica particles (c) are 10 parts by mass to 65 parts by mass, for example, 10 parts by mass to 50 parts by mass, preferably 10 parts by mass, relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. It is used in a proportion of from 45 to 45 parts by mass.
 なお、本発明は、含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子も対象とする。例えばチオウレア基又はウレイド基を有するシランカップリング剤で表面が修飾されたシリカ粒子は、後述する(e)帯電防止剤と併用したとき、硬化膜に対する耐擦傷性及び延伸性の付与だけでなく、硬化膜の帯電防止性付与と良好な塗膜表面(外観)が得られる観点から好ましい。また、好ましい例として、チオウレア基又はチオウレタン基を有するシランカップリング剤で表面が修飾されたシリカ粒子を挙げることができる。 The present invention also covers silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group. For example, silica particles whose surface is modified with a silane coupling agent having a thiourea group or a ureido group, when used in combination with an antistatic agent (e) described later, not only imparts scratch resistance and stretchability to a cured film, It is preferable from the viewpoint of imparting the antistatic property of the cured film and obtaining a good coating film surface (appearance). Moreover, as a preferable example, silica particles whose surface is modified with a silane coupling agent having a thiourea group or a thiourethane group can be mentioned.
[(d)活性エネルギー線によりラジカルを発生する重合開始剤]
 本発明の硬化性組成物において好ましい活性エネルギー線によりラジカルを発生する重合開始剤(以下、単に「(d)重合開始剤」とも称する)は、例えば、電子線、紫外線、X線等の活性エネルギー線により、特に紫外線照射によりラジカルを発生する重合開始剤である。
 上記(d)重合開始剤としては、例えばベンゾイン類、アルキルフェノン類、チオキサントン類、アゾ類、アジド類、ジアゾ類、o-キノンジアジド類、アシルホスフィンオキシド類、オキシムエステル類、有機過酸化物、ベンゾフェノン類、ビスクマリン類、ビスイミダゾール類、チタノセン類、チオール類、ハロゲン化炭化水素類、トリクロロメチルトリアジン類、及びヨードニウム塩、スルホニウム塩などのオニウム塩類等が挙げられる。これらは一種単独で或いは二種以上を混合して用いてもよい。
 中でも本発明では、透明性、表面硬化性、薄膜硬化性の観点から(d)重合開始剤として、アルキルフェノン類を使用することが好ましい。アルキルフェノン類を使用することにより、耐擦傷性がより向上した硬化膜を得ることができる。
[(D) Polymerization initiator that generates radicals by active energy rays]
In the curable composition of the present invention, a polymerization initiator that generates a radical by a preferable active energy ray (hereinafter, also simply referred to as “(d) polymerization initiator”) is, for example, an active energy such as an electron beam, an ultraviolet ray or an X-ray. It is a polymerization initiator that generates radicals by irradiation of rays, especially by irradiation of ultraviolet rays.
Examples of the (d) polymerization initiator include benzoins, alkylphenones, thioxanthones, azos, azides, diazos, o-quinonediazides, acylphosphine oxides, oxime esters, organic peroxides, and benzophenone. And biscoumarins, bisimidazoles, titanocenes, thiols, halogenated hydrocarbons, trichloromethyltriazines, and onium salts such as iodonium salts and sulfonium salts. You may use these individually by 1 type or in mixture of 2 or more types.
Among them, in the present invention, it is preferable to use alkylphenones as the (d) polymerization initiator from the viewpoint of transparency, surface curability, and thin film curability. By using an alkylphenone, a cured film having further improved scratch resistance can be obtained.
 上記アルキルフェノン類としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチルプロパン-1-オン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン等のα-ヒドロキシアルキルフェノン類;2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン等のα-アミノアルキルフェノン類;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン;フェニルグリオキシル酸メチルなどが挙げられる。 Examples of the alkylphenones include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl) Α-hydroxy such as 2-methylpropan-1-one and 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one Alkylphenones; 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one And α-aminoalkylphenones; 2,2-dimethoxy-1,2-diphenylethan-1-one; methyl phenylglyoxylate and the like.
 本発明において(d)重合開始剤は、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、1質量部~20質量部、好ましくは2質量部~10質量部の割合で使用する。 In the present invention, the proportion of the polymerization initiator (d) is 1 part by mass to 20 parts by mass, preferably 2 parts by mass to 10 parts by mass, relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Used in.
[(e)帯電防止剤]
 本発明の硬化性組成物は、(e)帯電防止剤として更に金属酸化物粒子を含んでいてもよい。なお金属酸化物粒子を含む場合、前記(c)シリカ粒子としてチオウレア基又はウレイド基を有するシランカップリング剤で表面が修飾されたシリカ粒子を用いることにより、該硬化性組成物より形成されるハードコート層における帯電防止性能と良好な塗膜表面(外観)とを両立させることができる。
[(E) Antistatic agent]
The curable composition of the present invention may further contain metal oxide particles as the (e) antistatic agent. When the metal oxide particles are contained, the hard particles formed from the curable composition by using silica particles whose surface is modified with a silane coupling agent having a thiourea group or a ureido group as the (c) silica particles. It is possible to achieve both antistatic performance in the coat layer and good coating film surface (appearance).
 前記金属酸化物粒子は、その一次粒子径が4nm~100nmの微粒子とすることができる。前記金属酸化物粒子はその一次粒子径を上記数値範囲内とすることにより耐擦傷性及び延伸性に影響を与えることなく帯電防止性を付与することができ、また透明性の実現につながる硬化膜を得ることができる。
 なお、本発明において、金属酸化物粒子における一次粒子径とは、透過型電子顕微鏡を用いて観察される個々の粒子の粒子径を指す。
The metal oxide particles can be fine particles having a primary particle diameter of 4 nm to 100 nm. By setting the primary particle diameter of the metal oxide particles within the above numerical range, antistatic properties can be imparted without affecting scratch resistance and stretchability, and a cured film that leads to the realization of transparency. Can be obtained.
In addition, in this invention, the primary particle diameter in a metal oxide particle refers to the particle diameter of each particle observed using a transmission electron microscope.
 上記金属酸化物粒子としては、例えばスズ、亜鉛、及びインジウムからなる群から選ばれる少なくとも1つの元素の酸化物を含むことができる。具体的には酸化スズ(SnO)、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、ガリウムドープ酸化亜鉛(GZO)、アルミニウムドープ酸化亜鉛(AlZO)、アンチモンドープ酸化亜鉛(AZO)、インジウムドープ酸化亜鉛又は酸化亜鉛ドープ酸化インジウム(IZO)、酸化インジウムガリウム亜鉛(IGZO)を挙げることができ、中でもリンドープ酸化スズ(PTO)が好ましい。 The metal oxide particles can include, for example, an oxide of at least one element selected from the group consisting of tin, zinc, and indium. Specifically, tin oxide (SnO 2 ), tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), gallium-doped zinc oxide (GZO), aluminum Examples thereof include doped zinc oxide (AlZO), antimony-doped zinc oxide (AZO), indium-doped zinc oxide or zinc oxide-doped indium oxide (IZO), and indium gallium zinc oxide (IGZO), of which phosphorus-doped tin oxide (PTO) is preferable.
 上記金属酸化物粒子としてまた、金属酸化物を核とし、その表面が酸性又は塩基性の酸化物で被覆された表面被覆型金属酸化物粒子を挙げることができる。前記核として、例えば酸化スズ等の上記金属酸化物粒子の他、酸化チタン、酸化チタン-酸化スズ複合体、酸化ジルコニウム-酸化スズ複合体、酸化タングステン-酸化スズ複合体、酸化チタン-酸化ジルコニウム-酸化スズ複合体を挙げることができる。前記酸性又は塩基性の酸化物として、例えば五酸化アンチモン、酸化ケイ素-五酸化アンチモン複合体、酸化ケイ素-酸化スズ複合体が挙げることができる。 The above-mentioned metal oxide particles may also include surface-coated metal oxide particles having a metal oxide as a nucleus and the surface of which is coated with an acidic or basic oxide. Examples of the nucleus include titanium oxide, a titanium oxide-tin oxide composite, a zirconium oxide-tin oxide composite, a tungsten oxide-tin oxide composite, a titanium oxide-zirconium oxide-, in addition to the metal oxide particles such as tin oxide. Mention may be made of tin oxide composites. Examples of the acidic or basic oxides include antimony pentoxide, silicon oxide-antimony pentoxide composite, and silicon oxide-tin oxide composite.
 本発明において(e)金属酸化物粒子を含有する場合、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、10質量部~55質量部、好ましくは10質量部~45質量部の割合で含む。 In the present invention, when the metal oxide particles (e) are contained, 10 parts by mass to 55 parts by mass, preferably 10 parts by mass to 45 parts by mass relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Included in the ratio of parts by mass.
[(f)0.2μm~15μmの平均粒子径を有する微粒子]
 本発明の硬化性組成物は、更に(f)0.2μm~15μmの平均粒子径を有する微粒子(以下、単に「(f)微粒子」とも称する)を含んでいてもよい。(f)微粒子は、該硬化性組成物より形成されるハードコート層の表面を凹凸形状にして防眩性を付与する。
 本発明では上記(f)微粒子として、有機微粒子を使用することが好ましい。有機微粒子は、その屈折率とハードコート層形成材料である硬化性組成物との屈折率との差を制御することで、ハードコート層のヘーズ値を制御する役割をも担うことができる。
 前記有機微粒子の形状は特に限定されないが、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは真球状粒子である。
[(F) Fine particles having an average particle diameter of 0.2 μm to 15 μm]
The curable composition of the present invention may further contain (f) fine particles having an average particle diameter of 0.2 μm to 15 μm (hereinafter, simply referred to as “(f) fine particles”). The fine particles (f) impart an antiglare property by making the surface of the hard coat layer formed from the curable composition uneven.
In the present invention, it is preferable to use organic fine particles as the fine particles (f). The organic fine particles can also play a role of controlling the haze value of the hard coat layer by controlling the difference between the refractive index and the refractive index of the curable composition that is the material for forming the hard coat layer.
The shape of the organic fine particles is not particularly limited, but may be, for example, a bead-shaped substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and an aspect is more preferable. The particles are substantially spherical particles having a ratio of 1.5 or less, and most preferably spherical particles.
 前記有機微粒子としては、例えば、ポリメタクリル酸メチル微粒子(PMMA微粒子)、シリコーン微粒子、ポリスチレン微粒子、ポリカーボネート微粒子、アクリルスチレン微粒子、ベンゾグアナミン微粒子、メラミン微粒子、ポリオレフィン微粒子、ポリエステル微粒子、ポリアミド微粒子、ポリイミド微粒子、ポリフッ化エチレン微粒子等があげられる。これらの有機微粒子は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。
 なかでも、前記有機微粒子としてポリメタクリル酸メチル微粒子を好適に用いることができる。
Examples of the organic fine particles include polymethylmethacrylate fine particles (PMMA fine particles), silicone fine particles, polystyrene fine particles, polycarbonate fine particles, acrylic styrene fine particles, benzoguanamine fine particles, melamine fine particles, polyolefin fine particles, polyester fine particles, polyamide fine particles, polyimide fine particles, and polyfluorine fine particles. Ethylene oxide fine particles and the like. These organic fine particles may be used alone or in combination of two or more.
Among them, polymethylmethacrylate fine particles can be preferably used as the organic fine particles.
 本発明で使用する前記有機微粒子の平均粒子径は0.2μm~15μmの範囲であり、例えば1μm~10μmの範囲であることが好ましい。ここで平均粒子径(μm)とは、Mie理論に基づくレーザー回折・散乱法により測定して得られる50%体積径(メジアン径)である。前記有機微粒子の平均粒子径が上記数値範囲より大きくなると、ディスプレイの画像鮮明性が低下し、また上記数値範囲より小さいと、十分な防眩性が得られず、ギラツキも大きくなるという問題が生じやすくなる。なお前記有機微粒子は、その粒度分布については特に限定されないが、粒子径の揃った単分散の微粒子であることが好ましい。
 前記有機微粒子は、前記(a)活性エネルギー線硬化性多官能モノマーの硬化物との屈折率差が0~0.20である屈折率を有してなる有機微粒子であることが好ましく、さらに前記屈折率差が0~0.10であることが好ましい。
 また、前記有機微粒子は、その平均粒子径が、後述する本発明の硬化性組成物より得られる硬化膜の膜厚に対して、有機微粒子の平均粒子径b/膜厚a=0.1~1.0の範囲を満たすように選択することが好ましい。
The average particle diameter of the organic fine particles used in the present invention is in the range of 0.2 μm to 15 μm, and preferably in the range of 1 μm to 10 μm. Here, the average particle diameter (μm) is a 50% volume diameter (median diameter) obtained by a laser diffraction/scattering method based on Mie theory. When the average particle diameter of the organic fine particles is larger than the above numerical range, the image clarity of the display is lowered, and when it is smaller than the above numerical range, sufficient antiglare properties cannot be obtained, and there is a problem that glare becomes large. It will be easier. The particle size distribution of the organic fine particles is not particularly limited, but monodisperse fine particles having a uniform particle size are preferable.
The organic fine particles are preferably organic fine particles having a refractive index that is 0 to 0.20 in difference in refractive index from the cured product of the active energy ray-curable polyfunctional monomer (a). The difference in refractive index is preferably 0 to 0.10.
The average particle size of the organic fine particles is such that the average particle size b of the organic fine particles/film thickness a=0.1 to the film thickness of the cured film obtained from the curable composition of the present invention described later. It is preferable to select it so as to satisfy the range of 1.0.
 前記有機微粒子は、市販品を好適に用いることができ、例えば、テクポリマー(登録商標)MBXシリーズ、同SBXシリーズ、同MSXシリーズ、同SMXシリーズ、同SSXシリーズ、同BMXシリーズ、同ABXシリーズ、同ARXシリーズ、同AFXシリーズ、同MBシリーズ、同MBPシリーズ、同MB-Cシリーズ、同ACXシリーズ、同ACPシリーズ[以上、積水化成品工業(株)製];トスパール(登録商標)シリーズ[モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製];エポスター(登録商標)シリーズ、同MAシリーズ、同STシリーズ、同MXシリーズ[以上、(株)日本触媒製];オプトビーズ(登録商標)シリーズ[日産化学(株)製];フロービーズシリーズ[住友精化(株)製];トレパール(登録商標)PPS、同PAI、同PES、同EP[以上、東レ(株)製];3M(登録商標)ダイニオンTFマイクロパウダーシリーズ[3M社製];ケミスノー(登録商標)MXシリーズ、同MZシリーズ、同MRシリーズ、同KMRシリーズ、同KSRシリーズ、同MPシリーズ、同SXシリーズ、同SGPシリーズ[以上、綜研化学(株)製];タフチック(登録商標)AR650シリーズ、同AR-750シリーズ、同FH-Sシリーズ、同A-20、同YKシリーズ、同ASFシリーズ、同HUシリーズ、同Fシリーズ、同Cシリーズ、同WSシリーズ[以上、東洋紡(株)製];アートパール(登録商標)GRシリーズ、同SEシリーズ、同Gシリーズ、同GSシリーズ、同Jシリーズ、同MFシリーズ、同BEシリーズ[以上、根上工業(株)製];信越シリコーン(登録商標)KMPシリーズ[信越化学工業(株)製]等を用いることができる。 As the organic fine particles, commercially available products can be preferably used, and examples thereof include Techpolymer (registered trademark) MBX series, SBX series, MSX series, SMX series, SSX series, BMX series, ABX series, ARX series, AFX series, MB series, MBP series, MB-C series, ACX series, ACP series [above, Sekisui Plastics Co., Ltd.]; Tospearl (registered trademark) series [Momentive・Performance Materials Japan (same)]; Eposter (registered trademark) series, same MA series, same ST series, same MX series [above, Nippon Shokubai Co., Ltd.]; Optobeads (registered trademark) series [ Nissan Chemical Co., Ltd.]; Flow Bead Series [Sumitomo Seika Co., Ltd.]; Trepearl (registered trademark) PPS, PAI, PES, EP [above, Toray Industries, Inc.]; 3M (registered trademark) ) Dyion TF micro powder series [manufactured by 3M]; Chemisnow (registered trademark) MX series, MZ series, MR series, KMR series, KSR series, MP series, SX series, SGP series [above, Manufactured by Soken Chemical Industry Co., Ltd.]; Tuftic (registered trademark) AR650 series, same AR-750 series, same FH-S series, same A-20, same YK series, same ASF series, same HU series, same F series, same C series, WS series [above, manufactured by Toyobo Co., Ltd.]; Art Pearl (registered trademark) GR series, SE series, G series, GS series, J series, MF series, BE series [above , Manufactured by Negami Kogyo Co., Ltd.; Shin-Etsu Silicone (registered trademark) KMP series [manufactured by Shin-Etsu Chemical Co., Ltd.] and the like can be used.
 本発明において(f)微粒子は、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、1質量部~40質量部、例えば5質量部~30質量部、好ましくは5質量部~25質量部の割合で使用する。 In the present invention, the fine particles (f) are 1 part by mass to 40 parts by mass, for example, 5 parts by mass to 30 parts by mass, preferably 5 parts by mass, relative to 100 parts by mass of the above-mentioned (a) active energy ray-curable polyfunctional monomer. It is used in a ratio of 1 part to 25 parts by mass.
[(g)溶媒]
 本発明の硬化性組成物は、更に(g)溶媒を含んでいてもよく、すなわちワニス(膜形成材料)の形態としてもよい。
 上記溶媒としては、前記(a)成分~(d)成分、所望により前記(e)成分、前記(f)成分を溶解・分散し、また後述する硬化膜(ハードコート層)形成にかかる塗工時の作業性や硬化前後の乾燥性等を考慮して適宜選択すればよい。例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族又は脂環式炭化水素類;塩化メチル、臭化メチル、ヨウ化メチル、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、o-ジクロロベンゼン等のハロゲン化物類;酢酸エチル、酢酸プロピル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のエステル類又はエステルエーテル類;ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル(PGME)、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル等のエーテル類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジ-n-ブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、tert-ブチルアルコール、2-エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール等のアルコール類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド類;ジメチルスルホキシド(DMSO)等のスルホキシド類、並びにこれらの溶媒のうち2種以上を混合した溶媒が挙げられる。
[(G) solvent]
The curable composition of the present invention may further contain (g) a solvent, that is, in the form of a varnish (film forming material).
As the solvent, the components (a) to (d), optionally the components (e) and (f) are dissolved/dispersed, and a coating for forming a cured film (hard coat layer) described later is applied. It may be appropriately selected in consideration of workability at the time, drying property before and after curing, and the like. For example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirits and cyclohexane; methyl chloride, methyl bromide, Halides such as methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene; ethyl acetate, propyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene Esters or ester ethers such as glycol monomethyl ether acetate (PGMEA); diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether (PGME) ), propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol mono-n-butyl ether and the like; acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), di-n-butyl ketone, cyclohexanone Such as ketones; alcohols such as methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, tert-butyl alcohol, 2-ethylhexyl alcohol, benzyl alcohol, ethylene glycol; N,N-dimethylformamide ( DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and other amides; dimethylsulfoxide (DMSO) and other sulfoxides, and two or more of these solvents were mixed. Solvents may be mentioned.
 また、塗工後の乾燥時における前記微粒子の分散性を制御する目的で、高沸点の溶媒を使用することもできる。
 このような溶媒としては、例えば、酢酸シクロヘキシル、プロピレングリコールジアセテート、1,3-ブチンレングリコールジアセテート、1,4-ブタンジオールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノプロピルエーテル、トリプロピレングリコールモノブチルエーテル、3-メトキシブタノール、ジプロピレングリコールジメチルエーテル、ジプロピレングリコール-メチル-プロピル-エーテル等が挙げられる。
Further, a solvent having a high boiling point can be used for the purpose of controlling the dispersibility of the fine particles at the time of drying after coating.
Examples of such a solvent include cyclohexyl acetate, propylene glycol diacetate, 1,3-butynylene glycol diacetate, 1,4-butanediol diacetate, 1,6-hexanediol diacetate, ethylene glycol monobutyl ether acetate. , Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, 3-methoxybutyl acetate, ethylene glycol, diethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, Diethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monopropyl ether, tripropylene glycol monobutyl ether, 3-methoxybutanol, dipropylene glycol dimethyl ether, dipropylene glycol- Methyl-propyl-ether and the like can be mentioned.
 (g)溶媒の使用量は特に限定されないが、例えば本発明の硬化性組成物における固形分濃度が1質量%~70質量%、好ましくは5質量%~50質量%となる濃度で使用する。ここで固形分濃度(不揮発分濃度とも称する)とは、本発明の硬化性組成物の前記(a)成分~(d)成分(及び所望により(e)成分、(f)成分及びその他添加剤)の総質量(合計質量)に対する固形分(全成分から溶媒成分を除いたもの)の含有量を表す。 The amount of the solvent (g) used is not particularly limited, but for example, the curable composition of the present invention is used at a concentration such that the solid content concentration is 1% by mass to 70% by mass, preferably 5% by mass to 50% by mass. Here, the solid content concentration (also referred to as non-volatile content concentration) means the components (a) to (d) (and optionally the component (e), the component (f) and other additives in the curable composition of the present invention. ) Represents the content of solid content (all components excluding the solvent component) relative to the total mass (total mass).
[その他添加物]
 また、本発明の硬化性組成物には、本発明の効果を損なわない限り、必要に応じて一般的に添加される添加剤、例えば、重合促進剤、重合禁止剤、光増感剤、レベリング剤、界面活性剤、密着性付与剤、可塑剤、紫外線吸収剤、光安定剤、酸化防止剤、貯蔵安定剤、帯電防止剤、無機充填剤、顔料、染料等を適宜配合してよい。
[Other additives]
Further, the curable composition of the present invention, unless impairing the effects of the present invention, additives generally added as necessary, for example, a polymerization accelerator, a polymerization inhibitor, a photosensitizer, leveling Agents, surfactants, adhesion promoters, plasticizers, ultraviolet absorbers, light stabilizers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes and the like may be appropriately mixed.
<硬化膜>
 本発明の硬化性組成物は、基材上に塗布(コーティング)して塗膜を形成し、該塗膜に活性エネルギー線を照射して重合(硬化)させることにより、硬化膜を形成できる。該硬化膜も本発明の対象である。また後述するハードコートフィルムにおけるハードコート層を該硬化膜からなるものとすることができる。
 この場合の前記基材としては、例えば、各種樹脂(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル、ポリウレタン、熱可塑性ポリウレタン(TPU)、ポリオレフィン、ポリアミド、ポリイミド、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース(TAC)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-スチレン共重合体(AS)、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、スレート等を挙げることができる。これら基材の形状は板状、フィルム状又は3次元成形体でもよい。
<Cured film>
The curable composition of the present invention can form a cured film by applying (coating) on a substrate to form a coating film, and irradiating the coating film with an active energy ray to polymerize (curing). The cured film is also an object of the present invention. Further, the hard coat layer in the hard coat film described later can be made of the cured film.
Examples of the base material in this case include various resins (polycarbonate, polymethacrylate, polystyrene, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polyolefin, polyamide, Polyimide, epoxy resin, melamine resin, triacetyl cellulose (TAC), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), norbornene-based resin, etc.), metal, wood, paper, glass , Slate and the like. The shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
 前記基材上への塗布方法は、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、スプレーコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版印刷法、凹版印刷法、平版印刷法、スクリーン印刷法等)等を適宜選択し得、中でもロール・ツー・ロール(roll-to-roll)法に利用でき、また薄膜塗布性の観点から、凸版印刷法、特にグラビアコート法を用いることが望ましい。なお事前に孔径が0.2μm程度のフィルタなどを用いて硬化性組成物を濾過した後、塗布に供することが好ましい。なお塗布する際、必要に応じて該硬化性組成物に溶剤をさらに添加してもよい。この場合の溶剤としては前述の[(g)溶媒]で挙げた種々の溶媒を挙げることができる。
 基材上に硬化性組成物を塗布し塗膜を形成した後、必要に応じてホットプレート、オーブン等の加熱手段で塗膜を予備乾燥して溶媒を除去する(溶媒除去工程)。この際の加熱乾燥の条件としては、例えば、40℃~120℃で、30秒~10分程度とすることが好ましい。
 乾燥後、紫外線等の活性エネルギー線を照射して、塗膜を硬化させる。活性エネルギー線としては、紫外線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線照射に用いる光源としては、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、UV-LED等が使用できる。
 さらにその後、ポストベークを行うことにより、具体的にはホットプレート、オーブン等の加熱手段を用いて加熱することにより重合を完結させてもよい。
 なお、形成される硬化膜の厚さは、乾燥、硬化後において、通常0.01μm~50μm、好ましくは0.05μm~20μmである。
The coating method on the substrate is a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a spray coating method, a bar coating method, a die coating method, an inkjet method, a printing method (a relief printing method). , An intaglio printing method, a lithographic printing method, a screen printing method, etc. can be appropriately selected, and among them, it can be used for a roll-to-roll method, and from the viewpoint of thin film coating properties, a relief printing method can be used. In particular, it is desirable to use the gravure coating method. It is preferable that the curable composition is filtered in advance using a filter having a pore size of about 0.2 μm and then applied to the coating. When applying, a solvent may be further added to the curable composition, if necessary. As the solvent in this case, the various solvents mentioned in the above [(g) solvent] can be mentioned.
After the curable composition is applied on a substrate to form a coating film, the coating film is preliminarily dried by a heating means such as a hot plate or an oven to remove the solvent, if necessary (solvent removing step). The conditions for heat drying at this time are preferably, for example, 40° C. to 120° C. and about 30 seconds to 10 minutes.
After drying, the coating film is cured by irradiating with active energy rays such as ultraviolet rays. Examples of active energy rays include ultraviolet rays, electron beams, and X-rays, and ultraviolet rays are particularly preferable. As a light source used for ultraviolet ray irradiation, sun rays, chemical lamps, low pressure mercury lamps, high pressure mercury lamps, metal halide lamps, xenon lamps, UV-LEDs and the like can be used.
After that, the polymerization may be completed by performing post-baking, specifically, heating with a heating means such as a hot plate or an oven.
The thickness of the formed cured film is usually 0.01 μm to 50 μm, preferably 0.05 μm to 20 μm after drying and curing.
<ハードコートフィルム>
 本発明の硬化性組成物を用いて、フィルム基材の少なくとも一方の面(表面)にハードコート層を備えるハードコートフィルムを製造することができる。該ハードコートフィルムも本発明の対象であり、該ハードコートフィルムは、例えばタッチパネルや液晶ディスプレイ等の各種表示素子等の表面を保護するために好適に用いられる。
<Hard coat film>
By using the curable composition of the present invention, a hard coat film having a hard coat layer on at least one surface (surface) of a film substrate can be produced. The hard coat film is also an object of the present invention, and the hard coat film is preferably used for protecting the surface of various display elements such as touch panels and liquid crystal displays.
 本発明のハードコートフィルムにおけるハードコート層は、前述の本発明の硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程と、必要に応じて加熱により溶媒を除去する工程と、該塗膜に紫外線等の活性エネルギー線を照射し該塗膜を硬化させる工程を含む方法により形成することができる。これら工程を含むフィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムの製造方法も本発明の対象である。 The hard coat layer in the hard coat film of the present invention, a step of forming a coating film by applying the curable composition of the present invention on a film substrate, and a step of removing the solvent by heating if necessary, It can be formed by a method including a step of irradiating the coating film with an active energy ray such as ultraviolet rays to cure the coating film. A method for producing a hard coat film having a hard coat layer on at least one surface of a film substrate including these steps is also an object of the present invention.
 前記フィルム基材としては、前述の<硬化膜>で挙げた基材のうち、光学用途に使用可能な各種の透明な樹脂製フィルムが用いられる。好ましい樹脂製フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリウレタン、熱可塑性ポリウレタン(TPU)、ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリオレフィン、ポリアミド、ポリイミド、トリアセチルセルロース(TAC)等のフィルムが挙げられる。
 また前記フィルム基材上への硬化性組成物の塗布方法(塗膜形成工程)及び塗膜への活性エネルギー線照射方法(硬化工程)は、前述の<硬化膜>に挙げた方法を用いることができる。また本発明の硬化性組成物に溶媒が含まれる(ワニス形態の)場合、塗膜形成工程の後、必要に応じて該塗膜を乾燥し溶媒除去する工程を含むことができる。その場合、前述の<硬化膜>に挙げた塗膜の乾燥方法(溶媒除去工程)を用いることができる。
 こうして得られたハードコート層の層厚(膜厚)は、前記(c)シリカ粒子の平均粒子径に比して1倍~100倍の厚さとなるように設定することが好ましい。たとえば前記ハードコート層の厚さは、好ましくは1μm~20μm、より好ましくは1μm~10μmである。
As the film base material, various transparent resin films that can be used for optical applications, among the base materials listed in the above <cured film>, are used. Examples of preferable resin films include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), polyurethane, thermoplastic polyurethane (TPU), polycarbonate, polymethacrylate, polystyrene, polyolefin, Examples thereof include films of polyamide, polyimide, triacetyl cellulose (TAC) and the like.
Further, as the method for applying the curable composition on the film substrate (coating film forming step) and the method for irradiating the coating film with active energy rays (curing step), the method described in the above <cured film> should be used. You can When the curable composition of the present invention contains a solvent (in the form of varnish), a step of drying the coating film and removing the solvent may be included after the coating film forming step, if necessary. In that case, the coating film drying method (solvent removing step) described in the above <cured film> can be used.
The layer thickness (film thickness) of the hard coat layer thus obtained is preferably set to be 1 to 100 times the average particle diameter of the (c) silica particles. For example, the thickness of the hard coat layer is preferably 1 μm to 20 μm, more preferably 1 μm to 10 μm.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1)バーコーターによる塗布
 装置:(株)エスエムテー製 PM-9050MC
 バー:オーエスジーシステムプロダクツ(株)製 A-Bar OSP-22、最大ウエット膜厚22μm(ワイヤーバー#9相当)
 塗布速度:4m/分
(2)オーブン
 装置:三基計装(株)製 2層式クリーンオーブン(上下式)PO-250-45-D
(3)UV硬化
 装置:ヘレウス(株)製 CV-110QC-G
 ランプ:ヘレウス(株)製 高圧水銀ランプH-bulb
(4)ゲル浸透クロマトグラフィー(GPC)
 装置:東ソー(株)製 HLC-8220GPC
 カラム:昭和電工(株)製 Shodex(登録商標)GPC K-804L、GPC K-805L
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 検出器:RI
(5)耐擦傷性試験
 装置:新東科学(株)製 往復摩耗試験機 TRIBOGEAR TYPE:30S
 走査速度:5,000mm/分
 走査距離:50mm
(6)引張試験
 装置:(株)島津製作所製 卓上形精密万能試験機オートグラフAGS-10kNX
 つかみ具:1kN手動ねじ式平面形つかみ具
 つかみ歯:高強度ラバーコートつかみ歯
 引張速度:10mm/分
 測定温度:23℃
(7)表面抵抗測定
 装置:三菱化学(株)製 高抵抗率計 Hiresta UP MCP-HT450
 プローブ:URSプローブ
 レジテーブル:UFL
 印加電圧:10V
(8)全光線透過率、ヘーズ測定
 装置:日本電色工業(株)製 ヘーズメーター NDH5000
(9)光沢度測定
 装置:コニカミノルタ(株)製 光沢計 GM-268Plus
 測定角度:60度
(1) Coating with a bar coater: PM-9050MC manufactured by SMT Co., Ltd.
Bar: A-Bar OSP-22 manufactured by OSG System Products, maximum wet film thickness 22 μm (corresponding to wire bar #9)
Coating speed: 4 m/min (2) Oven Device: Sanki Keiso Co., Ltd. 2-layer clean oven (upper and lower) PO-250-45-D
(3) UV curing device: Heraeus Co., Ltd. CV-110QC-G
Lamp: Heraeus High Pressure Mercury Lamp H-bulb
(4) Gel permeation chromatography (GPC)
Equipment: Tosoh Corp. HLC-8220GPC
Column: Shodex (registered trademark) GPC K-804L, GPC K-805L manufactured by Showa Denko KK
Column temperature: 40°C
Eluent: Tetrahydrofuran Detector: RI
(5) Scratch resistance test device: Reciprocating abrasion tester TRIBOGEAR TYPE: 30S manufactured by Shinto Kagaku Co., Ltd.
Scanning speed: 5,000 mm/min Scanning distance: 50 mm
(6) Tensile test device: Shimadzu Corporation tabletop precision universal testing machine Autograph AGS-10kNX
Gripping tool: 1kN Manual screw type planar gripping tool Gripping tooth: High strength rubber coated gripping tooth Peeling speed: 10 mm/min Measuring temperature: 23°C
(7) Surface resistance measurement device: High resistivity meter Hiresta UP MCP-HT450 manufactured by Mitsubishi Chemical Corporation
Probe: URS probe Registration table: UFL
Applied voltage: 10V
(8) Total light transmittance, haze measurement device: Nippon Denshoku Industries Co., Ltd. haze meter NDH5000
(9) Glossiness measurement device: Konica Minolta Co., Ltd. Glossmeter GM-268Plus
Measuring angle: 60 degrees
 また、略記号は以下の意味を表す。
A1:オキシエチレン変性ジグリセリンテトラアクリレート[東亞合成(株)製 アロニックス(登録商標)M-460、活性エネルギー線重合性基4mol、オキシエチレン基4mol]
A2:カプロラクトン変性ジペンタエリスリトールヘキサアクリレート[日本化薬(株)製 KAYARAD DPCA-30]
表面改質剤SM-2:分子鎖の片末端に2つの(メタ)アクリロイル基を有するパーフルオロポリエーテル[ダイキン工業(株)製 指紋付着防止剤 オプツール(登録商標)DAC-HP、不揮発分20質量%溶液]
シリカ微粒子s-1:平均粒子径200nmのシリカ微粒子[日産化学(株)製 オルガノシリカゾル MEK-ST-2040(固形分濃度 40質量% MEK分散)]
シリカ微粒子s-2:平均粒子径80nmのシリカ微粒子[日産化学(株)製 オルガノシリカゾル MEK-ST-ZL(固形分濃度 30質量% MEK分散)]
シリカ微粒子s-3:平均粒子径40nmのシリカ微粒子[日産化学(株)製 オルガノシリカゾル MEK-ST-L(固形分濃度 30質量% MEK分散)]
シランカップリング剤c-1:ウレア基を有するトリメトキシシラン[信越化学工業(株)製 信越シリコーン(登録商標)X-12-989MS]
シランカップリング剤c-2:チオウレア基を有するトリメトキシシラン[信越化学工業(株)製 信越シリコーン(登録商標)X-12-1116]
シランカップリング剤c-3:3-ウレイドプロピルトリエトキシシラン[東京化成工業(株)製、固形分濃度50% アルコール溶液]
シランカップリング剤c-4:N-(2-アミノエチル)-8-アミノオクチルトリメトキシシラン[信越化学工業(株)製 信越シリコーン(登録商標)KBM-6803]
シランカップリング剤c-5:n-ヘキシルトリメトキシシラン[信越化学工業(株)製 信越シリコーン(登録商標)KBM-3063]
シランカップリング剤c-6:3-アクリロイルプロピルトリメトキシシラン[信越化学工業(株)製 信越シリコーン(登録商標)KBM-5103]
PFPE:分子鎖の両末端それぞれにポリ(オキシアルキレン)基を介さずヒドロキシ基を2つ有するパーフルオロポリエーテル[ソルベイスペシャルティポリマーズ社製 Fomblin(登録商標)T4]
BEI:1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート[昭和電工(株)製 カレンズ(登録商標)BEI]
DOTDD:ジネオデカン酸ジオクチル錫[日東化成(株)製 ネオスタン(登録商標)U-830]
O2959:2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチルプロパン-1-オン[IGM Resins社製 OMNIRAD(登録商標)2959]
MEK:メチルエチルケトン
MeOH:メタノール
帯電防止剤e-1:リンドープ酸化スズ20質量%イソプロピルアルコール分散ゾル[日産化学(株)製 セルナックス(登録商標)CX-S204IP、一次粒子径:5nm~20nm、二次粒子径:10nm~20nm]※ここで一次粒子径、及び二次粒子径とは、透過型電子顕微鏡観察によって測定される平均粒子径を指す。粒子径は透過型電子顕微鏡によるゾルを銅メッシュ上に滴下し乾燥させ、透過型電子顕微鏡(日本電子(株)製 JEM-1020)を用いて加速電圧100kVにて観察し、100個の粒子を測定し平均化した値を平均一次粒子径として求めた。
帯電防止剤e-2:酸化スズを核としてその表面が五酸化アンチモンで被覆された一次粒子径30nm~40nmのコアシェル粒子30質量%メタノール分散ゾル[日産化学(株)製 セルナックス(登録商標)HX-307M1]
FP1:架橋ポリメタクリル酸メチル真球状粒子[積水化成品工業(株)製 テクポリマー(登録商標)SSX-101、平均粒子径1μm]
The abbreviations have the following meanings.
A1: Oxyethylene-modified diglycerin tetraacrylate [Aronix (registered trademark) M-460, active energy ray-polymerizable group 4 mol, oxyethylene group 4 mol, manufactured by Toagosei Co., Ltd.]
A2: Caprolactone-modified dipentaerythritol hexaacrylate [KAYARAD DPCA-30 manufactured by Nippon Kayaku Co., Ltd.]
Surface modifier SM-2: Perfluoropolyether having two (meth)acryloyl groups at one end of the molecular chain [Fingerprint adhesion inhibitor Optool (registered trademark) DAC-HP manufactured by Daikin Industries, Ltd., nonvolatile content 20] Mass% solution]
Silica fine particles s-1: Silica fine particles having an average particle size of 200 nm [Organic silica sol MEK-ST-2040 (manufactured by Nissan Chemical Industries, Ltd., solid content concentration 40 mass% MEK dispersion)]
Silica fine particles s-2: Silica fine particles having an average particle diameter of 80 nm [Organic silica sol MEK-ST-ZL (manufactured by Nissan Chemical Industries, Ltd., solid content concentration 30% by mass MEK dispersion)]
Silica fine particles s-3: Silica fine particles having an average particle size of 40 nm [Organic silica sol MEK-ST-L (manufactured by Nissan Chemical Industries, Ltd., solid content concentration 30% by mass MEK dispersion)]
Silane coupling agent c-1: trimethoxysilane having a urea group [Shin-Etsu Silicone (registered trademark) X-12-989MS manufactured by Shin-Etsu Chemical Co., Ltd.]
Silane coupling agent c-2: trimethoxysilane having a thiourea group [Shin-Etsu Chemical Co., Ltd. Shin-Etsu Silicone (registered trademark) X-12-1116]
Silane coupling agent c-3:3-ureidopropyltriethoxysilane [Tokyo Chemical Industry Co., Ltd., solid content concentration 50% alcohol solution]
Silane coupling agent c-4: N-(2-aminoethyl)-8-aminooctyltrimethoxysilane [Shin-Etsu Chemical Co., Ltd. Shin-Etsu Silicone (registered trademark) KBM-6803]
Silane coupling agent c-5: n-hexyltrimethoxysilane [Shin-Etsu Silicone (registered trademark) KBM-3063 manufactured by Shin-Etsu Chemical Co., Ltd.]
Silane coupling agent c-6:3-acryloylpropyltrimethoxysilane [Shin-Etsu Silicone (registered trademark) KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.]
PFPE: Perfluoropolyether having two hydroxy groups at both ends of the molecular chain without interposing poly(oxyalkylene) groups [Fomblin (registered trademark) T4 manufactured by Solvay Specialty Polymers]
BEI: 1,1-bis(acryloyloxymethyl)ethyl isocyanate [Karenzu (registered trademark) BEI manufactured by Showa Denko KK]
DOTDD: Dioctyltin dineodecanoate [Neostan (registered trademark) U-830 manufactured by Nitto Kasei Co., Ltd.]
O2959: 2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl)-2-methylpropan-1-one [OMNIRAD (registered trademark) 2959 manufactured by IGM Resins]
MEK: Methyl ethyl ketone MeOH: Methanol antistatic agent e-1: Phosphorus-doped tin oxide 20 mass% isopropyl alcohol dispersion sol [Cernax (registered trademark) CX-S204IP, manufactured by Nissan Chemical Industries, Ltd., primary particle diameter: 5 nm to 20 nm, secondary Particle diameter: 10 nm to 20 nm] *Here, the primary particle diameter and the secondary particle diameter refer to the average particle diameter measured by observation with a transmission electron microscope. The particle size was measured by dripping a sol with a transmission electron microscope onto a copper mesh, drying it, and observing it with a transmission electron microscope (JEM-1020, manufactured by JEOL Ltd.) at an acceleration voltage of 100 kV. The measured and averaged value was determined as the average primary particle diameter.
Antistatic agent e-2: Core-shell particles having a primary particle diameter of 30 nm to 40 nm whose core is tin oxide and whose surface is coated with antimony pentoxide 30% by mass methanol dispersion sol [Cernax (registered trademark) manufactured by Nissan Chemical Industries, Ltd.] HX-307M1]
FP1: Cross-linked polymethylmethacrylate true spherical particles [Techpolymer (registered trademark) SSX-101 manufactured by Sekisui Plastics Co., Ltd., average particle diameter 1 μm]
[参考例1]表面改質剤SM-1の製造
 スクリュー管に、PFPE 1.19g(0.5mmol)、BEI 0.52g(2.0mmol)、DOTDD 0.017g(PFPE及びBEIの合計質量の0.01倍量)、及びMEK 1.67gを仕込んだ。この混合物を、スターラーチップを用いて室温(およそ23℃)で24時間撹拌して、目的化合物である表面改質剤SM-1の50質量%MEK溶液を得た。得られたSM-1のGPCによるポリスチレン換算で測定される重量平均分子量:Mwは3,000、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.2であった。
[Reference Example 1] Production of surface modifier SM-1 A screw tube was provided with 1.19 g (0.5 mmol) of PFPE, 0.52 g (2.0 mmol) of BEI, and 0.017 g of DOTDD (of the total mass of PFPE and BEI). 0.01 times amount), and MEK 1.67 g were charged. This mixture was stirred at room temperature (about 23° C.) for 24 hours using a stirrer chip to obtain a 50% by mass MEK solution of the target compound, the surface modifier SM-1. The weight average molecular weight: Mw of the obtained SM-1 measured by GPC in terms of polystyrene was 3,000, and the dispersity: Mw (weight average molecular weight)/Mn (number average molecular weight) was 1.2.
[参考例2]ウレア基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-4(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-1 35g、シランカップリング剤c-1 0.095g、及び水 0.25gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、ウレア基を有するシランカップリング剤で修飾された平均粒子径200nmのシリカ微粒子s-4の40質量%MEK溶液を得た。
[Reference Example 2] Production of silica fine particles s-4 (MEK dispersion) whose surface is modified with a silane coupling agent having a urea group In a four-necked flask, 35 g of silica fine particles s-1 and silane coupling agent c- 1 0.095 g and water 0.25 g were charged. This mixture was stirred with a stirrer chip at 65° C. for 3 hours to obtain 40% by mass of MEK silica fine particles s-4 having an average particle diameter of 200 nm modified with a target compound, a silane coupling agent having a urea group. A solution was obtained.
[参考例3]チオウレア基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-5(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-1 35g、シランカップリング剤c-2 0.093g、及び水 0.25gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、チオウレア基を有するシランカップリング剤で修飾された平均粒子径200nmのシリカ微粒子s-5の40質量%MEK溶液を得た。
[Reference Example 3] Production of silica fine particles s-5 (MEK dispersion) whose surface was modified with a silane coupling agent having a thiourea group In a four-necked flask, 35 g of silica fine particles s-1 and silane coupling agent c- 2 0.093 g and water 0.25 g were charged. This mixture was stirred at 65° C. for 3 hours using a stirrer chip, and 40% by mass MEK of the target compound, silica fine particles s-5 modified with a silane coupling agent having a thiourea group and having an average particle diameter of 200 nm. A solution was obtained.
[参考例4]ウレイド基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-6(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-1 35g、シランカップリング剤c-3 0.17g、及び水 0.25gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、ウレイド基を有するシランカップリング剤で修飾された平均粒子径200nmのシリカ微粒子s-6の40質量%MEK溶液を得た。
[Reference Example 4] Production of silica fine particles s-6 (MEK dispersion) whose surface was modified with a silane coupling agent having an ureido group In a four-necked flask, 35 g of silica fine particles s-1 and silane coupling agent c- 3 0.17 g and water 0.25 g were charged. This mixture was stirred with a stirrer chip at 65° C. for 3 hours to obtain 40% by mass of MEK silica fine particles s-6 having an average particle diameter of 200 nm modified with a silane coupling agent having a ureido group, which is a target compound. A solution was obtained.
[参考例5]アミノ基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-7(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-1 13g、シランカップリング剤c-4 0.03g、MEK 13g、及び水 0.09gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、アミノ基を有するシランカップリング剤で修飾された平均粒子径200nmのシリカ微粒子s-7の20質量%MEK溶液を得た。
[Reference Example 5] Production of silica fine particles s-7 (MEK dispersion liquid) whose surface was modified with a silane coupling agent having an amino group In a four-necked flask, 13 g of silica fine particles s-1 and silane coupling agent c- 4 0.03 g, MEK 13 g, and water 0.09 g were charged. This mixture was stirred for 3 hours at 65° C. using a stirrer chip to obtain 20% by mass MEK of the target compound, silica fine particles s-7 modified with a silane coupling agent having an amino group and having an average particle diameter of 200 nm. A solution was obtained.
[参考例6]n-プロピル基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-8(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-1 35g、シランカップリング剤c-5 0.065g、及び水 0.25gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、n-プロピル基を有するシランカップリング剤で修飾された平均粒子径200nmのシリカ微粒子s-8の40質量%MEK溶液を得た。
[Reference Example 6] Production of silica fine particles s-8 (MEK dispersion liquid) whose surface was modified with a silane coupling agent having an n-propyl group In a four-necked flask, 35 g of silica fine particles s-1 and a silane coupling agent. C-5 (0.065 g) and water (0.25 g) were charged. This mixture was stirred at 65° C. for 3 hours using a stirrer chip, and 40 mass of the target compound, silica fine particles s-8 modified with a silane coupling agent having an n-propyl group and having an average particle diameter of 200 nm. % MEK solution was obtained.
[参考例7]アクリロイル基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-9(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-1 35g、シランカップリング剤c-6 0.065g、及び水 0.25gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、アクリロイル基を有するシランカップリング剤で修飾された平均粒子径200nmのシリカ微粒子s-9の40質量%MEK溶液を得た。
[Reference Example 7] Production of silica fine particles s-9 (MEK dispersion) whose surface was modified with a silane coupling agent having an acryloyl group In a four-necked flask, 35 g of silica fine particles s-1 and silane coupling agent c- 6 0.065 g and water 0.25 g were charged. This mixture was stirred using a stirrer chip at 65° C. for 3 hours to obtain 40% by mass of MEK silica fine particles s-9 having an average particle diameter of 200 nm modified with a target compound, a silane coupling agent having an acryloyl group. A solution was obtained.
[参考例8]チオウレア基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-10(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-2 35g、シランカップリング剤c-2 0.17g、及び水 0.18gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、チオウレア基を有するシランカップリング剤で修飾された平均粒子径80nmのシリカ微粒子s-10の30質量%MEK溶液を得た。
[Reference Example 8] Production of silica fine particles s-10 (MEK dispersion liquid) whose surface was modified with a silane coupling agent having a thiourea group In a four-necked flask, 35 g of silica fine particles s-2, silane coupling agent c- 2 0.17 g and water 0.18 g were charged. This mixture was stirred at 65° C. for 3 hours using a stirrer chip to obtain 30% by mass MEK of the target compound, silica fine particles s-10 modified with a silane coupling agent having a thiourea group and having an average particle diameter of 80 nm. A solution was obtained.
[参考例9]チオウレア基を有するシランカップリング剤で表面が修飾されたシリカ微粒子s-11(MEK分散液)の製造
 四つ口フラスコに、シリカ微粒子s-3 35g、シランカップリング剤c-2 0.35g、及び水 0.18gを仕込んだ。この混合物を、スターラーチップを用いて65℃で3時間撹拌して、目的化合物である、チオウレア基を有するシランカップリング剤で修飾された平均粒子径40nmのシリカ微粒子s-11の30質量%MEK溶液を得た。
[Reference Example 9] Production of silica fine particles s-11 (MEK dispersion liquid) whose surface was modified with a silane coupling agent having a thiourea group In a four-necked flask, 35 g of silica fine particles s-3 and silane coupling agent c- 2 0.35 g and water 0.18 g were charged. This mixture was stirred with a stirrer chip at 65° C. for 3 hours to obtain 30% by mass of MEK silica fine particles s-11 having an average particle diameter of 40 nm modified with a silane coupling agent having a thiourea group, which is a target compound. A solution was obtained.
[実施例1~実施例8、比較例1~比較例6]
 表1の記載に従って以下の各成分を混合し、表1に記載の固形分濃度の硬化性組成物を調製した。なお、ここで固形分とは溶媒以外の成分を指す。また、表1中、[部]とは[質量部]を、[%]は[質量%]を表す。この硬化性組成物を、A4サイズの両面易接着処理PETフィルム[東レ(株)製 ルミラー(商標登録)U403、厚み100μm]上にバーコーターにより塗布し、塗膜を得た。この塗膜を65℃のオーブンで3分間乾燥させ溶媒を除去した。得られた膜を、窒素雰囲気下、露光量300mJ/cmのUV光を照射し露光することで、およそ5μmの層厚(膜厚)を有するハードコート層(硬化膜)を有する、ハードコートフィルムを作製した。
[Examples 1 to 8 and Comparative Examples 1 to 6]
The following components were mixed according to the description in Table 1 to prepare a curable composition having the solid content concentration shown in Table 1. Here, the solid content refers to components other than the solvent. In addition, in Table 1, “parts” means “parts by mass” and “%” means “mass %”. This curable composition was applied onto an A4 size double-sided easy-adhesion-treated PET film [Lumirror (registered trademark) U403 manufactured by Toray Industries, Inc., thickness 100 μm] with a bar coater to obtain a coating film. The coating film was dried in an oven at 65° C. for 3 minutes to remove the solvent. A hard coat having a hard coat layer (cured film) having a layer thickness (film thickness) of about 5 μm by irradiating the obtained film with UV light having an exposure dose of 300 mJ/cm 2 in a nitrogen atmosphere. A film was made.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 得られたハードコートフィルムの耐擦傷性及び延伸性を評価した。手順を以下に示す。結果を表2にヘーズ値(参考値)と併せて示す。
[耐擦傷性]
 ハードコートフィルムのハードコート層表面を、往復摩耗試験機に取り付けたスチールウール[ボンスター(BONSTAR)(登録商標)#0000(超極細)]で500g/cmの荷重を掛けて10往復擦り、傷の程度(本数)を目視で確認し、以下の基準A、B及びCに従い評価した。なおハードコート層として実際の使用を想定した場合、少なくともBであることが求められ、Aであることが望ましい。
A:傷無し(傷0本)
B:傷発生(傷1本~4本)
C:傷発生(傷5本以上)
[延伸性]
 ハードコートフィルムを長さ60mm、幅10mmの矩形に切り取り、試験片を作製した。試験片の長手方向の両端から20mmずつを掴むように万能試験機のつかみ具に取り付け、延伸率(=(つかみ具間距離の増加量)÷(つかみ具間距離)×100)が2.5%、5%、7.5%、10%となるように2.5%刻みで引張試験を行った。引張試験後のハードコートフィルムを目視で観察し、試験片のハードコート層にクラックが発生しなかった最大の延伸率を確認した。その後、シリカ微粒子を除いた硬化性組成物(比較例1,比較例6)を用いて作製したハードコートフィルムの延伸率を基準(=100%)として延伸性向上率を算出し、その値を延伸性として、以下の基準A、B及びCに従い評価した。なおハードコート層として実際の使用を想定した場合、少なくともBであることが求められ、Aであることが望ましい。
A:125%以上
B:100%を超え125%未満
C:100%以下
The scratch resistance and stretchability of the obtained hard coat film were evaluated. The procedure is shown below. The results are shown in Table 2 together with the haze value (reference value).
[Scratch resistance]
The surface of the hard coat layer of the hard coat film was rubbed with steel wool [BONSTAR (registered trademark) #0000 (ultrafine)] attached to a reciprocating abrasion tester under a load of 500 g/cm 2 for 10 reciprocations to scratch the surface. Was visually confirmed and evaluated according to the following criteria A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable.
A: No scratches (0 scratches)
B: Scratch occurred (1 to 4 scratches)
C: Scratch occurred (5 or more scratches)
[Stretchability]
The hard coat film was cut into a rectangle having a length of 60 mm and a width of 10 mm to prepare a test piece. The test piece was attached to the grip of the universal tester so as to grip each 20 mm from both ends in the longitudinal direction, and the stretch ratio (=(increase in distance between grips)/(distance between grips)×100) was 2.5. %, 5%, 7.5%, and 10%, and a tensile test was performed in increments of 2.5%. The hard coat film after the tensile test was visually observed to confirm the maximum stretch ratio at which no crack was generated in the hard coat layer of the test piece. After that, the stretchability improvement rate was calculated based on the stretch rate of the hard coat film prepared using the curable compositions (Comparative Examples 1 and 6) excluding silica fine particles (=100%), and the value was calculated. The stretchability was evaluated according to the following criteria A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable.
A: 125% or more B: More than 100% and less than 125% C: 100% or less
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2に示すように、オキシエチレン変性多官能モノマーA1に、平均粒子径40nm、80nm又は200nmのシリカ微粒子の表面を、含窒素プロトン供与性官能基を有するシランカップリング剤で修飾したシリカ微粒子s-4、s-5、s-6、s-7、s-10又はs-11、表面改質剤として分子鎖の両末端それぞれにウレタン結合を介してアクリロイル基を4つ有するパーフルオロポリエーテルSM-1を、それぞれ用いた実施例1乃至実施例6の硬化性組成物から得られるハードコート層を備えるハードコートフィルムは、シリカ微粒子を未添加とした比較例1の硬化性組成物から得られるハードコート層を備えるハードコートフィルムと比べて明らかなように、耐擦傷性を損なうことなく優れた延伸性を示した。中でも、含窒素プロトン供与性官能基としてウレア基(s-4)、チオウレア基(s-5、s-10)、ウレイド基(s-6)を有するシランカップリング剤で修飾したシリカ微粒子を用いた場合、透明性にも優れることが示された。
 また、オキシエチレン変性多官能モノマーA1に、チオウレア基を有するシランカップリング剤で表面が修飾された平均粒子径80nmのシリカ微粒子s-10、表面改質剤として分子鎖の片末端に2つの(メタ)アクリロイル基を有するパーフルオロポリエーテルSM-2を用いた実施例8の硬化性組成物から得られるハードコート層を備えるハードコートフィルムは、シリカ微粒子を未添加とした比較例1の硬化性組成物から得られるハードコート層を備えるハードコートフィルムと比べて明らかなように、耐擦傷性を損なうことなく優れた延伸性を示した。
As shown in Table 2, silica fine particles s obtained by modifying the surface of silica fine particles having an average particle diameter of 40 nm, 80 nm or 200 nm with an oxyethylene-modified polyfunctional monomer A1 with a silane coupling agent having a nitrogen-containing proton donating functional group. -4, s-5, s-6, s-7, s-10 or s-11, and a perfluoropolyether having four acryloyl groups at both ends of the molecular chain via urethane bonds as surface modifiers. A hard coat film having a hard coat layer obtained from the curable compositions of Examples 1 to 6 in which SM-1 was used was obtained from the curable composition of Comparative Example 1 in which silica fine particles were not added. As is clear from the comparison with the hard coat film having the hard coat layer, excellent stretchability was exhibited without impairing scratch resistance. Among them, silica fine particles modified with a silane coupling agent having a urea group (s-4), a thiourea group (s-5, s-10) or a ureido group (s-6) as a nitrogen-containing proton donating functional group are used. When it was present, it was shown that the transparency was also excellent.
In addition, silica fine particles s-10 having an average particle diameter of 80 nm whose surface is modified with a silane coupling agent having a thiourea group on the oxyethylene-modified polyfunctional monomer A1 and two ( The hard coat film provided with the hard coat layer obtained from the curable composition of Example 8 using the perfluoropolyether SM-2 having a (meth)acryloyl group had a curability of Comparative Example 1 in which silica fine particles were not added. As is clear from the comparison with the hard coat film having the hard coat layer obtained from the composition, excellent stretchability was exhibited without impairing scratch resistance.
 一方、シリカ粒子として表面未修飾のシリカ微粒子s-1を用いた比較例2の硬化性組成物から得られるハードコート層を備えるハードコートフィルムは、耐擦傷性に劣り、アクリレート及びシリカ微粒子間の相互作用が弱いことが示唆される結果となった。同様に、シリカ粒子の表面修飾基としてn-ヘキシル基を採用(シリカ微粒子:s-8)した比較例3の硬化性組成物から得られるハードコート層を備えるハードコートフィルムも、アクリレート及びシリカ微粒子間の相互作用が弱く、耐擦傷性に劣ることが示された。
 また、シリカ粒子の表面修飾基としてアクリロイル基を採用(シリカ微粒子:s-9)した比較例4の硬化性組成物から得られるハードコート層を備えるハードコートフィルムは、アクリレート及びシリカ微粒子間の相互作用が強く、耐擦傷性には優れるが延伸性に劣ることが示された。
 そして、比較例6の硬化性組成物からなる層厚(膜厚)5μmのハードコート層を備えるハードコートフィルムは、表面改質剤を未添加としたために表面の摩擦係数が高いものとなったとみられ、耐擦傷性に劣ることが示された。
On the other hand, the hard coat film provided with the hard coat layer obtained from the curable composition of Comparative Example 2 using the unmodified silica fine particles s-1 as the silica particles is inferior in scratch resistance, and has a poor scratch resistance. The results suggest that the interaction is weak. Similarly, a hard coat film having a hard coat layer obtained from the curable composition of Comparative Example 3 in which an n-hexyl group is adopted as a surface modifying group of silica particles (silica fine particles: s-8) is also used as acrylate and silica fine particles. It was shown that the interaction between them was weak and the scratch resistance was poor.
Further, the hard coat film provided with the hard coat layer obtained from the curable composition of Comparative Example 4 in which the acryloyl group was adopted as the surface modifying group of the silica particles (silica fine particles: s-9) was prepared from the acrylate and the silica fine particles. It was shown that the action is strong and the scratch resistance is excellent, but the stretchability is poor.
Then, the hard coat film including the hard coat layer of the curable composition of Comparative Example 6 having a layer thickness (film thickness) of 5 μm had a high surface friction coefficient because the surface modifier was not added. It was found that the scratch resistance was inferior.
 さらに、オキシエチレン変性多官能モノマーA1に代えて、ラクトン変性多官能モノマーA2を使用した実施例7の硬化性組成物から得られるハードコート層を備えるハードコートフィルムにあっては、シリカ微粒子未添加の比較例6に比べて、耐擦傷性及び延伸性が向上する結果が得られた。 Further, in the hard coat film including the hard coat layer obtained from the curable composition of Example 7 using the lactone modified polyfunctional monomer A2 instead of the oxyethylene modified polyfunctional monomer A1, silica fine particles are not added. As a result, scratch resistance and stretchability were improved as compared with Comparative Example 6.
[実施例9~実施例11、参考例10及び参考例11]
 表3の記載に従って以下の各成分を混合し、表3に記載の固形分濃度の硬化性組成物を調製した。なお、ここで固形分とは溶媒以外の成分を指す。また、表中、[部]とは[質量部]を、[%]は[質量%]を表す。この硬化性組成物を、A4サイズの両面易接着処理PETフィルム[東レ(株)製 ルミラー(商標登録)U403、厚み100μm]上にバーコーターにより塗布し、塗膜を得た。この塗膜を65℃のオーブンで3分間乾燥させ溶媒を除去した。得られた膜を、窒素雰囲気下、露光量300mJ/cmのUV光を照射し露光することで、およそ5μmの層厚(膜厚)を有するハードコート層(硬化膜)を有する、ハードコートフィルムを作製した。
[Examples 9 to 11, Reference Example 10 and Reference Example 11]
The following components were mixed according to the description in Table 3 to prepare a curable composition having a solid content concentration shown in Table 3. Here, the solid content refers to components other than the solvent. Further, in the table, "part" means "part by mass" and "%" means "% by mass". This curable composition was applied onto an A4 size double-sided easy-adhesion-treated PET film [Lumirror (registered trademark) U403 manufactured by Toray Industries, Inc., thickness 100 μm] with a bar coater to obtain a coating film. The coating film was dried in an oven at 65° C. for 3 minutes to remove the solvent. A hard coat having a hard coat layer (cured film) having a layer thickness (film thickness) of about 5 μm by irradiating the obtained film with UV light having an exposure dose of 300 mJ/cm 2 in a nitrogen atmosphere. A film was made.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 得られたハードコートフィルムについて、前述の[耐擦傷性]及び[延伸性]の評価に加え、外観及び表面抵抗を評価した。外観及び表面抵抗評価の手順を以下に示す。結果を表4にヘーズ値(参考値)と併せて示す。
[外観]
 ハードコートフィルムの外観を目視で確認し、以下の基準A及びCに従い評価した。
A:ハードコート層全面に亘って異物がない
C:ハードコート層全面に亘って異物が多数発生
[表面抵抗]
 ハードコート層表面を上にしてハードコートフィルムをレジテーブル上に置き、プローブをハードコートフィルム(ハードコート層)に押し付け10秒後の値をn=3で測定し、平均値を表面抵抗値[Ω/□]とした。
The obtained hard coat film was evaluated for appearance and surface resistance in addition to the evaluations of [scratch resistance] and [stretchability] described above. The procedure of appearance and surface resistance evaluation is shown below. The results are shown in Table 4 together with the haze value (reference value).
[appearance]
The appearance of the hard coat film was visually confirmed and evaluated according to the following criteria A and C.
A: There are no foreign matters over the entire hard coat layer C: Many foreign matters occur over the entire hard coat layer [surface resistance]
The hard coat film is placed with the surface of the hard coat layer facing upward on the registration table, the probe is pressed against the hard coat film (hard coat layer), the value after 10 seconds is measured at n=3, and the average value is the surface resistance value [ Ω/□].
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表4に示すように、オキシエチレン変性多官能モノマーA1、表面改質剤として分子鎖の両末端それぞれにウレタン結合を介してアクリロイル基を4つ有するパーフルオロポリエーテルSM-1を含有し、そしてシリカ粒子の表面修飾にチオウレア基(実施例9、実施例11)又はウレイド基(実施例10)を有するシランカップリング剤(s-5、s-10、又はs-6)を用い、帯電防止剤(e-1、e-2)を更に加えた硬化性組成物から得られるハードコート層を備えるハードコートフィルムは、優れた耐擦傷性・延伸性に加え、良好な外観を損なうことなく、優れた帯電防止性を付与できることが示された。
 なお、シリカ粒子として、アミノ基を有するシランカップリング剤で表面が修飾されたシリカ微粒子(s-7)を用いた場合(参考例10)には、良好な外観や帯電防止性は付与できたものの、耐擦傷性及び延伸性に悪影響を及ぼすこと、ウレア基を有するシランカップリング剤で表面が修飾されたシリカ微粒子(s-4)を用いた場合(参考例11)には、延伸性と帯電防止性は付与できたものの、耐擦傷性及び外観に影響を及ぼすことが確認された。このように帯電防止性能の付与にあたっては、耐擦傷性及び延伸性、そして硬化膜の表面外観にも悪影響を及ばさないよう、金属酸化物粒子とシリカ粒子の選択が重要になることが示唆される結果となった。
As shown in Table 4, it contains oxyethylene-modified polyfunctional monomer A1, a surface modifier containing perfluoropolyether SM-1 having four acryloyl groups through urethane bonds at both ends of the molecular chain, and A silane coupling agent (s-5, s-10, or s-6) having a thiourea group (Examples 9 and 11) or a ureido group (Example 10) is used for surface modification of silica particles to prevent static electricity. The hard coat film provided with the hard coat layer obtained from the curable composition further containing the agents (e-1, e-2) has excellent scratch resistance and stretchability, and does not impair a good appearance, It has been shown that excellent antistatic properties can be imparted.
When silica fine particles (s-7) having a surface modified with a silane coupling agent having an amino group were used as the silica particles (Reference Example 10), good appearance and antistatic property could be imparted. However, when the silica fine particles (s-4) whose surface is modified with a silane coupling agent having a urea group are used (Reference Example 11), the scratch resistance and stretchability are adversely affected. Although the antistatic property could be imparted, it was confirmed that the scratch resistance and the appearance were affected. Thus, in imparting antistatic performance, it is suggested that the selection of metal oxide particles and silica particles is important so as not to adversely affect the scratch resistance and stretchability, and the surface appearance of the cured film. The result was
[実施例12及び実施例13]
 表5の記載に従って以下の各成分を混合し、表5に記載の固形分濃度の硬化性組成物を調製した。なお、ここで固形分とは溶媒以外の成分を指す。また、表中、[部]とは[質量部]を、[%]は[質量%]を表す。この硬化性組成物を、A4サイズの両面易接着処理PETフィルム[東レ(株)製 ルミラー(商標登録)U403、厚み100μm]上にバーコーターにより塗布し、塗膜を得た。この塗膜を65℃のオーブンで3分間乾燥させ溶媒を除去した。得られた膜を、窒素雰囲気下、露光量300mJ/cmのUV光を照射し露光することで、およそ5μmの層厚(膜厚)を有するハードコート層(硬化膜)を有する、ハードコートフィルムを作製した。
[Examples 12 and 13]
The following components were mixed according to the description in Table 5 to prepare a curable composition having a solid content concentration shown in Table 5. Here, the solid content refers to components other than the solvent. Further, in the table, "part" means "part by mass" and "%" means "% by mass". This curable composition was applied onto an A4 size double-sided easy-adhesion-treated PET film [Lumirror (registered trademark) U403 manufactured by Toray Industries, Inc., thickness 100 μm] with a bar coater to obtain a coating film. The coating film was dried in an oven at 65° C. for 3 minutes to remove the solvent. A hard coat having a hard coat layer (cured film) having a layer thickness (film thickness) of about 5 μm by irradiating the obtained film with UV light having an exposure dose of 300 mJ/cm 2 in a nitrogen atmosphere. A film was made.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 得られたハードコートフィルムについて、前述の[表面抵抗]の評価に加え、防眩性を評価した。防眩性評価の手順を以下に示す。結果を表6に、ヘーズ値及び全光透過率(参考値)とともに併せて示す。
[防眩性]
 得られたハードコートフィルムを光沢度Gs(60°)が11.8である黒色の台に乗せ、該ハードコートフィルムのハードコート層表面の光沢度Gs(60°)を測定し、以下の基準A、B及びCに従い評価した。なおハードコート層として実際の使用を想定した場合、少なくともBであることが求められ、Aであることが望ましい。
 A:Gs(60°)≦120
 B:120<Gs(60°)≦125
 C:Gs(60°)>125
The obtained hard coat film was evaluated for antiglare property in addition to the evaluation of [surface resistance] described above. The procedure for evaluating the antiglare property is shown below. The results are shown in Table 6 together with the haze value and the total light transmittance (reference value).
[Anti-glare property]
The obtained hard coat film was placed on a black base having a gloss Gs (60°) of 11.8, and the gloss Gs (60°) of the hard coat layer surface of the hard coat film was measured. Evaluation was performed according to A, B and C. When actually used as the hard coat layer, at least B is required, and A is desirable.
A: Gs (60°)≦120
B: 120<Gs (60°)≦125
C: Gs (60°)>125
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表6に示すように、多官能モノマーとしてオキシエチレン変性多官能モノマーA1に、平均粒子径80nmのシリカ微粒子の表面を含窒素プロトン供与性官能基としてチオウレア基を有するシランカップリング剤で修飾したs-10のシリカ微粒子、表面改質剤として分子鎖の両末端それぞれにウレタン結合を介してアクリロイル基を4つ有するパーフルオロポリエーテルSM-1、帯電防止剤として金属酸化物粒子であるリンドープ酸化スズe-1、有機微粒子FP1をそれぞれ用いた実施例12及び実施例13の硬化性組成物から得られるハードコートフィルムは、防眩性及び帯電防止性を有することが示された。 As shown in Table 6, oxyethylene-modified polyfunctional monomer A1 as a polyfunctional monomer was modified with a silane coupling agent having a thiourea group as a nitrogen-containing proton-donating functional group on the surface of silica fine particles having an average particle diameter of 80 nm. -10 silica fine particles, as a surface modifier, perfluoropolyether SM-1 having four acryloyl groups through urethane bonds at both ends of the molecular chain, phosphorus-doped tin oxide as metal oxide particles as an antistatic agent It was shown that the hard coat films obtained from the curable compositions of Example 12 and Example 13 using e-1 and organic fine particles FP1 respectively have antiglare properties and antistatic properties.
 以上、実施例の結果に示すように、活性エネルギー線硬化性多官能モノマー、表面改質剤としてポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテル、そして含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子を組み合わせた硬化性組成物とすることで、耐擦傷性を維持しつつ、延伸性を向上したハードコート層を備えるハードコートフィルムを得ることができる。また含窒素プロトン供与性官能基の選択により、透明性にも優れるハードコート層を備えるハードコートフィルムを得ることができる。
 また、上述した組成物に帯電防止剤として金属酸化物粒子を用い、特に含窒素プロトン供与性官能基としてチオウレア基又はウレイド基を有するシランカップリング剤で表面修飾したシリカ粒子を用いることで、耐擦傷性・延伸性を低下させず、かつ良好な外観および優れた帯電防止性を持ったハードコートフィルムを作成することができる。
 さらに上述の組成物に、0.2μm~15μmの平均粒子径を有する微粒子を用いることで、防眩性が付与されたハードコートフィルムを作成することができる。
As described above, as shown in the results of the examples, it has an active energy ray-curable polyfunctional monomer, a perfluoropolyether containing a poly(oxyperfluoroalkylene) group as a surface modifier, and a nitrogen-containing proton-donating functional group. By using a curable composition in which silica particles whose surfaces are modified with a silane coupling agent are combined, a hard coat film having a hard coat layer with improved stretchability can be obtained while maintaining scratch resistance. .. Further, by selecting the nitrogen-containing proton-donating functional group, a hard coat film having a hard coat layer having excellent transparency can be obtained.
Further, using metal oxide particles as an antistatic agent in the above composition, particularly by using silica particles surface-modified with a silane coupling agent having a thiourea group or a ureido group as a nitrogen-containing proton-donating functional group, It is possible to prepare a hard coat film that does not deteriorate scratch resistance and stretchability, and has a good appearance and excellent antistatic properties.
Furthermore, by using fine particles having an average particle diameter of 0.2 μm to 15 μm in the above composition, a hard coat film having antiglare properties can be prepared.

Claims (31)

  1. (a)(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマー、及び(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーからなる群から選択される、活性エネルギー線硬化性多官能モノマー100質量部、
    (b)ポリ(オキシパーフルオロアルキレン)基を含むパーフルオロポリエーテル0.05質量部~10質量部、
    (c)含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子10質量部~65質量部、及び、
    (d)活性エネルギー線によりラジカルを発生する重合開始剤1質量部~20質量部
    を含む、硬化性組成物。
    An active energy ray-curable polyfunctional monomer selected from the group consisting of (a) (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer and (a-2) active energy ray-curable lactone-modified polyfunctional monomer. 100 parts by mass of functional monomer,
    (B) 0.05 to 10 parts by mass of perfluoropolyether containing a poly(oxyperfluoroalkylene) group,
    (C) 10 to 65 parts by mass of silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton donating functional group, and
    (D) A curable composition containing 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays.
  2. 含窒素プロトン供与性官能基が、アミノ基、アミド基、ウレア基、チオウレア基、ウレタン基、チオウレタン基、ウレイド基、及びチオウレイド基からなる群から選択される少なくとも1つの基である、請求項1に記載の硬化性組成物。 The nitrogen-containing proton donating functional group is at least one group selected from the group consisting of an amino group, an amide group, a urea group, a thiourea group, a urethane group, a thiourethane group, a ureido group, and a thioureido group. 1. The curable composition according to 1.
  3. 含窒素プロトン供与性官能基が、アミノ基、ウレア基、チオウレア基、及びウレイド基からなる群から選択される少なくとも1つの基である、請求項2に記載の硬化性組成物。 The curable composition according to claim 2, wherein the nitrogen-containing proton-donating functional group is at least one group selected from the group consisting of an amino group, a urea group, a thiourea group, and a ureido group.
  4. 前記(c)シリカ粒子が、40nm~500nmの平均粒子径を有するシリカ微粒子である、請求項1乃至請求項3のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the (c) silica particles are silica fine particles having an average particle size of 40 nm to 500 nm.
  5. 前記(b)パーフルオロポリエーテルは、その分子鎖の末端にウレタン結合を介して活性エネルギー線重合性基を有する、請求項1乃至請求項4のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the (b) perfluoropolyether has an active energy ray-polymerizable group at the end of its molecular chain via a urethane bond. ..
  6. 前記(b)パーフルオロポリエーテルは、その分子鎖の末端にウレタン結合を介して活性エネルギー線重合性基を少なくとも2つ有する、請求項1乃至請求項5のうち何れか一項に記載の硬化性組成物。 The curing according to any one of claims 1 to 5, wherein the (b) perfluoropolyether has at least two active energy ray-polymerizable groups at the ends of its molecular chain via urethane bonds. Sex composition.
  7. 前記(b)パーフルオロポリエーテルは、その分子鎖の片末端にウレタン結合を介して活性エネルギー線重合性基を少なくとも2つ有する、請求項1乃至請求項6のうち何れか一項に記載の硬化性組成物。 7. The perfluoropolyether (b) has at least two active energy ray-polymerizable groups at one end of its molecular chain via a urethane bond, according to any one of claims 1 to 6. Curable composition.
  8. 前記(b)パーフルオロポリエーテルは、その分子鎖の両末端それぞれにウレタン結合を介して活性エネルギー線重合性基を少なくとも3つ有する、請求項1乃至請求項6のうち何れか一項に記載の硬化性組成物。 7. The perfluoropolyether (b) has at least three active energy ray-polymerizable groups via urethane bonds at both ends of its molecular chain, according to any one of claims 1 to 6. Curable composition.
  9. 前記ポリ(オキシパーフルオロアルキレン)基が、繰り返し単位-[OCF]-及び繰り返し単位-[OCFCF]-の双方を有し、これら繰り返し単位をブロック結合、ランダム結合、又は、ブロック結合及びランダム結合にて結合してなる基である、請求項1乃至請求項8のうち何れか一項に記載の硬化性組成物。 The poly(oxyperfluoroalkylene) group has both a repeating unit —[OCF 2 ]— and a repeating unit —[OCF 2 CF 2 ]—, and these repeating units are block-bonded, random-bonded, or block-bonded. The curable composition according to any one of claims 1 to 8, which is a group formed by bonding with a random bond.
  10. 前記(b)パーフルオロポリエーテルが、下記式[1]で表される部分構造を有する、請求項9に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式[1]中、
    nは、繰り返し単位-[OCFCF]-の数と、繰り返し単位-[OCF]-の数との総数であって5~30の整数を表し、
    前記繰り返し単位-[OCFCF]-と、前記繰り返し単位-[OCF]-は、ブロック結合、ランダム結合、又は、ブロック結合及びランダム結合の何れかにて結合してなる。)
    The curable composition according to claim 9, wherein the perfluoropolyether (b) has a partial structure represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula [1],
    n is the total number of repeating units -[OCF 2 CF 2 ]- and the number of repeating units -[OCF 2 ]-, and represents an integer of 5 to 30,
    The repeating unit —[OCF 2 CF 2 ]— and the repeating unit —[OCF 2 ]— are bonded by a block bond, a random bond, or a block bond and a random bond. )
  11. 前記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーの一部又は全部が、オキシエチレン変性多官能(メタ)アクリレート化合物からなる、請求項1乃至請求項10のうち何れか一項に記載の硬化性組成物。 11. The active energy ray-curable oxyethylene-modified polyfunctional monomer as a whole or part thereof is composed of an oxyethylene-modified polyfunctional (meth)acrylate compound, according to any one of claims 1 to 10. The curable composition according to.
  12. 前記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーは、活性エネルギー線重合性基を1分子中に3以上有するモノマーであって、平均オキシエチレン変性量が該活性エネルギー線重合性基1molに対し3mol未満のモノマーである、請求項1乃至請求項11のうち何れか一項に記載の硬化性組成物。 The above-mentioned (a-1) active energy ray-curable oxyethylene-modified polyfunctional monomer is a monomer having 3 or more active energy ray-polymerizable groups in one molecule, and has an average oxyethylene-modified amount of the active energy ray-polymerizable group. The curable composition according to any one of claims 1 to 11, which is a monomer of less than 3 mol per 1 mol of the group.
  13. 前記(a-1)活性エネルギー線硬化性オキシエチレン変性多官能モノマーは、平均オキシエチレン変性量が前記活性エネルギー線重合性基1molに対し2mol未満のモノマーである、請求項12に記載の硬化性組成物。 The curable product according to claim 12, wherein the active energy ray-curable oxyethylene-modified polyfunctional monomer (a-1) is a monomer having an average oxyethylene modification amount of less than 2 mol with respect to 1 mol of the active energy ray-polymerizable group. Composition.
  14. 前記(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーの一部又は全部が、ラクトン変性多官能(メタ)アクリレート化合物からなる、請求項1乃至請求項13のうち何れか一項に記載の硬化性組成物。 The active energy ray-curable lactone-modified polyfunctional monomer (a-2) partially or wholly comprises a lactone-modified polyfunctional (meth)acrylate compound. Curable composition.
  15. 前記(a-2)活性エネルギー線硬化性ラクトン変性多官能モノマーの一部又は全部が、ε-カプロラクトン変性多官能モノマーである、請求項14に記載の硬化性組成物。 15. The curable composition according to claim 14, wherein a part or all of the (a-2) active energy ray-curable lactone-modified polyfunctional monomer is an ε-caprolactone-modified polyfunctional monomer.
  16. 前記(c)シリカ粒子が、チオウレア基又はウレイド基を有するシランカップリング剤で表面が修飾されたシリカ粒子であり、且つ、
    (e)帯電防止剤10質量部~55質量部をさらに含む、請求項1乃至請求項15のうち何れか一項に記載の硬化性組成物。
    The (c) silica particles are silica particles whose surface is modified with a silane coupling agent having a thiourea group or a ureido group, and
    (E) The curable composition according to any one of claims 1 to 15, further comprising 10 parts by mass to 55 parts by mass of the antistatic agent.
  17. 前記(e)帯電防止剤として金属酸化物粒子を含む、請求項16に記載の硬化性組成物。 The curable composition according to claim 16, comprising metal oxide particles as the (e) antistatic agent.
  18. 前記金属酸化物粒子は、スズ、亜鉛、及びインジウムからなる群から選ばれる少なくとも1つの元素の酸化物を含む、請求項17に記載の硬化性組成物。 The curable composition according to claim 17, wherein the metal oxide particles contain an oxide of at least one element selected from the group consisting of tin, zinc, and indium.
  19. 前記金属酸化物粒子は酸化スズを含む、請求項18に記載の硬化性組成物。 The curable composition according to claim 18, wherein the metal oxide particles include tin oxide.
  20. 前記金属酸化物粒子は、リンドープ酸化スズ及び表面が五酸化アンチモンで被覆された酸化スズのうち少なくとも1つを含む、請求項17乃至請求項19のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 17 to 19, wherein the metal oxide particles contain at least one of phosphorus-doped tin oxide and tin oxide whose surface is coated with antimony pentoxide. ..
  21. さらに(f)0.2μm~15μmの平均粒子径を有する微粒子1質量部~40質量部を含む、請求項1乃至請求項20のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 20, further comprising (f) 1 part by mass to 40 parts by mass of fine particles having an average particle size of 0.2 μm to 15 μm.
  22. 前記(f)0.2μm~15μmの平均粒子径を有する微粒子が有機微粒子である、請求項21に記載の硬化性組成物。 The curable composition according to claim 21, wherein the fine particles (f) having an average particle diameter of 0.2 μm to 15 μm are organic fine particles.
  23. 前記有機微粒子がポリメタクリル酸メチル微粒子である、請求項22に記載の硬化性組成物。 The curable composition according to claim 22, wherein the organic fine particles are polymethyl methacrylate fine particles.
  24. さらに(g)溶媒を含む、請求項1乃至請求項23のうち何れか一項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 23, further comprising (g) a solvent.
  25. 請求項1乃至請求項24のうち何れか一項に記載の硬化性組成物より得られる硬化膜。 A cured film obtained from the curable composition according to any one of claims 1 to 24.
  26. フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムであって、該ハードコート層が請求項25に記載の硬化膜からなる、ハードコートフィルム。 A hard coat film comprising a hard coat layer on at least one surface of a film substrate, the hard coat layer comprising the cured film according to claim 25.
  27. 前記ハードコート層が1μm~10μmの層厚を有する、請求項26に記載のハードコートフィルム。 The hard coat film according to claim 26, wherein the hard coat layer has a layer thickness of 1 μm to 10 μm.
  28. フィルム基材の少なくとも一方の面にハードコート層を備えるハードコートフィルムの製造方法であって、該ハードコート層が、請求項1乃至請求項24のうち何れか一項に記載の硬化性組成物をフィルム基材上に塗布し塗膜を形成する工程と、該塗膜に活性エネルギー線を照射し硬化する工程とを含む、ハードコートフィルムの製造方法。 A method for producing a hard coat film comprising a hard coat layer on at least one surface of a film substrate, wherein the hard coat layer is the curable composition according to any one of claims 1 to 24. A method for producing a hard coat film, comprising the steps of: applying a film on a film substrate to form a coating film; and irradiating the coating film with an active energy ray to cure the film.
  29. 含窒素プロトン供与性官能基を有するシランカップリング剤で表面が修飾されたシリカ粒子。 Silica particles whose surface is modified with a silane coupling agent having a nitrogen-containing proton-donating functional group.
  30. 40nm~500nmの平均粒子径を有する請求項29に記載のシリカ粒子。 The silica particles according to claim 29, having an average particle diameter of 40 nm to 500 nm.
  31. 前記含窒素プロトン供与性官能基が、チオウレア基又はチオウレタン基である、請求項29又は請求項30に記載のシリカ粒子。 31. The silica particles according to claim 29 or 30, wherein the nitrogen-containing proton-donating functional group is a thiourea group or a thiourethane group.
PCT/JP2020/003467 2019-02-06 2020-01-30 Curable composition for flexible hard coating WO2020162323A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217026174A KR20210123324A (en) 2019-02-06 2020-01-30 Curable composition for flexible hard coat
CN202080013146.3A CN113396127A (en) 2019-02-06 2020-01-30 Curable composition for flexible hard coat layer
JP2020571141A JPWO2020162323A1 (en) 2019-02-06 2020-01-30 Curable composition for flexible hardcourt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019020179 2019-02-06
JP2019-020179 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162323A1 true WO2020162323A1 (en) 2020-08-13

Family

ID=71947446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003467 WO2020162323A1 (en) 2019-02-06 2020-01-30 Curable composition for flexible hard coating

Country Status (5)

Country Link
JP (1) JPWO2020162323A1 (en)
KR (1) KR20210123324A (en)
CN (1) CN113396127A (en)
TW (1) TW202045553A (en)
WO (1) WO2020162323A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241087A1 (en) * 2020-05-26 2021-12-02 日産化学株式会社 Curable composition for forming hard coat layer containing urethane (meth)acrylate and surface-modified silica particles
KR20230162016A (en) 2021-04-02 2023-11-28 닛산 가가쿠 가부시키가이샤 Antistatic hard coat layer and curable composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100111A (en) * 1995-10-03 1997-04-15 Japan Synthetic Rubber Co Ltd Reactive silica particle, its production and use
JP2005126453A (en) * 2003-10-21 2005-05-19 Tdk Corp Hard coating agent composition and optical information medium using the same
WO2010016452A1 (en) * 2008-08-08 2010-02-11 Dic株式会社 Fluorine compound and active-energy-ray-curable resin composition comprising same
JP2011213818A (en) * 2010-03-31 2011-10-27 Dic Corp Fluorine-containing curable resin and active energy ray curable coating composition using the same
JP2014101399A (en) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd Cyanate ester-based resin composition, and prepreg and laminate plate using the same
JP2015078341A (en) * 2013-09-10 2015-04-23 昭和電工株式会社 Curable composition and cured product thereof as well as hard coat material and hard coat film
WO2016098823A1 (en) * 2014-12-17 2016-06-23 旭硝子株式会社 Water- and oil-repellent composition, manufacturing method for same and product from same
WO2016136479A1 (en) * 2015-02-27 2016-09-01 住友金属鉱山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained therefrom
JP2017072796A (en) * 2015-10-09 2017-04-13 信越ポリマー株式会社 Developing roller, and method of producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771072B2 (en) * 2006-01-24 2011-09-14 信越化学工業株式会社 Resin composition for screen printing
CN103232682B (en) * 2008-07-31 2016-03-02 积水化学工业株式会社 Composition epoxy resin, prepreg, cured article, sheet-like formed body, laminated plate and multi-laminate laminate
JP5434568B2 (en) 2009-12-22 2014-03-05 東洋紡株式会社 Hard coat film for molding
JP2013076029A (en) * 2011-09-30 2013-04-25 Tdk Corp Hard coat agent composition and hard coat film using the same
CN104418958B (en) * 2013-09-10 2016-07-06 昭和电工株式会社 The manufacture method of organic mineral complex, solidification compound and solidfied material thereof, firmly it is coated with material, hard coat film and silane coupler
CN104419234B (en) * 2013-09-10 2017-05-24 昭和电工株式会社 Cured composition, cured product thereof, hard primer and hard coating
JP5697223B1 (en) * 2014-06-24 2015-04-08 アイカ工業株式会社 Ultraviolet curable resin composition and film, and conductive film
CN109642000B (en) * 2016-10-12 2021-11-19 日产化学株式会社 Light-resistant hard coating material
CN109715399B (en) * 2016-10-12 2021-08-20 日产化学株式会社 High-hardness hard-coated laminate
JP6799283B2 (en) * 2016-10-12 2020-12-16 日産化学株式会社 Anti-glare hard coat laminate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100111A (en) * 1995-10-03 1997-04-15 Japan Synthetic Rubber Co Ltd Reactive silica particle, its production and use
JP2005126453A (en) * 2003-10-21 2005-05-19 Tdk Corp Hard coating agent composition and optical information medium using the same
WO2010016452A1 (en) * 2008-08-08 2010-02-11 Dic株式会社 Fluorine compound and active-energy-ray-curable resin composition comprising same
JP2011213818A (en) * 2010-03-31 2011-10-27 Dic Corp Fluorine-containing curable resin and active energy ray curable coating composition using the same
JP2014101399A (en) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd Cyanate ester-based resin composition, and prepreg and laminate plate using the same
JP2015078341A (en) * 2013-09-10 2015-04-23 昭和電工株式会社 Curable composition and cured product thereof as well as hard coat material and hard coat film
WO2016098823A1 (en) * 2014-12-17 2016-06-23 旭硝子株式会社 Water- and oil-repellent composition, manufacturing method for same and product from same
WO2016136479A1 (en) * 2015-02-27 2016-09-01 住友金属鉱山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained therefrom
JP2017072796A (en) * 2015-10-09 2017-04-13 信越ポリマー株式会社 Developing roller, and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241087A1 (en) * 2020-05-26 2021-12-02 日産化学株式会社 Curable composition for forming hard coat layer containing urethane (meth)acrylate and surface-modified silica particles
KR20230162016A (en) 2021-04-02 2023-11-28 닛산 가가쿠 가부시키가이샤 Antistatic hard coat layer and curable composition

Also Published As

Publication number Publication date
KR20210123324A (en) 2021-10-13
TW202045553A (en) 2020-12-16
JPWO2020162323A1 (en) 2021-12-16
CN113396127A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
KR102345843B1 (en) Curable composition for anti-glare coating
JP7041405B2 (en) Curable Composition for Stretchable Scratch Resistant Coating
JPWO2020008937A1 (en) Curable composition for flexible coating
WO2020162323A1 (en) Curable composition for flexible hard coating
JPWO2018056370A1 (en) Scratch resistant hard coat material
WO2021241087A1 (en) Curable composition for forming hard coat layer containing urethane (meth)acrylate and surface-modified silica particles
WO2020162324A1 (en) Curable composition for antistatic hard coating
JP6982280B2 (en) High hardness hardcourt laminate
JP7265226B2 (en) Curable composition for flexible hard coat
JP7332989B2 (en) Curable composition for antiglare hard coat
TWI816973B (en) Curable composition for glare proof and flexible hard coating
JP7332988B2 (en) Curable composition for light resistant hard coat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026174

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20753087

Country of ref document: EP

Kind code of ref document: A1