WO2020158733A1 - メッシュ構造体およびその製造方法、アンテナ反射鏡、電磁シールド材、導波管 - Google Patents

メッシュ構造体およびその製造方法、アンテナ反射鏡、電磁シールド材、導波管 Download PDF

Info

Publication number
WO2020158733A1
WO2020158733A1 PCT/JP2020/002984 JP2020002984W WO2020158733A1 WO 2020158733 A1 WO2020158733 A1 WO 2020158733A1 JP 2020002984 W JP2020002984 W JP 2020002984W WO 2020158733 A1 WO2020158733 A1 WO 2020158733A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh structure
fiber
waveguide
strand
stainless steel
Prior art date
Application number
PCT/JP2020/002984
Other languages
English (en)
French (fr)
Inventor
小澤 悟
顕太郎 西
和行 中村
森 正俊
大介 松本
正章 赤岩
壱藏 川村
Original Assignee
国立研究開発法人宇宙航空研究開発機構
株式会社テクノソルバ
光洋マテリカ株式会社
太陽金網株式会社
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構, 株式会社テクノソルバ, 光洋マテリカ株式会社, 太陽金網株式会社, 日本碍子株式会社 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to US17/424,201 priority Critical patent/US20220064826A1/en
Priority to DE112020000565.8T priority patent/DE112020000565T5/de
Priority to CN202080010763.8A priority patent/CN113366163A/zh
Publication of WO2020158733A1 publication Critical patent/WO2020158733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/25Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0058Electromagnetic radiation resistant
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/60Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the warp or weft elements other than yarns or threads
    • D03D15/68Scaffolding threads, i.e. threads removed after weaving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/10Open-work fabrics
    • D04B21/12Open-work fabrics characterised by thread material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • D06M11/05Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/168Mesh reflectors mounted on a non-collapsible frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/18Reflecting surfaces; Equivalent structures comprising plurality of mutually inclined plane surfaces, e.g. corner reflector
    • H01Q15/20Collapsible reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial

Definitions

  • the present invention relates to a mesh structure, a method for manufacturing the same, an antenna reflector including the mesh structure, an electromagnetic shield material, and a waveguide.
  • the present application claims priority based on Japanese Patent Application No. 2019-012534 filed in Japan on January 28, 2019, and the content thereof is incorporated herein.
  • a metal mesh structure is used for the antenna reflector.
  • This mesh structure is obtained by braiding molybdenum fibers with gold-plated wires (gold-plated molybdenum fiber wires) by tricot knitting (double atlas knitting).
  • This mesh structure reflects S band radio waves (see, for example, Non-Patent Document 1).
  • gold-plated molybdenum fiber contains molybdenum, which is a rare metal, it is feared that it will be difficult to secure resources. Therefore, there has been a demand for a mesh structure using a material having the same performance as the gold-plated molybdenum fiber in terms of conductivity, elastic modulus, mechanical strength, and coefficient of thermal expansion.
  • the present invention has been made in view of the above circumstances, it is easy to secure resources, and a mesh structure including a material having performance equivalent to that of a gold-plated molybdenum fiber, a manufacturing method thereof, and an antenna including the mesh structure.
  • An object is to provide a reflector, an electromagnetic shield material, and a waveguide.
  • the present invention is a mesh structure, which is a knitted fabric or woven fabric including a zirconium copper fiber strand or a stainless steel fiber strand.
  • the zirconium copper fiber and the stainless steel fiber have the same performance as the gold-plated molybdenum fiber in terms of conductivity, elastic modulus, mechanical strength and coefficient of thermal expansion. It is possible to obtain an antenna reflecting mirror surface or the like having desired performance without using. Further, according to the mesh structure of the present invention, since it is a knitted fabric or a woven fabric containing zirconium copper fibers and stainless steel fibers, it can be manufactured at a lower cost than a mesh structure made of gold-plated molybdenum fibers.
  • the present invention also provides a method for producing a mesh structure, comprising a first knitted fabric or a first woven fabric including a strand of zirconium copper fiber or a strand of stainless steel fiber and a strand of water-soluble fiber.
  • the strands of the water-soluble fiber reduce friction generated between the strands, It is possible to prevent the wires from breaking due to the contact between the wires. Further, the strands of the water-soluble fiber can be easily removed while maintaining the shape of the first knitted fabric or the first woven fabric.
  • the mesh structure of the present invention it is easy to secure resources, and it is possible to exhibit the same performance as the gold-plated molybdenum fiber in terms of conductivity, elastic modulus, mechanical strength, and coefficient of thermal expansion.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the waveguide according to the embodiment of the present invention, which is taken along the line AA of FIG. 4.
  • FIG. 7 is a sectional view taken along the line BB of FIG. 6, showing a schematic configuration of a waveguide according to an embodiment of the present invention.
  • FIG. 1 is a plan view showing a schematic configuration of a mesh structure of this embodiment.
  • the mesh structure 1 of this embodiment is a knitted fabric including the strands 10 as shown in FIG.
  • the mesh structure 1 of the present embodiment is a knitted fabric that is knitted into a mesh shape (mesh shape) using the strands 10.
  • FIG. 1 illustrates a case where the mesh structure 1 is a knitted fabric in which the wires 10 are tricot-knitted.
  • the mesh structure 1 of the present embodiment is not limited to a knitted fabric in which the wire 10 is tricot-knitted.
  • the mesh structure 1 of the present embodiment is a knitted piece of the wire 10, a knitted piece of the wire 10, a double atlas knitted piece of the wire 10, a single satin knitted piece of the wire 10, and the like. May be.
  • the size of the knitting width is not particularly limited, and is appropriately adjusted according to the application of the mesh structure 1 and the like.
  • the size of the knitting width of the knitted fabric is adjusted according to the wavelengths of radio waves transmitted and received by the antenna reflecting mirror surface.
  • the mesh structure 1 of this embodiment may be a woven fabric including the strands 10.
  • the mesh structure 1 of the present embodiment may be a plain weave fabric in which the strands 10 are used as warp yarns and weft yarns, and the warp yarns and the weft yarns are alternately crossed and densely woven. It may be a satin weave fabric in which any one is floated on the surface of the fabric for a long time, and is a twill weave fabric in which three or more warps and wefts are combined vertically and continuously to form diagonal lines on the surface of the fabric. May be.
  • the strand 10 is a zirconium copper fiber strand or a stainless steel fiber strand.
  • the strand 10 may be a single fiber of zirconium copper fiber or a single fiber of stainless steel fiber, or may be a bundle of fibers obtained by bundling two or more single fibers of zirconium copper fiber or stainless steel fiber. Good.
  • Zirconium copper fiber is a fiber obtained by wire drawing an alloy in which zirconium is added in an amount of 0.25 at% (atomic percentage) to 5.0 at%.
  • Zirconium copper fiber has high conductivity, high elastic modulus, high mechanical strength, low coefficient of thermal expansion, conductivity of 15%IACS-95%IACS, mechanical strength of 450MPa-2000MPa, Zirconium copper fibers having a thermal expansion coefficient of about 1.8 ⁇ 10 ⁇ 5 /° C. are preferably used.
  • the stainless steel fiber is a fiber obtained by drawing stainless steel.
  • the stainless steel fibers have high mechanical strength, and known stainless steel fibers can be used.
  • the diameter of the wire 10 is not particularly limited, and is appropriately adjusted according to the application of the mesh structure 1.
  • a plating layer may be provided on the surface of the zirconium copper fiber strand or the surface of the stainless steel fiber strand.
  • the plating layer smoothes the surface of the zirconium copper fiber strand and the surface of the stainless steel fiber strand. Thereby, when the strands 10 are knitted into a knit, it is possible to reduce the friction generated between the strands 10 and prevent the strands 10 from being broken by the contact between the strands 10.
  • Examples of the plating layer include a gold plating layer and a nickel plating layer.
  • the thickness of the plating layer is not particularly limited as long as the surface of the zirconium copper fiber strand or the surface of the stainless steel fiber strand can be made smooth.
  • an electrolytic plating method or an electroless plating method is used as a method of forming the plating layer.
  • the mesh structure 1 of the present embodiment is a knitted fabric or a woven fabric containing zirconium copper fiber or stainless steel fiber, it has flexibility capable of forming any shape.
  • the zirconium copper fiber or the stainless steel fiber is a rare metal because it has the same performance as the gold-plated molybdenum fiber in terms of conductivity, elastic modulus, mechanical strength and coefficient of thermal expansion.
  • An antenna reflecting mirror surface having desired performance can be obtained without using molybdenum.
  • the mesh structure 1 of the present embodiment is a knitted fabric or woven fabric containing zirconium copper fibers or stainless steel fibers, it can be manufactured at a lower cost than a mesh structure made of gold-plated molybdenum fibers.
  • the method for producing a mesh structure of the present embodiment is a step of forming a first knitted fabric or a first woven fabric including a zirconium copper fiber strand or a stainless steel fiber strand and a water-soluble fiber strand ( Hereinafter, referred to as “first step”), the first knitted fabric or the first woven fabric is immersed in water to dissolve the wire of the water-soluble fiber, and the wire of zirconium copper fiber or the stainless steel fiber. And a step of forming a second knitted fabric or a second woven fabric including the element wire (hereinafter, referred to as “second step”).
  • the zirconium copper fiber strand or the stainless steel fiber strand may be referred to as the "first strand”
  • the water-soluble fiber strand may be referred to as the "second strand”.
  • the first strand and the second strand are combined to form a mesh to form a first knitted fabric or a first woven fabric.
  • the first strand and the second strand are bundled to form a bundle of strands, and the bundle of strands is formed in a mesh shape to form a first knitted fabric or a first woven fabric.
  • the first strand may be a zirconium copper fiber monofilament or a stainless steel fiber monofilament, and is a bundle of fibers obtained by bundling two or more zirconium copper fiber monofilaments or stainless steel fiber monofilaments. May be.
  • the bundle of the 1st strand and the 2nd strand may be formed by twisting the 1st strand and the 2nd strand, and the 1st strand and the 2nd strand are mutually formed. You may form so that it may contact along each longitudinal direction.
  • the first knit in the first step by using a bundle of the first strand and the second strand, tricot knitting, knitting, knitting, double atlas knitting, single satin knitting, etc. , Forming a first knit.
  • the mesh structure is used as an antenna reflector, for example, the size of the knitting width of the first knitted fabric is adjusted according to the wavelengths of radio waves transmitted and received by the antenna reflector.
  • the first woven fabric is formed by plain weave, satin weave, twill weave, etc. using the bundle of the first strand and the second strand.
  • Examples of the resin forming the strands of the water-soluble fiber include resol type phenol resin, methylolated urea (urea) resin, methylolated melamine resin, polyvinyl alcohol, polyethylene oxide, polyacrylamide, carboxymethyl cellulose, and the like. There is no limitation, and a known water-soluble resin can be used.
  • the diameter of the wire of the water-soluble fiber is not particularly limited and may be adjusted as appropriate according to the application of the mesh structure.
  • the first knitted fabric or the first woven fabric is immersed in water to dissolve the wires of the water-soluble fibers forming the first knitted fabric or the first woven fabric, and the zirconium copper fiber strands.
  • a second knitted fabric or a second woven fabric including a strand of stainless steel fiber is formed.
  • a second knitted fabric or a second woven fabric containing a zirconium copper fiber strand or a stainless steel fiber strand is obtained.
  • the second knitted fabric is obtained by removing the wires of the water-soluble fiber from the first knitted fabric.
  • the second woven fabric is obtained by removing the strands of the water-soluble fiber from the first woven fabric. That is, the second knitted fabric or the second woven fabric is the mesh structure described above.
  • the temperature of water for melting the wire of the water-soluble fiber is not particularly limited, but it is preferably a temperature at which the wire of the water-soluble fiber can be melted in a short time.
  • a first knitted fabric or a first woven fabric including a strand of zirconium copper fiber or a strand of stainless steel fiber and a strand of water-soluble fiber is formed. Since it has the first step, when forming the first knitted fabric or the first woven fabric, the friction between the wires is reduced by the wires of the water-soluble fiber, and the wires are in contact with each other. It is possible to prevent the wires from breaking. Further, according to the method for manufacturing a mesh structure of the present embodiment, the first knitted fabric or the first woven fabric is immersed in water to dissolve the wire of the water-soluble fiber, and the wire of zirconium copper fiber or stainless steel.
  • the method has the second step of forming the second knitted fabric or the second woven fabric containing the strands of steel fiber, the strands of the water-soluble fiber are retained while maintaining the shape of the first knitted fabric or the first woven fabric. It can be easily removed to obtain a mesh structure that is a knit or woven fabric containing zirconium copper fiber strands or stainless steel fiber strands.
  • FIG. 2 is a perspective view showing a schematic configuration of the antenna reflector of this embodiment.
  • the antenna reflector 100 of this embodiment includes the mesh structure 1 described above.
  • the mesh structure 1 described above constitutes the antenna reflector surface 130.
  • the antenna reflector 100 of this embodiment includes an antenna expansion mechanism 110, a band 120 for adjusting the phase angle of the antenna expansion mechanism 110, and an antenna reflection mirror surface 130. Note that, in FIG. 2, only the mesh structure 1 that constitutes the antenna reflecting mirror surface 130 is shown.
  • the antenna deployment mechanism 110 is configured to be deformable between a housed state and a deployed state by a link mechanism.
  • the antenna deployment mechanism 110 includes, for example, a support member for mounting the mesh structure 1 at a position that is a vertex of a hexagon.
  • the mesh structure 1 may have foldable flexibility.
  • the antenna reflector 100 is housed in the rocket fairing in a folded state, and is deployed in outer space into the deployment shape shown in FIG. In the expanded state, appropriate tension is applied to the mesh structure 1 from the antenna expansion mechanism 110, the mesh structure 1 is expanded into a predetermined shape, and the antenna reflecting mirror surface 130 is formed.
  • the zirconium copper fiber or the stainless steel fiber forming the mesh structure 1 since the above-mentioned mesh structure 1 constitutes the antenna reflecting mirror surface 130, the zirconium copper fiber or the stainless steel fiber forming the mesh structure 1 has conductivity, elastic modulus, In terms of mechanical strength and coefficient of thermal expansion, it has the same performance as that of the gold-plated molybdenum fiber, so that an antenna reflector having desired communication performance (reflection performance) can be obtained.
  • FIG. 3 is a perspective view showing a schematic configuration of the electromagnetic shield material of the present embodiment.
  • the electromagnetic shield material 200 of the present embodiment includes the mesh structure 1 described above, as shown in FIG. As shown in FIG. 3, the electromagnetic shield material 200 of the present embodiment is used to cover, for example, the outer periphery of the magnetic storage device 300.
  • the magnetic storage device 300 includes a magnetic disk 310, a head 320 that writes to and reads from the magnetic disk 310, and a housing 330 that houses the magnetic disk 310 and the head 320.
  • the size of the knitting width of the mesh structure 1 is adjusted according to the desired shielding property.
  • the electromagnetic shield material 200 covers the outer periphery of the housing 330 , but the present embodiment is not limited to this.
  • the electromagnetic shield material 200 of this embodiment may be integrated with the housing 330. That is, the electromagnetic shield material 200 may be embedded in the housing 330, or the electromagnetic shield material 200 may be bonded to the outer peripheral surface of the housing 330.
  • the electromagnetic shield material 200 of this embodiment can be used without limiting the target device for electromagnetic shielding, such as electronic devices and devices such as personal computers, mobile phones, and displays.
  • the zirconium copper fiber or the stainless steel fiber forming the mesh structure 1 has conductivity, elastic modulus, mechanical strength and thermal expansion. Since it has the same performance as that of the gold-plated molybdenum fiber, the electromagnetic shielding material having the desired shielding property can be obtained.
  • FIG. 4 is a perspective view showing a schematic configuration of the waveguide of this embodiment.
  • FIG. 5 is a sectional view taken along the line AA of FIG. 4, showing a schematic configuration of the waveguide of the present embodiment.
  • the waveguide 400 of the present embodiment includes the mesh structure 1 described above, as shown in FIGS. 4 and 5.
  • the waveguide 400 of the present embodiment includes a waveguide section 410 formed of a tube (hollow body) having a rectangular cross-section perpendicular to the longitudinal direction, and guides including flanges 420 and 420 connected to both ends of the waveguide section 410, respectively.
  • the waveguide main body 430 and the mesh structure 1 arranged along the inner surface 410a in the waveguide 410 are included.
  • the opening 411 of the waveguide 410 is provided on the flange 420, and the waveguide 410 is open at the surface 420 a of the flange 420.
  • the waveguide body 430 is made of carbon fiber reinforced plastic containing a resin such as epoxy resin as a base material and carbon fiber as a reinforcing material.
  • the inner surface of the waveguide section 410 is formed. Electromagnetic waves can be transmitted in the waveguide section 410 without forming a conductive coating on the 410a by gold plating or the like. That is, according to the waveguide 400 of the present embodiment, the process of forming a conductive coating film on the inner surface 410a of the waveguide portion 410 by gold plating or the like as in the related art is not necessary, so that the manufacturing cost can be reduced. You can
  • the present embodiment is not limited to this.
  • the waveguide 400 of the present embodiment may have a cross-sectional shape perpendicular to the longitudinal direction of the waveguide section 410 that is a square shape, a circular shape, an elliptical shape, or the like.
  • FIG. 6 is a perspective view showing a schematic configuration of the waveguide of this embodiment.
  • FIG. 7 is a sectional view taken along the line BB of FIG. 6, showing a schematic configuration of the waveguide of this embodiment.
  • the waveguide 500 of the present embodiment includes the mesh structure 1 described above, as shown in FIGS. 6 and 7.
  • the waveguide 500 of the present embodiment includes a bellows hose-shaped waveguide section 510 formed of a tube (hollow body) having a rectangular cross-section perpendicular to the longitudinal direction, and flanges 520 connected to both ends of the waveguide section 510, respectively.
  • the waveguide main body 530 including 520 and the mesh structure 1 lined in the waveguide section 510 are included.
  • the opening 511 of the waveguide 510 is provided in the flange 520, and the waveguide 510 is open at the surface 520 a of the flange 520.
  • the waveguide body 530 is made of metal, plastic, carbon fiber reinforced plastic, or the like.
  • the waveguide 500 of the present embodiment has the bellows hose-shaped waveguide portion 510 and the above-mentioned mesh structure 1 lined with the waveguide portion 510, and thus has flexibility.
  • the waveguide 500 of the present embodiment since the above-mentioned mesh structure 1 is lined in the bellows hose-shaped waveguide portion 510, a smooth conductive member made of the mesh structure 1 is provided inside the waveguide portion 510. Waveguides can be formed. As a result, it is possible to reduce the loss of the electromagnetic waves transmitted in the waveguide section 510.
  • the waveguide 500 of the present embodiment the case where the cross-sectional shape of the waveguide 510 perpendicular to the longitudinal direction is rectangular is illustrated, but the present embodiment is not limited to this.
  • the waveguide 500 of this embodiment may have a square, circular, elliptical, or other cross-sectional shape perpendicular to the longitudinal direction of the waveguide 510.
  • the mesh structure described above makes it easy to secure resources, and can exhibit the same performance as gold-plated molybdenum fibers in terms of conductivity, elastic modulus, mechanical strength, and coefficient of thermal expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Aerials With Secondary Devices (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Woven Fabrics (AREA)
  • Waveguides (AREA)
  • Details Of Aerials (AREA)
  • Laminated Bodies (AREA)
  • Knitting Of Fabric (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

このメッシュ構造体(1)は、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む編物または織物である。

Description

メッシュ構造体およびその製造方法、アンテナ反射鏡、電磁シールド材、導波管
 本発明は、メッシュ構造体およびその製造方法、メッシュ構造体を含むアンテナ反射鏡、電磁シールド材および導波管に関する。
 本願は、2019年1月28日に、日本に出願された特願2019-012534号に基づき優先権を主張し、その内容をここに援用する。
 技術試験衛星VIII型(ETS-VIII)「きく8号」の大型展開アンテナ(LDR)では、アンテナ反射鏡に金属製のメッシュ構造体が使用されている。このメッシュ構造体は、モリブデン繊維に金メッキした素線(金メッキモリブデン繊維の素線)を、トリコット編み(ダブルアトラス編み)で編み込んだものである。このメッシュ構造体は、S帯の電波を反射する(例えば、非特許文献1参照)。
 金メッキモリブデン繊維は、レアメタルであるモリブデンを含むため、資源の確保が難しくなることが懸念される。そのため、導電性、弾性率、機械的強度、熱膨張率において、金メッキモリブデン繊維と同等の性能を有する材料を用いたメッシュ構造体が望まれていた。
 本発明は、上記事情に鑑みてなされたものであって、資源の確保が容易であり、金メッキモリブデン繊維と同等の性能を有する材料を含むメッシュ構造体およびその製造方法、メッシュ構造体を含むアンテナ反射鏡、電磁シールド材および導波管を提供することを目的とする。
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明は、メッシュ構造体であって、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む編物または織物である。
 この発明に係るメッシュ構造体によれば、ジルコニウム銅繊維およびステンレス鋼繊維が、導電性、弾性率、機械的強度および熱膨張率において、金メッキモリブデン繊維と同等の性能を有するため、レアメタルであるモリブデンを用いることなく、所望の性能を有するアンテナ反射鏡面等が得られる。また、この発明に係るメッシュ構造体によれば、ジルコニウム銅繊維およびステンレス鋼繊維を含む編物または織物であるため、金メッキモリブデン繊維からなるメッシュ構造体よりも安価に製造できる。
 また、本発明は、メッシュ構造体の製造方法であって、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線と、水溶性繊維の素線とを含む第1の編物または第1の織物を形成する工程と、前記第1の編物または前記第1の織物を水中に浸漬して、前記水溶性繊維の素線を溶解し、前記ジルコニウム銅繊維の素線または前記ステンレス鋼繊維の素線を含む第2の編物または第2の織物を形成する工程と、を有する。
 この発明に係るメッシュ構造体の製造方法によれば、第1の編物または第1の織物を形成する際に、水溶性繊維の素線により、素線同士の間に生じる摩擦を低減し、素線同士の接触によって、素線が折れることを防止できる。また、第1の編物または第1の織物の形状を保ったまま、水溶性繊維の素線を容易に除去できる。
 この発明に係るメッシュ構造体によれば、資源の確保が容易であり、導電性、弾性率、機械的強度、熱膨張率において、金メッキモリブデン繊維と同等の性能を発揮することができる。
本発明の実施形態に係るメッシュ構造体の概略構成を示す平面図である。 本発明の実施形態に係るアンテナ反射鏡の概略構成を示す斜視図である。 本発明の実施形態に係る電磁シールド材の概略構成を示す斜視図である。 本発明の実施形態に係る導波管の概略構成を示す斜視図である。 本発明の実施形態に係る導波管の概略構成を示し、図4のA-A線に沿う断面図である。 本発明の実施形態に係る導波管の概略構成を示す斜視図である。 本発明の実施形態に係る導波管の概略構成を示し、図6のB-B線に沿う断面図である。
[メッシュ構造体]
 以下、図1を参照して、本実施形態のメッシュ構造体について説明する。
 図1は、本実施形態のメッシュ構造体の概略構成を示す平面図である。
 本実施形態のメッシュ構造体1は、図1に示すように、素線10を含む編物である。言い換えれば、本実施形態のメッシュ構造体1は、素線10を用いてメッシュ状(網目状)に編成した編物である。
 図1には、メッシュ構造体1が、素線10をトリコット編みした編物である場合を例示する。本実施形態のメッシュ構造体1は、素線10をトリコット編みした編物に限定されない。本実施形態のメッシュ構造体1は、素線10をニット編みした編物、素線10をメリヤス編みした編物、素線10をダブルアトラス編みした編物、素線10をシングルサテン編みした編物等であってもよい。
 メッシュ構造体1が編物である場合、編み幅の大きさは特に限定されず、メッシュ構造体1の用途等に応じて適宜調整される。例えば、メッシュ構造体1を、アンテナ反射鏡面として用いる場合、編物の編み幅の大きさは、アンテナ反射鏡面によって送信および受信する電波の波長に応じて調整される。
 また、本実施形態のメッシュ構造体1は、素線10を含む織物であってもよい。言い換えれば、本実施形態のメッシュ構造体1は、素線10を経糸および緯糸として用い、その経糸および緯糸を交互に交差させて密に織り上げた平織の織物であってもよく、経糸または緯糸のいずれかを織物の表面に長く浮かせて織り上げる繻子織の織物であってもよく、経糸と緯糸を3本以上、上下に組合せて連続させ織物の表面に斜めの線を浮き出させる綾織の織物であってもよい。
 素線10は、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線である。素線10は、ジルコニウム銅繊維の単繊維またはステンレス鋼繊維の単繊維であってもよく、ジルコニウム銅繊維の単繊維またはステンレス鋼繊維の単繊維を2本以上束ねた繊維の束であってもよい。
 ジルコニウム銅繊維は、銅にジルコニウムを0.25at%(アトミック・パーセント)~5.0at%添加した合金を伸線加工した繊維である。ジルコニウム銅繊維は、導電性が高く、弾性率が高く、機械的強度が高く、熱膨張率が低く、導電率は15%IACS~95%IACSであり、機械的強度は450MPa~2000MPaであり、熱膨張係数は1.8×10-5/℃程度のジルコニウム銅繊維が好ましく用いられる。
 ステンレス鋼繊維は、ステンレス鋼を伸線加工した繊維である。ステンレス鋼繊維は、機械的強度が高く、公知のステンレス鋼繊維を用いることができる。
 素線10の直径は、特に限定されず、メッシュ構造体1の用途等に応じて適宜調整される。
 ジルコニウム銅繊維の素線の表面またはステンレス鋼繊維の素線の表面には、メッキ層が設けられていてもよい。メッキ層は、ジルコニウム銅繊維の素線の表面およびステンレス鋼繊維の素線の表面を平滑にする。これにより、素線10を編んで編物とした場合に、素線10同士の間に生じる摩擦を低減し、素線10同士の接触によって、素線10が折れることを防止できる。
 メッキ層としては、金メッキ層、ニッケルメッキ層が挙げられる。
 メッキ層の厚さは、ジルコニウム銅繊維の素線の表面またはステンレス鋼繊維の素線の表面を平滑にすることができれば、特に限定されない。
 メッキ層の形成方法としては、電解メッキ法または無電解メッキ法が用いられる。
 本実施形態のメッシュ構造体1は、ジルコニウム銅繊維またはステンレス鋼繊維を含む編物または織物であるため、任意の形状をなすことができる柔軟性を有する。
 本実施形態のメッシュ構造体1によれば、ジルコニウム銅繊維またはステンレス鋼繊維が、導電性、弾性率、機械的強度および熱膨張率において、金メッキモリブデン繊維と同等の性能を有するため、レアメタルであるモリブデンを用いることなく、所望の性能を有するアンテナ反射鏡面等が得られる。また、本実施形態のメッシュ構造体1は、ジルコニウム銅繊維またはステンレス鋼繊維を含む編物または織物であるため、金メッキモリブデン繊維からなるメッシュ構造体よりも安価に製造できる。
[メッシュ構造体の製造方法]
 本実施形態のメッシュ構造体の製造方法は、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線と、水溶性繊維の素線とを含む第1の編物または第1の織物を形成する工程(以下、「第1の工程」と言う。)と、第1の編物または第1の織物を水中に浸漬して、水溶性繊維の素線を溶解し、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む第2の編物または第2の織物を形成する工程(以下、「第2の工程」と言う。)と、を有する。
 ここで、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を「第1の素線」、水溶性繊維の素線を「第2の素線」という場合がある。
 第1の工程では、第1の素線と第2の素線を合わせてメッシュ状に形成し、第1の編物または第1の織物を形成する。具体的には、第1の素線と第2の素線を束ねて素線の束とし、その素線の束をメッシュ状に形成し、第1の編物または第1の織物を形成する。
 第1の素線は、ジルコニウム銅繊維の単繊維またはステンレス鋼繊維の単繊維であってもよく、ジルコニウム銅繊維の単繊維またはステンレス鋼繊維の単繊維を2本以上束ねた繊維の束であってもよい。
 第1の素線と第2の素線の束は、第1の素線と第2の素線が撚られて形成されていてもよく、第1の素線と第2の素線が互いにそれぞれの長手方向に沿って接するように形成されていてもよい。
 第1の工程にて第1の編物を形成する場合、第1の素線と第2の素線の束を用いて、トリコット編み、ニット編み、メリヤス編み、ダブルアトラス編み、シングルサテン編み等により、第1の編物を形成する。
 また、メッシュ構造体を、例えば、アンテナ反射鏡として用いる場合、第1の編物の編み幅の大きさを、アンテナ反射鏡によって送信および受信する電波の波長に応じて調整する。
 第1の工程にて第1の織物を形成する場合、第1の素線と第2の素線の束を用いて、平織、繻子織、綾織等により、第1の織物を形成する。
 水溶性繊維の素線を構成する樹脂としては、レゾール型フェノール樹脂、メチロール化ユリア(尿素)樹脂、メチロール化メラミン樹脂、ポリビニルアルコール、ポリエチレンオキシド、ポリアクリルアミド、カルボキシメチルセルロース等が挙げられるが、これらに限定されず、公知の水溶性樹脂を用いることができる。
 水溶性繊維の素線の直径は、特に限定されず、メッシュ構造体の用途等に応じて適宜調整される。
 第2の工程では、第1の編物または第1の織物を水中に浸漬して、第1の編物または第1の織物を形成する水溶性繊維の素線を溶解し、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む第2の編物または第2の織物を形成する。第1の編物または第1の織物を水中に浸漬すると、第1の編物または第1の織物を形成していた水溶性繊維の素線のみが溶解して消失し、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線が、第1の編物または第1の織物の形状を保持したまま残る。これにより、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む第2の編物または第2の織物が得られる。
 第2の編物は、第1の編物から水溶性繊維の素線を除去したものである。第2の織物は、第1の織物から水溶性繊維の素線を除去したものである。すなわち、第2の編物または第2の織物は、上述のメッシュ構造体である。
 水溶性繊維の素線を溶解する際、水の温度は特に限定されないが、水溶性繊維の素線を短時間で溶解することができる温度であることが好ましい。
 本実施形態のメッシュ構造体の製造方法によれば、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線と、水溶性繊維の素線とを含む第1の編物または第1の織物を形成する第1の工程を有するため、第1の編物または第1の織物を形成する際に、水溶性繊維の素線により、素線同士の間に生じる摩擦を低減し、素線同士の接触によって、素線が折れることを防止できる。また、本実施形態のメッシュ構造体の製造方法によれば、第1の編物または第1の織物を水中に浸漬して、水溶性繊維の素線を溶解し、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む第2の編物または第2の織物を形成する第2の工程を有するため、第1の編物または第1の織物の形状を保ったまま、水溶性繊維の素線を容易に除去して、ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む編物または織物であるメッシュ構造体を得ることができる。
[アンテナ反射鏡]
 図2は、本実施形態のアンテナ反射鏡の概略構成を示す斜視図である。
 本実施形態のアンテナ反射鏡100は、図2に示すように、上述のメッシュ構造体1を含む。詳細には、本実施形態のアンテナ反射鏡100では、上述のメッシュ構造体1がアンテナ反射鏡面130を構成する。
 図2に示すように、本実施形態のアンテナ反射鏡100は、アンテナ展開機構110と、アンテナ展開機構110の位相角度を調整するバンド120と、アンテナ反射鏡面130と、を含む。なお、図2では、アンテナ反射鏡面130として、それを構成するメッシュ構造体1のみを示している。
 アンテナ展開機構110は、リンク機構により収容状態と展開状態との間で変形可能に構成されている。アンテナ展開機構110は、例えば、六角形の頂点となる位置にメッシュ構造体1を取り付けるための支持部材を含む。
 メッシュ構造体1は、折り畳み可能な柔軟性を有していてもよい。
 アンテナ反射鏡100は、折り畳まれた状態でロケットのフェアリング内に収容され、宇宙空間において図2に示す展開形状に展開される。展開された状態で、アンテナ展開機構110からメッシュ構造体1に適切な張力が与えられ、メッシュ構造体1が所定の形状に広げられ、アンテナ反射鏡面130を形成する。
 本実施形態のアンテナ反射鏡100によれば、上述のメッシュ構造体1がアンテナ反射鏡面130を構成するため、メッシュ構造体1を構成するジルコニウム銅繊維またはステンレス鋼繊維が、導電性、弾性率、機械的強度および熱膨張率において、金メッキモリブデン繊維と同等の性能を有するから、所望の通信性能(反射性能)を有するアンテナ反射鏡が得られる。
[電磁シールド材]
 図3は、本実施形態の電磁シールド材の概略構成を示す斜視図である。
 本実施形態の電磁シールド材200は、図3に示すように、上述のメッシュ構造体1を含む。
 本実施形態の電磁シールド材200は、図3に示すように、例えば、磁気記憶装置300の外周を覆うように用いられる。
 磁気記憶装置300は、磁気ディスク310と、磁気ディスク310に対して書込みおよび読出しを行うヘッド320と、磁気ディスク310およびヘッド320を収容する筐体330と、を含む。
 メッシュ構造体1が電磁シールド材200を構成する場合、メッシュ構造体1の編み幅の大きさは、目的とする遮蔽性に応じて調整される。
 ここでは、電磁シールド材200が筐体330の外周を覆っている場合を例示したが、本実施形態はこれに限定されない。本実施形態の電磁シールド材200は筐体330と一体をなしていてもよい。すなわち、電磁シールド材200が筐体330内に埋設されていてもよく、電磁シールド材200が筐体330の外周面に接着されていてもよい。
 本実施形態の電磁シールド材200は、例えば、パソコン、携帯電話、ディスプレイ等の電子機器やデバイス等、電磁シールドするために対象機器を限定せずに用いることができる。
 本実施形態の電磁シールド材200によれば、上述のメッシュ構造体1を含むため、メッシュ構造体1を構成するジルコニウム銅繊維またはステンレス鋼繊維が、導電性、弾性率、機械的強度および熱膨張率において、金メッキモリブデン繊維と同等の性能を有するから、所望の遮蔽性を有する電磁シールド材が得られる。
[導波管]
 図4は、本実施形態の導波管の概略構成を示す斜視図である。図5は、本実施形態の導波管の概略構成を示し、図4のA-A線に沿う断面図である。
 本実施形態の導波管400は、図4および図5に示すように、上述のメッシュ構造体1を含む。
 本実施形態の導波管400は、長手方向と垂直な断面形状が矩形状の管(中空体)からなる導波部410および導波部410の両端にそれぞれ連接するフランジ420,420を含む導波管本体430と、導波部410内において、内面410aに沿って配置されたメッシュ構造体1と、を含む。
 導波部410の開口部411はフランジ420に設けられ、導波部410はフランジ420の表面420aにて開口している。
 導波管本体430は、母材であるエポキシ樹脂等の樹脂と強化材である炭素繊維とを含む炭素繊維強化プラスチックで構成されている。
 本実施形態の導波管400によれば、CFRP製の導波管本体430の導波部410の内面410aに沿って上述のメッシュ構造体1が配置されているため、導波部410の内面410aに金メッキ等により導電性の被膜を形成することなく、導波部410内において、電磁波を伝送することができる。すなわち、本実施形態の導波管400によれば、従来のような、導波部410の内面410aに金メッキ等により導電性の被膜を形成する工程が不要となるため、製造コストを低減することができる。
 なお、本実施形態の導波管400では、導波部410の長手方向と垂直な断面形状が矩形状である場合を例示したが、本実施形態はこれに限定されない。本実施形態の導波管400は、導波部410の長手方向と垂直な断面形状が正方形状、円形状、楕円形状等であってもよい。
[導波管]
 図6は、本実施形態の導波管の概略構成を示す斜視図である。図7は、本実施形態の導波管の概略構成を示し、図6のB-B線に沿う断面図である。
 本実施形態の導波管500は、図6および図7に示すように、上述のメッシュ構造体1を含む。
 本実施形態の導波管500は、長手方向と垂直な断面形状が矩形状の管(中空体)からなる蛇腹ホース状の導波部510および導波部510の両端にそれぞれ連接するフランジ520,520を含む導波管本体530と、導波部510に内張されたメッシュ構造体1と、を含む。
 導波部510の開口部511はフランジ520に設けられ、導波部510はフランジ520の表面520aにて開口している。
 導波管本体530は、金属、プラスチック、炭素繊維強化プラスチック等からなる。
 本実施形態の導波管500は、蛇腹ホース状の導波部510と導波部510に内張された上述のメッシュ構造体1を有するため、柔軟性(可撓性)を有する。
 本実施形態の導波管500によれば、蛇腹ホース状の導波部510に上述のメッシュ構造体1が内張されているため、導波部510内にメッシュ構造体1からなる平滑な導波路を形成することができる。その結果、導波部510内を伝送する電磁波の損失を減らすことができる。
 なお、本実施形態の導波管500では、導波部510の長手方向と垂直な断面形状が矩形状である場合を例示したが、本実施形態はこれに限定されない。本実施形態の導波管500は、導波部510の長手方向と垂直な断面形状が正方形状、円形状、楕円形状等であってもよい。
 上記したメッシュ構造体は、資源の確保が容易であり、導電性、弾性率、機械的強度、熱膨張率において、金メッキモリブデン繊維と同等の性能を発揮することができる。
 1  メッシュ構造体
 10  素線
 100  アンテナ反射鏡
 110  アンテナ展開機構
 120  バンド
 130  アンテナ反射鏡面
 200  電磁シールド材
 300  磁気記憶装置
 310  磁気ディスク
 320  ヘッド
 330  筐体
 400,500  導波管
 410,510  導波部
 411,511  開口部
 420,520  フランジ
 430,530  導波管本体

Claims (6)

  1.  ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線を含む編物または織物である
     メッシュ構造体。
  2.  前記ジルコニウム銅繊維の素線の表面および前記ステンレス鋼繊維の素線の表面にメッキ層が設けられている
     請求項1に記載のメッシュ構造体。
  3.  請求項1または2に記載のメッシュ構造体を含む
     アンテナ反射鏡。
  4.  請求項1または2に記載のメッシュ構造体を含む
     電磁シールド材。
  5.  請求項1または2に記載のメッシュ構造体を含む中空体である
     導波管。
  6.  ジルコニウム銅繊維の素線またはステンレス鋼繊維の素線と、水溶性繊維の素線とを含む第1の編物または第1の織物を形成する工程と、
     前記第1の編物または前記第1の織物を水中に浸漬して、前記水溶性繊維の素線を溶解し、前記ジルコニウム銅繊維の素線または前記ステンレス鋼繊維の素線を含む第2の編物または第2の織物を形成する工程と、を有する
     メッシュ構造体の製造方法。
PCT/JP2020/002984 2019-01-28 2020-01-28 メッシュ構造体およびその製造方法、アンテナ反射鏡、電磁シールド材、導波管 WO2020158733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/424,201 US20220064826A1 (en) 2019-01-28 2020-01-28 Mesh structure and method for manufacturing same, antenna reflection mirror, electromagnetic shielding material, and waveguide tube
DE112020000565.8T DE112020000565T5 (de) 2019-01-28 2020-01-28 Maschenstruktur und Verfahren zu deren Herstellung, Antennenreflexionsspiegel, elektromagnetisches Abschirmungsmaterial und Hohlleiterrohr
CN202080010763.8A CN113366163A (zh) 2019-01-28 2020-01-28 网格结构体及其制造方法、天线反射镜、电磁屏蔽件、波导管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-012534 2019-01-28
JP2019012534A JP7425432B2 (ja) 2019-01-28 2019-01-28 メッシュ構造体およびその製造方法、アンテナ反射鏡、電磁シールド材、導波管

Publications (1)

Publication Number Publication Date
WO2020158733A1 true WO2020158733A1 (ja) 2020-08-06

Family

ID=71842236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002984 WO2020158733A1 (ja) 2019-01-28 2020-01-28 メッシュ構造体およびその製造方法、アンテナ反射鏡、電磁シールド材、導波管

Country Status (5)

Country Link
US (1) US20220064826A1 (ja)
JP (1) JP7425432B2 (ja)
CN (1) CN113366163A (ja)
DE (1) DE112020000565T5 (ja)
WO (1) WO2020158733A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443175B (zh) * 2021-05-31 2022-08-12 上海卫星工程研究所 空间液滴辐射器的结构

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059034A (ja) * 1983-09-13 1985-04-05 Takeshi Masumoto Cu−Ζr系非晶質金属細線
JPS6255723B2 (ja) * 1980-07-11 1987-11-20 Aerosupachiaru Soc Nashionaru Ind
JPS63286561A (ja) * 1987-05-16 1988-11-24 Fujikura Ltd 耐熱銅合金線材の製造方法
JPH0359138A (ja) * 1989-07-20 1991-03-14 Kobe Steel Ltd 織布
JPH05225931A (ja) * 1992-02-07 1993-09-03 Iwatsu Electric Co Ltd 進行波型偏向装置
JPH10259550A (ja) * 1997-03-19 1998-09-29 Yoshihito Horio 金属線による編み地の製造方法
WO2005052937A1 (en) * 2003-11-27 2005-06-09 Koninklijke Philips Electronics N.V. Method and system for chapter marker and title boundary insertion in dv video
JP2006073789A (ja) * 2004-09-02 2006-03-16 Nbc Inc 電磁波遮蔽用編物シート及び電磁波遮蔽用成型体
JP2006124900A (ja) * 2004-05-28 2006-05-18 Matsuyama Keori Kk 導電性織物及び金属製織物
JP2008145176A (ja) * 2006-12-07 2008-06-26 Nippon Light Metal Co Ltd 電子機器用試験装置および電子機器試験方法
WO2009011795A2 (en) * 2007-07-13 2009-01-22 Massachusetts Institute Of Technology Methods for treating stress induced emotional disorders
JP2011179162A (ja) * 2011-05-27 2011-09-15 Matsuyama Keori Kk 電磁波シールド織物、電磁波シールドシート、電磁波シールド材及び電磁波シールドケーシング
JP2014218751A (ja) * 2013-04-30 2014-11-20 地方独立行政法人東京都立産業技術研究センター 金属編地及びその製造方法
WO2016017595A1 (ja) * 2014-07-28 2016-02-04 石川金網株式会社 金属織物、室内装飾品、仕切り部材、衣類、および電磁波シールド部材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148370A (en) * 1962-05-08 1964-09-08 Ite Circuit Breaker Ltd Frequency selective mesh with controllable mesh tuning
US4641247A (en) * 1985-08-30 1987-02-03 Advanced Micro Devices, Inc. Bit-sliced, dual-bus design of integrated circuits
JP2963524B2 (ja) * 1990-10-26 1999-10-18 株式会社アドユニオン研究所 金網被覆合成樹脂射出成形体及びその製造方法並びにその用途
JP2597784B2 (ja) * 1992-02-12 1997-04-09 株式会社宇宙通信基礎技術研究所 アンテナ反射鏡面用メッシュ材料の製造方法
JPH0766622A (ja) * 1993-08-26 1995-03-10 Uchu Tsushin Kiso Gijutsu Kenkyusho:Kk アンテナ反射鏡面用メッシュ材料
JP3050934U (ja) 1998-01-27 1998-08-07 株式会社フリージア 電磁波遮断ネットを用いたパソコンや電子医療機器等 のシールド・カバー及びシールド・カーテン
JP2001284958A (ja) * 2000-03-29 2001-10-12 Dx Antenna Co Ltd パラボラアンテナ反射鏡
JP2002076759A (ja) 2000-08-30 2002-03-15 Toshiba Corp アンテナ反射鏡
CN1216196C (zh) * 2002-04-26 2005-08-24 沈根荣 微波屏蔽垫圈的铜网针织方法
JP3862739B2 (ja) * 2003-11-25 2006-12-27 松下電器産業株式会社 エネルギ変換装置およびその製造方法
JP4299152B2 (ja) * 2004-01-08 2009-07-22 日本碍子株式会社 電磁波シールドケースおよびその製造方法
US20060270301A1 (en) * 2005-05-25 2006-11-30 Northrop Grumman Corporation Reflective surface for deployable reflector
EP3521492B1 (en) * 2007-07-16 2023-11-01 Micrometal Technologies Inc. Electrical shielding material composed of metallized stainless steel monofilament yarn
CN202183257U (zh) * 2011-08-17 2012-04-04 广州丰泰美华电缆有限公司 一种极细同轴耐高温fep电线
EP2765209B1 (en) * 2011-09-29 2018-10-24 NGK Insulators, Ltd. Copper alloy wire rod and method for producing same
KR101750060B1 (ko) 2015-08-13 2017-06-22 이철우 반응형 영상 생성방법 및 생성프로그램
CN106448907B (zh) * 2016-10-12 2017-12-08 国网江苏省电力公司泰兴市供电公司 多芯防潮型细径同轴电缆
CN108806849A (zh) * 2018-05-28 2018-11-13 长春捷翼汽车零部件有限公司 一种高压导线

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255723B2 (ja) * 1980-07-11 1987-11-20 Aerosupachiaru Soc Nashionaru Ind
JPS6059034A (ja) * 1983-09-13 1985-04-05 Takeshi Masumoto Cu−Ζr系非晶質金属細線
JPS63286561A (ja) * 1987-05-16 1988-11-24 Fujikura Ltd 耐熱銅合金線材の製造方法
JPH0359138A (ja) * 1989-07-20 1991-03-14 Kobe Steel Ltd 織布
JPH05225931A (ja) * 1992-02-07 1993-09-03 Iwatsu Electric Co Ltd 進行波型偏向装置
JPH10259550A (ja) * 1997-03-19 1998-09-29 Yoshihito Horio 金属線による編み地の製造方法
WO2005052937A1 (en) * 2003-11-27 2005-06-09 Koninklijke Philips Electronics N.V. Method and system for chapter marker and title boundary insertion in dv video
JP2006124900A (ja) * 2004-05-28 2006-05-18 Matsuyama Keori Kk 導電性織物及び金属製織物
JP2006073789A (ja) * 2004-09-02 2006-03-16 Nbc Inc 電磁波遮蔽用編物シート及び電磁波遮蔽用成型体
JP2008145176A (ja) * 2006-12-07 2008-06-26 Nippon Light Metal Co Ltd 電子機器用試験装置および電子機器試験方法
WO2009011795A2 (en) * 2007-07-13 2009-01-22 Massachusetts Institute Of Technology Methods for treating stress induced emotional disorders
JP2011179162A (ja) * 2011-05-27 2011-09-15 Matsuyama Keori Kk 電磁波シールド織物、電磁波シールドシート、電磁波シールド材及び電磁波シールドケーシング
JP2014218751A (ja) * 2013-04-30 2014-11-20 地方独立行政法人東京都立産業技術研究センター 金属編地及びその製造方法
WO2016017595A1 (ja) * 2014-07-28 2016-02-04 石川金網株式会社 金属織物、室内装飾品、仕切り部材、衣類、および電磁波シールド部材

Also Published As

Publication number Publication date
JP7425432B2 (ja) 2024-01-31
CN113366163A (zh) 2021-09-07
JP2020117844A (ja) 2020-08-06
US20220064826A1 (en) 2022-03-03
DE112020000565T5 (de) 2021-10-14

Similar Documents

Publication Publication Date Title
US4812854A (en) Mesh-configured rf antenna formed of knit graphite fibers
US4868580A (en) Radio-frequency reflective fabric
EP2128875B1 (en) Flat cable
US4609923A (en) Gold-plated tungsten knit RF reflective surface
US8654033B2 (en) Multi-layer highly RF reflective flexible mesh surface and reflector antenna
US20060270301A1 (en) Reflective surface for deployable reflector
JP4704459B2 (ja) 不織布要素を組込んだ基板
US8339706B2 (en) Wire grid and manufacturing method thereof
WO2020158733A1 (ja) メッシュ構造体およびその製造方法、アンテナ反射鏡、電磁シールド材、導波管
JPH08307146A (ja) 超軽量薄膜アンテナ反射器
EP3772136A1 (en) Articles comprising a mesh formed of a carbon nanotube yarn
JP4620664B2 (ja) ポリエステル‐ポリアリレート繊維を備えたレドームおよびその製造方法
US4074731A (en) Compliant mesh structure and method of making same
JP7202568B2 (ja) 導波管及び導波システム
JPH07226619A (ja) 放射反射器
US3855598A (en) Mesh articles particularly for use as reflectors of electromagnetic waves
JP5598879B2 (ja) 直線偏波の制御方法及びその装置
JP2003347840A (ja) 反射鏡アンテナ
JP2006074504A (ja) アンテナリフレクタおよびその製造方法
JP2970731B2 (ja) 展開型アンテナ反射鏡
JP2597784B2 (ja) アンテナ反射鏡面用メッシュ材料の製造方法
JP5376470B2 (ja) 直線偏波の制御方法及びその装置。
JP2000349540A (ja) 電磁波を反射する表面およびそれを製造するプロセス
JP3571525B2 (ja) メッシュアンテナ
Datashvili et al. Membranes and thin shells for space reflectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749592

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20749592

Country of ref document: EP

Kind code of ref document: A1