WO2020161958A1 - キャパシタ素子 - Google Patents

キャパシタ素子 Download PDF

Info

Publication number
WO2020161958A1
WO2020161958A1 PCT/JP2019/037211 JP2019037211W WO2020161958A1 WO 2020161958 A1 WO2020161958 A1 WO 2020161958A1 JP 2019037211 W JP2019037211 W JP 2019037211W WO 2020161958 A1 WO2020161958 A1 WO 2020161958A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
capacitor element
electrode layer
layer
main surface
Prior art date
Application number
PCT/JP2019/037211
Other languages
English (en)
French (fr)
Inventor
康裕 村瀬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020161958A1 publication Critical patent/WO2020161958A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • the present invention relates to a capacitor element.
  • Patent Document 1 A capacitor element used in a snubber circuit is disclosed in Japanese Patent Application Laid-Open No. 2014-241434 (Patent Document 1).
  • the capacitor element disclosed in Patent Document 1 includes a semiconductor substrate that functions as a part of resistance, and a dielectric region that is provided on the main surface of the semiconductor substrate and functions as at least a part of the capacitor.
  • the semiconductor substrate that functions as a resistor has a temperature characteristic in which the electric resistance changes depending on the temperature in a temperature range from about room temperature to about 200°C.
  • the current control element connected to the snubber circuit may be damaged.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a capacitor element capable of suppressing a change in electric resistance due to a change in temperature.
  • a capacitor element has a first main surface and a second main surface located on the side opposite to the first main surface, serves as a resistor, and a first main surface side.
  • a resistor electrically connected to the electrode layer.
  • the resistor has a temperature characteristic opposite to that of the electric resistance of the substrate.
  • the capacitor element based on the present disclosure may further include a pad electrode that is electrically connected to the first electrode layer and that is electrically connected to the outside.
  • the resistor may be provided on the current path between the first electrode layer and the pad electrode.
  • the resistance body may include a first resistance body and a second resistance body.
  • the first resistive element and the second resistive element are arranged apart from each other on a plane parallel to the first main surface.
  • the capacitor element based on the present disclosure may further include an insulating layer provided on the first electrode layer, and a conductive connecting portion provided so as to penetrate the insulating layer.
  • the first resistor and the second resistor may be arranged on the insulating layer so as to face each other.
  • the pad electrode is provided so as to cover the insulating layer located between the first resistor and the second resistor, and partially overlap the first resistor and the second resistor.
  • Each of the first resistor and the second resistor may be electrically connected to the first electrode layer by the conductive connection portion.
  • each of the first resistor and the second resistor may be provided in an island shape.
  • the capacitor element based on the present disclosure may further include an ohmic layer provided on the second main surface.
  • the resistor may be provided between the second electrode layer and the ohmic layer.
  • the present invention it is possible to provide a capacitor element capable of suppressing a change in electric resistance due to a change in temperature.
  • FIG. 3 is a schematic cross-sectional view of the capacitor element according to the first embodiment.
  • FIG. 3 is a schematic top view of the capacitor element according to the first embodiment.
  • FIG. 3 is a diagram showing temperature characteristics of electric resistance of the capacitor element according to the first embodiment. It is a schematic sectional drawing of the capacitor element which concerns on a comparative example. It is a figure which shows the temperature characteristic of electric resistance of the capacitor element which concerns on a comparative example.
  • FIG. 6 is a schematic top view of a capacitor element according to a second embodiment.
  • FIG. 9 is a schematic cross-sectional view of a capacitor element according to a third embodiment.
  • FIG. 6 is a schematic cross-sectional view of a capacitor element according to a fourth embodiment.
  • FIG. 9 is a schematic cross-sectional view of a capacitor element according to a fifth embodiment.
  • FIG. 1 is a schematic cross-sectional view of a capacitor element according to the first embodiment.
  • FIG. 2 is a schematic top view of the capacitor element according to the first embodiment.
  • a capacitor element 100 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the capacitor element 100 includes a substrate 10, a first electrode layer 20, a second electrode layer 30, a dielectric layer 40, an insulating layer 50, a resistor 60, and a pad.
  • the electrode 70 and the conductive connecting portions 81 and 82 are provided.
  • the substrate 10 has a first main surface 10a and a second main surface 10b that are in a front-back relationship with each other.
  • the second main surface 10b is located on the opposite side of the first main surface 10a.
  • the substrate 10 is, for example, a semiconductor substrate such as a silicon substrate.
  • the material of the semiconductor substrate is not limited to silicon, but may be another semiconductor such as gallium arsenide. Note that the substrate 10 may be doped with impurities in order to adjust the resistance value.
  • the substrate 10 has, for example, a positive temperature characteristic.
  • the dielectric layer 40 is provided between the first electrode layer 20 and the substrate 10.
  • the dielectric layer 40 is provided on the first major surface 10a.
  • the dielectric layer 40 is made of SiO 2 .
  • the material of the dielectric layer 40 is not limited to SiO 2 , but may be an oxide such as Al 2 O 3 , HfO 2 , Ta 2 O 5 , ZrO 2 or BaTiO 3 , or a nitride such as Si 3 N 4. It may be.
  • the first electrode layer 20 is provided on the first main surface 10a side of the substrate 10.
  • the first electrode layer 20 is provided on the dielectric layer 40.
  • the second electrode layer 30 is provided on the second main surface 10b side of the substrate 10.
  • the second electrode layer 30 is provided on the second major surface 10b of the substrate 10.
  • the first electrode layer 20 and the second electrode layer 30 are made of a conductive material.
  • the conductive material is preferably a metal such as Cu, Ag, Au, Al, Pt, Ni, Cr or Ti, or an alloy containing at least one of these metals.
  • the first electrode layer 20 and the second electrode layer 30 may be made of the same material or may be made of different materials.
  • the insulating layer 50 is provided on the first electrode layer 20.
  • the insulating layer 50 is provided so as to cover the first electrode layer 20.
  • the insulating layer 50 may be an inorganic insulating layer such as a silicon nitride film or a silicon oxide film, or an organic insulating layer such as polyimide, polystyrene, or polyvinylphenol.
  • the resistor 60 is electrically connected to the first electrode layer 20.
  • the resistor 60 is provided on the current path between the first electrode layer 20 and the pad electrode 70.
  • the resistor 60 has a first resistor 61 and a second resistor 62.
  • the first resistor 61 and the second resistor 62 are provided in a strip shape.
  • the first resistor 61 and the second resistor 62 are arranged apart from each other on a plane parallel to the first main surface 10a.
  • the first resistor 61 and the second resistor 62 are provided on the insulating layer 50.
  • the first resistor 61 and the second resistor 62 are arranged so as to face each other.
  • the electrical resistance of the resistor may vary due to manufacturing variations.
  • manufacturing variation can be suppressed.
  • variations in the electrical resistance of the resistor 60 can be suppressed.
  • the first resistor 61 and the second resistor 62 are made of an oxide such as nickel, manganese, cobalt, iron, or copper.
  • the pad electrode 70 is an electrode for establishing an electrical connection with the outside.
  • the pad electrode 70 is electrically connected to the first electrode layer 20.
  • the pad electrode 70 is provided so as to cover the portion of the insulating layer 50 located between the first resistor 61 and the second resistor 62, and partially overlap the first resistor 61 and the second resistor 62. Has been.
  • the pad electrode 70 is provided so as to cover a part of the first resistor 61 and the second resistor 62.
  • the pad electrode 70 is made of a conductive material.
  • the conductive material is preferably a metal such as Cu, Ag, Au, Al, Pt, Ni, Cr or Ti, or an alloy containing at least one of these metals.
  • the conductive connecting portions 81 and 82 are provided so as to penetrate the insulating layer 50.
  • the conductive connection portion 81 is provided so as to come into contact with the first electrode layer 20 through the through hole 50a1 provided in the insulating layer 50 and partially overlap the first resistor 61.
  • the conductive connection portion 82 is provided so as to come into contact with the first electrode layer 20 through the through hole 50a2 provided in the insulating layer 50 and partially overlap the second resistor 62.
  • the conductive connection parts 81, 82 are made of a conductive material.
  • the conductive material is preferably a metal such as Cu, Ag, Au, Al, Pt, Ni, Cr or Ti, or an alloy containing at least one of these metals.
  • FIG. 3 is a diagram showing temperature characteristics of electric resistance of the capacitor element according to the first embodiment.
  • the sum of the temperature characteristic of the electric resistance of the substrate 10 indicated by the alternate long and short dash line and the temperature characteristic of the electric resistance of the resistor 60 indicated by the broken line is taken as the temperature characteristic of the electric resistance of the capacitor element 100. Illustrated. The temperature characteristics of the resistance value of the capacitor element 100 will be described with reference to FIG.
  • the temperature characteristic of the electric resistance in the substrate 10 has a positive temperature characteristic in which the electric resistance rises as the temperature rises.
  • the electric resistance of the substrate 10 increases by about 4.5 ⁇ as the temperature rises from about ⁇ 50° C. to 200° C. That is, in the temperature range of approximately -50°C to 200°C, the difference between the maximum value and the minimum value of the electric resistance is approximately 4.5 ⁇ .
  • the temperature characteristic of the electric resistance of the resistor 60 has a negative temperature characteristic in which the electric resistance decreases as the temperature rises.
  • the electric resistance of the resistor 60 decreases by about 4.6 ⁇ as the temperature rises from ⁇ 50° C. to 200° C. That is, in the temperature range of about -50°C to 200°C, the difference between the maximum value and the minimum value of the electric resistance is about 4.6 ⁇ .
  • the electric resistance of the capacitor element 100 is represented by the sum of the electric resistance of the substrate 10 and the electric resistance of the resistor 60. Therefore, in the temperature range of approximately ⁇ 50° C. to 200° C., temperature characteristics are high at both ends and low at the center. In such temperature characteristics, the difference between the maximum value and the minimum value of the electric resistance is approximately 3.3 ⁇ , and compared with the electric resistance of the substrate 10, the change in the electric resistance due to the temperature can be suppressed. Further, in the temperature range of 25° C. to 200° C., compared with the temperature characteristic of the electric resistance of the substrate 10, the temperature characteristic of the electric resistance of the capacitor element 100 suppresses an increase in the electric resistance.
  • FIG. 4 is a schematic sectional view of a capacitor element according to a comparative example.
  • a capacitor element 100X according to a comparative example will be described with reference to FIG.
  • the capacitor element 100X shown in FIG. 4 is mainly different from the capacitor element 100 according to the first embodiment in that a resistor is not provided. Further, in Comparative Example 100X, the plurality of recesses 11a are formed in the first main surface 10a of the substrate 10, and the dielectric layer 40 is provided along the plurality of recesses.
  • the first electrode layer 20 is formed in a comb shape so as to include a plate-shaped portion parallel to the first main surface 10a and a portion that enters the recess of the dielectric layer 40.
  • the capacitor element 100X according to the comparative example is not provided with a resistor as compared with the capacitor element 100 according to the first embodiment. Therefore, the electric resistance of the substrate 10 greatly affects the electric resistance of the capacitor element 100X.
  • FIG. 5 is a diagram showing temperature characteristics of electric resistance of the capacitor element according to the comparative example. The temperature characteristic of the electric resistance of the capacitor element 100X will be described with reference to FIG.
  • the temperature characteristic of the electric resistance in the substrate 10 has a positive temperature characteristic in which the electric resistance increases as the temperature rises.
  • the electric resistance of the substrate 10 increases by about 4.9 ⁇ as the temperature rises from about ⁇ 50° C. to 200° C. That is, in the temperature range of approximately ⁇ 50° C. to 200° C., the difference between the maximum value and the minimum value of the electric resistance is approximately 4.9 ⁇ .
  • the resistor 60 having the temperature characteristic opposite to the temperature characteristic of the electric resistance of the substrate 10 is the first electrode layer. Since it is electrically connected to 20, it can be said that a change in electric resistance due to a change in temperature can be suppressed.
  • FIG. 6 is a schematic top view of the capacitor element according to the second embodiment.
  • a capacitor element 100A according to the second embodiment will be described with reference to FIG.
  • the capacitor element 100A according to the second embodiment is different in the shape of the resistor 60A when compared with the capacitor element 100 according to the first embodiment.
  • Other configurations are almost the same.
  • the first resistor 61A and the second resistor 62A are formed in an island shape. Even with such a configuration, the capacitor element 100A according to the second embodiment can obtain substantially the same effect as the capacitor element 100 according to the first embodiment.
  • first resistor 61A and the second resistor 62A are formed in an island shape, stress applied to the first resistor 61A and the second resistor 62A is greater than that in the case of being formed in a strip shape. Can be relaxed.
  • FIG. 7 is a schematic sectional view of a capacitor element according to the third embodiment.
  • a capacitor element 100B according to the third embodiment will be described with reference to FIG.
  • capacitor element 100B according to the third embodiment when capacitor element 100B according to the third embodiment is compared with capacitor element 100 according to the first embodiment, conductive connecting portions 81 and 82 are not formed, and mainly resistor 60B is used. And the shape and arrangement of the pad electrode 70B are different. Other configurations are almost the same.
  • the resistor 60B is provided on the first electrode layer 20.
  • the resistor 60B is provided so as to cover a part of the first electrode layer 20.
  • resistor 60B is not divided into two.
  • the insulating layer 50B is provided around the resistor 60B.
  • the insulating layer 50B is provided on the first electrode layer 20.
  • the thickness of the insulating layer 50B is provided to be substantially equal to the thickness of the resistor 60B.
  • the pad electrode 70B is provided so as to cover the insulating layer 50B and the resistor 60B.
  • capacitor element 100B having a temperature characteristic opposite to that of the electric resistance of the substrate 10 is electrically connected to the first electrode layer 20. Therefore, in capacitor element 100B according to the third embodiment, substantially the same effect as that of capacitor element 100 according to the first embodiment can be obtained.
  • FIG. 8 is a schematic sectional view of a capacitor element according to the fourth embodiment.
  • a capacitor element 100C according to the fourth embodiment will be described with reference to FIG.
  • the capacitor element 100C according to the fourth embodiment is different from the capacitor element 100 according to the first embodiment in that the resistor 60C is provided on the second main surface 10b side of the substrate 10. They differ in points. Other configurations are almost the same.
  • no resistor is provided on the first main surface 10a side of the substrate 10, and the conductive connecting portions 81 and 82 are directly connected to the pad electrode 70.
  • the capacitor element 100C includes an ohmic layer 95, a resistor 60C, an insulating layer 90, and a second electrode layer 30 on the second main surface 10b side of the substrate 10.
  • the ohmic layer 95 is provided on the second main surface 10b.
  • the ohmic layer 95 is provided so as to cover a part of the second main surface 10b.
  • the ohmic layer 95 is formed of a material that forms a good ohmic contact with the substrate 10.
  • a material for forming the ohmic layer 95 when a p-type organic semiconductor is used for the substrate 10, a metal such as platinum, nickel, gold, cobalt, palladium, copper or molybdenum can be adopted.
  • an n-type organic semiconductor strontium, calcium, neodymium, magnesium, hafnium, etc. can be used.
  • the resistor 60C is provided on the ohmic layer 95.
  • the insulating layer 90 is provided around the stacked structure including the ohmic layer 95 and the resistor 60C.
  • the insulating layer 90 is provided so as to have a thickness substantially equal to that of the above laminated structure.
  • the second electrode layer 30 is provided so as to cover the insulating layer 90 and the resistor 60C. As a result, the resistor 60C is electrically connected to the second electrode layer 30.
  • the resistor 60C having the temperature characteristic opposite to the temperature characteristic of the electric resistance of the substrate 10 is electrically connected to the second electrode layer 30. Therefore, the temperature characteristics of the capacitor element 100C according to the fourth embodiment also have substantially the same effects as those of the capacitor element 100 according to the first embodiment.
  • FIG. 9 is a schematic sectional view of a capacitor element according to the fifth embodiment.
  • a capacitor element 100D according to the fifth embodiment will be described with reference to FIG.
  • the capacitor element 100D according to the fifth embodiment has the first main surface 10a, the dielectric layer 40D, and the first electrode layer 20D when compared with the capacitor element 100 according to the first embodiment.
  • the shape is different.
  • the other configurations are almost the same.
  • a plurality of recesses 11a are provided on the first main surface 10a.
  • a doped layer 12 is provided on the surface layer on the first major surface 10a side.
  • the doped layer 12 is provided inside the first main surface 10a along the plurality of recesses 11a.
  • the doped layer 12 is formed by doping impurities.
  • the impurities for example, nitrogen atoms can be used, but the impurities are not limited thereto, and metal elements may be used.
  • the dielectric layer 40D is provided outside the first main surface 10a along the plurality of recesses 11a.
  • the dielectric layer 40D includes a plurality of layers.
  • the dielectric layer 40D has a first layer 41 and a second layer 42.
  • the first layer 41 is formed on the first major surface 10a.
  • the second layer 42 is provided on the first layer 41.
  • the first layer 41 and the second layer 42 are formed of, for example, an oxide such as SiO 2 , Al 2 O 3 , HfO 2 , Ta 2 O 5 , ZrO 2 or BaTiO 3 , or a nitride such as Si 3 N 4 . It is configured.
  • the first layer 41 and the second layer 42 may be made of the same material or may be made of different materials.
  • the first electrode layer 20 is formed in a comb shape so as to include a plate-shaped portion parallel to the first main surface 10a and a portion that enters the recess of the dielectric layer 40.
  • the resistor 60 having the temperature characteristic opposite to the temperature characteristic of the electric resistance of the substrate 10 is the first electrode. It is electrically connected to the layer 20. Therefore, in capacitor element 100D according to the fifth embodiment, substantially the same effect as that of capacitor element 100 according to the first embodiment can be obtained.
  • the shapes of the first main surface 10a, the first main surface 10a, the dielectric layer 40D, and the first electrode layer 20D have the above shapes, so that the dielectric layer 40D forms the first electrode layer 20D and the substrate 10.
  • the capacitance formed by being sandwiched between them can be increased.
  • the substrate has a positive temperature characteristic and the resistor has a negative temperature characteristic has been described as an example, but the present invention is not limited to this, and the substrate has a negative temperature characteristic.
  • the resistor may have a positive temperature characteristic.
  • the case where a part of the pad electrode 70 is provided so as to overlap the first resistor and the second resistor from the upper side has been described as an example.
  • the first resistor and the second resistor may be provided so as to partially overlap with the pad electrode 70 from above.
  • another part of the first resistor is provided so as to overlap with the connecting conductive portion 81 from above, and another part of the second resistor is overlapped with the connecting conductive portion 82 from above. It may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

キャパシタ(100)は、第1主面(10a)および第1主面(10a)とは反対側に位置する第2主面(10b)を有し、電気抵抗となる基板(10)と、第1主面(10a)側に設けられた第1電極層(20)と、第2主面(10b)側に設けられた第2電極層(30)と、第1電極層(20)と基板(10)との間に設けられた誘電体層(40)と、第1電極層(20)または第2電極層(30)に電気的に接続される抵抗体(60)と、を備え、抵抗体は、基板(10)が有する温度特性とは反対の温度特性を有する。

Description

キャパシタ素子
 本発明は、キャパシタ素子に関する。
 スナバ回路に用いられるキャパシタ素子が、特開2014-241434号公報(特許文献1)に開示されている。
 特許文献1に開示のキャパシタ素子は、抵抗の一部として機能する半導体基板と、半導体基板の主面に設けられ、キャパシタの少なくとも一部として機能する誘電体領域とを備える。
特開2014-241434号公報
 しかしながら、抵抗として機能する半導体基板は、キャリア移動度の温度依存性により、室温近傍の温度から200℃程度の温度領域において、温度によって電気抵抗が変化する温度特性を有する。
 スナバ回路に用いられる容量と抵抗の値が設計値からずれると、サージ電圧を抑制したり、リンギングを抑制したりする効果が弱くなる。このような場合には、スナバ回路に接続される電流制御素子が破損することが起こり得る。
 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、温度の変化による電気抵抗の変化を抑制することができるキャパシタ素子を提供することにある。
 本開示に基づくキャパシタ素子は、第1主面および上記第1主面とは反対側に位置する第2主面を有し、抵抗となる基板と、上記第1主面側に設けられた第1電極層と、上記第2主面側に設けられた第2電極層と、上記第1電極層と上記基板との間に設けられた誘電体層と、上記第1電極層または上記第2電極層に電気的に接続される抵抗体と、を備える。抵抗体は、上記基板が有する電気抵抗の温度特性とは反対の温度特性を有する。
 上記本開示に基づくキャパシタ素子は、上記第1電極層に電気的に接続され、外部との電気的接続を図るためのパッド電極をさらに備えていてもよい。この場合には、上記抵抗体は、上記第1電極層と上記パッド電極との間の電流経路上に設けられていてもよい。
 上記本開示に基づくキャパシタ素子にあっては、上記抵抗体は、第1抵抗体および第2抵抗体を含んでいてもよい。この場合には、上記第1抵抗体および上記第2抵抗体は、上記第1主面に平行な平面上において互いに離間して配置されていることが好ましい。
 上記本開示に基づくキャパシタ素子にあっては、上記第1電極層上に設けられた絶縁層と、上記絶縁層を貫通するように設けられた導電接続部と、をさらに備えていてもよい。この場合には、上記第1抵抗体および上記第2抵抗体は、上記絶縁層上において互いに対峙するように配置されていてもよい。また、上記パッド電極は、上記第1抵抗体および上記第2抵抗体の間に位置する上記絶縁層を覆い、かつ、一部が上記第1抵抗体および上記第2抵抗体に重なるように設けられていてもよく、上記第1抵抗体および上記第2抵抗体の各々は、上記導電接続部によって上記第1電極層と電気的に接続されていてもよい。
 上記本開示に基づくキャパシタ素子にあっては、上記第1抵抗体および上記第2抵抗体の各々は、島状に設けられていてもよい。
 上記本開示に基づくキャパシタ素子は、上記第2主面上に設けられたオーミック層をさらに備えていてもよい。この場合には、上記抵抗体は、上記第2電極層と上記オーミック層との間に設けられていてもよい。
 本発明によれば、温度の変化による電気抵抗の変化を抑制することができるキャパシタ素子を提供することができる。
実施の形態1に係るキャパシタ素子の概略断面図である。 実施の形態1に係るキャパシタ素子の概略上面図である。 実施の形態1に係るキャパシタ素子の電気抵抗の温度特性を示す図である。 比較例に係るキャパシタ素子の概略断面図である。 比較例に係るキャパシタ素子の電気抵抗の温度特性を示す図である。 実施の形態2に係るキャパシタ素子の概略上面図である。 実施の形態3に係るキャパシタ素子の概略断面図である。 実施の形態4に係るキャパシタ素子の概略断面図である。 実施の形態5に係るキャパシタ素子の概略断面図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 (実施の形態1)
 図1は、実施の形態1に係るキャパシタ素子の概略断面図である。図2は、実施の形態1に係るキャパシタ素子の概略上面図である。図1および図2を参照して、実施の形態1に係るキャパシタ素子100について説明する。
 図1および図2に示すように、実施の形態1に係るキャパシタ素子100は、基板10、第1電極層20、第2電極層30、誘電体層40、絶縁層50、抵抗体60、パッド電極70、および導電接続部81,82を備える。
 基板10は、互いに表裏関係にある第1主面10aおよび第2主面10bを有する。第2主面10bは、第1主面10aの反対側に位置する。
 基板10は、たとえば、シリコン基板等の半導体基板である。なお、半導体基板の材料は、シリコンに限られず、ガリウム砒素などの他の半導体であってもよい。なお、基板10は、抵抗値を調整するために、不純物がドープされていてもよい。基板10は、たとえば正の温度特性を有する。
 誘電体層40は、第1電極層20と基板10との間に設けられている。誘電体層40は、第1主面10a上に設けられている。誘電体層40はSiOで構成されている。なお、誘電体層40の材料は、SiOに限られず、Al、HfO、Ta、ZrO若しくはBaTiOなどの酸化物、または、Siなどの窒化物であってもよい。
 第1電極層20は、基板10の第1主面10a側に設けられている。第1電極層20は、誘電体層40上に設けられている。
 第2電極層30は、基板10の第2主面10b側に設けられている。第2電極層30は、基板10の第2主面10b上に設けられている。
 第1電極層20および第2電極層30は、導電性材料によって構成されている。導電性材料としては、Cu、Ag、Au、Al、Pt、Ni、Cr若しくはTiなどの金属、または、これらの少なくとも一種の金属を含む合金であることが好ましい。第1電極層20および第2電極層30は、同じ材料によって構成されていてもよいし、異なる材料によって構成されていてもよい。
 絶縁層50は、第1電極層20上に設けられている。絶縁層50は、第1電極層20を覆うように設けられている。絶縁層50は、窒化シリコン膜または酸化シリコン膜等の無機絶縁層であってもよいし、ポリイミド、ポリスチレン、またはポリビニルフェノール等の有機絶縁層であってもよい。
 抵抗体60は、第1電極層20に電気的に接続されている。抵抗体60は、第1電極層20とパッド電極70との間の電流経路上に設けられている。抵抗体60は、第1抵抗体61および第2抵抗体62を有する。
 第1抵抗体61および第2抵抗体62は、帯状に設けられている。第1抵抗体61および第2抵抗体62は、上記第1主面10aに平行な平面上において互いに離間して配置されている。第1抵抗体61および第2抵抗体62は、絶縁層50上に設けられている。第1抵抗体61および第2抵抗体62は、互いに対峙するように配置されている。
 一般的に、単一の抵抗体を設ける場合には、製造ばらつきにより抵抗体の電気抵抗がばらつく場合が起こり得る。上記のように、実施の形態1においては、抵抗体60として、互いに離間した第1抵抗体61、および第2抵抗体62を設けることにより、製造ばらつきを抑制することができる。この結果、抵抗体60の電気抵抗のばらつきを抑制することができる。
 第1抵抗体61および第2抵抗体62は、たとえばニッケル、マンガン、コバルト、鉄、または銅等の酸化物によって構成される。
 パッド電極70は、外部との電気的接続を図るための電極である。パッド電極70は、第1電極層20に電気的に接続されている。パッド電極70は、第1抵抗体61および第2抵抗体62の間に位置する部分の絶縁層50を覆い、かつ、一部が第1抵抗体61および第2抵抗体62に重なるように設けられている。パッド電極70は、第1抵抗体61および第2抵抗体62の一部を覆うように設けられている。
 パッド電極70は、導電性材料によって構成されている。導電性材料としては、Cu、Ag、Au、Al、Pt、Ni、Cr若しくはTiなどの金属、または、これらの少なくとも一種の金属を含む合金であることが好ましい。
 導電接続部81,82は、絶縁層50を貫通するように設けられている。導電接続部81は、絶縁層50に設けられた貫通孔50a1を通って第1電極層20に接触し、かつ、一部が第1抵抗体61に重なるように設けられている。導電接続部82は、絶縁層50に設けられた貫通孔50a2を通って第1電極層20に接触し、かつ、一部が第2抵抗体62に重なるように設けられている。
 導電接続部81,82は、導電性材料によって構成されている。導電性材料としては、Cu、Ag、Au、Al、Pt、Ni、Cr若しくはTiなどの金属、または、これらの少なくとも一種の金属を含む合金であることが好ましい。
 図3は、実施の形態1に係るキャパシタ素子の電気抵抗の温度特性を示す図である。なお、図3においては、一点鎖線にて示される基板10における電気抵抗の温度特性、および破線にて示される抵抗体60における電気抵抗の温度特性の総和をキャパシタ素子100の電気抵抗の温度特性として図示している。図3を参照して、キャパシタ素子100の抵抗値の温度特性について説明する。
 図3に示すように、基板10における電気抵抗の温度特性は、温度が上昇するにつれて電気抵抗が上昇する正の温度特性を有する。基板10における電気抵抗は、温度が略-50℃から200℃になることにより、略4.5Ω増加する。すなわち、温度が略-50℃から200℃の範囲において、電気抵抗の最大値と最小値の差は、略4.5Ωである。
 一方、抵抗体60における電気抵抗の温度特性は、温度が上昇するにつれて電気抵抗が減少する負の温度特性を有する。抵抗体60における電気抵抗は、温度が-50℃から200℃になることにより、略4.6Ω減少する。すなわち、温度が略-50℃から200℃の範囲において、電気抵抗の最大値と最小値の差は、略4.6Ωである。なお、抵抗体60においては、R=RB(1/T-1/T0)で表される電気抵抗と温度の関係における常数Bは、たとえば1000である。
 キャパシタ素子100における電気抵抗は、基板10における電気抵抗と抵抗体60における電気抵抗との総和で表される。このため、温度が略-50℃から200℃の範囲においては、両端側で温度が高く中央側で温度が低い温度特性となる。このような温度特性において、電気抵抗の最大値と最小値の差は、略3.3Ωであり、基板10の電気抵抗と比較して、温度による電気抵抗の変化を抑制することができる。また、温度が25℃から200℃の範囲において、基板10の電気抵抗の温度特性と比較して、キャパシタ素子100の電気抵抗の温度特性では、電気抵抗の上昇が抑制される。
 図4は、比較例に係るキャパシタ素子の概略断面図である。図4を参照して、比較例に係るキャパシタ素子100Xについて説明する。
 図4に示すキャパシタ素子100Xは、実施の形態1に係るキャパシタ素子100と比較した場合に、抵抗体が設けられていない点が主として相違する。また、比較例100Xにおいては、基板10の第1主面10aに複数の凹部11aが形成されており、誘電体層40が複数の凹部に沿うように設けられている。
 第1電極層20は、第1主面10aに平行な板状部と誘導体層40の凹部に入り込む部分とを含むように櫛歯状に形成されている。
 比較例に係るキャパシタ素子100Xにおいては、実施の形態1に係るキャパシタ素子100と比較して抵抗体が設けられていない。このため、基板10が有する電気抵抗が、キャパシタ素子100Xが有する電気抵抗に大きく影響する。
 図5は、比較例に係るキャパシタ素子の電気抵抗の温度特性を示す図である。図5を参照して、キャパシタ素子100Xの電気抵抗の温度特性について説明する。
 図5に示すように、基板10における電気抵抗の温度特性は、温度が上昇するにつれて電気抵抗が上昇する正の温度特性を有する。基板10における電気抵抗は、温度が略-50℃から200℃になることにより、略4.9Ω増加する。すなわち、温度が略-50℃から200℃の範囲において、電気抵抗の最大値と最小値の差は、略4.9Ωである。
 このように比較例におけるキャパシタ素子100Xにおいては、抵抗体が設けられていないため、温度の変化によって電気抵抗も大きく変化する。
 以上のように、比較例との比較によっても、実施の形態1に係るキャパシタ素子100は、基板10が有する電気抵抗の温度特性とは反対の温度特性を有する抵抗体60が、第1電極層20に電気的に接続されていることにより、温度の変化による電気抵抗の変化を抑制することができると言える。
 (実施の形態2)
 図6は、実施の形態2に係るキャパシタ素子の概略上面図である。図6を参照して、実施の形態2に係るキャパシタ素子100Aについて説明する。
 図6に示すように、実施の形態2に係るキャパシタ素子100Aは、実施の形態1に係るキャパシタ素子100と比較した場合に、抵抗体60Aの形状が相違する。その他の構成については、ほぼ同様である。
 実施の形態2に係る抵抗体60Aにおいては、第1抵抗体61Aおよび第2抵抗体62Aが、島状に形成されている。このように構成される場合であっても、実施の形態2にキャパシタ素子100Aは、実施の形態1に係るキャパシタ素子100とほぼ同様の効果が得られる。
 また、第1抵抗体61Aおよび第2抵抗体62Aが島状に形成されることにより、帯状に形成される場合と比較して、第1抵抗体61Aおよび第2抵抗体62Aに負荷される応力を緩和することができる。
 (実施の形態3)
 図7は、実施の形態3に係るキャパシタ素子の概略断面図である。図7を参照して、実施の形態3に係るキャパシタ素子100Bについて説明する。
 図7に示すように、実施の形態3に係るキャパシタ素子100Bは、実施の形態1に係るキャパシタ素子100を比較した場合に、導電接続部81,82が形成されておらず、主として抵抗体60Bおよびパッド電極70Bの形状および配置が相違する。その他の構成についてはほぼ同様である。
 抵抗体60Bは、第1電極層20上に設けられている。抵抗体60Bは、第1電極層20の一部を覆うように設けられている。実施の形態3においては、抵抗体60Bは、2つに分離されていない。
 絶縁層50Bは、抵抗体60Bの周囲に設けられている。絶縁層50Bは、第1電極層20上に設けられている。絶縁層50Bの厚さは、抵抗体60Bの厚さと略同等に設けられている。パッド電極70Bは、絶縁層50Bおよび抵抗体60Bを覆うように設けられている。
 以上のように構成される場合であっても、基板10の電気抵抗の温度特性と反対の温度特性を有する抵抗体60Bが、第1電極層20に電気的に接続されている。このため、実施の形態3に係るキャパシタ素子100Bにおいても、実施の形態1に係るキャパシタ素子100とほぼ同様の効果が得られる。
 (実施の形態4)
 図8は、実施の形態4に係るキャパシタ素子の概略断面図である。図8を参照して、実施の形態4に係るキャパシタ素子100Cについて説明する。
 図8に示すように、実施の形態4に係るキャパシタ素子100Cは、実施の形態1に係るキャパシタ素子100と比較して、基板10の第2主面10b側に抵抗体60Cが設けられている点において相違する。その他の構成についてはほぼ同様である。
 キャパシタ素子100Cにおいては、基板10の第1主面10a側には抵抗体は設けられておらず、導電接続部81,82は、直接パッド電極70に接続されている。
 キャパシタ素子100Cは、基板10の第2主面10b側に、オーミック層95、抵抗体60C、絶縁層90、および第2電極層30を備える。
 オーミック層95は、第2主面10b上に設けられている。オーミック層95は、第2主面10bの一部を覆うように設けられている。
 オーミック層95は、基板10に対して良好なオーミック接触を形成する材料によって形成されている。オーミック層95を形成する材料としては、基板10にp型有機半導体が用いられる場合には、白金、ニッケル、金、コバルト、パラジウム、銅、モリブデンなどの金属を採用することができ、基板10にn型有機半導体が用いられる場合には、ストロンチウム、カルシウム、ネオジム、マグネシウム、ハフニウムなどを使用することができる。
 抵抗体60Cは、オーミック層95上に設けられている。絶縁層90は、オーミック層95および抵抗体60Cによって構成される積層構造の周囲に設けられている。絶縁層90は、上記積層構造の厚さと略同等に設けられている。
 第2電極層30は、絶縁層90および抵抗体60Cを覆うように設けられている。これにより、抵抗体60Cは、第2電極層30に電気的に接続される。
 このように構成される場合であっても、基板10の電気抵抗の温度特性と反対の温度特性を有する抵抗体60Cが、第2電極層30に電気的に接続されている。このため、実施の形態4に係るキャパシタ素子100Cの温度特性も、実施の形態1に係るキャパシタ素子100とほぼ同様の効果が得られる。
 (実施の形態5)
 図9は、実施の形態5に係るキャパシタ素子の概略断面図である。図9を参照して、実施の形態5に係るキャパシタ素子100Dについて説明する。
 図9に示すように、実施の形態5に係るキャパシタ素子100Dは、実施の形態1に係るキャパシタ素子100と比較した場合に、第1主面10a、誘電体層40Dおよび第1電極層20Dの形状が相違する。その他の構成についてはほぼ同様である。
 第1主面10aには、複数の凹部11aが設けられている。第1主面10a側の表層にはドープ層12が設けられている。ドープ層12は、第1主面10aの内側において複数の凹部11aに沿って設けられている。ドープ層12は、不純物がドープされることで形成される。不純物としては、たとえば、窒素原子を用いすることができるが、これに限定されず、金属元素を用いてもよい。
 誘電体層40Dは、第1主面10aの外側において複数の凹部11aに沿って設けられている。誘電体層40Dは、複数の層を含む。誘電体層40Dは、第1層41および第2層42を有する。第1層41は、第1主面10a上に形成されている。第2層42は、第1層41上に設けられている。
 第1層41および第2層42は、たとえば、SiO、Al、HfO、Ta、ZrO若しくはBaTiOなどの酸化物、または、Siなどの窒化物によって構成されている。第1層41と第2層42は、同じ材料で構成されていてもよいし、異なる材料で構成されていてもよい。
 第1電極層20は、第1主面10aに平行な板状部と誘導体層40の凹部に入り込む部分とを含むように櫛歯状に形成されている。
 以上のように構成される場合であっても、実施の形態5に係るキャパシタ素子100Dにあっても、基板10の電気抵抗の温度特性と反対の温度特性を有する抵抗体60が、第1電極層20に電気的に接続されている。このため、実施の形態5に係るキャパシタ素子100Dにおいても、実施の形態1に係るキャパシタ素子100とほぼ同様の効果が得られる。
 加えて、第1主面10a、第1主面10a、誘電体層40Dおよび第1電極層20Dの形状が上記形状を有することにより、誘電体層40Dが第1電極層20Dと基板10との間で挟まれることで形成される静電容量を増加させることができる。
 上述の実施の形態1から5においては、基板が正の温度特性を有し、抵抗体が負の温度特性を有する場合を例示して説明したが、これに限定されず、基板が負の温度特性を有し、抵抗体が正の温度特性を有していてもよい。
 上述の実施の形態1、2、5においては、パッド電極70の一部が、上方側から第1抵抗体および第2抵抗体に重なるように設けられる場合を例示して説明したが、これに限定されず、第1抵抗体および第2抵抗体の一部が、上方側からパッド電極70に重なるように設けられていてもよい。同様に、第1抵抗体の他の一部が、上方側から接続導電部81に重なるように設けられ、第2抵抗体の他の一部が、上方側から接続導電部82に重なるように設けられていてもよい。
 以上、今回発明された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 10 基板、10a 第1主面、10b 第2主面、11a 凹部、12 ドープ層、20,20D 第1電極層、30 第2電極層、40,40D 誘電体層、41 第1層、42 第2層、50,50B 絶縁層、50a1,50a2 貫通孔、60,60A,60B,60C 抵抗体、61,61A 第1抵抗体、62,62A 第2抵抗体、70,70B パッド電極、81,82 導電接続部、90 絶縁層、95 オーミック層、100,100A,100B,100C,100D,100X キャパシタ素子。

Claims (6)

  1.  第1主面および前記第1主面とは反対側に位置する第2主面を有し、電気抵抗となる基板と、
     前記第1主面側に設けられた第1電極層と、
     前記第2主面側に設けられた第2電極層と、
     前記第1電極層と前記基板との間に設けられた誘電体層と、
     前記第1電極層または前記第2電極層に電気的に接続される抵抗体と、を備え、
     前記抵抗体は、前記基板が有する電気抵抗の温度特性とは反対の温度特性を有する、キャパシタ素子。
  2.  前記第1電極層に電気的に接続され、外部との電気的接続を図るためのパッド電極をさらに備え、
     前記抵抗体は、前記第1電極層と前記パッド電極との間の電流経路上に設けられている、請求項1に記載のキャパシタ素子。
  3.  前記抵抗体は、第1抵抗体および第2抵抗体を含み、
     前記第1抵抗体および前記第2抵抗体は、前記第1主面に平行な平面上において互いに離間して配置されている、請求項2に記載のキャパシタ素子。
  4.  前記第1電極層上に設けられた絶縁層と、
     前記絶縁層を貫通するように設けられた導電接続部と、をさらに備え、
     前記第1抵抗体および前記第2抵抗体は、前記絶縁層上において互いに対峙するように配置されており、
     前記パッド電極は、前記第1抵抗体および前記第2抵抗体の間に位置する部分の前記絶縁層を覆い、かつ、一部が前記第1抵抗体および前記第2抵抗体に重なるように設けられ、
     前記第1抵抗体および前記第2抵抗体の各々は、前記導電接続部によって前記第1電極層と電気的に接続されている、請求項3に記載のキャパシタ素子。
  5.  前記第1抵抗体および前記第2抵抗体の各々は、島状に設けられている、請求項3または4に記載のキャパシタ素子。
  6.  前記第2主面上に設けられたオーミック層をさらに備え、
     前記抵抗体は、前記第2電極層と前記オーミック層との間に設けられている、請求項1に記載のキャパシタ素子。
PCT/JP2019/037211 2019-02-08 2019-09-24 キャパシタ素子 WO2020161958A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021728 2019-02-08
JP2019-021728 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020161958A1 true WO2020161958A1 (ja) 2020-08-13

Family

ID=71947542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037211 WO2020161958A1 (ja) 2019-02-08 2019-09-24 キャパシタ素子

Country Status (1)

Country Link
WO (1) WO2020161958A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084991A (ja) * 2006-09-26 2008-04-10 Mitsubishi Materials Corp サーミスタ薄膜及び薄膜サーミスタ素子
JP2008270447A (ja) * 2007-04-19 2008-11-06 Mitsubishi Materials Corp 薄型複合素子及びその製造方法
JP2009076608A (ja) * 2007-09-19 2009-04-09 Mitsubishi Materials Corp 薄膜サーミスタ及び薄膜サーミスタの製造方法
JP2011228706A (ja) * 2010-04-19 2011-11-10 Electronics And Telecommunications Research Institute 可変ゲート電界効果トランジスタ(fet)及びこのfetを備える電気電子装置
JP2014053392A (ja) * 2012-09-06 2014-03-20 Sumitomo Electric Ind Ltd ワイドギャップ半導体装置およびその製造方法
JP2014241434A (ja) * 2014-08-06 2014-12-25 日産自動車株式会社 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084991A (ja) * 2006-09-26 2008-04-10 Mitsubishi Materials Corp サーミスタ薄膜及び薄膜サーミスタ素子
JP2008270447A (ja) * 2007-04-19 2008-11-06 Mitsubishi Materials Corp 薄型複合素子及びその製造方法
JP2009076608A (ja) * 2007-09-19 2009-04-09 Mitsubishi Materials Corp 薄膜サーミスタ及び薄膜サーミスタの製造方法
JP2011228706A (ja) * 2010-04-19 2011-11-10 Electronics And Telecommunications Research Institute 可変ゲート電界効果トランジスタ(fet)及びこのfetを備える電気電子装置
JP2014053392A (ja) * 2012-09-06 2014-03-20 Sumitomo Electric Ind Ltd ワイドギャップ半導体装置およびその製造方法
JP2014241434A (ja) * 2014-08-06 2014-12-25 日産自動車株式会社 半導体装置

Similar Documents

Publication Publication Date Title
JP6222365B2 (ja) Esd保護機能付複合電子部品
US20150255699A1 (en) Piezoelectronic device with novel force amplification
US20220084754A1 (en) Capacitor
US20190172806A1 (en) Semiconductor element
US11521800B2 (en) Capacitor
US11303201B2 (en) CR snubber element
WO2020161958A1 (ja) キャパシタ素子
CN111279466B (zh) 半导体装置
CN111263978B (zh) 半导体装置
JPH0636904A (ja) 正特性サーミスタ
CN114207746B (zh) Ntc热敏电阻元件
CN112041954B (zh) 电容器集合体
WO2022255036A1 (ja) 電子部品
WO2020170750A1 (ja) 抵抗器
JP4951851B2 (ja) 半導体装置
JPS5947755A (ja) 半導体装置
CN114270455A (zh) 包括浮置或虚设或分离的内部电极的压敏电阻器
JP2023102918A (ja) 半導体装置
JP4222975B2 (ja) 薄膜導体及びこれを用いた弾性表面波素子
JPH11214631A (ja) 電圧分割抵抗器及び電圧分割回路
JP2000307064A (ja) 半導体抵抗

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP