JP2014101399A - Cyanate ester-based resin composition, and prepreg and laminate plate using the same - Google Patents

Cyanate ester-based resin composition, and prepreg and laminate plate using the same Download PDF

Info

Publication number
JP2014101399A
JP2014101399A JP2012252173A JP2012252173A JP2014101399A JP 2014101399 A JP2014101399 A JP 2014101399A JP 2012252173 A JP2012252173 A JP 2012252173A JP 2012252173 A JP2012252173 A JP 2012252173A JP 2014101399 A JP2014101399 A JP 2014101399A
Authority
JP
Japan
Prior art keywords
cyanate ester
resin composition
component
resin
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012252173A
Other languages
Japanese (ja)
Inventor
Yuki Nagai
裕希 永井
Yasuyuki Mizuno
康之 水野
Tomio Fukuda
富男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012252173A priority Critical patent/JP2014101399A/en
Publication of JP2014101399A publication Critical patent/JP2014101399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cyanate ester-based resin composition which can impart excellent dielectric characteristics in a high-frequency region to a printed wiring board while sufficiently securing compatibility with a resin component.SOLUTION: A resin composition contains (A) a saturation type thermoplastic elastomer having a styrene skeleton, (B) a cyanate ester compound, (C) monofunctional phenol, and (D) an epoxy resin. A mass ratio of the styrene with respect to the mass of the whole (A) components is 10% to 70%.

Description

本発明は、シアネートエステル系樹脂組成物、及びこれを用いて作製される、プリプレグ及び金属張積層板に関するものである。   The present invention relates to a cyanate ester resin composition and a prepreg and a metal-clad laminate produced using the cyanate ester resin composition.

近年、移動体通信関連の電子機器では、大容量の情報を高速で処理することが要求され、ここで扱う電気信号は高周波数化が進んでいる。しかし、信号の強度は高周波になればなるほど減衰しやすくなる性質を持つため、この分野で用いられる印刷配線板には低伝送損失の基板材料が望まれる。すなわち、高周波数帯で比誘電率及び誘電正接の低い樹脂材料を用いる必要がある。   In recent years, electronic devices related to mobile communication are required to process a large amount of information at high speed, and the frequency of electric signals handled here is increasing. However, since the strength of the signal tends to attenuate as the frequency becomes higher, a substrate material with low transmission loss is desired for the printed wiring board used in this field. That is, it is necessary to use a resin material having a low relative dielectric constant and low dielectric loss tangent in a high frequency band.

また、コンピュータ等の電子機器では、大量の情報を短時間で処理するために動作周波数が数GHzを越える高速マイクロプロセッサの開発や信号の高周波数化が進んでいる。このような高速パルス信号を扱う機器では印刷配線板上での遅延が問題になってきた。印刷配線板での信号遅延時間は配線まわりの絶縁物の比誘電率の平方根に比例して長くなるため、コンピュータ等に用いられる配線板では比誘電率の低い基板用樹脂材料が要求されている。   Further, in electronic devices such as computers, in order to process a large amount of information in a short time, development of a high-speed microprocessor having an operating frequency exceeding several GHz and an increase in signal frequency are progressing. In devices that handle such high-speed pulse signals, delay on the printed wiring board has become a problem. Since the signal delay time in the printed wiring board becomes longer in proportion to the square root of the relative dielectric constant of the insulator around the wiring, a resin material for a substrate having a low relative dielectric constant is required for the wiring board used in computers and the like. .

以上のような信号の高周波数化に対応し、従来この分野においては比誘電率や誘電正接の低いフッ素樹脂等の熱可塑性樹脂材料が使用されてきたが、溶融粘度が高いため流動性が不足し、プレス成形時に高温高圧が必要という問題や寸法安定性及び金属めっきとの接着性に劣るという欠点を残していた。そのため、熱硬化性樹脂材料の中で比誘電率や誘電正接が最も低い樹脂の一つとして知られるシアネートエステル化合物による組成物として特許文献1に示されているシアネートエステル及びエポキシ系樹脂からなる組成物、特許文献2に示されているビスマレイミド、シアネートエステル及びエポキシ系樹脂からなる組成物を用いる方法が提案されている。   Corresponding to the higher frequency of signals as described above, conventionally thermoplastic resin materials such as fluororesins with low relative permittivity and dielectric loss tangent have been used in this field, but fluidity is insufficient due to high melt viscosity. However, there remains a problem that a high temperature and a high pressure are necessary at the time of press molding, and a disadvantage that the dimensional stability and the adhesion to metal plating are inferior. Therefore, a composition comprising a cyanate ester and an epoxy resin disclosed in Patent Document 1 as a composition of a cyanate ester compound known as one of the resins having the lowest relative dielectric constant and dielectric loss tangent among thermosetting resin materials And a method using a composition comprising a bismaleimide, a cyanate ester and an epoxy resin disclosed in Patent Document 2 have been proposed.

また,熱可塑性樹脂を用いて高周波特性を改善するものとして,特許文献3に示されているポリフェニレンエーテル(PPO又はPPE)と架橋性ポリマー/モノマーとの樹脂組成物及び特許文献4に示されている特定の硬化性官能基を持つポリフェニレンエーテルと架橋性モノマーとの樹脂組成物等のように耐熱性熱可塑性樹脂の中では誘電特性が良好なポリフェニレンエーテル系樹脂組成物を用いる方法がある。   Moreover, as a thing which improves a high frequency characteristic using a thermoplastic resin, the resin composition of the polyphenylene ether (PPO or PPE) shown in patent document 3 and a crosslinkable polymer / monomer, and patent document 4 show. Among the heat-resistant thermoplastic resins, there is a method of using a polyphenylene ether-based resin composition having good dielectric properties such as a resin composition of a polyphenylene ether having a specific curable functional group and a crosslinking monomer.

また,シアネートエステル化合物と誘電特性が良好なポリフェニレンエーテルからなる樹脂組成物を用いて高周波特性を改善するものとして,特許文献5に示されているシアネートエステル/ビスマレイミドとポリフェニレンエーテルとの樹脂組成物,特許文献6に示されているシアネートエステル/エポキシ樹脂とポリフェニレンエーテルとの樹脂組成物,特許文献7に示されているフェノール変性樹脂/シアネートエステル反応物とポリフェニレンエーテルとの樹脂組成物を用いる方法がある。さらに高周波特性のよい耐熱性成形材料として,特許文献8に示されているようにポリフェニレンエーテルにシアネートエステル化合物を混練した樹脂組成物がある。   Further, as a resin composition comprising a cyanate ester compound and polyphenylene ether having good dielectric properties, the resin composition of cyanate ester / bismaleimide and polyphenylene ether disclosed in Patent Document 5 is disclosed as an improvement in high-frequency characteristics. , A method of using a resin composition of cyanate ester / epoxy resin and polyphenylene ether shown in Patent Document 6, and a resin composition of phenol-modified resin / cyanate ester reaction product and polyphenylene ether shown in Patent Document 7 There is. Furthermore, as a heat-resistant molding material having good high-frequency characteristics, there is a resin composition in which a cyanate ester compound is kneaded with polyphenylene ether as disclosed in Patent Document 8.

また,ポリフエニレンオキサイド系樹脂組成物、架橋性ポリマー及び架橋性モノマー、難燃剤あるいは難燃助剤を含有させた樹脂組成物を用いて作製した金属張積層板(特許文献3参照)及び不飽和基を含む特定の硬化ポリフェニレンエーテル樹脂を適度に架橋させたフィルムなども開示されている(特許文献9参照)。また、ポリフェニレンエーテル系樹脂とシアネートエステル化合物を用いた変性シアネートエステル系樹脂フィルム(特許文献10参照)に加えて、ポリフェニレンエーテル含有の変性シアネートエステル化合物等にエラストマーを配合した樹脂フィルムなども開示されている(特許文献11参照)。   In addition, a metal-clad laminate (see Patent Document 3) prepared using a polyphenylene oxide-based resin composition, a crosslinkable polymer and a crosslinkable monomer, a resin composition containing a flame retardant or a flame retardant aid, and A film obtained by appropriately crosslinking a specific cured polyphenylene ether resin containing a saturated group is also disclosed (see Patent Document 9). Further, in addition to a modified cyanate ester resin film using a polyphenylene ether resin and a cyanate ester compound (see Patent Document 10), a resin film in which an elastomer is blended with a polyphenylene ether-containing modified cyanate ester compound is also disclosed. (See Patent Document 11).

一方、特許文献12には、シアネートエステル化合物とスチレン系エラストマー等の各種熱可塑性樹脂を配合したフィルム状接着剤用途として開示されている。   On the other hand, Patent Document 12 discloses a film adhesive using a cyanate ester compound and various thermoplastic resins such as a styrene elastomer.

特公昭46−41112号公報Japanese Patent Publication No.46-41112 特公昭52−31279号公報Japanese Patent Publication No.52-31279 特公平5−77705号公報Japanese Examined Patent Publication No. 5-77705 特公平6−92533号公報Japanese Patent Publication No. 6-92533 特公昭63−33506号公報Japanese Patent Publication No. Sho 63-33506 特公平4−57696号公報Japanese Examined Patent Publication No. 4-57696 特開平5−311071号公報Japanese Patent Laid-Open No. 5-311071 特公昭61−18937号公報Japanese Patent Publication No. 61-18937 特開平7−188362号公報JP-A-7-188362 特開平11−124451号公報Japanese Patent Laid-Open No. 11-124451 特開2003−138133号公報JP 2003-138133 A 特開平9−279121号公報JP-A-9-279121

しかしながら、前述の樹脂組成物であっても、ミリ波用途の印刷配線板に要求される、高周波領域における誘電特性(低比誘電率及び低誘電正接)を達成するものとしては十分とはいえない。特に、特許文献12に記載されているようなアクリルゴムや変性ポリブタジエン系のエラストマーを含有した樹脂組成物では高周波領域での悪影響が顕著となる。また、特許文献12に記載されているようなスチレン系エラストマーを配合した場合でも使用しているエラストマーが極性基含有タイプのみであるため、高周波特性だけでなく、耐湿性、耐加熱変色性等がやや不十分となる。一方、本発明者らの検討によれば、前期記載の樹脂組成物の場合、主成分であるポリフェニレンエーテルとの相溶性を確保する観点から、併用される樹脂の種類及びその配合量が制限されるため、実用上採用し得る組成の自由度が小さいことも判明した。
そこで、本発明は、このような実情に鑑みてなされたものであり、樹脂成分の相溶性を十分に確保しつつ、高周波領域における良好な誘電特性をプリント配線板に付与することが可能な樹脂組成物を提供することを目的とする。
However, even the above-described resin composition is not sufficient to achieve the dielectric properties (low relative dielectric constant and low dielectric loss tangent) in the high frequency region required for printed wiring boards for millimeter waves. . In particular, in a resin composition containing an acrylic rubber or a modified polybutadiene-based elastomer as described in Patent Document 12, adverse effects in the high frequency region become significant. In addition, even when blended with a styrene-based elastomer as described in Patent Document 12, since the elastomer used is only a polar group-containing type, not only high-frequency characteristics, but also moisture resistance, heat discoloration resistance, etc. Slightly insufficient. On the other hand, according to the study by the present inventors, in the case of the resin composition described in the previous period, from the viewpoint of ensuring compatibility with the main component polyphenylene ether, the type of resin used and the blending amount thereof are limited. Therefore, it has also been found that the degree of freedom of composition that can be practically used is small.
Therefore, the present invention has been made in view of such circumstances, and a resin capable of imparting good dielectric properties in a high frequency region to a printed wiring board while sufficiently ensuring the compatibility of resin components. An object is to provide a composition.

本発明者は、上記目的を達成するために鋭意研究を重ねた結果、スチレン骨格を有する飽和型熱可塑性エラストマーと、シアネートエステル化合物とを有するシアネートエステル系樹脂組成物において、スチレン重量比が特定の範囲である飽和型熱可塑性エラストマーを用いることにより、上記課題を解決し得ることを見出した。
すなわち、本発明は、
[1](A)スチレン骨格を有する飽和型熱可塑性エラストマーと、(B)シアネートエステル化合物と、(C)単官能フェノールと、(D)エポキシ樹脂とを含み、前記(A)成分全体の重量に対するスチレンの質量比が10%〜70%であるシアネートエステル系樹脂組成物、
As a result of intensive studies to achieve the above object, the present inventor has found that a styrene weight ratio is specific in a cyanate ester resin composition having a saturated thermoplastic elastomer having a styrene skeleton and a cyanate ester compound. It has been found that the above-described problems can be solved by using a saturated thermoplastic elastomer in the range.
That is, the present invention
[1] (A) A saturated thermoplastic elastomer having a styrene skeleton, (B) a cyanate ester compound, (C) a monofunctional phenol, and (D) an epoxy resin, and the total weight of the component (A) A cyanate ester-based resin composition having a mass ratio of styrene to 10% to 70%,

[2]前記(A)成分が、スチレン−エチレン−ブチレン共重合体を含む飽和型熱可塑性エラストマーである上記[1]のシアネートエステル系樹脂組成物。
[3]前記スチレン−エチレン−ブチレン共重合体が、スチレン−ブタジエン共重合体のブタジエン部分の二重結合基に水素添加して得られる上記[2]のシアネートエステル系樹脂組成物。
[4]前記(A)成分が、数平均分子量が40,000以上70,000以下の飽和型熱可塑性エラストマーを含有する、上記[1]〜[3]のいずれかのシアネートエステル系樹脂組成物。
[5]数平均分子量が40,000以上70,000以下の飽和型熱可塑性エラストマーの含有割合が(A)成分の全質量に対して50質量%以上である、上記[4]のシアネートエステル系樹脂組成物。
[6]前記飽和型熱可塑性エラストマーが、数平均分子量が40,000以上60,000以下のエラストマーと、数平均分子量が60,000より大きく70,000以下のエラストマーとを含有する、上記[5]のシアネートエステル系樹脂組成物。
[7]前記(B)成分が、シアネートエステル化合物と単官能フェノール化合物とを反応させて得られるフェノール変性シアネートエステルプレポリマーを含有する、上記[1]〜[6]のいずれかのシアネートエステル系樹脂組成物。
[2] The cyanate ester resin composition of [1], wherein the component (A) is a saturated thermoplastic elastomer containing a styrene-ethylene-butylene copolymer.
[3] The cyanate ester resin composition according to [2], wherein the styrene-ethylene-butylene copolymer is obtained by hydrogenating a double bond group of a butadiene portion of a styrene-butadiene copolymer.
[4] The cyanate ester resin composition according to any one of [1] to [3], wherein the component (A) contains a saturated thermoplastic elastomer having a number average molecular weight of 40,000 or more and 70,000 or less. .
[5] The cyanate ester system according to the above [4], wherein the content ratio of the saturated thermoplastic elastomer having a number average molecular weight of 40,000 or more and 70,000 or less is 50% by mass or more based on the total mass of the component (A). Resin composition.
[6] The above-mentioned [5], wherein the saturated thermoplastic elastomer contains an elastomer having a number average molecular weight of 40,000 or more and 60,000 or less and an elastomer having a number average molecular weight of more than 60,000 and 70,000 or less. ] Cyanate ester-based resin composition.
[7] The cyanate ester system according to any one of the above [1] to [6], wherein the component (B) contains a phenol-modified cyanate ester prepolymer obtained by reacting a cyanate ester compound with a monofunctional phenol compound. Resin composition.

[8]上記[1]〜[7]のいずれかのシアネートエステル系樹脂組成物を基材に塗工してなるプリプレグ、
[9]上記[1]〜[7]のいずれかのシアネートエステル系樹脂組成物を支持フィルムに塗工してなる樹脂付フィルム、
[10]上記[8]のプリプレグを1枚以上重ね、その片面又は両面に金属箔を配置し、加熱加圧して得られる積層板、
[11]上記[9]の樹脂付フィルムを1枚以上重ね、その片面又は両面に金属箔を配置し、加熱加圧して得られる積層板、
に関する。
[12]上記[10]又は[11]の積層板に配線形成して得られる配線板、
[13]上記[12]の配線板を少なくとも一層有する多層配線板、に関する。
[8] A prepreg obtained by coating the base material with the cyanate ester resin composition according to any one of [1] to [7] above,
[9] A resin-coated film obtained by coating the cyanate ester resin composition according to any one of [1] to [7] on a support film,
[10] A laminate obtained by stacking one or more prepregs of the above [8], placing a metal foil on one or both sides thereof, and heating and pressing the laminate,
[11] A laminate obtained by stacking one or more films with resin of [9] above, placing a metal foil on one or both sides thereof, and heating and pressing,
About.
[12] A wiring board obtained by forming wiring on the laminated board of [10] or [11],
[13] A multilayer wiring board having at least one wiring board according to [12].

本発明によれば、樹脂成分の相溶性を十分に確保しつつ、高周波領域における良好な誘電特性をプリント配線板に付与することが可能なシアネートエステル系樹脂組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cyanate ester-type resin composition which can provide the favorable dielectric characteristic in a high frequency area | region to a printed wiring board can be provided, ensuring the compatibility of a resin component fully.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
[シアネートエステル系樹脂組成物]
本発明の実施形態に係るシアネートエステル系樹脂組成物は、(A)スチレン骨格を有する飽和型熱可塑性エラストマーと、(B)シアネートエステル化合物と、(C)単官能フェノールと、(D)エポキシ樹脂とを含み、前記(A)成分全体の質量に対するスチレンの質量比が10%〜70%である。
Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
[Cyanate ester resin composition]
The cyanate ester resin composition according to the embodiment of the present invention includes (A) a saturated thermoplastic elastomer having a styrene skeleton, (B) a cyanate ester compound, (C) a monofunctional phenol, and (D) an epoxy resin. The mass ratio of styrene to the mass of the entire component (A) is 10% to 70%.

(A)成分は、分子中にスチレン骨格を有する飽和型熱可塑性エラストマーであれば、特に限定されないが、高周波特性が良好になる観点から、スチレン−エチレン−ブチレン共重合体(SEBS)を含む飽和型熱可塑性エラストマーであることが好ましい。
スチレン−エチレン−ブチレン共重合体としては、スチレン−ブタジエン共重合体のブタジエンブロックの不飽和二重結合部分を水素添加する方法等により得られるものが好ましい。
すなわち、本実施形態における飽和型熱可塑性エラストマーとは、芳香族炭化水素部分(スチレンブロック)以外の脂肪族炭化水素部分が飽和結合基からなるものをいう。また、(A)成分は、側鎖又は末端に無水マレイン酸基を有する化学変性飽和型熱可塑性エラストマーを含有していてもよい。
The component (A) is not particularly limited as long as it is a saturated thermoplastic elastomer having a styrene skeleton in the molecule, but from the viewpoint of improving the high-frequency characteristics, it is saturated containing a styrene-ethylene-butylene copolymer (SEBS). The mold type thermoplastic elastomer is preferred.
As the styrene-ethylene-butylene copolymer, those obtained by a method of hydrogenating the unsaturated double bond portion of the butadiene block of the styrene-butadiene copolymer are preferable.
That is, the saturated thermoplastic elastomer in the present embodiment refers to those in which an aliphatic hydrocarbon portion other than the aromatic hydrocarbon portion (styrene block) is composed of a saturated bonding group. The component (A) may contain a chemically modified saturated thermoplastic elastomer having a maleic anhydride group at the side chain or terminal.

(A)成分は、数平均分子量40,000〜70,000の飽和型熱可塑性エラストマーを含有することが好ましい。(A)成分の飽和型熱可塑性エラストマーの数平均分子量が40,000以上であれば、エラストマーとして伸びや分子間の相互作用が強くなることでTgなどの熱物性や高周波特性が向上し,70,000以下であれば、分子間の相互作用の関係から相溶性や成形性が良好になる。なお、本発明における重量平均分子量は、溶離液としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。
飽和型熱可塑性エラストマーの数平均分子量は、45,000〜65,000がより好ましく,50,000〜60,000がさらに好ましい。
(A)成分は、数平均分子量が40,000以上60,000以下の飽和型熱可塑性エラストマーと60,000より大きく70,000以下の飽和型熱可塑性エラストマーを含有することが好ましい。数平均分子量が40,000以上60,000以下の飽和型熱可塑性エラストマーは、(B)成分、(C)成分及び(D)成分との相溶性が良好であり、数平均分子量が60,000より大きく70,000以下の飽和型熱可塑性エラストマーは、耐熱性や高周波特性が良好だが相溶性が低下する。数平均分子量が40,000以上60,000以下の飽和型熱可塑性エラストマーと60,000より大きく70,000以下の飽和型熱可塑性エラストマーとを混合することで、相溶性と熱物性や高周波特性が良好な樹脂組成物が得られる。
The component (A) preferably contains a saturated thermoplastic elastomer having a number average molecular weight of 40,000 to 70,000. If the number average molecular weight of the saturated thermoplastic elastomer of component (A) is 40,000 or more, the thermophysical properties such as Tg and high-frequency characteristics are improved by increasing the elongation and interaction between molecules as an elastomer. If it is 1,000 or less, the compatibility and moldability will be good due to the interaction between molecules. In addition, the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion) using tetrahydrofuran as an eluent.
The number average molecular weight of the saturated thermoplastic elastomer is more preferably from 45,000 to 65,000, further preferably from 50,000 to 60,000.
The component (A) preferably contains a saturated thermoplastic elastomer having a number average molecular weight of 40,000 or more and 60,000 or less and a saturated thermoplastic elastomer greater than 60,000 and 70,000 or less. The saturated thermoplastic elastomer having a number average molecular weight of 40,000 or more and 60,000 or less has good compatibility with the component (B), the component (C) and the component (D), and the number average molecular weight is 60,000. Larger saturated thermoplastic elastomers of 70,000 or less have good heat resistance and high-frequency characteristics but have poor compatibility. By mixing a saturated thermoplastic elastomer having a number average molecular weight of 40,000 or more and 60,000 or less with a saturated thermoplastic elastomer having a number average molecular weight of more than 60,000 but not more than 70,000, compatibility, thermophysical properties and high-frequency characteristics are improved. A good resin composition is obtained.

ここで、飽和型熱可塑性エラストマーとしては、非変性のSEBS(旭化成ケミカルズ社製、タフテックH1041、H1051、H1043、H1053等)等が挙げられる。一方、化学変性飽和型熱可塑性エラストマーとしては、無水マレイン酸で変性されたSEBS(旭化成ケミカルズ社製、タフテックM1911、M1913、M1943等)が挙げられる。   Here, examples of the saturated thermoplastic elastomer include non-modified SEBS (manufactured by Asahi Kasei Chemicals Corporation, Tuftec H1041, H1051, H1043, H1053, and the like). On the other hand, SEBS (manufactured by Asahi Kasei Chemicals Corporation, Tuftec M1911, M1913, M1943, etc.) modified with maleic anhydride can be used as the chemically modified saturated thermoplastic elastomer.

(B)成分としては、一般式(1)で示されるシアネートエステル化合物が挙げられる。   (B) As a component, the cyanate ester compound shown by General formula (1) is mentioned.

Figure 2014101399
(式中、R1は、下記式で表されるものである。R2及びR3は、互いに同一でも異なっていてもよく、水素またはメチル基を表す)
Figure 2014101399
(In the formula, R 1 is represented by the following formula. R 2 and R 3 may be the same as or different from each other and represent hydrogen or a methyl group)

Figure 2014101399
Figure 2014101399

また、シアネートエステル化合物に後述する(C)成分を併用したもの、または、予め(C)成分で変性されたフェノール変性シアネートエステル化合物を用いることもできる。これにより更に効果的に誘電特性、耐湿性、耐熱性の向上を図ることができる。   Moreover, what used together the (C) component mentioned later to a cyanate ester compound, or the phenol modified cyanate ester compound previously modified | denatured by (C) component can also be used. As a result, the dielectric properties, moisture resistance, and heat resistance can be improved more effectively.

(B)成分の具体例としては、分子内にシアナト基を2つ以上有するシアネートエステル化合物であれば、特に限定されるものではない。例えば、2,2−ビス(4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エタン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン,フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物、フェノールノボラック型シアネートエステル化合物及びクレゾールノボラック型シアネートエステル化合物等が挙げられる。これらは一種類単独で用いてもよく、又は二種類以上を混合して用いてもよい。   Specific examples of the component (B) are not particularly limited as long as they are cyanate ester compounds having two or more cyanato groups in the molecule. For example, 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2-bis (4- Cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α′-bis (4-cyanatophenyl) -m-diisopropylbenzene, cyanate ester of phenol-added dicyclopentadiene polymer Examples include compounds, phenol novolac type cyanate ester compounds, and cresol novolac type cyanate ester compounds. These may be used alone or in combination of two or more.

(B)成分として、シアネートエステル化合物を用いる場合、シアネートエステル化合物の硬化剤や硬化促進剤が含まれていてもよく、例えば、単官能フェノール化合物、多官能フェノール化合物、アミン化合物、酸無水物及びマンガン,鉄,コバルト,ニッケル,銅,亜鉛等の2−エチルヘキサン酸塩、ナフテン酸塩、アセチルアセトン錯体などの有機金属化合物等が挙げられる。また高周波特性、耐湿性、耐熱性等を考慮すると単官能フェノール化合物及び有機金属化合物を併用することがより好ましい。   When a cyanate ester compound is used as the component (B), a curing agent or a curing accelerator for the cyanate ester compound may be included. For example, a monofunctional phenol compound, a polyfunctional phenol compound, an amine compound, an acid anhydride, and Organic metal compounds such as 2-ethylhexanoate such as manganese, iron, cobalt, nickel, copper, and zinc, naphthenate, and acetylacetone complex. In consideration of high-frequency characteristics, moisture resistance, heat resistance, etc., it is more preferable to use a monofunctional phenol compound and an organometallic compound in combination.

(C)成分としては、例えば、一般式(2)で示されるフェノール化合物が挙げられる。 (C) As a component, the phenol compound shown by General formula (2) is mentioned, for example.

Figure 2014101399
(式中、R4及びR5は、互いに同一でも異なっていてもよく、水素原子または炭素数1〜4の低級アルキル基を表し、nは、1または2である)
Figure 2014101399
(Wherein R 4 and R 5 may be the same as or different from each other, and represent a hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, and n is 1 or 2)

(C)成分の具体例としては、p−t−オクチルフェノール、p−フェニルフェノール、p−(α−クミル)フェノールが好適に用いられ、単官能フェノール化合物の配合量は、シアネートエステル化合物のシアナト基に対するフェノール化合物の水酸基の当量比で0.01〜1.00の範囲が誘電特性、耐湿性、耐熱性の観点から好ましい。   As specific examples of the component (C), pt-octylphenol, p-phenylphenol, and p- (α-cumyl) phenol are preferably used, and the compounding amount of the monofunctional phenol compound is the cyanate group of the cyanate ester compound. The equivalent ratio of the hydroxyl group of the phenol compound to 0.01 to 1.00 is preferable from the viewpoints of dielectric properties, moisture resistance, and heat resistance.

また、シアネートエステル化合物と単官能フェノール化合物を用いる際、シアネートエステル化合物と単官能フェノール化合物を反応させて予めプレポリマー化して用いることが未硬化(Bステージ)フィルムの外観や取り扱い性及び硬化フィルムの硬化性の観点から好ましい。配合する単官能フェノール化合物は、プレポリマー化時に規定量の全てが配合されてもよく、規定量がプレポリマー化の前後に分けて配合されてもよいが、ワニスの保存安定性の観点から、分けて配合される方が好ましい。ここで、プレポリマーとは、ゲル化する前に反応停止させたものであり、ゲル化しない程度に反応させたものである。   Moreover, when using a cyanate ester compound and a monofunctional phenol compound, it is possible to react the cyanate ester compound and the monofunctional phenol compound in advance to prepolymerize and use the appearance and handleability of the uncured (B stage) film and the cured film. It is preferable from the viewpoint of curability. The monofunctional phenol compound to be blended may be blended in all of the prescribed amount at the time of prepolymerization, or the prescribed amount may be blended separately before and after the prepolymerization, but from the viewpoint of storage stability of the varnish, It is preferable to mix them separately. Here, the prepolymer is a reaction that has been stopped before gelation, and is reacted to such an extent that it does not gel.

(D)エポキシ樹脂は、分子内に2つ以上のエポキシ基を有するものであればどのようなものでもよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフタレン骨格型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、フェノール類のジグリシジルエーテル化物、アルコール類のジグリシジルエーテル化物、及びこれらのアルキル置換体、ハロゲン化物などが挙げられ、これらは併用されてもよい。また、高周波特性を考慮するとナフタレン骨格型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂を用いることがより好ましい。さらにクレゾールノボラック型エポキシ樹脂がより好ましい。   (D) Any epoxy resin may be used as long as it has two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, fat Cyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, naphthalene skeleton type epoxy resin, bifunctional biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, Examples include dicyclopentadiene type epoxy resins, dihydroanthracene type epoxy resins, diglycidyl etherified products of phenols, diglycidyl etherified products of alcohols, and alkyl-substituted products and halides thereof. May be used in combination it is. In consideration of high frequency characteristics, it is more preferable to use a naphthalene skeleton type epoxy resin, a bifunctional biphenyl type epoxy resin, a biphenyl aralkyl type epoxy resin, or a dicyclopentadiene type epoxy resin. Furthermore, a cresol novolac type epoxy resin is more preferable.

また、エポキシ樹脂とともに、該エポキシ樹脂の硬化剤や硬化促進剤が含まれていてもよく、例えば、多官能フェノール化合物、アミン化合物、イミダゾール化合物、酸無水物、有機リン化合物及びこれらのハロゲン化物などが挙げられる。   In addition to the epoxy resin, a curing agent or curing accelerator for the epoxy resin may be contained. For example, a polyfunctional phenol compound, an amine compound, an imidazole compound, an acid anhydride, an organic phosphorus compound, and a halide thereof. Is mentioned.

また、本実施形態に係るシアネートエステル系樹脂組成物には、取り扱い性、誘電特性、耐熱性、導体及び他の樹脂材料との接着性、耐湿性、ガラス転移点(Tg)、熱膨張特性等を悪化させない範囲の配合量で、必要に応じて難燃剤や各種添加剤、無機充填材等を更に配合してもよい。各種添加剤としては、特に限定されないが、例えば、シランカップリング剤、チタネートカップリング剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤等が挙げられる。それぞれ、単独で用いてもよいし、二種類以上を併用してもよい。   In addition, the cyanate ester resin composition according to the present embodiment includes handling properties, dielectric properties, heat resistance, adhesion to conductors and other resin materials, moisture resistance, glass transition point (Tg), thermal expansion properties, and the like. If necessary, a flame retardant, various additives, an inorganic filler, and the like may be further blended in a blending amount within a range not deteriorating the amount. Although it does not specifically limit as various additives, For example, a silane coupling agent, a titanate coupling agent, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a coloring agent, a lubricant, etc. are mentioned. Each may be used alone or in combination of two or more.

難燃剤としては、特に限定されないが、臭素系、リン系、金属水酸化物等の難燃剤が好適に用いられる。より具体的には、臭素系難燃剤としては、臭素化ビスフェノールA型エポキシ樹脂及び臭素化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂、ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2−ジブロモ−4−(1,2−ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン及び2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン等の臭素化添加型難燃剤、トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート及び臭素化スチレン等の不飽和二重結合基含有の臭素化反応型難燃剤等が挙げられる。   Although it does not specifically limit as a flame retardant, Flame retardants, such as a bromine type, a phosphorus type, and a metal hydroxide, are used suitably. More specifically, brominated flame retardants include brominated epoxy resins such as brominated bisphenol A type epoxy resin and brominated phenol novolac type epoxy resin, hexabromobenzene, pentabromotoluene, ethylenebis (pentabromophenyl). , Ethylenebistetrabromophthalimide, 1,2-dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, hexabromocyclododecane, bis (tribromophenoxy) ethane, brominated polyphenylene ether, brominated Brominated flame retardants such as polystyrene and 2,4,6-tris (tribromophenoxy) -1,3,5-triazine, tribromophenyl maleimide, tribromophenyl acrylate, tribromophenyl methacrylate, tetrabromide Bisphenol A dimethacrylate, brominated reactive flame retardant unsaturated double bond-containing, such as pentabromobenzyl acrylate and brominated styrene.

リン系難燃剤としては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ−2,6−キシレニルホスフェート及びレゾルシノールビス(ジフェニルホスフェート)等の芳香族系リン酸エステル、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル及びフェニルホスホン酸ビス(1−ブテニル)等のホスホン酸エステル、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体等のホスフィン酸エステル、ビス(2−アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン含有ビニルベンジル化合物及び赤リン等のリン系難燃剤を例示でき、金属水酸化物難燃剤としては水酸化マグネシウムや水酸化アルミニウム等が例示される。また、上述の難燃剤は一種類を単独で用いてもよく、二種類以上を組み合わせて用いてもよい。   Phosphorus flame retardants include aromatic phosphoric acids such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate and resorcinol bis (diphenyl phosphate) Esters, phosphonic esters such as divinyl phenylphosphonate, diallyl phenylphosphonate and bis (1-butenyl) phenylphosphonate, phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phos Phosphinic acid esters such as faphenanthrene-10-oxide derivatives, phosphazene compounds such as bis (2-allylphenoxy) phosphazene, dicresyl phosphazene, melamine phosphate, melamine pyrophosphate, Phosphorus flame retardants such as melamine phosphate, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds and red phosphorus can be exemplified, and examples of metal hydroxide flame retardants include magnesium hydroxide and aluminum hydroxide. . Moreover, the above-mentioned flame retardant may be used individually by 1 type, and may be used in combination of 2 or more types.

難燃剤の配合割合は、特に限定されないが、(A)成分及び(B)成分の合計量100質量部に対して、10〜200質量部とすることが好ましく、15〜150質量部とすることがより好ましく、20〜100質量部とすることが更に好ましい。難燃剤の配合割合が10質量部未満では耐燃性が不十分となる傾向があり、200質量部を超えると耐熱性、接着性、フィルム形成能、成形性が低下する傾向にある。   The blending ratio of the flame retardant is not particularly limited, but is preferably 10 to 200 parts by mass, and preferably 15 to 150 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B). Is more preferable, and it is still more preferable to set it as 20-100 mass parts. If the blending ratio of the flame retardant is less than 10 parts by mass, the flame resistance tends to be insufficient, and if it exceeds 200 parts by mass, the heat resistance, adhesiveness, film-forming ability, and moldability tend to decrease.

無機充填材は、以下に示す材料に特に限定されないが,予めアミノ系シランカップリング剤で表面処理された球状シリカが好ましい。すなわち、(A)成分及び(B)成分を含む樹脂中に球状シリカを配合した後、表面処理剤を樹脂組成物中に添加する、いわゆるインテグラルブレンド処理方式ではなく、直接、球状シリカに乾式又は湿式で表面処理した後、配合時にそのまままたはスラリー化して用いる方法が好ましい。   The inorganic filler is not particularly limited to the following materials, but spherical silica that has been surface-treated with an amino-based silane coupling agent in advance is preferable. That is, after blending the spherical silica in the resin containing the component (A) and the component (B), the surface treatment agent is added to the resin composition. Alternatively, a method in which the surface treatment is performed in a wet manner and then used as it is or in a slurry state at the time of blending is preferable.

シリカの表面処理剤であるアミノ系シランカップリング剤としては、特に限定されるものではなく、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミンとその部分加水分解物、3−トリメトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミンとその部分加水分解物、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩等が挙げられる。その中でも、(A)成分及び(B)成分を含む樹脂中へシリカの分散性や樹脂との反応性、接着性の観点から、式(3)で表されるN−フェニル−3−アミノプロピルトリメトキシシランが特に好適に用いられる。先述した無機充填材の処理方法及びこれらのアミノ系シランカップリング剤を用いることによって、シリカの凝集等の欠陥を抑制できるだけでなく、樹脂の硬化性を向上しつつ、シリカと樹脂との反応性及び接着性を向上でき、高周波特性や熱膨張特性等の向上及び高耐熱性を図りつつ、プリント配線板製造工程で使用される各種酸性並びに塩基性の水溶液に対する高い耐薬液汚染性を発揮できる。   The amino-based silane coupling agent that is a surface treatment agent for silica is not particularly limited, and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl)- 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine and its partial hydrolyzate, 3-trimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine and its partial hydrolyzate, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, etc. Can be mentioned. Among them, N-phenyl-3-aminopropyl represented by the formula (3) from the viewpoint of dispersibility of silica in the resin containing the component (A) and the component (B), reactivity with the resin, and adhesiveness Trimethoxysilane is particularly preferably used. By using the above-mentioned inorganic filler treatment method and these amino-based silane coupling agents, it is possible not only to suppress defects such as silica agglomeration, but also to improve the resin curability and the reactivity between silica and resin. In addition, the adhesiveness can be improved, and high chemical resistance against various acidic and basic aqueous solutions used in the printed wiring board manufacturing process can be exhibited while improving high-frequency characteristics and thermal expansion characteristics and high heat resistance.

Figure 2014101399
Figure 2014101399

球状シリカの平均粒子径は、0.01〜30μmであることが好ましく、この範囲内であれば得られる樹脂フィルムは良好な成形性(内層回路充填性)を備える。また、球状シリカの平均粒子径は0.1〜10μmであることが特に好ましく、0.3〜7μmであることが更に好ましい。   The average particle diameter of the spherical silica is preferably from 0.01 to 30 μm, and the resin film obtained within this range has good moldability (inner layer circuit fillability). Moreover, it is especially preferable that the average particle diameter of spherical silica is 0.1-10 micrometers, and it is still more preferable that it is 0.3-7 micrometers.

本実施形態において、無機充填材の配合割合は、(A)成分と(B)成分との合計量100質量部に対して、10〜1000質量部であることが好ましく、この範囲内であれば得られる樹脂フィルムは良好な成形性(内層回路充填性)、取り扱い性、低熱膨張性、耐熱性、導体やコア基板との接着性等を備える。   In this embodiment, it is preferable that the mixture ratio of an inorganic filler is 10-1000 mass parts with respect to 100 mass parts of total amounts of (A) component and (B) component, and if it exists in this range The resulting resin film has good moldability (inner layer circuit fillability), handleability, low thermal expansion, heat resistance, adhesion to conductors and core substrates, and the like.

また、無機充填材としての、アミノ系シランカップリング剤量は特に制限されるものではないが、配合される球状シリカの質量に対して0.1〜5質量%で表面処理されること好ましく、この範囲であれば、耐熱性等を損なうことなく、上記の無機充填材による特長を効果的に発揮できる。   Further, the amount of the amino-based silane coupling agent as the inorganic filler is not particularly limited, but it is preferable that the surface treatment is performed at 0.1 to 5% by mass with respect to the mass of the spherical silica to be blended, If it is this range, the characteristic by said inorganic filler can be exhibited effectively, without impairing heat resistance.

本実施形態に係るシアネートエステル系樹脂組成物を調製する際、(A)成分、(B)成分、(C)成分及び(D)成分の混合方法は、特に限定されない。上記成分に加えて硬化剤、硬化促進剤、架橋剤、難燃剤,無機充填材及び各種添加剤を混合する場合の方法も特に限定されない。有機溶媒を加えて公知の方法で攪拌し、溶解、分散させた樹脂ワニスの形態で用いることが好ましい。この場合に用いられる溶媒としては、特に限定するものではないが、具体例としては、メタノール、エタノール、ブタノール等のアルコール類、エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、カルビトール、ブチルカルビトール等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、メシチレン等の芳香族炭化水素類、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンの含窒素類等の溶媒が挙げられる。(A)成分の良溶媒であるトルエン、キシレン、メシチレン等の芳香族炭化水素類又は芳香族炭化水素類とアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類との混合溶媒がフィルムとした時の外観が良好となるため望ましい。また、これらは一種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   When preparing the cyanate ester-type resin composition which concerns on this embodiment, the mixing method of (A) component, (B) component, (C) component, and (D) component is not specifically limited. In addition to the above components, the method for mixing the curing agent, curing accelerator, crosslinking agent, flame retardant, inorganic filler and various additives is not particularly limited. It is preferable to use in the form of a resin varnish which is added with an organic solvent and stirred, dissolved and dispersed by a known method. The solvent used in this case is not particularly limited, but specific examples include alcohols such as methanol, ethanol and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, carbitol, butyl carbitol and the like. Ethers, acetone, methyl ethyl ketone, methyl isobutyl ketone, ketones such as cyclohexanone, aromatic hydrocarbons such as toluene, xylene, mesitylene, esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate, N , N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone-containing solvents and the like. (A) When a mixed solvent of aromatic hydrocarbons such as toluene, xylene and mesitylene or aromatic hydrocarbons and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, which is a good solvent of component (A), is used as a film This is desirable because of its good appearance. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.

上述した本実施形態に係るシアネートエステル系樹脂組成物を用いて、公知の方法により、本発明に係るプリプレグ、樹脂付フィルム、金属箔が配置された積層板を製造することができる。
例えば、シアネートエステル系樹脂組成物を、ガラス繊維、有機繊維等の強化繊維からなる基材に含浸させた後、乾燥炉中等で乾燥させることによってプリプレグが得られる。また、本発明に係る樹脂組成物を、支持フィルム上に配置した後、乾燥させることによって、樹脂付フィルムが得られる。
このプリプレグを1枚又は複数枚重ねた、その片面又は両面に金属箔を配置し、所定の条件で加熱及び/又は加圧することにより両面又は片面の金属張積層板が得られる。同様にして、樹脂付フィルムから金属張積層板が得られる。上述のようにして製造されたプリプレグや金属張積層板を用いて、公知の方法によって、穴開け加工、金属めっき加工、金属箔をエッチングなどによる回路形成加工及び多層化接着加工を行うことによって、多層プリント配線板が得られる。
By using the cyanate ester-based resin composition according to this embodiment described above, a laminate in which the prepreg, the resin film, and the metal foil according to the present invention are arranged can be manufactured by a known method.
For example, a prepreg can be obtained by impregnating a cyanate ester resin composition into a substrate made of reinforcing fibers such as glass fibers and organic fibers, and then drying in a drying furnace or the like. Moreover, after arrange | positioning the resin composition which concerns on this invention on a support film, a film with resin is obtained by making it dry.
One or a plurality of the prepregs are stacked, a metal foil is disposed on one side or both sides thereof, and heated and / or pressurized under predetermined conditions to obtain a double-sided or single-sided metal-clad laminate. Similarly, a metal-clad laminate is obtained from the resin-coated film. By using the prepreg and metal-clad laminate produced as described above, by performing a hole forming process, a metal plating process, a circuit forming process such as etching a metal foil, and a multi-layer bonding process by a known method, A multilayer printed wiring board is obtained.

本発明は、上記の形態に限定されず、その発明の目的から逸脱しない範囲内において、任意の変更、改変を行うことができる。   The present invention is not limited to the above-described embodiment, and can be arbitrarily changed and modified within a range not departing from the object of the invention.

次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
[樹脂ワニスの調製]
下記手順及び表1又は表2の配合量に従って、樹脂ワニスを調製した。
<調製例1>
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容のセパラブルフラスコに、トルエンと、メチルイソブチルケトンと、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1041、スチレン含有比率:30%、Mn:58,000、旭化成ケミカルズ社製)とを投入し、フラスコ内の温度を80℃に設定して撹拌溶解した。次いで、(B)成分として、2,2−ビス(4−シアナトフェニル)プロパン(BADCY,ロンザジャパン株式会社製)、(D)成分としてナフタレンクレゾールノボラック型エポキシ樹脂(NC−7000、DIC製)及び(C)成分としてp−(α−クミル)フェノール(東京化成工業製)を配合して溶解確認後、フラスコを室温まで冷却した。その後、無機充填材として、N−フェニル−3−アミノプロピルトリメトキシシラン(KBM−573、信越化学工業社製)を処理量1質量%で予め表面処理した球形シリカ(SC2050−KNK、平均粒径:0.5μm、アドマテックス社製)のスラリー(分散媒:メチルイソブチルケトン、固形分:70質量%、ナノマイザー分散機による強制分散処理実施)を配合し、硬化促進剤として2−エチル−4−メチルイミダゾール(2E4MZ、四国化成製)を添加後、メチルエチルケトンを配合・攪拌して固形分濃度約45質量%の樹脂ワニスを調製した。
Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
[Preparation of resin varnish]
A resin varnish was prepared according to the following procedure and the blending amount of Table 1 or Table 2.
<Preparation Example 1>
Into a 1 liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator and stirrer, toluene, methyl isobutyl ketone, and hydrogenated styrene-butadiene copolymer (Tuftec) as component (A) H1041, styrene content ratio: 30%, Mn: 58,000, manufactured by Asahi Kasei Chemicals Co., Ltd.), and the temperature in the flask was set to 80 ° C. and dissolved by stirring. Next, 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza Japan Co., Ltd.) as the component (B), naphthalene cresol novolak type epoxy resin (NC-7000, manufactured by DIC) as the component (D) And p-((alpha) -cumyl) phenol (made by Tokyo Chemical Industry) was mix | blended as (C) component, and the dissolution was confirmed, and the flask was cooled to room temperature. Thereafter, as an inorganic filler, spherical silica (SC2050-KNK, average particle diameter) pretreated by surface treatment with N-phenyl-3-aminopropyltrimethoxysilane (KBM-573, manufactured by Shin-Etsu Chemical Co., Ltd.) at a treatment amount of 1% by mass. : 0.5 μm, manufactured by Admatechs) (dispersion medium: methyl isobutyl ketone, solid content: 70% by mass, forced dispersion treatment performed by a nanomizer disperser) was blended, and 2-ethyl-4- was used as a curing accelerator. After adding methylimidazole (2E4MZ, manufactured by Shikoku Chemicals), methyl ethyl ketone was blended and stirred to prepare a resin varnish having a solid content concentration of about 45% by mass.

<調製例2>
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容のセパラブルフラスコにトルエン、(B)成分として、2,2−ビス(4−シアナトフェニル)プロパン(BADCY,ロンザジャパン株式会社製)、(C)成分としてp−(α−クミル)フェノール(東京化成工業製)を投入し、溶解確認後に液温を110℃に保った後で反応促進剤としてナフテン酸マンガン(和光純薬工業製)を配合し,約3時間加熱反応させてフェノール変性シアネートプレポリマー溶液を得た。次いで反応液を冷却し,内温が80℃になったら、(D)成分として、ナフタレンクレゾールノボラック型エポキシ樹脂(NC−7000、DIC製)、(A)成分としてスチレン−ブタジエン共重合体の水素添加物(タフテックH1041、スチレン含有比率:30%、Mn:58,000、旭化成ケミカルズ社製)、トルエン及びメチルエチルケトンを配合し溶解を確認後にフラスコを室温まで冷却した。その後、無機充填材として、N−フェニル−3−アミノプロピルトリメトキシシラン(KBM−573、信越化学工業社製)を処理量1質量%で予め表面処理した球形シリカ(SC2050−KNK、平均粒径:0.5μm、アドマテックス社製)のスラリー(分散媒:メチルイソブチルケトン、固形分:70質量%、ナノマイザー分散機による強制分散処理実施)を配合し、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)を配合して固形分濃度約45質量%の樹脂ワニスを調製した。
<Preparation Example 2>
Into a 1-liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator, and stirrer, toluene, (B) component, 2,2-bis (4-cyanatophenyl) propane (BADCY, Lonza Japan) Co., Ltd.), p- (α-cumyl) phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as component (C), and after confirming dissolution, the liquid temperature was kept at 110 ° C. and then manganese naphthenate (Japanese Koganei Pharmaceutical Co., Ltd.) was blended and heated for about 3 hours to obtain a phenol-modified cyanate prepolymer solution. Next, the reaction solution was cooled, and when the internal temperature reached 80 ° C., naphthalene cresol novolac type epoxy resin (NC-7000, manufactured by DIC) was used as component (D), and hydrogen of styrene-butadiene copolymer was used as component (A). Additives (Tuftec H1041, styrene content ratio: 30%, Mn: 58,000, manufactured by Asahi Kasei Chemicals Co., Ltd.), toluene and methyl ethyl ketone were mixed, and after confirming dissolution, the flask was cooled to room temperature. Thereafter, as an inorganic filler, spherical silica (SC2050-KNK, average particle diameter) pretreated by surface treatment with N-phenyl-3-aminopropyltrimethoxysilane (KBM-573, manufactured by Shin-Etsu Chemical Co., Ltd.) at a treatment amount of 1% by mass. : 0.5 μm, manufactured by Admatechs) slurry (dispersion medium: methyl isobutyl ketone, solid content: 70% by mass, forced dispersion treatment with nanomizer disperser), blended with zinc naphthenate (Wako Pure) A resin varnish having a solid content concentration of about 45% by mass was prepared by blending with Yakuhin Kogyo Co., Ltd.

<調製例3>
調製例2において、(A)成分のタフテックH1041を、数平均分子量が5万以下のスチレン−ブタジエン共重合体の水素添加物(タフテックH1043、スチレン含有比率:67%、Mn:47,000、旭化成ケミカルズ社製)に置き換えた以外は調製例2と同様にして樹脂ワニスを調製した。
<Preparation Example 3>
In Preparation Example 2, component (A) Tuftec H1041 was replaced with a hydrogenated styrene-butadiene copolymer having a number average molecular weight of 50,000 or less (Tuftec H1043, styrene content ratio: 67%, Mn: 47,000, Asahi Kasei. A resin varnish was prepared in the same manner as in Preparation Example 2 except that the chemical varnish was used.

<調製例4>
調製例3において、(A)成分のタフテックH1043を、数平均分子量が6万以上のスチレン−ブタジエン共重合体の水素添加物(タフテックH1051、スチレン含有比率:42%、Mn:66,000、旭化成ケミカルズ社製)に置き換えた以外は調製例2と同様にして樹脂ワニスを調製した。
<Preparation Example 4>
In Preparation Example 3, component (A) Tuftec H1043 was replaced with a hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or more (Tuftec H1051, styrene content ratio: 42%, Mn: 66,000, Asahi Kasei. A resin varnish was prepared in the same manner as in Preparation Example 2 except that the chemical varnish was used.

<調製例5>
調製例4において、(A)成分のタフテックH1051を、数平均分子量が6万以上のスチレン−ブタジエン共重合体の水素添加物(タフテックH1052、スチレン含有比率:20%、Mn:66,000、旭化成ケミカルズ社製)に置き換えた以外は調製例4と同様にして樹脂ワニスを調製した。
<Preparation Example 5>
In Preparation Example 4, (A) component Tuftec H1051 was replaced with a hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or more (Tuftec H1052, styrene content ratio: 20%, Mn: 66,000, Asahi Kasei. A resin varnish was prepared in the same manner as in Preparation Example 4 except that the chemical varnish was replaced.

<調製例6>
調製例5において、(A)成分のタフテックH1052を、数平均分子量が6万以上のスチレン−ブタジエン共重合体の水素添加物(タフテックH1053、スチレン含有比率:30%、Mn:66,000、旭化成ケミカルズ社製)に置き換えた以外は調製例5と同様にして樹脂ワニスを調製した。
<Preparation Example 6>
In Preparation Example 5, component (A) Tuftec H1052 was replaced with a hydrogenated styrene-butadiene copolymer having a number average molecular weight of 60,000 or more (Tuftec H1053, styrene content ratio: 30%, Mn: 66,000, Asahi Kasei. A resin varnish was prepared in the same manner as in Preparation Example 5 except that it was replaced with Chemicals).

<調製例7>
調製例6において、(A)成分のタフテックH1053の一部を、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1913、スチレン含有比率:30%、Mn:63,000、マレイミド変性量10mgCH3ONa/g,旭化成ケミカルズ社製)に置き換えて表1に示す配合量で配合したこと以外は調製例6と同様にして樹脂ワニスを調製した。
<Preparation Example 7>
In Preparation Example 6, a part of (A) component Tuftec H1053 was added to a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1913, styrene content ratio: 30%, Mn: 63,000, maleimide modification amount. A resin varnish was prepared in the same manner as in Preparation Example 6 except that it was replaced with 10 mg CH 3 ONa / g (manufactured by Asahi Kasei Chemicals Corporation) and blended in the blending amounts shown in Table 1.

<調製例8>
調製例7において、(A)成分のタフテックM1913の一部を、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1911、スチレン含有比率:30%、Mn:63,000、マレイミド変性量2mgCH3ONa/g,旭化成ケミカルズ社製)に置き換えて表1に示す配合量で配合したこと以外は調製例7と同様にして樹脂ワニスを調製した。
<Preparation Example 8>
In Preparation Example 7, a part of (A) component Tuftec M1913 was added to a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1911, styrene content ratio: 30%, Mn: 63,000, maleimide modification amount. A resin varnish was prepared in the same manner as in Preparation Example 7 except that the amount was changed to 2 mg CH 3 ONa / g (manufactured by Asahi Kasei Chemicals Corporation) and blended in the blending amounts shown in Table 1.

<調製例9>
調製例8において、(A)成分のタフテックM1911の一部を、マレイン酸変性スチレン−ブタジエン共重合体の水素添加物(タフテックM1943、スチレン含有比率:20%、Mn:63,000、マレイミド変性量10mgCH3ONa/g,旭化成ケミカルズ社製)に置き換えて表1に示す配合量で配合したこと以外は調製例8と同様にして樹脂ワニスを調製した。
<Preparation Example 9>
In Preparation Example 8, a part of (A) component Tuftec M1911 was mixed with a hydrogenated maleic acid-modified styrene-butadiene copolymer (Tuftec M1943, styrene content ratio: 20%, Mn: 63,000, maleimide modified amount. A resin varnish was prepared in the same manner as in Preparation Example 8 except that it was replaced with 10 mg CH 3 ONa / g (manufactured by Asahi Kasei Chemicals Corporation) and blended in the blending amounts shown in Table 1.

<調製例10>
調製例1において、希釈溶媒をトルエンのみにして、用いた材料を表1に示す配合量で配合したこと以外は調製例5と同様にして樹脂ワニスを調製した。
<Preparation Example 10>
In Preparation Example 1, a resin varnish was prepared in the same manner as in Preparation Example 5 except that the diluent solvent was only toluene and the materials used were blended in the blending amounts shown in Table 1.

<調製例11>
(フェノール変性シアネートプレポリマーの作製)
温度計、還流冷却器、減圧濃縮装置及び撹拌装置を備えた1リットル容のセパラブルフラスコにトルエン、(B)成分として、2,2−ビス(4−シアナトフェニル)プロパン(BADCY,ロンザジャパン株式会社製)、(C)成分としてp−(α−クミル)フェノール(東京化成工業製)を投入し、溶解確認後に液温を110℃に保った後で反応促進剤としてナフテン酸マンガン(和光純薬工業製)を配合し,約3時間加熱反応させた後、反応液を冷却しフェノール変性シアネートプレポリマー溶液を得た。
<Preparation Example 11>
(Production of phenol-modified cyanate prepolymer)
Into a 1-liter separable flask equipped with a thermometer, reflux condenser, vacuum concentrator, and stirrer, toluene, (B) component, 2,2-bis (4-cyanatophenyl) propane (BADCY, Lonza Japan) Co., Ltd.), p- (α-cumyl) phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as component (C), and after confirming dissolution, the liquid temperature was kept at 110 ° C. and then manganese naphthenate (Japanese Kogure Pharmaceutical Co., Ltd.) was blended and reacted by heating for about 3 hours, and then the reaction solution was cooled to obtain a phenol-modified cyanate prepolymer solution.

(樹脂ワニスの調製)
1リットルのポリビンに、無機充填材として、N−フェニル−3−アミノプロピルトリメトキシシラン(KBM−573、信越化学工業社製)を処理量1質量%で予め表面処理した球形シリカ(SC2050−KNK、平均粒径:0.5μm、アドマテックス社製)のスラリー(分散媒:メチルイソブチルケトン、固形分:70質量%、ナノマイザー分散機による強制分散処理実施)を投入し、次いで、(A)成分として予めトルエンに溶解させたスチレン−ブタジエン共重合体の水素添加物(タフテックH1041、スチレン含有比率:30%、Mn:58,000、旭化成ケミカルズ社製、固形分:23質量%)を配合した。次に、この溶液に上記で作製したフェノール変性シアネートプレポリマー溶液及び(D)成分として、ナフタレンクレゾールノボラック型エポキシ樹脂(NC−7000、DIC製)を配合・攪拌後、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)、メチルエチルケトンを配合して固形分濃度約45質量%の樹脂ワニスを調製した。
(Preparation of resin varnish)
Spherical silica (SC2050-KNK) obtained by surface-treating N-phenyl-3-aminopropyltrimethoxysilane (KBM-573, manufactured by Shin-Etsu Chemical Co., Ltd.) in an amount of 1% by mass in 1 liter of polybin as an inorganic filler. The slurry (dispersion medium: methyl isobutyl ketone, solid content: 70% by mass, forcible dispersion treatment with a nanomizer disperser) was added, and then the component (A) A hydrogenated product of styrene-butadiene copolymer previously dissolved in toluene (Tuftec H1041, styrene content ratio: 30%, Mn: 58,000, manufactured by Asahi Kasei Chemicals Corporation, solid content: 23% by mass) was blended. Next, the phenol-modified cyanate prepolymer solution prepared above and a naphthalene cresol novolak type epoxy resin (NC-7000, manufactured by DIC) as a component (D) are mixed and stirred in this solution, and zinc naphthenate is used as a curing accelerator. (Wako Pure Chemical Industries, Ltd.) and methyl ethyl ketone were blended to prepare a resin varnish having a solid concentration of about 45% by mass.

<比較調製例1>
温度計、還流冷却器、撹拌装置を備えた1リットルのセパラブルフラスコに、トルエン、ポリフェニレンエーテル樹脂(S202A、旭化成ケミカルズ社製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、トリアリルイソシアヌレート(TAIC、日本化成社製)を配合し、溶解又は均一分散したことを確認後、室温まで冷却した。次いで、撹拌しながら室温まで冷却後、無機充填材として、N−フェニル−3−アミノプロピルトリメトキシシラン(KBM−573、信越化学工業社製)を処理量1質量%で予め表面処理した球形シリカ(SC2050−KNK、平均粒径:0.5μm、アドマテックス社製)のスラリー(分散媒:メチルイソブチルケトン、固形分:70質量%、ナノマイザー分散機による強制分散処理実施)硬化促進剤として1,1’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日本油脂社製)を添加した後、メチルエチルケトンを配合して樹脂ワニス(固形分濃度約45質量%)を調製した。
<Comparative Preparation Example 1>
Toluene and polyphenylene ether resin (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) are charged into a 1-liter separable flask equipped with a thermometer, a reflux condenser, and a stirring device, and the temperature in the flask is set to 90 ° C. And dissolved with stirring. Subsequently, triallyl isocyanurate (TAIC, manufactured by Nippon Kasei Co., Ltd.) was blended, and after confirming that it was dissolved or uniformly dispersed, it was cooled to room temperature. Next, after cooling to room temperature with stirring, spherical silica in which N-phenyl-3-aminopropyltrimethoxysilane (KBM-573, manufactured by Shin-Etsu Chemical Co., Ltd.) is surface-treated in advance at a treatment amount of 1% by mass as an inorganic filler. (SC2050-KNK, average particle size: 0.5 μm, manufactured by Admatechs) slurry (dispersion medium: methyl isobutyl ketone, solid content: 70 mass%, forced dispersion treatment performed by nanomizer disperser) 1, 1 as a curing accelerator After adding 1′-bis (t-butylperoxy) diisopropylbenzene (Perbutyl P, manufactured by NOF Corporation), methyl ethyl ketone was blended to prepare a resin varnish (solid content concentration of about 45% by mass).

<比較調製例2>
調製例1において、タフテックH1041の代わりにポリフェニレンエーテル樹脂(S202A)を用いたこと以外は、調製例1と同様にして樹脂ワニス(固形分濃度約45質量%)を調製した。
<Comparative Preparation Example 2>
In Preparation Example 1, a resin varnish (solid content concentration of about 45% by mass) was prepared in the same manner as Preparation Example 1 except that polyphenylene ether resin (S202A) was used instead of Tuftec H1041.

<比較調製例3>
調製例1において、KBM−573の代わりにSC6000を用いたこと以外は、調製例1と同様にして樹脂ワニス(固形分濃度約45質量%)を調製した。
<Comparative Preparation Example 3>
A resin varnish (solid content concentration of about 45% by mass) was prepared in the same manner as in Preparation Example 1 except that SC6000 was used instead of KBM-573 in Preparation Example 1.

<比較調製例4>
温度計、還流冷却器、撹拌装置を備えた1リットルのセパラブルフラスコに、トルエン、ポリフェニレンエーテル樹脂(S202A、旭化成ケミカルズ社製、Mn:16000)を投入し、フラスコ内の温度を90℃に設定して撹拌溶解した。次いで、2,2−ビス(4−シアナトフェニル)プロパン(BADCY,ロンザジャパン株式会社製)、p−tert−オクチルフェノール(和光純薬工業株式会社製)を投入、溶解後、ナフテン酸マンガン(和光純薬工業製)を配合して約3時間加熱反応させた。次いで、トルエン及びメチルエチルケトンを攪拌しながら配合した後、フラスコを室温まで冷却した後、3−グリシドキシプロピルトリメトキシ(KBM−403)、信越化学工業社製)を処理量1質量%で予め表面処理した球形シリカ(SO−25R、平均粒径:0.5μm、アドマテックス社製)のスラリー(分散媒:メチルイソブチルケトン、固形分:70質量%、ナノマイザー分散機による強制分散処理実施)を配合し、硬化促進剤としてナフテン酸亜鉛(和光純薬工業製)を配合して樹脂ワニス(固形分濃度=45質量%)を製造した。
<Comparative Preparation Example 4>
Toluene and polyphenylene ether resin (S202A, manufactured by Asahi Kasei Chemicals Co., Ltd., Mn: 16000) are charged into a 1-liter separable flask equipped with a thermometer, a reflux condenser, and a stirring device, and the temperature in the flask is set to 90 ° C. And dissolved with stirring. Subsequently, 2,2-bis (4-cyanatophenyl) propane (BADCY, manufactured by Lonza Japan Co., Ltd.) and p-tert-octylphenol (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved, and then manganese naphthenate (Japanese sum) Kogure Pharmaceutical Co., Ltd.) was blended and heated for about 3 hours. Subsequently, toluene and methyl ethyl ketone were mixed with stirring, the flask was cooled to room temperature, and then 3-glycidoxypropyltrimethoxy (KBM-403), manufactured by Shin-Etsu Chemical Co., Ltd.) was preliminarily surfaced at a treatment amount of 1% by mass. Blended slurry of treated spherical silica (SO-25R, average particle size: 0.5 μm, manufactured by Admatechs) (dispersion medium: methyl isobutyl ketone, solid content: 70% by mass, forced dispersion treatment with nanomizer disperser) And the resin varnish (solid content concentration = 45 mass%) was manufactured by mix | blending zinc naphthenate (made by Wako Pure Chemical Industries) as a hardening accelerator.

<比較調製例5>
比較調製例2において、エポキシ変性ポリブタジエン系エラストマー(ダイセル化学工業社製、PB―3600)を表1に示す配合量で追加配合したこと以外は、比較調製例5と同様にして樹脂ワニス(固形分濃度約45質量%)を調製した。
<Comparative Preparation Example 5>
In Comparative Preparation Example 2, a resin varnish (solid content) was obtained in the same manner as in Comparative Preparation Example 5 except that an epoxy-modified polybutadiene elastomer (manufactured by Daicel Chemical Industries, Ltd., PB-3600) was additionally added in the amount shown in Table 1. A concentration of about 45% by weight) was prepared.

<比較調製例6>
調製例2において、KBM−573の代わりに、ビニルトリメトキシシラン(KBM−1003)に変更したこと以外は調製例5と同様にして樹脂ワニス(固形分濃度約45質量%)を調製した。
<Comparative Preparation Example 6>
A resin varnish (solid content concentration of about 45% by mass) was prepared in the same manner as in Preparation Example 5 except that vinyltrimethoxysilane (KBM-1003) was used instead of KBM-573.

<比較調製例7>
調製例2において、KBM−573の代わりに、3−グリシドキシプロピルトリメトキシ(KBM−403)に変更したこと以外は調製例5と同様にして樹脂ワニス(固形分濃度約45質量%)を調製した。
<Comparative Preparation Example 7>
In Preparation Example 2, a resin varnish (solid content concentration of about 45% by mass) was prepared in the same manner as in Preparation Example 5 except that 3-glycidoxypropyltrimethoxy (KBM-403) was used instead of KBM-573. Prepared.

<比較調製例8>
調製例2において、KBM−573の代わりに、3−メタクリロキシプロピルトリメトキシ(KBM−503)に変更したこと以外は調製例5と同様にして樹脂ワニス(固形分濃度約45質量%)を調製した。
<Comparative Preparation Example 8>
In Preparation Example 2, a resin varnish (solid content concentration of about 45% by mass) was prepared in the same manner as Preparation Example 5 except that 3-methacryloxypropyltrimethoxy (KBM-503) was used instead of KBM-573. did.

調製例1〜10の樹脂ワニスの調製に用いた各原材料の使用量を表1に示す。また、比較調製例1〜8の樹脂ワニスの調製に用いた各原材料の使用量を表2に示す。   Table 1 shows the amount of each raw material used in the preparation of the resin varnishes of Preparation Examples 1 to 10. In addition, Table 2 shows the amount of each raw material used for preparing the resin varnishes of Comparative Preparation Examples 1 to 8.

Figure 2014101399
Figure 2014101399

Figure 2014101399
Figure 2014101399

[樹脂硬化物の作製]
調製例1〜11及び比較調製例1〜8で得られた樹脂ワニスを、フィルム上に塗工し乾燥温度170℃で乾燥し、プレスで加圧硬化し樹脂硬化物を作製した。なお、調製例1〜11の樹脂ワニスを用いて作製した樹脂硬化物が実施例1〜11、比較調製例1〜8の樹脂ワニスを用いて作製した樹脂硬化物が比較例1〜8にそれぞれ相当する。
[Preparation of cured resin]
The resin varnishes obtained in Preparation Examples 1 to 11 and Comparative Preparation Examples 1 to 8 were coated on a film, dried at a drying temperature of 170 ° C., and pressure cured with a press to produce a cured resin. In addition, the resin cured material produced using the resin varnish of Preparation Examples 1-11 is Examples 1-11, and the resin cured material produced using the resin varnish of Comparative Preparation Examples 1-8 is Comparative Examples 1-8, respectively. Equivalent to.

[評価方法]
<ワニスの相溶性>
ワニスの相溶性を、目視により測定し、以下のように分類した。
○:沈殿物及び析出物なし
△:軽微な析出物あり
×:沈殿物及び析出物あり
<誘電特性(比誘電率Dk、誘電正接Df)の測定>
誘電特性は、樹脂硬化物の外層銅箔をエッチングしたものを空洞共振器摂動法により測定した。条件は、周波数:10GHz、測定温度:25℃とした。
<銅箔引きはがし強さの測定>
銅箔引きはがし強さは、銅張積層板試験規格JIS−C−6481に準拠して測定した。
<熱特性の測定>
熱特性は、樹脂硬化物の外層銅箔をエッチングしたものをTMAにより測定した。熱特性は、ガラス転移点Tgにより評価した。樹脂硬化物の外層銅箔をエッチングしたもののTgをTMAにより測定した。
[Evaluation method]
<Compatibility of varnish>
The compatibility of the varnish was measured visually and classified as follows.
○: No precipitate or precipitate Δ: Minor precipitate ×: Precipitate and precipitate <Measurement of dielectric properties (dielectric constant Dk, dielectric loss tangent Df)>
Dielectric characteristics were measured by cavity resonator perturbation method after etching an outer layer copper foil of a cured resin. The conditions were a frequency: 10 GHz and a measurement temperature: 25 ° C.
<Measurement of copper foil peeling strength>
The copper foil peeling strength was measured in accordance with the copper clad laminate test standard JIS-C-6481.
<Measurement of thermal characteristics>
Thermal characteristics were measured by TMA after etching the outer layer copper foil of the cured resin. Thermal characteristics were evaluated by the glass transition point Tg. Tg of the outer layer copper foil of the cured resin was etched by TMA.

[評価結果]
調製例1〜11の樹脂ワニスを用いて作製した樹脂硬化物を上記評価方法により評価した。また、実施例1〜11、比較調製例1〜8の樹脂ワニスを用いて作製した樹脂硬化物は、比較例1〜8にそれぞれ相当する。
[Evaluation results]
The cured resin products prepared using the resin varnishes of Preparation Examples 1 to 11 were evaluated by the above evaluation methods. Moreover, the resin cured material produced using the resin varnish of Examples 1-11 and Comparative preparation examples 1-8 is corresponded to Comparative Examples 1-8, respectively.

Figure 2014101399
Figure 2014101399

本発明に係るシアネートエステル系樹脂組成物は、高周波特性が約3.0以下であり、無機充填剤入りフッ素樹脂基板材料と同等レベルの比誘電率を有するかつ誘電正接も低く、また液晶ポリマーよりも良好な誘電特性を示す。このことから、ミリ波帯を越えるような高周波帯域でも伝送損特性を発現し、かつ高Tg、良好な銅箔引きはがし強さを兼ね備えている。
したがって、1GHz以上の高周波信号を扱う移動体通信機器やその基地局装置、サーバー、ルーター等のネットワーク関連電子機器及び大型コンピュータ等の各種電気・電子機器に使用される印刷配線板の部材・部品用途として有用である。
本発明に係る樹脂組成物は、高周波帯域において信号の低損失が要求される無線通信関連の端末機器に内蔵されるフィルタ等の部品や無線基地局のアンテナあるいはマイクロプロセッサの動作周波数が数百MHzを超えるような高速コンピュータ等に使用される印刷配線板用の基板を製造するのに適する。
The cyanate ester resin composition according to the present invention has a high frequency characteristic of about 3.0 or less, a dielectric constant equivalent to that of a fluororesin substrate material containing an inorganic filler, a low dielectric loss tangent, and a liquid crystal polymer. Also exhibits good dielectric properties. Therefore, the transmission loss characteristic is exhibited even in a high frequency band exceeding the millimeter wave band, and it has a high Tg and a good copper foil peeling strength.
Therefore, components and parts for printed wiring boards used in mobile communication devices that handle high-frequency signals of 1 GHz or higher, base station devices, network-related electronic devices such as servers and routers, and various electric and electronic devices such as large computers. Useful as.
The resin composition according to the present invention has an operation frequency of several hundreds of MHz, such as a filter and other components incorporated in a wireless communication-related terminal device that requires a low signal loss in a high frequency band, a radio base station antenna, or a microprocessor. It is suitable for manufacturing a substrate for a printed wiring board used for a high-speed computer exceeding

Claims (13)

(A)スチレン骨格を有する飽和型熱可塑性エラストマーと、
(B)シアネートエステル化合物と、
(C)単官能フェノールと、
(D)エポキシ樹脂と
を含み、前記(A)成分全体の質量に対するスチレンの質量比が10%〜70%であるシアネートエステル系樹脂組成物。
(A) a saturated thermoplastic elastomer having a styrene skeleton;
(B) a cyanate ester compound;
(C) a monofunctional phenol;
(D) The cyanate ester-type resin composition which contains an epoxy resin and whose mass ratio of styrene with respect to the mass of the said (A) component whole is 10%-70%.
前記(A)成分が、スチレン−エチレン−ブチレン共重合体を含む飽和型熱可塑性エラストマーである請求項1に記載のシアネートエステル系樹脂組成物。   The cyanate ester resin composition according to claim 1, wherein the component (A) is a saturated thermoplastic elastomer containing a styrene-ethylene-butylene copolymer. 前記スチレン−エチレン−ブチレン共重合体が、スチレン−ブタジエン共重合体のブタジエン部分の二重結合基に水素添加して得られる請求項2に記載のシアネートエステル系樹脂組成物。   The cyanate ester resin composition according to claim 2, wherein the styrene-ethylene-butylene copolymer is obtained by hydrogenating a double bond group of a butadiene portion of a styrene-butadiene copolymer. 前記(A)成分が、数平均分子量が40,000以上70,000以下の飽和型熱可塑性エラストマーを含有する、請求項1〜3のいずれか一項に記載のシアネートエステル系樹脂組成物。   The cyanate ester resin composition according to any one of claims 1 to 3, wherein the component (A) contains a saturated thermoplastic elastomer having a number average molecular weight of 40,000 or more and 70,000 or less. 数平均分子量が40,000以上70,000以下の飽和型熱可塑性エラストマーの含有割合が(A)成分の全質量に対して50質量%以上である、請求項4に記載のシアネートエステル系樹脂組成物。   The cyanate ester-based resin composition according to claim 4, wherein the content ratio of the saturated thermoplastic elastomer having a number average molecular weight of 40,000 or more and 70,000 or less is 50% by mass or more based on the total mass of the component (A). object. 前記飽和型熱可塑性エラストマーが、数平均分子量が40,000以上60,000以下のエラストマーと、数平均分子量が60,000より大きく70,000以下のエラストマーとを含有する、請求項5記載のシアネートエステル系樹脂組成物。   The cyanate according to claim 5, wherein the saturated thermoplastic elastomer contains an elastomer having a number average molecular weight of 40,000 or more and 60,000 or less and an elastomer having a number average molecular weight of more than 60,000 and 70,000 or less. Ester resin composition. 前記(B)成分が、シアネートエステル化合物と単官能フェノール化合物とを反応させて得られるフェノール変性シアネートエステルプレポリマーを含有する、請求項1〜6のいずれか一項に記載のシアネートエステル系樹脂組成物。   The cyanate ester resin composition according to any one of claims 1 to 6, wherein the component (B) contains a phenol-modified cyanate ester prepolymer obtained by reacting a cyanate ester compound with a monofunctional phenol compound. object. 請求項1〜7のいずれかに記載のシアネートエステル系樹脂組成物を基材に塗工してなるプリプレグ。   A prepreg obtained by coating the base material with the cyanate ester-based resin composition according to claim 1. 請求項1〜7のいずれかに記載のシアネートエステル系樹脂組成物を支持フィルムに塗工してなる樹脂付フィルム。   The film with resin formed by coating the cyanate ester-type resin composition in any one of Claims 1-7 on a support film. 請求項8に記載のプリプレグを1枚以上重ね、その片面又は両面に金属箔を配置し、加熱加圧して得られる積層板。   A laminate obtained by stacking one or more prepregs according to claim 8, placing a metal foil on one or both sides, and heating and pressing. 請求項9に記載の樹脂付フィルムを1枚以上重ね、その片面又は両面に金属箔を配置し、加熱加圧して得られる積層板。   A laminate obtained by stacking one or more films with a resin according to claim 9, placing a metal foil on one side or both sides, and heating and pressing. 請求項10又は11に記載の積層板に配線形成して得られる配線板。   The wiring board obtained by forming wiring in the laminated board of Claim 10 or 11. 請求項12に記載の配線板を少なくとも一層有する多層配線板。   A multilayer wiring board having at least one wiring board according to claim 12.
JP2012252173A 2012-11-16 2012-11-16 Cyanate ester-based resin composition, and prepreg and laminate plate using the same Pending JP2014101399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012252173A JP2014101399A (en) 2012-11-16 2012-11-16 Cyanate ester-based resin composition, and prepreg and laminate plate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012252173A JP2014101399A (en) 2012-11-16 2012-11-16 Cyanate ester-based resin composition, and prepreg and laminate plate using the same

Publications (1)

Publication Number Publication Date
JP2014101399A true JP2014101399A (en) 2014-06-05

Family

ID=51024215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012252173A Pending JP2014101399A (en) 2012-11-16 2012-11-16 Cyanate ester-based resin composition, and prepreg and laminate plate using the same

Country Status (1)

Country Link
JP (1) JP2014101399A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201642A (en) * 2013-04-03 2014-10-27 日立化成株式会社 Resin composition, and resin film for printed wiring board and production method of the same
JP2015098504A (en) * 2013-11-18 2015-05-28 株式会社Adeka Resin composition and heat-radiative insulating cured product
JP2017214492A (en) * 2016-05-31 2017-12-07 旭化成株式会社 Resin composition and molded body
WO2017208945A1 (en) * 2016-05-31 2017-12-07 旭化成株式会社 Resin composition, process for producing resin composition, and molded object
JP2018135506A (en) * 2017-02-20 2018-08-30 株式会社有沢製作所 Resin composition, adhesive film, coverlay film, laminate, copper foil with resin, and copper-clad laminate with resin
JP2018139334A (en) * 2015-01-13 2018-09-06 日立化成株式会社 Multilayered printed wiring board, and method for manufacturing multilayered printed wiring board
WO2020162323A1 (en) * 2019-02-06 2020-08-13 日産化学株式会社 Curable composition for flexible hard coating
JP2020164793A (en) * 2019-03-29 2020-10-08 東洋インキScホールディングス株式会社 Prepreg, metal-clad laminate, printed wiring board, multilayer wiring board and electronic apparatus
WO2021205824A1 (en) * 2020-04-09 2021-10-14 株式会社ブリヂストン Fiber reinforced plastic and molded product
WO2024111380A1 (en) * 2022-11-21 2024-05-30 株式会社レゾナック Resin composition, resin film, prepreg, laminate, printed wiring board, and semiconductor package

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201642A (en) * 2013-04-03 2014-10-27 日立化成株式会社 Resin composition, and resin film for printed wiring board and production method of the same
JP2015098504A (en) * 2013-11-18 2015-05-28 株式会社Adeka Resin composition and heat-radiative insulating cured product
JP2018139334A (en) * 2015-01-13 2018-09-06 日立化成株式会社 Multilayered printed wiring board, and method for manufacturing multilayered printed wiring board
WO2017208945A1 (en) * 2016-05-31 2017-12-07 旭化成株式会社 Resin composition, process for producing resin composition, and molded object
JPWO2017208945A1 (en) * 2016-05-31 2018-09-06 旭化成株式会社 Resin composition, method for producing resin composition, and molded article
JP2017214492A (en) * 2016-05-31 2017-12-07 旭化成株式会社 Resin composition and molded body
CN108884313A (en) * 2016-05-31 2018-11-23 旭化成株式会社 Resin combination, the manufacturing method of resin combination and formed body
US10738189B2 (en) 2016-05-31 2020-08-11 Asahi Kasei Kabushiki Kaisha Resin composition, method of producing resin composition, and shaped product
CN108884313B (en) * 2016-05-31 2021-03-30 旭化成株式会社 Resin composition, method for producing resin composition, and molded article
JP2018135506A (en) * 2017-02-20 2018-08-30 株式会社有沢製作所 Resin composition, adhesive film, coverlay film, laminate, copper foil with resin, and copper-clad laminate with resin
WO2020162323A1 (en) * 2019-02-06 2020-08-13 日産化学株式会社 Curable composition for flexible hard coating
JP2020164793A (en) * 2019-03-29 2020-10-08 東洋インキScホールディングス株式会社 Prepreg, metal-clad laminate, printed wiring board, multilayer wiring board and electronic apparatus
JP7505200B2 (en) 2019-03-29 2024-06-25 artience株式会社 Prepregs, metal-clad laminates, printed wiring boards, multilayer wiring boards and electronic devices
WO2021205824A1 (en) * 2020-04-09 2021-10-14 株式会社ブリヂストン Fiber reinforced plastic and molded product
WO2024111380A1 (en) * 2022-11-21 2024-05-30 株式会社レゾナック Resin composition, resin film, prepreg, laminate, printed wiring board, and semiconductor package

Similar Documents

Publication Publication Date Title
JP2014101399A (en) Cyanate ester-based resin composition, and prepreg and laminate plate using the same
KR101865649B1 (en) Thermoplastic resin composition for high frequency, prepreg, laminate sheet and printed circuit board using the same
EP3127936B1 (en) Polyphenylene ether derivative having n-substituted maleimide group, and heat curable resin composition, resin varnish, prepreg, metal-clad laminate, and multilayer printed wiring board using same
JP6167621B2 (en) Resin composition, resin film for printed wiring board and method for producing the same
US8258216B2 (en) Thermosetting resin compositions and articles
JP5724503B2 (en) Resin film for printed wiring board and method for producing the same
JP5264133B2 (en) Epoxy resin composition, prepreg and metal-clad laminate using the epoxy resin composition
JP6536565B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP6345384B2 (en) Resin composition for printed wiring board, resin film for printed wiring board, and method for producing the same
JP2017125128A (en) Method for producing resin film for the production of printed wire board for millimeter wave radar
JP2006291098A (en) Thermosetting resin composition and prepreg, metal-coated laminate board and wiring board using the same
EP3103825B1 (en) Resin composition for printed-circuit board, prepreg, metal foil-clad laminate board, resin composite sheet, and printed-circuit board
JP2018012772A (en) Resin composition, resin layer-attached support, prepreg, laminate, multilayer printed board and printed wiring board for millimeter wave radar
KR101708146B1 (en) Thermoplastic resin composition for high frequency having low permittivity, prepreg and copper clad laminate using the same
KR20150068181A (en) Thermoplastic resin composition for high frequency having low permittivity, prepreg and copper clad laminate using the same
CN110511566B (en) Thermosetting resin composition, method for producing same, prepreg, laminate, and printed wiring board
JP2017066280A (en) Thermosetting resin composition and manufacturing method therefor, and prepreg, metal-clad laminate and multilayer printed board having the thermosetting resin composition
JP3261076B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JP6203303B2 (en) Thermosetting resin composition, its production method and use
JP2013256663A (en) Thermosetting resin composition, prepreg obtained using the same, metal clad laminate, and wiring board
JP5793640B2 (en) Epoxy resin composition for printed wiring board, prepreg for printed wiring board using the epoxy resin composition for printed wiring board, and metal-clad laminate for printed wiring board
JP2011074397A (en) Thermosetting resin composition, and prepreg, metal-clad laminate and wiring board using the same
JP2004091672A (en) Macromolecular varnish
JP2014012762A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg
JP2004277662A (en) Polymer varnish