WO2020158425A1 - 切削工具及びその製造方法 - Google Patents

切削工具及びその製造方法 Download PDF

Info

Publication number
WO2020158425A1
WO2020158425A1 PCT/JP2020/001360 JP2020001360W WO2020158425A1 WO 2020158425 A1 WO2020158425 A1 WO 2020158425A1 JP 2020001360 W JP2020001360 W JP 2020001360W WO 2020158425 A1 WO2020158425 A1 WO 2020158425A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas
cutting tool
less
volume
Prior art date
Application number
PCT/JP2020/001360
Other languages
English (en)
French (fr)
Inventor
アノンサック パサート
保樹 城戸
史佳 小林
今村 晋也
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2020520091A priority Critical patent/JP6866970B2/ja
Publication of WO2020158425A1 publication Critical patent/WO2020158425A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present disclosure relates to a cutting tool and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2019-013928, which was filed on January 30, 2019 in Japan. All contents described in the Japanese patent application are incorporated herein by reference.
  • a cutting tool made of cemented carbide often has problems such as wear or chipping because the cutting edge is exposed to harsh environments such as high temperature and high load during cutting. Therefore, for the purpose of improving the cutting performance of the cutting tool, development of a coating for coating the surface of a base material such as cemented carbide has been promoted.
  • a coating film made of a compound of titanium (Ti) and aluminum (Al) and nitrogen (N) and/or carbon (C) (hereinafter, also referred to as AlTiN, AlTiCN, etc.) has high hardness. It is known that the oxidation resistance can be improved by increasing the Al content ratio (Japanese Patent Laid-Open No. 2017-508632 (Patent Document 1)). It is expected that the performance of the cutting tool will be improved by coating the cutting tool with such a coating.
  • the temperature of the cutting edge of the tool during machining is as high as about 1000°C.
  • AlTiN and AlTiCN react with oxygen in the air at a high temperature of about 1000° C. or higher to decompose. Therefore, when a cutting tool having a coating made of AlTiN or AlTiCN is used for high-efficiency machining or dry cutting of steel, SUS or the like, the coating may be prematurely worn and chipped.
  • the coating film made of AlTiN or AlTiCN is coated with an Al 2 O 3 layer having heat insulation and excellent high temperature oxidation resistance and reaction resistance. It is possible to do it.
  • Patent Document 2 discloses a technique of coating a TiAlCN layer with ⁇ -Al 2 O 3 .
  • a cutting tool is a cutting tool including a base material and a coating film provided on the base material,
  • the coating film has a first layer provided on the base material side and a second layer provided on the first layer,
  • the first layer consists of a nitride or carbonitride of Al x Ti 1-x
  • the second layer is a cutting tool composed only of a composite compound containing ⁇ -Al 2 O 3 and TiS y .
  • a method of manufacturing a cutting tool is the method of manufacturing a cutting tool described above, A step of preparing a base material, A step of forming a coating film on the base material by a chemical vapor deposition method, The step of forming the coating includes the step of forming a first layer and the step of forming a second layer,
  • the first layer consists of a nitride or carbonitride of Al x Ti 1-x
  • the second layer is composed only of a composite compound containing ⁇ -Al 2 O 3 and TiS y
  • the step of forming the second layer is performed at a film forming temperature of 750° C. or higher and 850° C. or lower by using a mixed gas containing TiCl 4 gas, H 2 S gas and Ar—H 2 O gas. It is a manufacturing method.
  • x satisfies 0.7 ⁇ x ⁇ 1
  • y satisfies 1.0 ⁇ y ⁇ 2.0.
  • FIG. 1 is a diagram schematically illustrating a cross section of a cutting tool according to an aspect of the present disclosure.
  • FIG. 2 is an electron micrograph of a cross section of a coating of a cutting tool according to an aspect of the present disclosure.
  • FIG. 3 is an electron micrograph of the second layer of the cutting tool according to one aspect of the present disclosure.
  • FIG. 4 is a diagram showing an example of a CVD (chemical vapor deposition) apparatus.
  • CVD chemical vapor deposition
  • ⁇ -Al 2 O 3 has insufficient thermal stability, and when the cutting edge temperature of the tool becomes high during processing, the phase transitions to ⁇ -Al 2 O 3 .
  • the volume of the entire Al 2 O 3 layer expands, a crack occurs. Since film breakage occurs from this crack as a starting point, the film strength tends to decrease, chipping of the tool edge tends to occur, and the tool life tends to decrease.
  • an object of the present invention is to provide a cutting tool that has a layer made of AlTiN or AlTiCN and can have an excellent tool life even when used for high efficiency machining or dry machining. To do. [Effect of the present disclosure] According to the above aspect, the cutting tool can have an excellent tool life even when used for high efficiency machining or dry machining.
  • a cutting tool is a cutting tool including a base material and a coating film provided on the base material,
  • the coating film has a first layer provided on the base material side and a second layer provided on the first layer,
  • the first layer consists of a nitride or carbonitride of Al x Ti 1-x
  • the second layer is a cutting tool composed only of a composite compound containing ⁇ -Al 2 O 3 and TiS y .
  • the cutting tool can have an excellent tool life even when used for high efficiency machining or dry machining.
  • the TiS y preferably has a plate-like structure and is dispersed in the ⁇ -Al 2 O 3 . This improves wear resistance among the various characteristics of the cutting tool.
  • the second layer preferably has an area ratio of TiSy of 0.5% or more and 20% or less in a cross section parallel to the surface of the coating film. According to this, the wear resistance of the cutting tool is further improved.
  • the area ratio of TiS y is preferably 1% or more and 15% or less. According to this, the wear resistance of the cutting tool is further improved.
  • the area ratio of TiS y is preferably 2% or more and 10% or less. According to this, the wear resistance of the cutting tool is further improved.
  • the second layer preferably has a thickness of 0.5 ⁇ m or more and 5 ⁇ m or less. According to this, the tool life of the cutting tool is further improved.
  • the coating preferably has a thickness of 3 ⁇ m or more and 30 ⁇ m or less. According to this, the tool life of the cutting tool is further improved.
  • the coating film has an intermediate layer between the first layer and the second layer, and the intermediate layer is made of TiCN or TiCNO only. According to this, crystal growth of the second layer can be promoted in the process of manufacturing the coating film.
  • the first layer is composed only of a compound represented by Al x Ti 1-x C a N b .
  • the x satisfies 0.7 ⁇ x ⁇ 1, the a satisfies 0 ⁇ a ⁇ 0.25, and the b satisfies 0.75 ⁇ b ⁇ 1.5.
  • the a satisfies 0 ⁇ a ⁇ 0.1. This improves wear resistance among the various characteristics of the cutting tool.
  • the a satisfies 0 ⁇ a ⁇ 0.05. This improves wear resistance among the various characteristics of the cutting tool.
  • the coating film includes a base layer disposed between the base material and the first layer. According to this, the adhesiveness between the base material and the coating can be enhanced.
  • a method for manufacturing a cutting tool according to another aspect of the present disclosure is the method for manufacturing a cutting tool according to any one of (1) to (18) above, A step of preparing a base material, A step of forming a coating film on the base material by a chemical vapor deposition method, The step of forming the coating includes the step of forming a first layer and the step of forming a second layer,
  • the first layer consists of a nitride or carbonitride of Al x Ti 1-x
  • the second layer is composed only of a composite compound containing ⁇ -Al 2 O 3 and TiS y
  • the step of forming the second layer is performed at a film forming temperature of 750° C. or higher and 850° C. or lower by using a mixed gas containing TiCl 4 gas, H 2 S gas and Ar—H 2 O gas. It is a manufacturing method.
  • the x satisfies 0.7 ⁇ x ⁇ 1
  • the y satisfies 1.0 ⁇ y ⁇ 2.0. According to the above aspect, it is possible to manufacture a cutting tool having an excellent tool life even when used for high efficiency machining or dry machining.
  • the notation of the form "AB" means the upper and lower limits of the range (that is, A or more and B or less), and when A does not have a unit and B only has a unit, The unit of B and the unit of B are the same.
  • a compound or the like when represented by a chemical formula, when the atomic ratio is not particularly limited, it includes all conventionally known atomic ratios, and is not necessarily limited to the stoichiometric range.
  • a metal element such as titanium (Ti), aluminum (Al), tantalum (Ta), and chromium (Cr), and nitrogen (N), oxygen (O), carbon (C), and the like.
  • the non-metal element does not necessarily have to constitute a stoichiometric composition.
  • the cutting tool 10 includes a base material 1 and a coating film 2 provided on the base material 1.
  • the coating preferably covers the entire surface of the substrate. However, it does not depart from the scope of the present disclosure even if a part of the base material is not covered with this coating or the structure of the coating is partially different.
  • Cutting tools include drills, end mills, exchangeable cutting tips for drills, exchangeable cutting tips for end mills, exchangeable cutting tips for milling, exchangeable cutting tips for turning, metal saws, gear cutting tools, reamers, It can be suitably used as a cutting tool such as a tap.
  • any base material conventionally known as this type of base material can be used.
  • cemented carbide for example, WC-based cemented carbide, WC, including Co or containing carbonitrides such as Ti, Ta, and Nb), cermet (TiC, TiN, TiCN, etc.) Main component
  • high speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body or diamond sintered body preferable.
  • cemented carbide particularly WC-based cemented carbide
  • cermet particularly TiCN-based cermet
  • These base materials have an excellent balance of hardness and strength at high temperatures, and have excellent properties as base materials for cutting tools for the above applications.
  • a WC-based cemented carbide is used as the base material, its structure may contain free carbon and an abnormal layer called ⁇ phase or ⁇ phase.
  • the base material may have a modified surface.
  • a debeta layer may be formed on the surface thereof, or in the case of cermet, a surface hardened layer may be formed.
  • the substrate exhibits the desired effect even if its surface is modified.
  • the base material may or may not have a chip breaker.
  • the shape of the ridge of the cutting edge is a combination of sharp edges (ridges where the rake face and flank intersect), honing (sharp edges are given), negative land (chamfered), and honing and negative land. Among things, any thing is included.
  • the coating film 2 has a first layer 4 provided on the base material 1 side and a second layer 6 provided on the first layer 4.
  • the coating 2 can include layers other than the first layer 4 and the second layer 6. Examples of the other layers include a base layer 3 arranged between the base material 1 and the first layer 4, an intermediate layer 5 arranged between the first layer 4 and the second layer 6, and a second layer. 6, a surface layer (not shown) disposed on top of 6.
  • the total thickness of the coating is preferably 3 ⁇ m or more and 30 ⁇ m or less. When the thickness of the coating is within this range, the fracture resistance can be improved while maintaining the wear resistance. If the thickness of the coating film is less than 3 ⁇ m, the hardness tends to decrease, and if it exceeds 30 ⁇ m, the coating film tends to peel off from the substrate during cutting.
  • the total thickness of the coating film is more preferably 5 ⁇ m or more and 20 ⁇ m or less, and further preferably 7 ⁇ m or more and 15 ⁇ m or less, from the viewpoint of improving the characteristics.
  • the thickness of the coating film is measured, for example, by obtaining a cross-section sample parallel to the normal direction of the surface of the base material and observing the sample with a scanning transmission electron microscope (STEM: Scanning Transmission Electron Microscopy).
  • STEM Scanning Transmission Electron Microscopy
  • HAADF-STEM High-Angle Annular Dark-field Scanning Transmission Electron Microscopy
  • the term "thickness” means the average thickness. Specifically, the observation magnification of the cross-section sample is set to 5000 to 10000 times, the observation area is set to 100 to 500 ⁇ m 2 , thickness widths at 10 locations in one visual field are measured, and the average value thereof is defined as “thickness”. The same applies to the thickness of each layer described below unless otherwise specified.
  • the first layer 4 is composed only of a nitride or carbonitride of Al x Ti 1-x .
  • x satisfies 0.7 ⁇ x ⁇ 1.
  • Nitrides of Al x Ti 1-x is shown as Al x Ti 1-x N
  • carbonitrides of Al x Ti 1-x is shown as Al x Ti 1-x CN.
  • the first layer 4 is a compound represented by Al x Ti 1-x C a N b (satisfying 0.7 ⁇ x ⁇ 1, 0 ⁇ a ⁇ 0.25, 0.75 ⁇ b ⁇ 1.5). It is preferably composed of only.
  • Al is contained in an atomic ratio of 70% or more with respect to the total of Al and Ti, and carbon ( C) or carbon (C) and nitrogen (N).
  • the first layer made of only such a compound can have high hardness and excellent wear resistance.
  • composition of the compound forming the first layer 0.75 ⁇ x ⁇ 0.95 is preferable, 0.8 ⁇ x ⁇ 0.9 is more preferable, 0 ⁇ a ⁇ 0.1 is preferable, and 0 ⁇ a ⁇ 0.05 is more preferable, 0.8 ⁇ b ⁇ 1.2 is preferable, and 0.9 ⁇ b ⁇ 1.1 is more preferable.
  • the composition of the first layer can be confirmed by using an EDX (Energy Dispersive X-ray spectroscopy) device with SEM or TEM. Specifically, first, an arbitrary position of the cutting tool 10 is cut, and a sample including the cross section of the coating film 2 is prepared.
  • EDX Electronic Dispersive X-ray spectroscopy
  • the first layer of the coating 2 five rectangular measurement fields of 10 ⁇ m ⁇ 20 ⁇ m are arbitrarily selected, and this region is analyzed. Thereby, the atomic ratio of each element contained in an arbitrary measurement region can be specified, and the composition of the first layer can be determined from this atomic ratio.
  • the first layer is a layer (hereinafter, also referred to as a first unit layer) having a thickness of 150 nm or less, which is made of only a nitride or carbonitride of Al x Ti 1-x (satisfying 0.7 ⁇ x ⁇ 1). It is preferably a layered structure containing a plurality of layers. According to this, the first layer can have high thermal shock resistance.
  • the number of stacked first unit layers included in the first layer is preferably 5 or more and 5000 or less, and more preferably 10 or more and 2500 or less.
  • the first layer is composed of the above-mentioned layered structure, and each layer constituting the layered structure has the same face-centered cubic lattice structure, and the first unit layers having different stoichiometric ratios of Ti and Al alternate. It is preferable to form regions that alternately alternate. According to this, the first unit layer can maintain a cubic crystal structure and can have higher thermal stability.
  • the first layer having a layered structure and the number of laminated first unit layers As for the first layer having a layered structure and the number of laminated first unit layers, a cross-section sample parallel to the normal direction of the surface of the substrate was obtained, and this sample was subjected to a scanning transmission electron microscope (STEM: Scanning). It is measured by observing with Transmission Electron Microscopy).
  • STEM scanning transmission electron microscope
  • the first layer preferably has a face-centered cubic lattice structure. According to this, the decrease in hardness of the first layer can be controlled to a minimum, and the first layer can have excellent wear resistance and chipping resistance.
  • the proportion of the face-centered cubic lattice structure in the first layer is more preferably 95% by volume or more, and most preferably 100% by volume.
  • the first layer has a face-centered cubic lattice structure, and the volume ratio thereof is determined by using an X-ray diffractometer, a scanning electron microscopy electron scattering back scattering (SEM-EBSD) apparatus, a TEM (Transmission Electron Microscopy) apparatus, and the like. You can check.
  • SEM-EBSD scanning electron microscopy electron scattering back scattering
  • TEM Transmission Electron Microscopy
  • the first layer preferably has a total thickness of 1 ⁇ m or more and 15 ⁇ m or less. According to this, the tool life of the cutting tool is improved. If the thickness of the first layer is less than 1 ⁇ m, the effect of improving the wear resistance by the first layer tends to be reduced, and if it exceeds 15 ⁇ m, the coating film is likely to be peeled from the base material during cutting.
  • the thickness of the first layer is more preferably 2 ⁇ m or more and 10 ⁇ m or less, still more preferably 4 ⁇ m or more and 8 ⁇ m or less.
  • the total thickness of the first layer can be measured by the same method as that used for measuring the thickness of the coating film.
  • the first layer may contain unavoidable impurities in addition to the nitride or carbonitride of Al x Ti 1-x as long as the effect is exhibited.
  • unavoidable impurities include oxygen, argon, hydrogen, chlorine, and sulfur.
  • the second layer 6 is composed only of a composite compound containing ⁇ -Al 2 O 3 (aluminum oxide having a ⁇ -type crystal structure) and TiS y (titanium sulfide).
  • y satisfies 1.0 ⁇ y ⁇ 2.0. Since the second layer is composed only of the composite compound containing ⁇ -Al 2 O 3 and TiS y , the cutting tool according to the present embodiment is excellent even when used for high efficiency machining or dry machining. It has wear resistance and fracture resistance, and can achieve a long tool life. The reason for this is not clear, but it is presumed to be as follows (a) to (d).
  • (A) ⁇ -Al 2 O 3 has heat insulating properties, high temperature oxidation resistance, and reaction resistance. Therefore, when the second layer contains ⁇ -Al 2 O 3 , when the cutting tool is used, the first layer composed only of AlTiN or AlTiCN can be prevented from being decomposed or oxidized by cutting heat. The wear resistance of the tool is improved.
  • (B) ⁇ -Al 2 O 3 can be formed into a film under the temperature condition of 750 to 850° C. Therefore, the first layer made of only AlTiN or AlTiCN is not thermally decomposed during film formation, and the cutting tool can maintain excellent wear resistance.
  • TiS y has high temperature lubricity. Therefore, when the second layer contains TiS y , the cutting resistance is reduced when the cutting tool is used, so that the wear of the rake face can be suppressed and the wear resistance of the cutting tool is improved.
  • TiS y has high temperature lubricity. Therefore, when the second layer contains TiS y , the cutting resistance is reduced when the cutting tool is used, and the rise in the cutting edge temperature can be suppressed. As a result, the volume change caused by the phase transition of ⁇ -Al 2 O 3 contained in the second layer to ⁇ -Al 2 O 3 can be suppressed, and the wear resistance and fracture resistance of the cutting tool can be improved. To do.
  • composition of TiS y With respect to the composition of TiS y , 1.0 ⁇ y ⁇ 2.0 is preferable, and 1.4 ⁇ y ⁇ 1.8 is more preferable.
  • the composition of TiSy can be measured by the same method as that used for measuring the composition of the first layer.
  • ⁇ -Al 2 O 3 and TiS y in the second layer can be confirmed by using an EDX (Energy Dispersive X-ray spectroscopy) device with SEM or TEM. .. Observing any area of the surface of the second layer of the cutting tool 10 in SEM, for example, as shown in Figure 3, a kappa-Al 2 O 3 region 7 consisting only ⁇ -Al 2 O 3, TiS y only TiS y region 8 consisting of By analyzing each of the ⁇ -Al 2 O 3 region 7 and the TiS y region 8, the atomic ratio of each element contained in each region can be specified. From this atomic ratio, the ⁇ -Al 2 O 3 region and the TiS y region can be specified. The composition of the region can be determined.
  • EDX Electronicgy Dispersive X-ray spectroscopy
  • a surface layer is further present on the second layer, polish the surface layer to expose the second layer, and measure the composition on the exposed surface.
  • the measurement results of the composition of the ⁇ -Al 2 O 3 region and the TiS y region are calculated multiple times by changing the selected position of the measurement field as long as the measurement is performed on the same sample. However, it was confirmed that there was almost no variation in the measurement results.
  • TiS y preferably has a plate-like structure and is dispersed in ⁇ -Al 2 O 3 .
  • the hardness of TiS y increases. Therefore, the second layer can have high hardness.
  • TiS y has a plate-like structure, and the axial direction of the plate-like structure is from the surface of the second layer to the interface between the second layer and the layer existing thereunder, the thickness of the second layer. It is preferable that it exists extending in the direction.
  • TiS y is present in the matrix consisting of ⁇ -Al 2 O 3 only in a columnar shape, TiS y is exposed on the surface of the cutting tool from the beginning to the end of cutting, so that the lubricating effect of TiS y is maintained. It Therefore, the effect of improving wear resistance can be obtained from the initial stage to the final stage of cutting, and the tool life is improved.
  • TiS y has a plate-like structure.
  • the surface layer is polished to expose the second layer, and the exposed surface is observed by STEM.
  • the fact that the axial direction of the plate-like structure extends in the thickness direction of the second layer means that a cross-section sample parallel to the normal direction of the surface of the base material is obtained and the cross section of this second layer is STEM. It can be confirmed by observing.
  • the second layer preferably has an area ratio of TiSy of 0.5% or more and 20% or less in a cross section parallel to the surface of the coating. According to this, the wear resistance of the cutting tool is improved.
  • the area ratio of TiSy is more preferably 1% or more and 15% or less, still more preferably 2% or more and 10% or less.
  • the area ratio of TiS y in the second layer is calculated according to the following procedures (a) to (d).
  • the depth from the surface side of the second layer (when another layer (for example, surface layer) is provided on the surface side of the second layer, The depth from the interface between the second layer and the other layer) was 0.5 ⁇ m, and the exposed cross section was cut in a direction parallel to the surface of the film using a wire electric discharge machine, and the exposed cross section had an average particle size of It is mirror-polished using a 3 ⁇ m diamond slurry.
  • the surface of the coating film has irregularities, the surface is polished until it becomes a flat surface, cut in a direction parallel to the flat surface, and the exposed cross section is mirror-polished using a diamond slurry having an average particle diameter of 3 ⁇ m.
  • the outermost surface of the cutting tool is the second layer
  • the surface of the second layer is mirror-polished with diamond slurry having an average particle size of 3 ⁇ m without cutting.
  • Optical microscope "AXIO Vert. A1” manufactured by Carl Zeiss (product name)
  • Lens "EC Epiplan 100x/0.85 HD M27” manufactured by Carl Zeiss (product name) Imaging conditions: time: 700 ms, intensity: 80%, gamma: 0.45.
  • Image processing software Win Roof ver.7.4.5 Processing procedure: 1. Histogram average brightness correction (correction reference value 128) 2. Background removal (object size 30 ⁇ m) 3. Binarization with a single threshold (threshold 100) 4. Brightness inversion.
  • the area ratio of TiS y in the second layer can be obtained by calculating the area ratio of the pixels derived from the bright field (pixels derived from TiS y ) in the total area of the measurement field of view (second layer). it can.
  • the second layer preferably has a thickness of 0.5 ⁇ m or more and 5 ⁇ m or less. According to this, the tool life of the cutting tool is improved. If the thickness of the second layer is less than 0.5 ⁇ m, the effect of improving wear resistance by the second layer tends to decrease, and if it exceeds 5 ⁇ m, the second layer is likely to peel off during cutting.
  • the thickness of the second layer is more preferably 1 ⁇ m or more and 4 ⁇ m or less, still more preferably 2 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the second layer can be measured by the same method as that used for measuring the thickness of the above coating.
  • the hardness of the second layer is preferably 15 GPa or more and 30 GPa or less as measured by the nanoindentation method. According to this, the wear resistance of the cutting tool is improved. If the hardness of the second layer is less than 15 GPa, the abrasion resistance tends to decrease, and if it exceeds 30 GPa, the fracture resistance tends to decrease.
  • the hardness of the second layer is more preferably 18 GPa or more and 28 GPa or less, and further preferably 20 GPa or more and 25 GPa or less.
  • the above hardness is measured by the method according to ISO14577, and the measurement load is 10 mN.
  • a nanoindentation hardness meter (ENT1100a; manufactured by Elionix) is used as a measuring instrument.
  • the second layer may contain unavoidable impurities in addition to the composite compound containing ⁇ -Al 2 O 3 and TiS y , as long as the second effect is exhibited.
  • unavoidable impurities include hydrogen, chlorine, and argon.
  • the coating 2 may include other layers in addition to the first layer 4 and the second layer 6.
  • the other layers include a base layer 3 arranged between the base material 1 and the first layer 4, an intermediate layer 5 arranged between the first layer 4 and the second layer 6, and a second layer. 6, a surface layer (not shown) disposed on top of 6.
  • the base layer 3 is disposed between the base material 1 and the first layer 4, whereby the adhesion of the first layer in the coating film can be increased and the adhesion between the base material and the coating film can be increased.
  • the underlayer for example, a TiN layer, a TiCN layer, a TiCNO layer, a TiBN layer or the like can be used.
  • the underlayer can be composed of one layer. It can also consist of multiple layers.
  • the underlayer can be formed by a known method.
  • the average thickness is preferably 0.3 to 1 ⁇ m. With the thickness in this range, the adhesion of the first layer in the coating can be further enhanced.
  • the TiN layer is more preferably 0.4 to 0.8 ⁇ m.
  • the average thickness is preferably 2 to 20 ⁇ m. If this average thickness is less than 2 ⁇ m, abrasion may be likely to proceed. If the average thickness exceeds 20 ⁇ m, the fracture resistance may decrease.
  • the thickness of the underlayer can be measured by the same method as used for measuring the thickness of the above coating.
  • the intermediate layer 5 By disposing the intermediate layer 5 between the first layer 4 and the second layer 6, the crystal growth of the second layer 6 can be promoted.
  • the intermediate layer for example, a TiCN layer, a TiCNO layer or the like can be used.
  • the intermediate layer can consist of one layer. It can also consist of multiple layers.
  • the average thickness of the intermediate layer 5 is preferably 0.2 to 2 ⁇ m, more preferably 0.5 to 1.5 ⁇ m. If the average thickness of the intermediate layer is less than 0.2 ⁇ m, the effect of promoting the crystal growth of the second layer tends to decrease. If the average thickness of the intermediate layer exceeds 2 ⁇ m, the adhesion between the second layer and the layer adjacent to the intermediate layer may be reduced.
  • the thickness of the intermediate layer can be measured by the same method as that used for measuring the thickness of the above coating.
  • the surface layer (not shown) is a layer arranged on the surface side of the coating 2.
  • the surface layer is arranged immediately above the second layer 6, for example.
  • the surface layer can be made of, for example, a compound containing Ti carbide, nitride, or boride as a main component.
  • "containing any of Ti carbide, nitride or boride as a main component” means containing 90 mass% or more of Ti carbide, nitride or boride. Further, it preferably means that it is made of any one of Ti carbide, nitride and boride except for inevitable impurities.
  • the surface layer can consist of one layer. It can also consist of multiple layers.
  • the surface layer When the surface layer is configured, it becomes easy to identify the corner of the cutting tip (identification of the used part) after cutting and using due to the effect of showing a clear color.
  • the surface layer preferably has an average thickness of 0.05 to 1 ⁇ m.
  • the upper limit of the average thickness of the surface layer is preferably 0.8 ⁇ m, more preferably 0.6 ⁇ m.
  • the lower limit of this average thickness is preferably 0.1 ⁇ m, more preferably 0.2 ⁇ m. If the average thickness is less than 0.05 ⁇ m, the fracture resistance may not be sufficiently obtained. If this average thickness exceeds 1 ⁇ m, the adhesion with the layer adjacent to the surface layer may be reduced.
  • the thickness of the surface layer can be measured by the same method as that used for measuring the thickness of the coating film.
  • a method for manufacturing a cutting tool according to the present embodiment is a method for manufacturing a cutting tool described above, including a step of preparing a base material, and a step of forming a coating film on the base material by a chemical vapor phase synthesis method,
  • the step of forming the coating includes a step of forming a first layer and a step of forming a second layer, the first layer consisting only of a nitride or carbonitride of Al x Ti 1-x , and the second layer Is composed of only a complex compound containing ⁇ -Al 2 O 3 and TiS y, and the step of forming the second layer is a mixed gas containing TiCl 4 gas, H 2 S gas and Ar—H 2 O gas.
  • the CVD apparatus 100 includes a plurality of base material holding jigs 21 for installing the base material 1 and a reaction container 22 made of a heat-resistant alloy steel surrounding the base material holding jigs 21. I have it.
  • a temperature controller 23 for controlling the temperature inside the reaction container 22 is provided around the reaction container 22.
  • a gas introduction pipe having a first gas introduction pipe 24 and a second gas introduction pipe 25 joined adjacent to each other extends vertically in a space inside the reaction container 22 and has an axis 26 thereof. It is provided so that it can be rotated.
  • the gas introduced into the first gas introduction pipe 24 and the gas introduced into the second gas introduction pipe 25 are not mixed inside.
  • a part of the first gas introducing pipe 24 and the second gas introducing pipe 25 is provided with a base on which the gas flowing inside the first gas introducing pipe 24 and the second gas introducing pipe 25 is installed in the base material holding jig 21.
  • a plurality of through holes for ejecting the material 1 are provided.
  • reaction container 22 is provided with a gas exhaust pipe 27 for exhausting the gas inside the reaction container 22 to the outside.
  • the gas inside the reaction container 22 passes through the gas exhaust pipe 27 and is discharged to the outside of the reaction container 22 through the gas exhaust port 28.
  • the first layer consisting of only a nitride or carbonitride of Al x Ti 1-x (satisfying 0.7 ⁇ x ⁇ 1) is directly formed on the substrate, and the first layer
  • the first layer may be formed after forming another layer such as an underlayer on the base material.
  • the intermediate layer may be formed, and the second layer may be formed on the intermediate layer.
  • a surface layer can be formed on the second layer.
  • any conventionally known method can be used as a method for forming the underlayer, the intermediate layer and the surface layer.
  • the base material 1 is prepared.
  • a commercially available material may be used, or a general powder metallurgy method may be used.
  • a mixed powder can be obtained by mixing WC powder and Co powder with a ball mill or the like. After the mixed powder is dried, it is molded into a predetermined shape to obtain a molded body. Further, by sintering the compact, a WC—Co based cemented carbide (sintered body) is obtained.
  • the sintered body is subjected to predetermined cutting edge processing such as honing treatment, whereby a base material made of a WC-Co based cemented carbide can be manufactured.
  • predetermined cutting edge processing such as honing treatment
  • a base material made of a WC-Co based cemented carbide can be manufactured.
  • any of the conventionally known base materials of this type can be prepared.
  • the coating film is formed on the base material 1 by the CVD method using the CVD apparatus 100.
  • the step of forming the coating includes the step of forming the first layer and the step of forming the second layer.
  • a chip having an arbitrary shape as the base material 1 is mounted on the base material holding jig 21 in the reaction container 22 of the CVD apparatus 100. Then, the temperature of the base material 1 installed on the base material holding jig 21 is raised to 680 to 780° C. by using the temperature controller 23. Further, the pressure inside the reaction container 22 is set to 0.1 to 3.0 kPa.
  • the first gas group preferably contains H 2 gas as a carrier gas together with TiCl 4 gas and AlCl 3 gas.
  • the second gas group preferably contains H 2 gas as well as NH 3 gas.
  • the ejected first gas group and second gas group are uniformly mixed in the reaction container 22 by the rotating operation, and the mixed gas moves toward the base material 1. Then, the gas component contained in the first gas group and the gas component contained in the second gas group chemically react with each other to cause Al x Ti 1-x (satisfying 0.7 ⁇ x ⁇ 1) on the base material 1. Nuclei of crystal grains consisting only of the nitride or carbonitride are generated. Subsequently, the first gas group is ejected from the through hole of the first gas introduction pipe 24, and the second gas group is ejected from the through hole of the second gas introduction pipe 25. As a result, the nuclei of the crystal grains grow, and the first layer is formed only of the nitride or carbonitride of Al x Ti 1-x (satisfying 0.7 ⁇ x ⁇ 1).
  • the thickness of the first layer can be adjusted by controlling the flow rates of the first gas group and the second gas group and the film formation time.
  • the flow rate of the first gas group is preferably 20 NL/min or more and 100 NL/min or less, and more preferably 40 NL/min or more and 80 NL/min or less.
  • the film formation time is preferably 10 minutes or more and 300 minutes or less, and more preferably 30 minutes or more and 180 minutes or less.
  • the flow rate of the second gas group is preferably 5 NL/min or more and 50 NL/min or less, more preferably 10 NL/min or more and 25 NL/min or less.
  • the film formation time is preferably 10 minutes or more and 300 minutes or less, and more preferably 30 minutes or more and 180 minutes or less.
  • this method includes a first crystal growth method in which the proportion (volume %) of TiCl 4 gas is modulated while maintaining the proportion (volume %) of AlCl 3 gas in the total reaction gas constant, and the first crystal growth method There is a second crystal growth method in which the proportion (volume %) of AlCl 3 gas is modulated while the proportion (volume %) of TiCl 4 gas is kept constant.
  • the atomic ratio of Ti can be controlled (that is, the atomic ratio of Al can also be controlled) by adjusting the flow rate of TiCl 4 gas.
  • the ratio of TiCl 4 gas is set at 0.1 to 0.2% by volume (high flow rate: High Flow), and the ratio is 5 to 15%.
  • the first gas group is introduced into the first gas introduction pipe 24 under the condition of being maintained for a second.
  • TiCl 4 by switching the high and low flow rate of the gas TiCl 4 the proportion of gas 0.02-0.04% by volume (low flow: Low Flow) the first gas group in conditions that maintain 45-55 seconds as the It is introduced into the 1 gas introduction pipe 24. After that, the flow rate of TiCl 4 gas is further switched between high and low. By repeating this operation a plurality of times, it is possible to form the first layer including crystal grains having a laminated structure in which the first unit layers having different Ti atomic ratios are alternately laminated.
  • the atomic ratio of Al can be controlled (that is, the atomic ratio of Ti can also be controlled) by adjusting the flow rate of AlCl 3 gas.
  • the proportion of TiCl 4 gas is set to 1 to 2% by volume (high flow rate: High Flow) for 10 to 15 seconds.
  • the first gas group is introduced into the first gas introduction pipe 24 under the condition of being maintained.
  • AlCl 3 switches the level of the flow rate of the gas 0.2-0.4% by volume ratio of AlCl 3 gas (low flow: Low Flow) the first gas group in conditions that maintain 45-50 seconds as the It is introduced into the 1 gas introduction pipe 24.
  • the flow rate of the AlCl 3 gas is further switched between high and low.
  • Each can be controlled to a desired thickness.
  • the orientation of the crystal grains contained in the first layer can be controlled.
  • the temperature of the substrate is adjusted to 750°C or higher and 850°C or lower.
  • the temperature of the reaction atmosphere during formation of the second layer (hereinafter, also referred to as film formation temperature) is 750° C. or higher and 850° C. or lower. If the film formation temperature is lower than 750° C., a sufficient film formation rate may not be obtained.
  • the film forming temperature exceeds 850° C., AlTiN or AlTiCN forming the first layer may be thermally decomposed.
  • the film forming temperature is preferably 770° C. or higher and 830° C. or lower, and more preferably 780° C. or higher and 820° C. or lower.
  • the pressure inside the reaction container 22 is adjusted to 5 kPa or more and 10 kPa or less.
  • a mixed gas containing TiCl 4 gas, H 2 S gas, and Ar—H 2 O gas (hereinafter, referred to as “ Also referred to as "second layer mixed gas") is introduced into the first gas introduction pipe or the second gas introduction pipe.
  • H 2 S gas and Ar—H 2 O gas are catalysts.
  • Ar—H 2 O gas means Ar gas containing H 2 O at a concentration of 30 to 300 ppm.
  • the ejected mixed gas for the second layer is uniformly mixed in the reaction vessel 22 by the rotation operation, and the gas components chemically react with each other, so that nuclei of crystal grains composed of only ⁇ -Al 2 O 3 on the first layer. , And nuclei of crystal grains consisting of TiS y only are generated. Subsequently, the mixed gas is ejected from the through hole of the first gas introducing pipe 24 or the through hole of the second gas introducing pipe 25. As a result, the nuclei of the crystal grains grow, and the second layer including the crystal grains made of only ⁇ -Al 2 O 3 and the crystal grains made of only TiS y is formed.
  • the thickness of the second layer can be adjusted by controlling the flow rate of the mixed gas for the second layer and the film formation time.
  • the flow rate of the mixed gas for the second layer is preferably 20 NL/min or more and 80 NL/min or less, and more preferably 40 NL/min or more and 60 NL/min or less.
  • the film formation time is preferably 30 minutes or more and 300 minutes or less, and more preferably 60 minutes or more and 180 minutes or less.
  • the film formation rate of the second layer is preferably 0.5 ⁇ m/hr or more and 2 ⁇ m/hr or less, more preferably 0.7 ⁇ m/hr or more and 1.5 ⁇ m/hr or less.
  • reaction paths represented by the following reaction formulas (1) and (2) have been used.
  • a nitride or carbonitride of Al x Ti 1-x (satisfying 0.7 ⁇ x ⁇ 1) (eg, AlTiN, AlTiCN) forming the first layer is Pyrolyzes. Therefore, as a result of diligent studies of the reaction conditions under which the formation of the Al 2 O 3 layer can be performed at a lower temperature, the present inventors have found that the reaction pathways represented by the following reaction formulas (1′) and (2′) was newly devised.
  • reaction intermediate is Ti 3 O 5 instead of H 2 O.
  • the crystal structure of Al 2 O 3 produced at a low temperature of 750 to 800°C. is ⁇ -Al 2 O 3 .
  • the inventors of the present invention have controlled the proportion of H 2 S gas in the mixed gas so that the crystal grains composed of only TiS y having high-temperature lubricity in the matrix region composed of only ⁇ -Al 2 O 3. It has been found that it is possible to precipitate. As a result, the obtained second layer can have high-temperature lubricity derived from TiS y , as well as heat insulation, high-temperature oxidation resistance, and reaction resistance derived from ⁇ -Al 2 O 3 .
  • the proportion of H 2 S gas in the mixed gas for the second layer is preferably 0.1 vol% or more and 1.0 vol% or less, more preferably 0.2 vol% or more and 0.8 vol% or less, and 0.3 More preferably, it is not less than 0.5% by volume and not more than 0.5% by volume. If the proportion of H 2 S gas is less than 0.1% by volume, the amount of TiS y deposited tends to be insufficient, and there is a tendency that high temperature lubricity cannot be ensured. On the other hand, when the proportion of H 2 S gas exceeds 1.0% by volume, the hardness of the second layer tends to decrease.
  • the proportion of the TiCl 4 gas in the mixed gas for the second layer is preferably 0.05 volume% or more and 0.5 volume% or less, more preferably 0.1 volume% or more and 0.4 volume% or less, and 0.2 volume% or less. % Or more and 0.3 volume% or less is more preferable. If the proportion of TiCl 4 gas is less than 0.05% by volume, the amount of TiS y deposited tends to be non-uniform. On the other hand, when the proportion of TiCl 4 gas exceeds 0.5% by volume, the TiS y structure tends to become coarse.
  • the proportion of the Ar—H 2 O gas in the mixed gas for the second layer is preferably 0.01% by volume or more and 1% by volume or less, more preferably 0.05% by volume or more and 0.8% by volume or less, More preferably, it is not less than 0.5% by volume and not more than 0.5% by volume. If the proportion of Ar—H 2 O gas is less than 0.01% by volume, the precipitation of ⁇ -Al 2 O 3 tends to be non-uniform. On the other hand, if the proportion of Ar—H 2 O gas exceeds 1% by volume, the adhesion of ⁇ -Al 2 O 3 tends to be insufficient.
  • the second layer mixed gas may include H 2 gas, N 2 gas, CO 2 gas, CO gas, HCl gas, and AlCl 3 gas together with TiCl 4 gas, H 2 S gas, and Ar—H 2 O gas. it can.
  • the flow rate of the mixed gas for the second layer is preferably 20 NL/min or more and 80 NL/min or less, and more preferably 40 NL/min or more and 60 NL/min or less.
  • the film formation time is preferably 30 minutes or more and 300 minutes or less, and more preferably 60 minutes or more and 180 minutes or less.
  • the step of forming the second layer preferably includes a pretreatment step, a nucleation step and a nucleus growth step.
  • the pretreatment step is, before forming the second layer, the surface of the layer serving as the base of the second layer (when the first layer and the second layer are in contact with each other, the surface of the first layer, the first layer and the second layer).
  • the intermediate layer is arranged between the two layers, it is a step of adsorbing AlCl 3 on the surface of the intermediate layer which is in contact with the second layer.
  • the pretreatment step is preferably carried out at a temperature of 750° C. or higher and 850° C. or lower and a pressure condition of 5 to 10 kPa.
  • pretreatment step it is preferable to use a mixed gas containing AlCl 3 gas and CO gas but not CO 2 gas (hereinafter, also referred to as “mixed gas for pretreatment step”). This is because it facilitates the formation of the ⁇ -Al 2 O 3 phase.
  • the proportion of CO gas in the mixed gas for the pretreatment step is preferably 0.5% by volume or more and 5.0% by volume or less, more preferably 0.75% by volume or more and 3.0% by volume or less, and 1.0% by volume. It is more preferably 2.0% by volume or less. If the proportion of CO gas is less than 0.5% by volume, other Al 2 O 3 phases tend to coexist in the ⁇ -Al 2 O 3 phase. On the other hand, if the proportion of CO gas exceeds 5.0% by volume, the structure of ⁇ -Al 2 O 3 tends to become coarse.
  • the mixed gas for the pretreatment step may include H 2 gas, N 2 gas, HCl gas, and TiCl 4 together with AlCl 3 gas and CO gas.
  • the flow rate of the mixed gas for the pretreatment process is preferably 40 NL/min or more and 100 NL/min or less, and more preferably 50 NL/min or more and 80 NL/min or less.
  • the time of the pretreatment step is preferably 1 minute or more and 10 minutes or less, more preferably 2 minutes or more and 5 minutes or less.
  • a nucleation step can be performed after the pretreatment step.
  • the nucleation step is a step of generating nuclei of crystal grains containing ⁇ -Al 2 O 3 starting from AlCl 3 adsorbed on the surface of the layer on which the second layer is formed in the pretreatment step.
  • the nucleation step is preferably carried out at a temperature of 750° C. or higher and 850° C. or lower and a pressure condition of 5 kPa or higher and 10 kPa or lower.
  • ⁇ -Al 2 O 3 can be produced by the reaction paths represented by the above reaction formulas (1′) and (2′).
  • the proportion of AlCl 3 gas in the mixed gas for the nucleation step is preferably 0.5 volume% or more and 5.0 volume% or less, more preferably 0.75 volume% or more and 3.5 volume% or less, and 1.0 volume% or less. % To 3.0% by volume is more preferable. If the proportion of AlCl 3 gas is less than 0.5% by volume, the thickness of the ⁇ -Al 2 O 3 layer tends to be non-uniform. On the other hand, if the proportion of AlCl 3 gas exceeds 5.0% by volume, the structure of ⁇ -Al 2 O 3 tends to become coarse.
  • the proportion of TiCl 4 gas in the mixed gas for the nucleation step is preferably 0.01 volume% or more and 1.0 volume% or less, more preferably 0.05 volume% or more and 0.75 volume% or less, and 0.1 volume% or less. % Or more and 0.5 volume% or less is more preferable.
  • the proportion of TiCl 4 gas is less than 0.01% by volume, the thickness of ⁇ -Al 2 O 3 tends to be uneven.
  • the proportion of TiCl 4 gas exceeds 1.0% by volume, the structure of ⁇ -Al 2 O 3 tends to become coarse.
  • the proportion of H 2 gas in the mixed gas for the nucleation step is preferably 60% by volume or more and 99% by volume or less, more preferably 70% by volume or more and 95% by volume or less, and further preferably 85% by volume or more and 95% by volume or less. If the proportion of H 2 gas is less than 60% by volume, the structure of ⁇ -Al 2 O 3 tends to become coarse. On the other hand, when the proportion of H 2 gas exceeds 99% by volume, the thickness of ⁇ -Al 2 O 3 tends to be uneven.
  • the proportion of CO 2 gas in the mixed gas for the nucleation step is preferably 0.5 volume% or more and 5.0 volume% or less, more preferably 0.75 volume% or more and 4.0 volume% or less, and 1.0 volume% or less. % To 3.0% by volume is more preferable. If the proportion of CO 2 gas is less than 0.5% by volume, the structure of ⁇ -Al 2 O 3 tends to be non-uniform. On the other hand, if the proportion of CO 2 gas exceeds 5.0% by volume, the structure of ⁇ -Al 2 O 3 tends to become coarse.
  • the proportion of CO gas in the mixed gas for the nucleation step is preferably 0.25 vol% or more and 2.5 vol% or less, more preferably 0.5 vol% or more and 2.0 vol% or less, and 1.0 vol%. It is more preferably not less than 1.5% by volume. If the proportion of CO gas is less than 0.25% by volume, the structure of ⁇ -Al 2 O 3 tends to become coarse. On the other hand, if the proportion of CO gas exceeds 2.5% by volume, the thickness of ⁇ -Al 2 O 3 tends to be uneven.
  • the proportion of HCl gas in the mixed gas for the nucleation step is preferably 0.1% by volume or more and 3.0% by volume or less, more preferably 0.5% by volume or more and 2.0% by volume or less, and 0.75% by volume. It is more preferably not less than 1.5% by volume. If the proportion of HCl gas is less than 0.1% by volume, the thickness of ⁇ -Al 2 O 3 tends to be non-uniform. On the other hand, when the proportion of HCl gas exceeds 3.0% by volume, the film formation rate of ⁇ -Al 2 O 3 tends to decrease.
  • the flow rate of the mixed gas for the nucleation step is preferably 40 NL/min or more and 80 NL/min or less, and more preferably 50 NL/min or more and 70 NL/min or less.
  • the time of the nucleation step is preferably 1 minute or more and 30 minutes or less, more preferably 5 minutes or more and 25 minutes or less.
  • Nuclear growth process can be performed after nucleation process.
  • the nucleus growth step is a step of growing the nuclei of the crystal grains generated in the nucleation step to obtain the second layer.
  • the nuclear growth step is preferably performed at a temperature of 750° C. or higher and 850° C. or lower and a pressure condition of 5 kPa or higher and 20 kPa or lower.
  • the nuclear growth step is performed by using a mixed gas containing AlCl 3 gas, TiCl 4 gas, H 2 gas, CO 2 gas, CO gas, HCl gas, H 2 S gas, and Ar—H 2 O gas (hereinafter, referred to as “nuclear growth gas”). Also referred to as "process mixed gas”. According to this, nuclei of ⁇ -Al 2 O 3 grow and also nuclei of TiS y grow by the reaction paths represented by the above reaction formulas (1′) and (2′).
  • the proportion of H 2 S gas in the mixed gas for the nuclear growth step is preferably 0.05% by volume or more and 3.0% by volume or less, more preferably 0.1% by volume or more and 2.0% by volume or less, and 0.3 More preferably, it is not less than 1.0% by volume and not more than 1.0% by volume.
  • the proportion of H 2 S gas is less than 0.05% by volume, the amount of TiS y deposited tends to be insufficient, and high temperature lubricity may not be ensured.
  • the proportion of H 2 S gas exceeds 3.0% by volume, the hardness of the second layer tends to decrease.
  • the ratio of the Ar—H 2 O gas in the mixed gas for the nucleus growth step is preferably 0.01% by volume or more and 2.0% by volume or less, more preferably 0.1% by volume or more and 1.5% by volume or less, and 0 It is more preferably 0.2% by volume or more and 1.0% by volume or less.
  • the proportion of Ar—H 2 O gas is less than 0.01% by volume, the film formation rate of the second layer tends to decrease.
  • the proportion of Ar—H 2 O gas exceeds 2.0% by volume, the adhesion of the second layer tends to deteriorate.
  • the proportions of AlCl 3 gas, TiCl 4 gas, H 2 gas, CO 2 gas, CO gas, and HCl gas in the mixed gas for the nucleus growth step are the same as the proportions of the respective gases in the mixed gas for the nucleation step.
  • the flow rate of the mixed gas for the nuclear growth step is preferably 40 NL/min or more and 100 NL/min or less, and more preferably 60 NL/min or more and 80 NL/min or less.
  • the film formation time in the nucleus growth step is preferably 30 minutes or more and 300 minutes or less, and more preferably 60 minutes or more and 180 minutes or less.
  • the cutting tool according to the present embodiment can be manufactured as described above.
  • Example 1 to Sample 14 ⁇ Preparation of substrate> A base material A and a base material B were prepared. Specifically, raw material powders having the blending composition (% by mass) shown in Table 1 were uniformly mixed. The term “remaining” in Table 1 means that WC occupies the rest of the blended composition (% by mass). Next, this mixed powder is pressure-molded into a predetermined shape and then sintered at 1300 to 1500° C. for 1 to 2 hours to form a base material A (shape: CNMG120408NGU) and a base material B (made of cemented carbide). Shape: RDET1204MOEN-G) was obtained. All of these shapes are the same as the products manufactured by Sumitomo Electric Hardmetal Co., Ltd.
  • the base material A CNMG120408NGU, is in the shape of a cutting edge exchange type cutting tip for turning. Seven base materials A were prepared and used for Sample 1 to Sample 7, respectively.
  • RDET1204MOEN-G which is the base material B, has the shape of a cutting edge exchange type cutting tip for milling. Seven base materials B were prepared and used for Samples 8 to 14, respectively.
  • the base material A or the base material B was set in a CVD apparatus, and a coating film was formed on each of the surfaces by the CVD method.
  • the coating film was formed so as to be a TiN layer, an Al 0.8 Ti 0.2 N layer (first layer), a TiCN layer, and a second layer in this order from the base material side.
  • the coating was formed so as to be a TiN layer, an Al 0.8 Ti 0.2 N layer (first layer), and a second layer in this order from the base material side.
  • the thickness of each layer is as shown in Table 4.
  • Table 2 shows the film forming conditions for each layer except the second layer.
  • TiN layer in the column of "TiN layer" in Table 2, the conditions for forming the TiN layer are shown.
  • the TiN layer was prepared by placing the substrate in the reaction vessel of a known CVD apparatus as shown in FIG. 4, and adding 2.0% by volume of TiCl 4 gas and 39.7 volume in the reaction vessel.
  • % N 2 gas and 58.3% by volume H 2 gas mixed gas (first gas group) is ejected at a total gas flow rate of 44.7 NL/min in an atmosphere having a pressure of 7.0 kPa and a temperature of 900° C. Can be formed.
  • each layer can be controlled by the time for which the source gas for each layer is ejected.
  • the film formation of the second layer was performed using a known CVD apparatus as shown in FIG. 4 under any of the film forming conditions a to e, k and l shown in Table 3.
  • Each film forming condition includes a pretreatment process, a nucleation process and a nucleation growth process.
  • a specific film forming method will be described using film forming condition a.
  • the pretreatment process under the film forming condition a is performed using a pretreatment process mixed gas containing H 2 gas, N 2 gas, CO gas, HCl gas, and AlCl 3 gas.
  • the film forming time in the pretreatment process is 5 minutes
  • the temperature of the reaction atmosphere is 800° C.
  • the pressure is 5.0 kPa
  • the total gas flow rate of the mixed gas for the pretreatment process is 59.8 NL/min.
  • the nucleation process under the film forming condition a uses a mixed gas for nucleation process containing H 2 gas, CO 2 gas, CO gas, HCl gas, AlCl 3 gas, and TiCl 4 gas. Done.
  • the film formation time in the nucleation step is 10 minutes
  • the temperature of the reaction atmosphere is 800° C.
  • the pressure is 5.0 kPa
  • the total gas flow rate of the mixed gas for the nucleation step is 60.2 NL/min.
  • the nuclei growth step under the film forming condition a is H 2 gas, CO 2 gas, CO gas, H 2 S gas, HCl gas, AlCl 3 gas, TiCl 4 gas, Ar—H 2 O. It is performed using a mixed gas for a nuclear growth step containing a gas (Ar gas containing 300 ppm H 2 O).
  • the film formation time in the nucleus growth step is 120 minutes, the temperature of the reaction atmosphere is 800° C., the pressure is 5.0 kPa, and the total gas flow rate of the mixed gas for the nucleus growth step is 61.4 NL/min.
  • a test sample for investigating the characteristics of the second layer was prepared by the following procedure, in addition to Samples 1 to 14. First, a base material A was prepared, and a TiN layer (thickness 1.1 ⁇ m), an Al 0.8 Ti 0.2 N layer (thickness 6.0 ⁇ m), and a TiCN layer (thickness 3.0 ⁇ m) were formed on this in this order. A laminated product was prepared. Each test sample was prepared by forming the second layer on the TiCN layer under any of the film forming conditions a to e, k, and l.
  • composition of the second layer In each of the test samples obtained under the film forming conditions a to e, k and l, the composition of the second layer was analyzed by an electron beam diffraction attached to SEM or TEM and an EDX apparatus.
  • the second layer contained ⁇ -Al 2 O 3 and TiS y .
  • the value of y in TiS y was within the range of 1.2 or more and 2.0 or less.
  • the second layer contained ⁇ -Al 2 O 3 and did not contain TiS y .
  • Optical microscope "AXIO Vert. A1” manufactured by Carl Zeiss (product name)
  • Lens "EC Epiplan 100x/0.85 HD M27” manufactured by Carl Zeiss (product name) Imaging conditions: time: 700 ms, intensity: 80%, gamma: 0.45.
  • Image processing software Win Roof ver. 7.4.5 Processing procedure: 1. Histogram average brightness correction (correction reference value 128) 2. Background removal (object size 30 ⁇ m) 3. Binarization with a single threshold (threshold 100) 4. Brightness inversion.
  • the film hardness of the second layer obtained under each of the film forming conditions a to e, k and l is measured by the nanoindentation method.
  • the measurement is performed by a method according to ISO14577, and the measurement load is 10 mN.
  • a nanoindentation hardness meter (ENT1100a; manufactured by Elionix) is used as a measuring instrument.
  • Table 3 shows the results of the measurement of the area ratio of TiS y , the measurement of the film hardness, and the high temperature sliding test.
  • the base material A or the base material B was coated with the coating film formed by the method as described above, and the cutting tools of Sample 1 to Sample 14 as shown in Table 4 were produced.
  • Samples 1 to 5 and 8 to 12 are examples, and samples 6, 7, 7, 13 and 14 are comparative examples.
  • the cutting tool of Sample 1 shows that the surface of the base material A has a TiN layer with a thickness of 1.0 ⁇ m and an Al 0.8 Ti 0.2 N layer with a thickness of 5.3 ⁇ m (first Layer), a TiCN layer having a thickness of 2.0 ⁇ m, and a second layer having a thickness of 2 ⁇ m and formed under the film forming condition a, are laminated in this order to form a coating film.
  • ⁇ Cutting test 1> With respect to the cutting tools of Sample 1 to Sample 7, a cutting test was performed under the following cutting conditions to evaluate wear resistance. In the evaluation of wear resistance, each of the above cutting tools was set on an NC lathe, and the time from when the cutting of the work material was started to when the flank wear width Vb exceeded 0.2 mm was evaluated. It can be evaluated that the longer this time is, the more excellent the wear resistance is and the longer the tool life is. The results are shown in Table 5.
  • the cutting conditions correspond to high efficiency machining and dry machining.
  • the first layer was composed only of the Al 0.8 Ti 0.2 N layer
  • the second layer was composed only of the composite compound containing ⁇ -Al 2 O 3 and TiS y.
  • the first layer consisted only of the Al 0.8 Ti 0.2 N layer
  • the second layer contained ⁇ -Al 2 O 3 , and did not contain TiS y . It was confirmed that the cutting tools of Samples 1 to 5 have excellent wear resistance and a long tool life even when used for high efficiency machining and dry machining, as compared with the cutting tools of Samples 6 and 7. ..
  • ⁇ Cutting test 2> Attach the cutting edge exchangeable cutting tip for milling consisting of the cutting tools of Sample 8 to Sample 14 to the cutter (shape: "RSXF12050RS", made by Sumitomo Electric Hardmetal Co., Ltd.), and perform a cutting test under the following cutting conditions to make it resistant.
  • the wear resistance was evaluated. In the evaluation of wear resistance, the time from when the cutting of the work material was started to when the flank wear width Vb exceeded 0.15 mm was evaluated. It can be evaluated that the longer this time is, the more excellent the wear resistance is and the longer the tool life is. The results are shown in Table 6.
  • the cutting conditions correspond to high efficiency machining and dry machining.
  • the first layer consisted only of the Al 0.8 Ti 0.2 N layer
  • the second layer consisted only of the composite compound containing ⁇ -Al 2 O 3 and TiS y. Become.
  • the first layer consisted only of the Al 0.8 Ti 0.2 N layer
  • the second layer contained ⁇ -Al 2 O 3 , and did not contain TiS y . It was confirmed that the cutting tools of Samples 8 to 12 are superior in wear resistance and have a longer tool life than the cutting tools of Samples 13 and 4 even when used for high efficiency machining and dry machining. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

基材と、前記基材の上に設けられた被膜とを備えた切削工具であって、前記被膜は、前記基材側に設けられた第1層と、前記第1層の上に設けられた第2層とを有し、前記第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、前記第2層は、κ-Alと、TiSと、を含む複合化合物のみからなる。ここで、前記xは0.7≦x<1を満たし、前記yは1.0≦y≦2.0を満たす。

Description

切削工具及びその製造方法
 本開示は、切削工具及びその製造方法に関する。本出願は、2019年1月30日に出願した日本特許出願である特願2019-013928号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 超硬合金からなる切削工具は、切削加工時にその刃先が高温、高負荷などの過酷な環境に曝されるため、刃先が摩耗したり、欠けたりするといった問題が生じる場合が多い。このため、切削工具の切削性能の改善を目的として超硬合金などの基材の表面を被覆する被膜の開発が進められている。
 例えば、チタン(Ti)およびアルミニウム(Al)と、窒素(N)および炭素(C)の両方またはいずれか一方との化合物(以下、AlTiN、AlTiCNなどとも称する)からなる被膜は、高い硬度を有することができ、かつAlの含有割合を高めることによって耐酸化性が向上することが知られている(特表2017-508632号公報(特許文献1))。このような被膜で切削工具を被覆することにより、切削工具の性能の改善が期待されている。
 近年、生産性の向上や加工コストの低減のための高能率加工や、環境を考慮した乾式切削加工の要求が高まっている。高能率加工や乾式切削加工では、加工時の工具の刃先温度は約1000℃と高温となる。AlTiNやAlTiCNは、約1000℃以上の高温下では、空気中の酸素と反応して分解する。従って、AlTiNやAlTiCNからなる被膜を有する切削工具を、特に鋼、SUS等の高能率加工や乾式切削加工に用いた場合は、該被膜の早期摩耗及び欠損が生じる可能性がある。
 上記のAlTiNやAlTiCNからなる被膜の早期摩耗及び欠損を抑制するために、AlTiNやAlTiCNからなる被膜を、断熱性を有するとともに、高温耐酸化性及び耐反応性に優れるAl層で被覆することが考えられる。
 例えば、欧州特許出願公開第3263738号明細書(特許文献2)には、TiAlCN層をκ-Alで被覆する技術が開示されている。
特表2017-508632号公報 欧州特許出願公開第3263738号明細書
 本開示の一態様に係る切削工具は、基材と、前記基材の上に設けられた被膜とを備えた切削工具であって、
 前記被膜は、前記基材側に設けられた第1層と、前記第1層の上に設けられた第2層とを有し、
 前記第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、
 前記第2層は、κ-Alと、TiSと、を含む複合化合物のみからなる、切削工具である。
 ここで、前記xは0.7≦x<1を満たし、前記yは1.0≦y≦2.0を満たす。
 本開示の他の一態様に係る切削工具の製造方法は、上記の切削工具の製造方法であって、
 基材を準備する工程と、
 前記基材上に化学気相合成法により被膜を形成する工程とを備え、
 前記被膜を形成する工程は、第1層を形成する工程及び第2層を形成する工程を含み、
 前記第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、
 前記第2層は、κ-Alと、TiSと、を含む複合化合物のみからなり、
 前記第2層を形成する工程は、TiClガス、HSガス及びAr-HOガスを含む混合ガスを用いて、750℃以上850℃以下の成膜温度で行われる、切削工具の製造方法である。
 ここで、前記xは0.7≦x<1を満たし、前記yは1.0≦y≦2.0を満たす。
図1は、本開示の一態様に係る切削工具の断面を模式的に示す図である。 図2は、本開示の一態様に係る切削工具の被膜の断面の電子顕微鏡写真である。 図3は、本開示の一態様に係る切削工具の第2層の電子顕微鏡写真である。 図4は、CVD(chemical vapor deposition, 化学気相合成法)装置の一例を示す図である。
[本開示が解決しようとする課題]
 しかし、κ-Alは熱的安定性が不十分であり、加工時に工具の刃先温度が高温になると、α-Alへ相転移する。この場合、Al層全体の体積が膨張するため、亀裂が発生する。この亀裂を基点に膜破壊が発生するため、膜強度が低下し、工具刃先のチッピングが生じやすく、工具寿命が低下する傾向がある。
 そこで、本目的は、AlTiN又はAlTiCNからなる層を有し、かつ、高能率加工や乾式加工に用いた場合においても、優れた工具寿命を有することのできる、切削工具を提供することを目的とする。
[本開示の効果]
 上記態様によれば、切削工具は、高能率加工や乾式加工に用いた場合においても、優れた工具寿命を有することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の一態様に係る切削工具は、基材と、前記基材の上に設けられた被膜とを備えた切削工具であって、
 前記被膜は、前記基材側に設けられた第1層と、前記第1層の上に設けられた第2層とを有し、
 前記第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、
 前記第2層は、κ-Alと、TiSと、を含む複合化合物のみからなる、切削工具である。
 ここで、前記xは0.7≦x<1を満たし、前記yは1.0≦y≦2.0を満たす。
 上記態様によれば、切削工具は、高能率加工や乾式加工に用いた場合においても、優れた工具寿命を有することが可能となる。
 (2)前記TiSは、板状構造を有し、前記κ-Al中に分散していることが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (3)前記第2層は、前記被膜の表面に平行な断面において、前記TiSyの面積比率が0.5%以上20%以下であることが好ましい。これによると、切削工具の耐摩耗性が更に向上する。
 (4)前記TiSの面積比率は1%以上15%以下であることが好ましい。これによると、切削工具の耐摩耗性が更に向上する。
 (5)前記TiSの面積比率は2%以上10%以下であることが好ましい。これによると、切削工具の耐摩耗性が更に向上する。
 (6)前記第2層は、0.5μm以上5μm以下の厚みを有することが好ましい。これによると、切削工具の工具寿命が更に向上する。
 (7)前記被膜は、3μm以上30μm以下の厚みを有することが好ましい。これによると、切削工具の工具寿命が更に向上する。
 (8)前記被膜は、前記第1層及び前記第2層の間に中間層を有し、前記中間層はTiCN又はTiCNOのみからなることが好ましい。これによると、被膜の製造工程において、第2層の結晶成長を促進することができる。
 (9)前記第1層は、AlTi1-xで示される化合物のみからなることが好ましい。ここで、前記xは0.7≦x<1を満たし、前記aは0≦a<0.25を満たし、前記bは0.75≦b<1.5を満たすことが好ましい。
 これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (10)前記xは0.75≦x<0.95を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (11)前記xは0.8≦x<0.9を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (12)前記aは0≦a<0.1を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (13)前記aは0≦a<0.05を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (14)前記bは0.8≦b<1.2を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (15)前記bは0.9≦b<1.1を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (16)前記yは1.0≦y≦2.0を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (17)前記yは1.4≦y≦1.8を満たすことが好ましい。これによると、切削工具の諸特性のうち、耐摩耗性が向上する。
 (18)前記被膜は、前記基材と前記第1層との間に配置される下地層を含むことが好ましい。これによると、基材と被膜との密着性を高めることができる。
 (19)本開示の他の一態様に係る切削工具の製造方法は、上記(1)~(18)のいずれかに記載の切削工具の製造方法であって、
 基材を準備する工程と、
 前記基材上に化学気相合成法により被膜を形成する工程とを備え、
 前記被膜を形成する工程は、第1層を形成する工程及び第2層を形成する工程を含み、
 前記第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、
 前記第2層は、κ-Alと、TiSと、を含む複合化合物のみからなり、
 前記第2層を形成する工程は、TiClガス、HSガス及びAr-HOガスを含む混合ガスを用いて、750℃以上850℃以下の成膜温度で行われる、切削工具の製造方法である。
 ここで、前記xは0.7≦x<1を満たし、前記yは1.0≦y≦2.0を満たす。
 上記態様によれば、高能率加工や乾式加工に用いた場合においても、優れた工具寿命を有する切削工具を製造することが可能となる。
 [本開示の実施形態の詳細]
 本開示の一実施形態に係る切削工具及びその製造方法の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。例えば「AlTiN」と記載されている場合、AlTiNを構成する原子数の比はAl:Ti:N=0.8:0.2:1に限られず、従来公知のあらゆる原子比が含まれる。このことは、「AlTiN」以外の化合物の記載についても同様である。本実施形態では、任意の化合物において、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)、クロム(Cr)などの金属元素と、窒素(N)、酸素(O)、炭素(C)などの非金属元素とは、必ずしも化学量論的な組成を構成している必要がない。
 <切削工具>
 図1及び図2に示されるように、本実施形態に係る切削工具10は、基材1と該基材1の上に設けられた被膜2とを備える。被膜は、基材の全面を被覆することが好ましい。しかしながら、基材の一部がこの被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても本開示の範囲を逸脱するものではない。
 切削工具は、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具として好適に使用することができる。
 <基材>
 基材1は、この種の基材として従来公知のものであればいずれも使用することができる。例えば、超硬合金(例えば、WC基超硬合金、WCのほか、Coを含み、あるいはTi、Ta、Nbなどの炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCNなどを主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化ホウ素焼結体またはダイヤモンド焼結体のいずれかであることが好ましい。
 これらの各種基材の中でも超硬合金(特にWC基超硬合金)またはサーメット(特にTiCN基サーメット)を選択することが好ましい。これらの基材は、高温における硬度と強度のバランスに優れ、上記用途の切削工具の基材として優れた特性を有している。基材としてWC基超硬合金を用いる場合、その組織中に遊離炭素、ならびにη相またはε相と呼ばれる異常層などを含んでいてもよい。
 さらに基材は、その表面が改質されたものであっても差し支えない。例えば超硬合金の場合、その表面に脱β層が形成されていたり、サーメットの場合に表面硬化層が形成されていたりしてもよい。基材は、その表面が改質されていても所望の効果が示される。
 切削工具が刃先交換型切削チップなどである場合、基材は、チップブレーカーを有するものも、有さないものも含まれる。刃先稜線部の形状は、シャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、ホーニングとネガランドを組み合わせたものの中で、いずれのものも含まれる。
 <被膜>
 被膜2は、基材1側に設けられた第1層4と、第1層4の上に設けられた第2層6とを有する。被膜2は、第1層4及び第2層6以外の他の層を含むことができる。他の層としては、例えば、基材1と第1層4との間に配置される下地層3、第1層4と第2層6との間に配置される中間層5、第2層6の上に配置される表面層(図示せず)が挙げられる。
 被膜の合計厚みは3μm以上30μm以下が好ましい。被膜の厚みがこの範囲であることにより、耐摩耗性を維持しつつ耐欠損性を向上させることができる。被膜の厚みが3μm未満であると硬度が低下する傾向があり、30μmを超えると切削加工時に被膜が基材から剥離し易くなる。被膜の合計厚みは、その特性を向上させる観点から5μm以上20μm以下がより好ましく、7μm以上15μm以下が更に好ましい。
 被膜の厚みは、例えば基材の表面の法線方向に平行な断面サンプルを得て、このサンプルを走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscopy)で観察することにより測定される。このようなSTEMを用いた測定方法としては、STEM高角度散乱暗視野法(HAADF-STEM:High-Angle Annular Dark-field Scanning Transmission Electron Microscopy)を挙げることができる。
 本明細書において「厚み」といった場合、その厚みは平均厚みを意味する。具体的には、断面サンプルの観察倍率を5000~10000倍とし、観察面積を100~500μm2として、1視野において10箇所の厚み幅を測定し、その平均値を「厚み」とする。後述の各層の厚みについても、特に記載のない限り同様である。
 <第1層>
 第1層4は、AlTi1-xの窒化物又は炭窒化物のみからなる。ここで、xは0.7≦x<1を満たす。AlTi1-xの窒化物は、AlTi1-xNと示され、AlTi1-xの炭窒化物はAlTi1-xCNと示される。第1層4は、AlTi1-x(0.7≦x<1、0≦a<0.25、0.75≦b<1.5を満たす。)で示される化合物のみからなることが好ましい。
 AlTi1-x(0.7≦x<1を満たす)の窒化物又は炭窒化物においては、AlがAlとTiの合計に対して原子比で70%以上含まれ、更に、炭素(C)又は炭素(C)及び窒素(N)が含まれる。このような化合物のみからなる第1層は高い硬度を有することができ、優れた耐摩耗性を有することができる。
 第1層を構成する化合物の組成に関して、0.75≦x<0.95が好ましく、0.8≦x<0.9がより好ましく、0≦a<0.1が好ましく、0≦a<0.05がより好ましく、0.8≦b<1.2が好ましく、0.9≦b<1.1がより好ましい。
 第1層の組成は、SEMまたはTEM付帯のEDX(Energy Dispersive X-ray spectroscopy)装置を用いることにより、確認することができる。具体的には、まず、切削工具10の任意の位置を切断し、被膜2の断面を含む試料を作製する。
 次に、被膜2の第1層に関し、10μm×20μmの矩形の測定視野を任意に5箇所選択し、この領域を分析する。これにより、任意の測定領域に含まれる各元素の原子比を特定することができ、この原子比から第1層の組成を決定することができる。
 なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、第1層の組成の測定結果を測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどないことが確認された。
 第1層は、AlTi1-x(0.7≦x<1を満たす)の窒化物又は炭窒化物のみからなる150nm以下の厚みの層(以下、第1単位層とも記す。)を複数含む層状構造であることが好ましい。これによると、第1層は高い耐熱衝撃性を有することができる。第1層に含まれる第1単位層の積層数は5以上5000以下が好ましく、10以上2500以下が更に好ましい。
 第1層は、上記の層状構造からなり、層状構造を構成する各層は、同一の面心立方格子構造を有し、TiとAlの化学量論的割合が交互に異なる第1単位層が周期的に交番する領域を形成することが好ましい。これによると、第1単位層が立方晶構造を保持することができ、かつ、より高い熱安定性を有することができる。
 第1層が層状構造を有すること、及び、第1単位層の積層数は、基材の表面の法線方向に平行な断面サンプルを得て、このサンプルを走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscopy)で観察することにより測定される。
 第1層は、90体積%以上が面心立方格子構造を有することが好ましい。これによると、第1層の硬度の低下を最小限に制御することができ、第1層は優れた耐摩耗性及び耐欠損性を有することができる。第1層における面心立方格子構造の割合は、95体積%以上がより好ましく、100体積%が最も好ましい。
 第1層が面心立方格子構造を有すること、及びその体積割合は、X線回折装置、SEM-EBSD(scanning electron microscope electron back scattering diffraction)装置、TEM(Transmission Electron Microscopy)分析装置などを用いて確認することができる。
 第1層は、合計で1μm以上15μm以下の厚みを有することが好ましい。これによると、切削工具の工具寿命が向上する。第1層の厚みが1μm未満であると、第1層による耐摩耗性の向上効果が低下する傾向があり、15μmを超えると切削加工時に被膜が基材から剥離し易くなる。第1層の厚みは、2μm以上10μm以下がより好ましく、4μm以上8μm以下が更に好ましい。
 第1層の合計厚みは、上記の被膜の厚みの測定に用いた方法と同じ方法により測定することができる。
 第1層はその効果を奏する限り、AlTi1-xの窒化物又は炭窒化物に加えて、不可避不純物を含んでいても良い。不可避不純物としては、例えば、酸素、アルゴン、水素、塩素、硫黄が挙げられる。
 <第2層>
 第2層6は、κ-Al(結晶構造がκ型である酸化アルミニウム)と、TiS(硫化チタン)と、を含む複合化合物のみからなる。ここで、yは1.0≦y≦2.0を満たす。第2層がκ-Alと、TiSと、を含む複合化合物のみからなることにより、本実施形態に係る切削工具は、高能率加工や乾式加工に用いた場合においても、優れた耐摩耗性や耐欠損性を有し、長い工具寿命を達成できる。その理由は明らかではないが、下記(a)~(d)の通りと推察される。
 (a)κ-Alは断熱性、高温耐酸化性及び耐反応性を有する。従って、第2層がκ-Alを含むと、切削工具の使用時に、AlTiNやAlTiCNのみからなる第1層が切削熱により分解したり、酸化することを抑制することができ、切削工具の耐摩耗性が向上する。
 (b)κ-Alは750~850℃の温度条件下で成膜することができる。よって、成膜時にAlTiNやAlTiCNのみからなる第1層が熱分解されず、切削工具は優れた耐摩耗性を維持することができる。
 (c)TiSは高温潤滑性を有する。従って、第2層がTiSを含むと、切削工具の使用時に切削抵抗が低減するため、すくい面の摩耗を抑制することができ、切削工具の耐摩耗性が向上する。
 (d)TiSは高温潤滑性を有する。従って、第2層がTiSを含むと、切削工具の使用時に切削抵抗が低減するため、刃先温度の上昇を抑制することができる。これにより、第2層に含まれるκ-Alがα-Alに相転移することにより生じる体積変化を抑制することができ、切削工具の耐摩耗性や耐欠損性が向上する。
 TiSの組成に関して、1.0≦y≦2.0が好ましく、1.4≦y≦1.8がより好ましい。TiSyの組成は、上記の第1層の組成の測定に用いた方法と同じ方法により測定することができる。
 具体的には、第2層がκ-Alと、TiSと、含むことは、SEMまたはTEM付帯のEDX(Energy Dispersive X-ray spectroscopy)装置を用いることにより、確認することができる。切削工具10の第2層の表面の任意の領域をSEMで観察すると、例えば図3で示されるように、κ-Alのみからなるκ-Al領域7と、TiSのみからなるTiS領域8とが確認される。κ-Al領域7及びTiS領域8のそれぞれについて分析すると、各領域に含まれる各元素の原子比を特定することができ、この原子比からκ-Al領域及びTiS領域の組成を決定することができる。
 第2層の上に、更に表面層が存在する場合は、該表面層を研磨して第2層を露出させ、該露出面において組成の測定を行う。
 なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、κ-Al領域及びTiS領域の組成の測定結果を測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどないことが確認された。
 第2層において、TiSは、板状構造を有し、κ-Al中に分散していることが好ましい。TiSが板状構造を有すると、TiSの硬度が高くなる。よって、第2層は高い硬度を有することができる。
 第2層において、TiSが板状構造を有し、該板状構造の軸方向が、第2層の表面から第2層とその下に存在する層との界面まで、第2層の厚み方向に延在して存在していることが好ましい。TiSが、κ-Alのみからなるマトリックス中に柱状に存在していると、切削初期から終期まで、TiSが切削工具の表面に露出するため、TiSによる潤滑効果が維持される。よって、切削初期から終期まで、耐摩耗性の向上効果を得ることができ、工具寿命が向上する。
 TiSが板状構造を有することは、第2層の表面をSTEMで観察することにより確認することができる。第2層の上に、更に表面層が存在する場合は、該表面層を研磨して第2層を露出させ、該露出面をSTEMで観察する。板状構造の軸方向が第2層の厚み方向に延在して存在していることは、基材の表面の法線方向に平行な断面サンプルを得て、この第2層の断面をSTEMで観察することにより確認することができる。
 第2層は、前記被膜の表面に平行な断面において、TiSyの面積比率が0.5%以上20%以下であることが好ましい。これによると、切削工具の耐摩耗性が向上する。TiSyの面積比率は1%以上15%以下がより好ましく、2%以上10%以下が更に好ましい。
 第2層におけるTiSの面積比率は、以下の(a)~(d)の手順に従い算出される。
 (a)測定視野の設定
 切削工具を、第2層において、第2層の表面側からの深さ(第2層より表面側に他の層(例えば表面層)が設けられている場合は、第2層と該他の層との界面からの深さ)0.5μmで、かつ、被膜の表面に対して平行な方向にワイヤー放電加工機を用いて切り出し、露出した断面を、平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。被膜の表面に凹凸がある場合は、該表面を平面となるまで研磨し、該平面に対して平行な方向に切り出し、露出した断面を、平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。切削工具の最表面が第2層の場合は、切り出しを行わずに、第2層の表面を平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 第2層の鏡面研磨された断面又は表面において、10μm×20μmの矩形の測定視野を無作為に5箇所選択する。なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、後述するTiSの面積比率の測定結果を測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどないことが確認された。
 (b)測定視野の撮像
 下記の機器を用いて、下記の条件で、各測定視野を撮像する。
 光学顕微鏡:カールツァイス社製「AXIO Vert.A1」(製品名)
 レンズ:カールツァイス社製「EC Epiplan 100x/0.85 HD M27」(製品名)
 撮像条件:time:700ms,intensity:80%,gamma:0.45。
 (c)撮像された画像の二値化処理
 上記(b)で撮像された画像に対して、下記の画像処理ソフトを用いて、下記の手順に従い二値化処理を施す。
 画像処理ソフト:Win Roof ver.7.4.5
 処理手順:
 1.ヒストグラム平均輝度補正(補正基準値128)
 2.バックグラウンド除去(物体サイズ30μm)
 3.単一閾値による二値化(閾値100)
 4.輝度反転。
 (d)二値化処理された画像の解析
 上記(c)で得られた画像において、明視野はTiSに該当し、暗視野はAlに該当する。従って、測定視野(第2層)全体の面積に占める明視野に由来する画素(TiSに由来する画素)の面積比率を算出することにより、第2層におけるTiSの面積比率を得ることができる。
 なお、第2層は、0.5μm以上5μm以下の厚みを有することが好ましい。これによると、切削工具の工具寿命が向上する。第2層の厚みが0.5μm未満であると、第2層による耐摩耗性の向上効果が低下する傾向があり、5μmを超えると切削加工時に第2層が剥離し易くなる。第2層の厚みは、1μm以上4μm以下がより好ましく、2μm以上3μm以下が更に好ましい。
 第2層の厚みは、上記の被膜の厚みの測定に用いた方法と同じ方法により測定することができる。
 第2層は、ナノインデンテーション法で測定した硬度が15GPa以上30GPa以下であることが好ましい。これによると、切削工具の耐摩耗性が向上する。第2層の硬度が15GPa未満であると、耐摩耗性が低下する傾向があり、30GPaを超えると、耐欠損性が低下する傾向がある。第2層の硬度は、18GPa以上28GPa以下がより好ましく、20GPa以上25GPa以下が更に好ましい。
 上記の硬度の測定は、ISO14577に準拠した方法で行い、測定荷重は10mNとする。測定機器はナノインデンテーション硬度計(ENT1100a;Elionix社製)を用いて行う。
 第2層はその効果を奏する限り、κ-Alと、TiSと、を含む複合化合物に加えて、不可避不純物を含んでいても良い。不可避不純物としては、例えば、水素、塩素、アルゴンが挙げられる。
 <他の層>
 被膜2は、第1層4及び第2層6に加えて、他の層を含むことができる。他の層としては、例えば、基材1と第1層4との間に配置される下地層3、第1層4と第2層6との間に配置される中間層5、第2層6の上に配置される表面層(図示せず)が挙げられる。
 (下地層)
 下地層3は、基材1と第1層4との間に配置されることにより、被膜中における第1層の密着性を高め、基材と被膜との密着性を高めることができる。下地層は、例えば、TiN層、TiCN層、TiCNO層、TiBN層等を用いることができる。下地層は1層からなることができる。また、複数の層からなることもできる。下地層は、公知の方法により形成可能である。
 下地層としてTiN層を用いる場合は、平均厚みが0.3~1μmであることが好ましい。この範囲の厚みにより、被膜中の第1層の密着性をさらに高めることができる。TiN層は、より好ましくは、0.4~0.8μmである。
 下地層としてTiCN層およびTiBN層を用いる場合は、平均厚みが2~20μmであることが望ましい。この平均厚みを2μm未満とすれば摩耗が進みやすくなる恐れがある。この平均厚みが20μmを超えると耐欠損性が低下する恐れがある。
 下地層の厚みは、上記の被膜の厚みの測定に用いた方法と同じ方法により測定することができる。
 (中間層)
 中間層5は、第1層4と第2層6との間に配置されることにより、第2層6の結晶成長を促進することができる。中間層は、例えば、TiCN層、TiCNO層等を用いることができる。中間層は1層からなることができる。また、複数の層からなることもできる。
 中間層5は、平均厚みが0.2~2μmであることが好ましく、0.5~1.5μmであることがより好ましい。中間層の平均厚みが0.2μm未満であると、第2層の結晶成長の促進効果が低下する傾向がある。中間層の平均厚みが2μmを超えると、第2層と中間層と隣接する層との密着性が低下する恐れがある。
 中間層の厚みは、上記の被膜の厚みの測定に用いた方法と同じ方法により測定することができる。
 (表面層)
 表面層(図示せず)は、被膜2において表面側に配置される層である。表面層は、例えば、第2層6の直上に配置される。表面層は、例えば、Tiの炭化物、窒化物または硼化物のいずれかを主成分とする化合物からなることができる。ここで、「Tiの炭化物、窒化物または硼化物のいずれかを主成分とする」とは、Tiの炭化物、窒化物および硼化物のいずれかを90質量%以上含むことを意味する。さらに、好ましくは不可避不純物を除きTiの炭化物、窒化物および硼化物のいずれかからなることを意味する。表面層は1層からなることができる。また、複数の層からなることもできる。
 表面層を構成した場合、明瞭な色彩色を呈するなどの効果によって、切削使用後の切削チップのコーナー識別(使用済み部位の識別)が容易となる。
 表面層は、平均厚みが0.05~1μmであることが好ましい。表面層の平均厚みの上限は好ましくは0.8μmであり、さらに好ましくは0.6μmである。この平均厚みの下限は好ましくは0.1μmであり、さらに好ましくは0.2μmである。この平均厚みを0.05μm未満とすれば、耐欠損性が十分に得られない恐れがある。この平均厚みが1μmを超えると、表面層に隣接する層との密着性が低下する恐れがある。表面層の厚みは、上記の被膜の厚みの測定に用いた方法と同じ方法により測定することができる。
 <切削工具の製造方法>
 本実施形態に係る切削工具の製造方法は、上記の切削工具の製造方法であって、基材を準備する工程と、基材上に化学気相合成法により被膜を形成する工程とを備え、被膜を形成する工程は、第1層を形成する工程及び第2層を形成する工程を含み、第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、第2層は、κ-Alと、TiSと、を含む複合化合物のみからなり、第2層を形成する工程は、TiClガス、HSガス及びAr-HOガスを含む混合ガスを用いて、750℃以上850℃以下の成膜温度で行われる。ここで、xは0.7≦x<1を満たし、yは1.0≦y≦2.0を満たす。これにより、上記の構成および効果を有する切削工具を製造することができる。
 まず、図4を用いて本実施形態に係る切削工具の製造方法に用いられるCVD装置の一例について説明する。図4に示されるように、CVD装置100は、基材1を設置するための複数の基材保持治具21と、基材保持治具21を包囲する耐熱合金鋼製の反応容器22とを備えている。反応容器22の周囲には、反応容器22内の温度を制御するための調温装置23が設けられている。
 反応容器22には、隣接して接合された第1ガス導入管24と第2ガス導入管25とを有するガス導入管が反応容器22の内部の空間を鉛直方向に延在し、その軸26で回転可能となるように設けられている。ガス導入管においては、その内部で第1ガス導入管24に導入されたガスと、第2ガス導入管25に導入されたガスとが混合しない構成とされている。第1ガス導入管24および第2ガス導入管25の一部にはそれぞれ、第1ガス導入管24および第2ガス導入管25の内部を流れるガスを基材保持治具21に設置された基材1上に噴出させるための複数の貫通孔が設けられている。
 さらに、反応容器22には、反応容器22の内部のガスを外部に排気するためのガス排気管27が設けられている。反応容器22の内部のガスは、ガス排気管27を通過して、ガス排気口28から反応容器22の外部に排出される。
 次に、CVD装置100を用いた切削工具の製造方法について説明する。以下、説明の便宜のため、基材上にAlTi1-x(0.7≦x<1を満たす)の窒化物又は炭窒化物のみからなる第1層を直接形成し、第1層の直上に第2層を形成する場合について説明するが、基材上に下地層などの他の層を形成してから第1層を形成してもよい。更に、第1層を形成した後、中間層を形成し、中間層の上に第2層を形成してもよい。更に、第2層の上に、表面層を形成することもできる。下地層、中間層及び表面層を形成する方法は、いずれも従来公知の方法を用いることができる。
 <基材を準備する工程>
 まず、基材1を準備する。基材は、市販のものを用いてもよく、一般的な粉末冶金法で製造してもよい。例えば、基材として超硬合金基材を一般的な粉末冶金法で製造する場合、ボールミルなどによってWC粉末とCo粉末などとを混合して混合粉末を得ることができる。該混合粉末を乾燥した後、所定の形状に成形して成形体を得る。さらに該成形体を焼結することにより、WC-Co系超硬合金(焼結体)を得る。次いで該焼結体に対して、ホーニング処理などの所定の刃先加工を施すことにより、WC-Co系超硬合金からなる基材を製造することができる。上記以外の基材であっても、この種の基材として従来公知のものをいずれも準備可能である。
 <被膜を形成する工程>
 被膜を形成する工程では、CVD装置100を用いたCVD法により、基材1上に被膜を形成する。被膜を形成する工程は、第1層を形成する工程及び第2層を形成する工程を含む。
 <第1層を形成する工程>
 まずCVD装置100の反応容器22内に、基材1として任意の形状のチップを基材保持治具21に装着する。続いて調温装置23を使って基材保持治具21に設置した基材1の温度を680~780℃に上昇させる。さらに反応容器22の内部の圧力を0.1~3.0kPaとする。
 次に、軸26を中心に第1ガス導入管24と第2ガス導入管25を回転させながら、TiClガス及びAlClガスを含む第1ガス群を第1ガス導入管24に導入し、NHガスを含む第2ガス群を第2ガス導入管25に導入する。これにより、第1ガス導入管24の貫通孔および第2ガス導入管25の貫通孔から、第1ガス群および第2ガス群がそれぞれ反応容器22内に噴出される。
 第1ガス群は、TiClガス及びAlClガスとともに、キャリアガスとしてHガスを含むことが好ましい。第2ガス群はNHガスとともに、Hガスを含むことが好ましい。
 噴出された第1ガス群および第2ガス群は回転操作によって反応容器22内で均一に混合され、この混合ガスが基材1上へ向かう。そして、第1ガス群に含まれるガス成分および第2ガス群に含まれるガス成分が化学反応することによって、基材1上にAlTi1-x(0.7≦x<1を満たす)の窒化物又は炭窒化物のみからなる結晶粒の核が生成される。引き続き、第1ガス導入管24の貫通孔から第1ガス群を、第2ガス導入管25の貫通孔から第2ガス群を噴出させる。これにより、上記結晶粒の核が成長し、AlTi1-x(0.7≦x<1を満たす)の窒化物又は炭窒化物のみからなる第1層が形成される。
 第1層を形成する工程において、第1ガス群及び第2ガス群の流量及び成膜時間を制御することにより、第1層の厚さを調整することができる。第1ガス群の流量は20NL/min以上100NL/min以下が好ましく、40NL/min以上80NL/min以下がより好ましい。成膜時間は10分以上300分以下が好ましく、30分以上180分以下がより好ましい。第2ガス群の流量は5NL/min以上50NL/min以下が好ましく、10NL/min以上25NL/min以下がより好ましい。成膜時間は10分以上300分以下が好ましく、30分以上180分以下がより好ましい。
 本実施形態では、第1層を形成するに際し、AlClガスおよびTiClガスの両方またはいずれか一方の流量を変調させながら結晶粒を成長させることが好ましい。この方法としては、全反応ガス中のAlClガスの割合(体積%)を一定に維持しながら、TiClガスの割合(体積%)を変調させる第1結晶成長方法と、全反応ガス中のTiClガスの割合(体積%)を一定に維持しながら、AlClガスの割合(体積%)を変調させる第2結晶成長方法とがある。
 第1結晶成長方法では、TiClガスの流量の調節によってTiの原子比を制御することができる(すなわちAlの原子比も制御することができる)。例えば、AlClガスの割合を0.2~0.3体積%で一定に維持しながら、TiClガスの割合を0.1~0.2体積%(高流量:High Flow)として5~15秒間維持する条件で第1ガス群を第1ガス導入管24に導入する。その後、直ちにTiClガスの流量の高低を切り替えてTiClガスの割合を0.02~0.04体積%(低流量:Low Flow)として45~55秒間維持する条件で第1ガス群を第1ガス導入管24に導入する。その後、さらにTiClガスの流量の高低を切り替える。この操作を複数回繰り返すことにより、Tiの原子比の異なる第1単位層が交互に積層された積層構造を有する結晶粒を含む第1層を形成することができる。
 第2結晶成長方法では、AlClガスの流量の調節によってAlの原子比を制御することができる(すなわちTiの原子比も制御することができる)。具体的には、TiClガスの割合を0.02~0.04体積%で一定に維持しながら、AlClガスの割合を1~2体積%(高流量:High Flow)として10~15秒間維持する条件で第1ガス群を第1ガス導入管24に導入する。その後、直ちにAlClガスの流量の高低を切り替えてAlClガスの割合を0.2~0.4体積%(低流量:Low Flow)として45~50秒間維持する条件で第1ガス群を第1ガス導入管24に導入する。その後、さらにAlClガスの流量の高低を切り替える。この操作を複数回繰り返すことにより、Alの原子比の異なる第1単位層が交互に積層された積層構造を有する結晶粒を含む第1層を形成することができる。
 第1結晶成長方法および第2結晶成長方法において、高流量(High Flow)でTiClガスまたはAlClガスを噴出する時間、低流量(Low Flow)でTiClガスまたはAlClガスを噴出する時間、TiClガスまたはAlClガスの流量を高流量から低流量へ、または低流量から高流量へ切り替える回数などを調節することにより、各第1単位層の厚み、第1層の厚みの合計をそれぞれ所望の厚みに制御することができる。
 また、反応容器22の内部の圧力および基材1の温度を上記範囲とすることにより、第1層に含まれる結晶粒の配向性を制御することができる。
 <第2層を形成する工程>
 次に、基材の温度を750℃以上850℃以下に調節する。これは、第2層の形成時の反応雰囲気の温度(以下、成膜温度とも記す。)が750℃以上850℃以下であることを意味する。成膜温度が750℃未満であると、十分な成膜速度が得られない可能性がある。一方、成膜温度が850℃を超えると、第1層を構成するAlTiN又はAlTiCNが熱分解するおそれがある。成膜温度は770℃以上830℃以下が好ましく、780℃以上820℃以下がより好ましい。
 上記の基材の温度の調節とともに、反応容器22の内部の圧力を5kPa以上10kPa以下に調節する。
 次に、軸26を中心にガス第1ガス導入管24と第2ガス導入管25を回転させながら、TiClガス、HSガス及びAr-HOガスを含む混合ガス(以下、「第2層用混合ガス」とも記す。)を第1ガス導入管又は第2ガス導入管に導入する。HSガス及びAr-HOガスは触媒である。Ar-HOガスとは、HOを30~300ppmの濃度で含むArガスを意味する。これにより、第1ガス導入管24の貫通孔又は第2ガス導入管25の貫通孔から、第2層用混合ガスが反応容器内に噴出される。
 噴出された第2層用混合ガスは回転操作によって反応容器22内で均一に混合され、ガス成分が化学反応することによって、第1層上にκ-Alのみからなる結晶粒の核、及び、TiSのみからなる結晶粒の核が生成される。引き続き、第1ガス導入管24の貫通孔又は第2ガス導入管25の貫通孔から、混合ガスを噴出される。これにより、上記結晶粒の核が成長し、κ-Alのみからなる結晶粒、及び、TiSのみからなる結晶粒を備える第2層が形成される。
 第2層を形成する工程において、第2層用混合ガスの流量及び成膜時間を制御することにより、第2層の厚さを調整することができる。第2層用混合ガスの流量は20NL/min以上80NL/min以下が好ましく、40NL/min以上60NL/min以下がより好ましい。成膜時間は30分以上300分以下が好ましく、60分以上180分以下がより好ましい。
 第2層の成膜速度は、0.5μm/hr以上2μm/hr以下が好ましく、0.7μm/hr以上1.5μm/hr以下がより好ましい。
 従来、CVD法でAl層を形成する際には、下記反応式(1)及び反応式(2)で示される反応経路を用いていた。
 H+CO→HO+CO  (1)
 2AlCl+3HO→Al+6HCl  (2)
 上記反応式(1)において、反応中間体であるHOの生成反応は800℃でΔG=0kJと熱力学的に計算される。このため、十分なAlの生成速度を確保するためには、約1000℃の温度が必要である。
 一方、第1層を構成するAlTi1-x(0.7≦x<1を満たす)の窒化物又は炭窒化物(例えば、AlTiN、AlTiCN)は、約1000℃以上の高温下では、熱分解する。そこで、本発明者らは、Al層の形成をより低温で行うことのできる反応条件を鋭意検討した結果、下記反応式(1’)及び反応式(2’)で示される反応経路を新たに考案した。
 3TiCl+6H+5CO→Ti+5CO+12HCl  (1’)
 10AlCl+3Ti+1.5H→5Al+9TiCl+3HCl  (2’)
 反応式(1’)及び反応式(2’)で示される反応経路では、反応中間体はHOではなく、Tiである。Tiの生成反応(1’)は50℃付近でΔG=0kJと熱力学的に計算される。また、Alの生成反応(2’)は850℃以下でΔGが負である。このため、該反応経路では、750~800℃の低温において、十分なAlの生成速度を確保することが可能である。なお、本実施形態において、750~800℃の低温で生成されるAlの結晶構造は、κ-Alである。
 更に、本発明者らは、混合ガス中のHSガスの割合を制御することにより、κ-Alのみからなるマトリックス領域中に、高温潤滑性を有するTiSのみからなる結晶粒を析出させることが可能であることを見出した。これにより、得られた第2層は、κ-Alに由来する断熱性、高温耐酸化性及び耐反応性とともに、TiSに由来する高温潤滑性を有することができる。
 第2層用混合ガス中のHSガスの割合は、0.1体積%以上1.0体積%以下が好ましく、0.2体積%以上0.8体積%以下がより好ましく、0.3体積%以上0.5体積%以下が更に好ましい。HSガスの割合が0.1体積%未満であると、TiSの析出量が不十分となり、高温潤滑性を確保することができない傾向がある。一方、HSガスの割合が1.0体積%を超えると、第2層の硬度が低下する傾向がある。
 第2層用混合ガス中のTiClガスの割合は、0.05体積%以上0.5体積%以下が好ましく、0.1体積%以上0.4体積%以下がより好ましく、0.2体積%以上0.3体積%以下が更に好ましい。TiClガスの割合が0.05体積%未満であるとTiSの析出量が不均一の傾向がある。一方、TiClガスの割合が0.5体積%を超えると、TiSの組織が粗大化する傾向がある。
 第2層用混合ガス中のAr-HOガスの割合は、0.01体積%以上1体積%以下が好ましく、0.05体積%以上0.8体積%以下がより好ましく、0.1体積%以上0.5体積%以下が更に好ましい。Ar-HOガスの割合が0.01体積%未満であると、κ-Alの析出が不均一の傾向がある。一方、Ar-HOガスの割合が1体積%を超えると、κ-Alの密着力が不十分な傾向がある。
 第2層用混合ガスは、TiClガス、HSガス及びAr-HOガスとともに、Hガス、Nガス、COガス、COガス、HClガス、AlClガスを含むことができる。
 第2層用混合ガスの流量は、20NL/min以上80NL/min以下が好ましく、40NL/min以上60NL/min以下がより好ましい。成膜時間は30分以上300分以下が好ましく、60分以上180分以下がより好ましい。
 第2層を形成する工程は、前処理工程、核生成工程及び核成長工程を含むことが好ましい。
 前処理工程とは、第2層を形成する前に、第2層の下地となる層の表面(第1層と第2層とが接する場合は、第1層の表面、第1層と第2層との間に中間層が配置されている場合は、第2層に接する中間層の表面)にAlClを吸着させる工程である。
 前処理工程は、750℃以上850℃以下の温度、及び、5~10kPaの圧力条件下で行われることが好ましい。
 前処理工程は、AlClガス及びCOガスを含み、COガスを含まない混合ガス(以下、「前処理工程用混合ガス」とも記す。)を用いることが好ましい。これによると、κ-Al相の形成が容易となるからである。
 前処理工程用混合ガス中のCOガスの割合は、0.5体積%以上5.0体積%以下が好ましく、0.75体積%以上3.0体積%以下がより好ましく、1.0体積%以上2.0体積%以下が更に好ましい。COガスの割合が0.5体積%未満であると、κ-Al相中にその他のAl相が混在する傾向がある。一方、COガスの割合が5.0体積%を超えると、κ-Alの組織が粗大化する傾向がある。
 前処理工程用混合ガスは、AlClガス及COガスとともに、Hガス、Nガス、HClガス、TiClを含むことができる。
 前処理工程用混合ガスの流量は40NL/min以上100NL/min以下が好ましく、50NL/min以上80NL/min以下がより好ましい。前処理工程の時間は1分以上10分以下が好ましく、2分以上5分以下がより好ましい。
 前処理工程の後に、核生成工程を行うことができる。核生成工程とは、前処理工程において第2層が形成される層の表面に吸着させたAlClを起点として、κ-Alを含む結晶粒の核を生成する工程である。
 核生成工程は、750℃以上850℃以下の温度、及び、5kPa以上10kPa以下の圧力条件下で行われることが好ましい。
 核生成工程は、AlClガス、TiClガス、Hガス、COガス、COガス及びHClガスを含む混合ガス(以下、「核生成工程用混合ガス」とも記す。)を用いることが好ましい。これによると、上記の反応式(1’)及び(2’)で示される反応経路により、κ-Alを生成することができる。
 核生成工程用混合ガス中のAlClガスの割合は、0.5体積%以上5.0体積%以下が好ましく、0.75体積%以上3.5体積%以下がより好ましく、1.0体積%以上3.0体積%以下が更に好ましい。AlClガスの割合が0.5体積%未満であると、κ-Al層の厚みが不均一になる傾向がある。一方、AlClガスの割合が5.0体積%を超えると、κ-Alの組織が粗大化する傾向がある。
 核生成工程用混合ガス中のTiClガスの割合は、0.01体積%以上1.0体積%以下が好ましく、0.05体積%以上0.75体積%以下がより好ましく、0.1体積%以上0.5体積%以下が更に好ましい。TiClガスの割合が0.01体積%未満であると、κ-Alの厚みが不均一になる傾向がある。一方、TiClガスの割合が1.0体積%を超えるとκ-Alの組織が粗大化する傾向がある。
 核生成工程用混合ガス中のHガスの割合は、60体積%以上99体積%以下が好ましく、70体積%以上95体積%以下がより好ましく、85体積%以上95体積%以下が更に好ましい。Hガスの割合が60体積%未満であると、κ-Alの組織が粗大化する傾向がある。一方、Hガスの割合が99体積%を超えると、κ-Alの厚みが不均一になる傾向がある。
 核生成工程用混合ガス中のCOガスの割合は、0.5体積%以上5.0体積%以下が好ましく、0.75体積%以上4.0体積%以下がより好ましく、1.0体積%以上3.0体積%以下が更に好ましい。COガスの割合が0.5体積%未満であると、κ-Alの組織が不均一になる傾向がある。一方、COガスの割合が5.0体積%を超えると、κ-Alの組織が粗大化する傾向がある。
 核生成工程用混合ガス中のCOガスの割合は、0.25体積%以上2.5体積%以下が好ましく、0.5体積%以上2.0体積%以下がより好ましく、1.0体積%以上1.5体積%以下が更に好ましい。COガスの割合が0.25体積%未満であると、κ-Alの組織が粗大化する傾向がある。一方、COガスの割合が2.5体積%を超えると、κ-Alの厚みが不均一になる傾向がある。
 核生成工程用混合ガス中のHClガスの割合は、0.1体積%以上3.0体積%以下が好ましく、0.5体積%以上2.0体積%以下がより好ましく、0.75体積%以上1.5体積%以下が更に好ましい。HClガスの割合が0.1体積%未満であると、κ-Alの厚みが不均一になる傾向がある。一方、HClガスの割合が3.0体積%を超えると、κ-Alの成膜速度が低下する傾向がある。
 核生成工程用混合ガスの流量は40NL/min以上80NL/min以下が好ましく、50NL/min以上70NL/min以下がより好ましい。核生成工程の時間は1分以上30分以下が好ましく、5分以上25分以下がより好ましい。
 核生成工程の後に、核成長工程を行うことができる。核成長工程とは、核生成工程において生成された結晶粒の核を成長させ、第2層を得る工程である。
 核成長工程は、750℃以上850℃以下の温度、及び、5kPa以上20kPa以下の圧力条件下で行われることが好ましい。
 核成長工程は、AlClガス、TiClガス、Hガス、COガス、COガス、HClガス、HSガス、及び、Ar-HOガスを含む混合ガス(以下、「核成長工程用混合ガス」とも記す。)を用いることが好ましい。これによると、上記の反応式(1’)及び(2’)で示される反応経路により、κ-Al、の核が成長し、かつ、TiSの核も成長する。
 核成長工程用混合ガス中のHSガスの割合は、0.05体積%以上3.0体積%以下が好ましく、0.1体積%以上2.0体積%以下がより好ましく、0.3体積%以上1.0体積%以下が更に好ましい。HSガスの割合が0.05体積%未満であると、TiSの析出量が不十分となり、高温潤滑性を確保することができない傾向がある。一方、HSガスの割合が3.0体積%を超えると、第2層の硬度が低下する傾向がある。
 核成長工程用混合ガス中のAr-HOガスの割合は、0.01体積%以上2.0体積%以下が好ましく、0.1体積%以上1.5体積%以下がより好ましく、0.2体積%以上1.0体積%以下が更に好ましい。Ar-HOガスの割合が0.01体積%未満であると、第2層の成膜速度が低下する傾向がある。一方、Ar-HOガスの割合が2.0体積%を超えると、第2層の密着力が悪化する傾向がある。
 核成長工程用混合ガス中のAlClガス、TiClガス、Hガス、COガス、COガス、HClガスのそれぞれの割合は、核生成工程用混合ガス中のそれぞれのガスの割合と同様とすることができる。
 核成長工程用混合ガスの流量は40NL/min以上100NL/min以下が好ましく、60NL/min以上80NL/min以下がより好ましい。核成長工程の成膜時間は30分以上300分以下が好ましく、60分以上180分以下がより好ましい。
 以上のようにして、本実施形態に係る切削工具を製造することができる。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [試料1~試料14]
 <基材の調製>
 基材Aおよび基材Bを準備した。具体的には、表1に記載の配合組成(質量%)からなる原料粉末を均一に混合した。なお表1中の「残り」とは、WCが配合組成(質量%)の残部を占めることを示す。次に、この混合粉末を所定の形状に加圧成形した後に、1300~1500℃で1~2時間焼結することにより、超硬合金からなる基材A(形状:CNMG120408NGU)および基材B(形状:RDET1204MOEN-G)を得た。これらの形状は、いずれも住友電工ハードメタル株式会社製の製品と同一である。
 基材AであるCNMG120408NGUは、旋削用の刃先交換型切削チップの形状である。基材Aは7個準備し、それぞれ試料1~試料7に用いた。
 基材BであるRDET1204MOEN-Gは、フライス加工用の刃先交換型切削チップの形状である。基材Bは7個準備し、それぞれ試料8~試料14に用いた。
Figure JPOXMLDOC01-appb-T000001
 <被膜の形成>
 基材A又は基材BをCVD装置内にセットし、その表面にそれぞれCVD法で被膜を形成した。
 試料1~試料7では、被膜は、基材側から順にTiN層、Al0.8Ti0.2N層(第1層)、TiCN層、第2層となるように形成した。試料8~試料14では、被膜は、基材側から順にTiN層、Al0.8Ti0.2N層(第1層)、第2層となるように形成した。各層の厚みは、表4に示す通りである。
 被膜の成膜条件に関し、第2層を除く各層の成膜条件を表2に記載した。
Figure JPOXMLDOC01-appb-T000002
 例えば、表2の「TiN層」の欄には、TiN層の形成条件が示されている。表2によれば、TiN層は、図4に示されるような公知のCVD装置の反応容器内に基材を配置し、反応容器内に2.0体積%のTiClガス、39.7体積%のNガスおよび58.3体積%のHガスからなる混合ガス(第1ガス群)を、圧力7.0kPaおよび温度900℃の雰囲気において44.7NL/minの全ガス流量で噴出することにより形成することができる。
 表2の「Al0.8Ti0.2N層」の欄には、Hガス、TiClガス及びAlClガスを含む第1ガス群、並びに、Hガス及びNHガスを含む第2ガス群が記載されている。この場合は、第1ガス群及び第2ガス群を、それぞれCVD装置の別の原料ガス導入管から反応容器内に導入する。
 各層の厚みは、各層の原料ガスを噴出する時間によって制御することができる。
 第2層の成膜は、図4に示されるような公知のCVD装置を用い、表3に示される成膜条件a~e、k、lのいずれかの条件で行なった。各成膜条件は、前処理工程、核生成工程及び核成長工程を含む。
 具体的な成膜方法について、成膜条件aを用いて説明する。成膜条件aの前処理工程は、表3に示されるように、Hガス、Nガス、COガス、HClガス、AlClガスを含む前処理工程用混合ガスを用いて行われる。前処理工程の成膜時間は5分であり、反応雰囲気の温度は800℃、圧力は5.0kPa、前処理工程用混合ガスの全ガス流量は59.8NL/minである。
 成膜条件aの核生成工程は、表3に示されるように、Hガス、COガス、COガス、HClガス、AlClガス、TiClガスを含む核生成工程用混合ガスを用いて行われる。核生成工程の成膜時間は10分であり、反応雰囲気の温度は800℃、圧力は5.0kPa、核生成工程用混合ガスの全ガス流量は60.2NL/minである。
 成膜条件aの核成長工程は、表3に示されるように、Hガス、COガス、COガス、HSガス、HClガス、AlClガス、TiClガス、Ar-HOガス(300ppmHOを含むArガス)を含む核成長工程用混合ガスを用いて行われる。核成長工程の成膜時間は120分であり、反応雰囲気の温度は800℃、圧力は5.0kPa、核成長工程用混合ガスの全ガス流量は61.4NL/minである。
Figure JPOXMLDOC01-appb-T000003
 <第2層の特性>
 表3に示す成膜条件a~e、k、lのそれぞれにより得られる第2層について、第2層の組成、TiSにおけるの値の測定、TiSの面積比率の測定、膜硬度の測定、及び、高温摺動試験を行った。
 なお、第2層の特性を調べるための試験用サンプルは、試料1~試料14とは別に、以下の手順で作製した。まず、基材Aを準備し、この上に、TiN層(厚み1.1μm)、Al0.8Ti0.2N層(厚み6.0μm)、TiCN層(厚み3.0μm)をこの順に積層したものを準備した。該TiCN層上に成膜条件a~e、k、lのいずれかで第2層を形成することにより、各試験用サンプルを作製した。
 (第2層の組成)
 成膜条件a~e、k、lにより得られた各試験用サンプルにおいて、第2層の組成を、SEM又はTEM付帯の電子線回折及びEDX装置により分析した。
 成膜条件a~eの試験サンプルは、第2層がκ-Al及びTiSを含むことが確認された。これらの試験用サンプルでは、TiSにおけるyの値は1.2以上2.0以下の範囲内であった。
 成膜条件k及びlの試験用サンプルは、第2層がκ-Alを含み、TiSを含まないことが確認された。
 (TiSの面積比率)
 成膜条件a~e、k、lにより得られた各試験用サンプルにおいて、TiSの面積比率を以下の(a)~(d)の手順に従い算出した。
 (a)測定視野の設定
 成膜条件a~e、k、lのそれぞれにより得られた第2層の表面を平均粒径3μmのダイヤモンドスラリーを用いて鏡面研磨する。
 第2層の鏡面研磨された表面において、10μm×20μmの矩形の測定視野を無作為に5箇所選択する。
 (b)測定視野の撮像
 下記の機器を用いて、下記の条件で、各測定視野を撮像する。
 光学顕微鏡:カールツァイス社製「AXIO Vert.A1」(製品名)
 レンズ:カールツァイス社製「EC Epiplan 100x/0.85 HD M27」(製品名)
 撮像条件:time:700ms,intensity:80%,gamma:0.45。
 (c)撮像された画像の二値化処理
 上記(b)で撮像された画像に対して、下記の画像処理ソフトを用いて、下記の手順に従い二値化処理を施す。
 画像処理ソフト:Win Roof ver.7.4.5
 処理手順:
 1.ヒストグラム平均輝度補正(補正基準値128)
 2.バックグラウンド除去(物体サイズ30μm)
 3.単一閾値による二値化(閾値100)
 4.輝度反転。
 成膜条件a~eでは、二値化処理された画像において、明視野、及び、暗視野が確認された。
 成膜条件k及びlでは、二値化処理された画像において、暗視野のみが確認され、明視野は確認されなかった。
 (d)二値化処理された画像の解析
 上記(c)で得られた画像から、測定視野(第2層)の面積に占める明視野に由来する画素(TiSに由来する画素)の面積比率、すなわち、測定視野におけるTiSの面積比率を計算する。
 成膜条件a~eにおいて、測定視野(第2層)における明視野及び暗視野のそれぞれの任意の領域をSEM又はTEM付帯の電子線回折及びEDX装置で分析したところ、明視野はTiSのみからなり、暗視野はκ-Alのみからなることが確認された。
 成膜条件k及びlにおいて、測定視野(第2層)における暗視野の任意の領域をSEM又はTEM付帯の電子線回折及びEDX装置で分析したところ、暗視野はκ-Alのみからなることが確認された。
 成膜条件a~eにおいて、第2層の表面をSTEMで観察したところ、成膜条件a~eにおいて、TiSが板状構造を有することが確認された。
 (膜硬度の測定)
 成膜条件a~e、k、lのそれぞれにより得られた第2層の膜硬度をナノインデンテーション法で測定する。測定は、ISO14577に準拠した方法で行い、測定荷重は10mNとする。測定機器はナノインデンテーション硬度計(ENT1100a;Elionix社製)を用いて行う。
 (高温摺動試験)
 成膜条件a~e、k、lのそれぞれにより得られた第2層の表面摩擦係数を、ボール・オン・ディスク構造の高温トライボメータ(スイス、CMS Instruments社製)を用いて測定した。ボール・オン・ディスク試験は、AISI:316ボール(6mmψ)、滑り速度25cm/s、滑り半径5mm、荷重1N、温度700℃、湿度25%の雰囲気下で行った。ボールの接触界面と摩擦コーティングとの間の酸化トライボフィルムの形成を抑制するために、全滑り時間は1分まで低減した。これは滑り距離15mに相当する(約480周)。コーティングの表面粗さ及び摩耗痕跡を3Dレーザマイクロスコープ(VK-8710、キーエンス社製)及び電子線マイクロアナライザ(EPMA)でそれぞれ調べた。
 TiSの面積比率の測定、膜硬度の測定、及び、高温摺動試験の結果を表3に示す。
 <切削工具の作製>
 基材Aまたは基材Bを、上記のような方法で形成した被膜により被覆し、表4に示す通りの試料1~試料14の切削工具を作製した。試料1~試料5、試料8~試料12は実施例であり、試料6、試料7、試料13、試料14は比較例である。
Figure JPOXMLDOC01-appb-T000004
 例えば、表4によれば、試料1の切削工具は、基材Aの表面に、1.0μmの厚みのTiN層、5.3μmの厚みのAl0.8Ti0.2N層(第1層)、2.0μmの厚みのTiCN層及び2μmの厚みの成膜条件aで形成された第2層がこの順に積層されて被膜が形成されている。
 <切削試験1>
 試料1~試料7の切削工具について、下記の切削条件で切削試験を行い、耐摩耗性を評価した。耐摩耗性の評価においては、上述の切削工具をそれぞれNC旋盤にセットし、被削材の切削を開始したときから、逃げ面摩耗幅Vbが0.2mmを超えるまでの時間を評価した。この時間が長いほど耐摩耗性に優れ、工具寿命が長いと評価することができる。結果を表5に示す。
 (切削条件)
 被削材:SS400(硬度HV140)
 周速:400m/min
 送り:0.2mm/rev
 切込み:1.0mm
 切削液:なし
 評価:逃げ面摩耗幅Vbが0.2mmを超えるまでの時間。
 当該切削条件は、高能率加工及び乾式加工に該当する。
Figure JPOXMLDOC01-appb-T000005
 (評価)
 試料1~試料5の切削工具は、第1層がAl0.8Ti0.2N層のみからなり、第2層がκ-Alと、TiSと、を含む複合化合物のみからなる。試料6及び試料7の切削工具は、第1層がAl0.8Ti0.2N層のみからなり、第2層がκ-Alを含み、TiSを含まない。試料1~試料5の切削工具は、試料6及び試料7の切削工具に比べて、高能率加工及び乾式加工に用いた場合においても、耐摩耗性に優れ、工具寿命が長いことが確認された。
 <切削試験2>
 試料8~試料14の切削工具からなるフライス加工用刃先交換型切削チップをカッタ(形状:「RSXF12050RS」、住友電工ハードメタル株式会社製)に取り付け、下記の切削条件下で切削試験を行い、耐摩耗性を評価した。耐摩耗性の評価においては、被削材の切削を開始したときから、逃げ面摩耗幅Vbが0.15mmを超えるまでの時間を評価した。この時間が長いほど耐摩耗性に優れ、工具寿命が長いと評価することができる。結果を表6に示す。
 (切削条件)
 被削材:SUS340(硬度HV200)
 周速:300m/min
 一刃当り送り(fz):0.3mm/t
 切削幅(ae):10mm
 切込み深さ(ap):1.0mm
 切削液:なし
 評価:逃げ面摩耗幅Vbが0.15mmを超えるまでの時間。
 当該切削条件は、高能率加工及び乾式加工に該当する。
Figure JPOXMLDOC01-appb-T000006
 (評価)
 試料8~試料12の切削工具は、第1層がAl0.8Ti0.2N層のみからなり、第2層がκ-Alと、TiSと、を含む複合化合物のみからなる。試料13及び試料14の切削工具は、第1層がAl0.8Ti0.2N層のみからなり、第2層がκ-Alを含み、TiSを含まない。試料8~試料12の切削工具は、試料13及び試料4の切削工具に比べて、高能率加工及び乾式加工に用いた場合においても、耐摩耗性に優れ、工具寿命が長いことが確認された。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 基材、2 被膜、3 下地層、4 第1層、5 中間層、6 第2層、7 κ-Al領域、8 TiS領域、10 切削工具、21 基材保持治具、22 反応容器、23 調温装置、24 第1ガス導入管、25 第2ガス導入管、26 軸、27 ガス排気管、28 ガス排気口、100 CVD装置

Claims (19)

  1.  基材と、前記基材の上に設けられた被膜とを備えた切削工具であって、
     前記被膜は、前記基材側に設けられた第1層と、前記第1層の上に設けられた第2層とを有し、
     前記第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、
     前記第2層は、κ-Alと、TiSと、を含む複合化合物のみからなる、切削工具。
     ここで、前記xは0.7≦x<1を満たし、前記yは1.0≦y≦2.0を満たす。
  2.  前記TiSは、板状構造を有し、前記κ-Al中に分散している、請求項1に記載の切削工具。
  3.  前記第2層は、前記被膜の表面に平行な断面において、前記TiSの面積比率が0.5%以上20%以下である、請求項1又は請求項2に記載の切削工具。
  4.  前記TiSの面積比率は1%以上15%以下である、請求項3に記載の切削工具。
  5.  前記TiSの面積比率は2%以上10%以下である、請求項3又は請求項4に記載の切削工具。
  6.  前記第2層は、0.5μm以上5μm以下の厚みを有する、請求項1から請求項5のいずれか1項に記載の切削工具。
  7.  前記被膜は、3μm以上30μm以下の厚みを有する、請求項1から請求項6のいずれか1項に記載の切削工具。
  8.  前記被膜は、前記第1層及び前記第2層の間に中間層を有し、
     前記中間層はTiCN又はTiCNOのみからなる、請求項1から請求項7のいずれか1項に記載の切削工具。
  9.  前記第1層は、AlTi1-xで示される化合物のみからなる、請求項1から請求項8のいずれか1項に記載の切削工具。
     ここで、前記xは0.7≦x<1を満たし、前記aは0≦a<0.25を満たし、前記bは0.75≦b<1.5を満たす。
  10.  前記xは0.75≦x<0.95を満たす、請求項1から請求項9のいずれか1項に記載の切削工具。
  11.  前記xは0.8≦x<0.9を満たす、請求項1から請求項10のいずれか1項に記載の切削工具。
  12.  前記aは0≦a<0.1を満たす、請求項9から請求項11のいずれか1項に記載の切削工具。
  13.  前記aは0≦a<0.05を満たす、請求項9から請求項12のいずれか1項に記載の切削工具。
  14.  前記bは0.8≦b<1.2を満たす、請求項9から請求項13のいずれか1項に記載の切削工具。
  15.  前記bは0.9≦b<1.1を満たす、請求項9から請求項14のいずれか1項に記載の切削工具。
  16.  前記yは1.0≦y≦2.0を満たす、請求項1から請求項15のいずれか1項に記載の切削工具。
  17.  前記yは1.4≦y≦1.8を満たす、請求項1から請求項16のいずれか1項に記載の切削工具。
  18.  前記被膜は、前記基材と前記第1層との間に配置される下地層を含む、請求項1から請求項17のいずれか1項に記載の切削工具。
  19.  請求項1から請求項18のいずれか1項に記載の切削工具の製造方法であって、
     基材を準備する工程と、
     前記基材上に化学気相合成法により被膜を形成する工程とを備え、
     前記被膜を形成する工程は、第1層を形成する工程及び第2層を形成する工程を含み、
     前記第1層は、AlTi1-xの窒化物又は炭窒化物のみからなり、
     前記第2層は、κ-Alと、TiSと、を含む複合化合物のみからなり、
     前記第2層を形成する工程は、TiClガス、HSガス及びAr-HOガスを含む混合ガスを用いて、750℃以上850℃以下の成膜温度で行われる、切削工具の製造方法。
     ここで、前記xは0.7≦x<1を満たし、前記yは1.0≦y≦2.0を満たす。
PCT/JP2020/001360 2019-01-30 2020-01-16 切削工具及びその製造方法 WO2020158425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020520091A JP6866970B2 (ja) 2019-01-30 2020-01-16 切削工具及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-013928 2019-01-30
JP2019013928 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020158425A1 true WO2020158425A1 (ja) 2020-08-06

Family

ID=71841726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001360 WO2020158425A1 (ja) 2019-01-30 2020-01-16 切削工具及びその製造方法

Country Status (2)

Country Link
JP (1) JP6866970B2 (ja)
WO (1) WO2020158425A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410314A (en) * 1977-06-09 1979-01-25 Sandvik Ab Coated sintered carbide body and method of making same
JPH0126802B2 (ja) * 1981-04-08 1989-05-25 Toshiba Tungaloy Co Ltd
JP2006205301A (ja) * 2005-01-27 2006-08-10 Kyocera Corp 表面被覆部材および切削工具
JP2008229759A (ja) * 2007-03-19 2008-10-02 Tokyo Institute Of Technology 高速切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具およびその製造方法
JP2011083877A (ja) * 2009-10-19 2011-04-28 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2018042740A1 (ja) * 2016-08-29 2018-03-08 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410314A (en) * 1977-06-09 1979-01-25 Sandvik Ab Coated sintered carbide body and method of making same
JPH0126802B2 (ja) * 1981-04-08 1989-05-25 Toshiba Tungaloy Co Ltd
JP2006205301A (ja) * 2005-01-27 2006-08-10 Kyocera Corp 表面被覆部材および切削工具
JP2008229759A (ja) * 2007-03-19 2008-10-02 Tokyo Institute Of Technology 高速切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具およびその製造方法
JP2011083877A (ja) * 2009-10-19 2011-04-28 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2018042740A1 (ja) * 2016-08-29 2018-03-08 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具

Also Published As

Publication number Publication date
JPWO2020158425A1 (ja) 2021-02-18
JP6866970B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
US9945029B2 (en) Coated cutting tool and method of manufacturing the same
EP3008225A1 (en) Coated cutting tool
KR102320077B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
KR102170166B1 (ko) 표면 피복 절삭 공구 및 그 제조방법
JP6831448B2 (ja) 表面被覆切削工具およびその製造方法
JP6831449B2 (ja) 表面被覆切削工具およびその製造方法
CN110382146B (zh) 表面被覆切削工具及其制造方法
KR102094055B1 (ko) 표면 피복 부재 및 그 제조 방법
JPWO2020174756A1 (ja) 切削工具
WO2020158425A1 (ja) 切削工具及びその製造方法
WO2020158427A1 (ja) 切削工具及びその製造方法
WO2020158426A1 (ja) 切削工具及びその製造方法
JP6946614B1 (ja) 切削工具
JP6946613B1 (ja) 切削工具
WO2021205646A1 (ja) 切削工具
WO2022230362A1 (ja) 切削工具
WO2022230361A1 (ja) 切削工具
WO2022244242A1 (ja) 切削工具
JP2022171412A (ja) 切削工具
JP2022171409A (ja) 切削工具
JP2022171411A (ja) 切削工具
CN117120191A (zh) 切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020520091

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748908

Country of ref document: EP

Kind code of ref document: A1