WO2020158369A1 - Linear compressor - Google Patents

Linear compressor Download PDF

Info

Publication number
WO2020158369A1
WO2020158369A1 PCT/JP2020/000841 JP2020000841W WO2020158369A1 WO 2020158369 A1 WO2020158369 A1 WO 2020158369A1 JP 2020000841 W JP2020000841 W JP 2020000841W WO 2020158369 A1 WO2020158369 A1 WO 2020158369A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
suction
compressor
linear
linear compressor
Prior art date
Application number
PCT/JP2020/000841
Other languages
French (fr)
Japanese (ja)
Inventor
小山 昌喜
智弘 小松
中津川 潤之介
鈴木 達也
瑛人 大畠
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020158369A1 publication Critical patent/WO2020158369A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a linear compressor that reciprocally drives a piston using a linear motor.
  • Equipment built-in air compressors are used in equipment that uses compressed air as a power source or equipment that uses high-pressure air, and are required to be small, lightweight, and low in noise. It
  • Patent Document 1 For example, in the abstract of International Publication No. WO 2014/051016 (Patent Document 1), "a cylindrical casing of a compressor is described as a compressor that solves conflicting technical problems of mounting a silencer and downsizing the device". And a second lid portion that forms a small chamber together with the first lid portion, the cylindrical portion, and the first lid portion that form a part of Is provided with a suction nozzle for sucking air into the small chamber in the lid part of the compressor.
  • a cylindrical casing is composed of a crankcase for accommodating a crank portion, and the rotational movement of a motor arranged outside the crankcase is reciprocated by a piston through the crank. The configuration for converting to is described. Further, on page 6 of Patent Document 1, it is described that the expansion-type silencing function is realized by the intake port, the small chamber, and the intake nozzle described above.
  • the present invention provides a technology suitable for downsizing and noise reduction of an air compressor.
  • the linear compressor of the present invention is A compression unit that compresses the air in the compression chamber by the reciprocating motion of the piston, and a linear motor that drives the piston,
  • the linear motor is a stator that drives the mover by applying a magnetic force between the mover that is connected to the piston and reciprocates, a vibration spring that can vibrate with the mover, and the mover.
  • a housing for accommodating the stator of the linear motor is provided on one end side, an air inlet is provided at the other end, and a spring accommodating space for accommodating the vibration spring is formed between the stator and the inlet.
  • An intermediate suction passage is provided between the suction valve provided at the inlet of the compression chamber and the spring accommodating space, In the spring accommodating space, a space sectional area perpendicular to the reciprocating direction of the mover is larger than a passage sectional area of the intermediate suction passage and a passage sectional area of the suction port.
  • the present invention it is possible to reduce the size and height of the compressor by integrating the motor case (casing) and the silencer, and reduce the heat generation of the compressor by cooling the linear motor with the intake air. You can As a result, the present invention can provide a compact, highly quiet, and highly reliable air compressor (linear compressor).
  • FIG. 3 is a cross-sectional view (vertical arrangement) parallel to the X axis, showing the configuration of the linear compressor according to the first embodiment.
  • FIG. 3 is a sectional view conceptually showing the structure of a linear motor of the linear compressor of the first embodiment. Sectional drawing which shows the III-III cross section of the linear compressor of FIG. 1A.
  • FIG. 3 is a diagram showing the muffling characteristics of the linear compressor of the first embodiment.
  • FIG. 4 is a diagram showing an example of noise measurement results of the linear compressor of the first embodiment.
  • FIG. 3 is a diagram showing a temperature change of the linear compressor of the first embodiment.
  • FIG. 6 is a transverse cross-sectional view showing the configuration of the linear compressor according to the second embodiment.
  • Sectional drawing parallel to an X-axis which shows the structure of the linear compressor of Example 3.
  • FIG. Sectional drawing parallel to the X-axis of a linear compressor different from FIG. 9A. 9B is a sectional view taken along line IX-IX in FIG. 9B.
  • the compressor according to the present invention is a reciprocating compressor (hereinafter referred to as a linear compressor) using a direct-acting motor (linear motor) among reciprocating compressors (reciprocating compressor). It is a compressor suitable for use as an air compressor (hereinafter referred to as an air compressor).
  • the X axis, the Y axis and the Z axis are defined as shown in each figure.
  • the X axis is defined in the direction along the longitudinal direction of the mover 8 and along the moving direction of the mover 8.
  • the Y axis is defined in a direction perpendicular to the flat plate surface of the movable element 8 having a flat plate shape, and is orthogonal to the X axis.
  • the Z axis is defined in the direction perpendicular to the X axis and the Y axis. Therefore, the X axis, the Y axis, and the Z axis are orthogonal to each other.
  • the Y-axis direction is the thickness direction of the mover 8
  • the Z-axis direction is the width direction of the mover 8.
  • the side of the compression unit 11 with respect to the stator of the linear motor 5 (armature 7 in the following embodiments) is called the front side, and the opposite side (spring 10). May be described as the back side.
  • FIG. 1A is a cross-sectional view parallel to the X axis, showing the configuration of the linear compressor of the first embodiment (vertical arrangement).
  • FIG. 1B is a sectional view parallel to the X axis of the linear compressor, which is different from FIG. 1A (vertical arrangement).
  • FIG. 1C is a cross-sectional view of the IC-IC in FIG. 1B (vertical arrangement).
  • FIG. 1D is a cross-sectional view parallel to the X axis, showing the configuration of the linear compressor in the horizontal arrangement.
  • FIG. 1E is a sectional view parallel to the X-axis of the (horizontal arrangement) linear compressor, which is different from FIG. 1D.
  • FIG. 1A is a cross-sectional view parallel to the X axis, showing the configuration of the linear compressor of the first embodiment (vertical arrangement).
  • FIG. 1B is a sectional view parallel to the X axis of the linear compressor, which is different from FIG. 1A (vertical
  • FIG. 2 is a sectional view conceptually showing the structure of the linear motor of the linear compressor of the first embodiment.
  • FIG. 3 is a sectional view showing a III-III section of the linear compressor of FIG. 1A.
  • FIG. 4 is a sectional view showing a IV-IV section of the linear compressor of FIG. 1A.
  • the linear compressor includes a linear motor 5 and a compression unit 11 having a cylinder 12 and a piston 13.
  • the linear motor 5 causes an electric current to flow through the coil 7B of the armature 7 to reciprocate the mover 8 in the axial direction and drive the piston 13 of the compression unit 11 in the same direction as the mover 8 to reciprocate. It is a thing.
  • the compression unit 11 is arranged on one end side (front side) of the linear motor 5.
  • the compression unit 11 is configured by a device that compresses the air in the compression chamber 12B by the reciprocating motion of the piston 13.
  • the linear motor 5 is provided as a drive source for the compression unit 11 in the linear compressor.
  • the linear motor 5 is configured to include a casing 6 that forms a cylindrical outer shell, an armature 7 that is disposed inside the casing 6, a mover 8, and a spring 10 (10A, 10B). That is, the linear motor 5 drives the mover 8 by applying a magnetic force between the mover 8 that is connected to the piston 13 and reciprocates, the spring 10 that can vibrate together with the mover 8, and the mover 8. And a stator (the armature 7 in this embodiment).
  • the casing 6 of the linear motor 5 is composed of a motor case 6A, a linear base 6B, and a case end plate 6C.
  • the casing 6 accommodates the stator (armature 7) of the linear motor 5 on one end side, and has an air suction port 24 at the other end, and between the stator (armature 7) and the suction port 24.
  • a spring housing space V2 for housing the spring 10 is formed.
  • a mover 8 and a spring 10 are housed inside the motor case 6A.
  • a linear base 6B is provided on one end side of the motor case 6A (on the side where the compression section 11 is provided, on the front end side).
  • a case end plate 6C is provided so as to close the opening.
  • a pair of armatures 7 and a plate-shaped mover 8 are provided in the motor case 6A of the linear motor 5.
  • the pair of armatures 7 are provided so as to sandwich the mover 8 and form a stator fixed in the motor case 6A.
  • Each armature 7 is formed of, for example, laminated electromagnetic steel sheets, and has a plurality of cores 7A spaced apart in the X-axis direction in FIG. 2, a plurality of coils 7B wound around each core 7A, and these. Of cores 7A and coils 7B in a pre-assembled state, and a bridge 7D that forms a magnetic circuit between adjacent cores 7A.
  • the mover 8 is formed as a rectangular flat plate member (flat plate member) extending in the axial direction (X-axis direction) of the motor case 6A while being sandwiched between the pair of armatures 7. That is, the mover 8 extends in the axial direction (X-axis direction) in the motor case 6A along the central axis of the linear motor 5, and the pair of armatures 7 are arranged on both sides thereof.
  • the mover 8 includes a yoke 8A formed of a magnetic material in a flat plate shape, and a plurality of permanent magnets 8B arranged in a flat plate shape on the front surface and the back surface of the yoke 8A.
  • the permanent magnet 8B has flat surfaces on both end surfaces in the Y-axis direction, one flat surface (one end surface) on the front surface side of the yoke 8A, and the other flat surface (the other end surface) on the yoke 8A. Is located on the back side of.
  • the permanent magnet 8B is formed as a quadrangular plate body as shown in FIG. 2, and a total of three permanent magnets 8B are arranged at intervals in the length direction (X-axis direction) of the mover 8.
  • the compressor main body including the linear motor 5 and the compression unit 11 is arranged with the Y axis in the horizontal direction. That is, the mover 8 is formed in a flat plate shape, and is arranged such that the reciprocating direction (X axis direction) and the flat plate thickness direction (Y axis direction) are horizontal. In this case, the plate-shaped mover 8 is arranged such that its plate surface (that is, the Z axis) is oriented along the vertical direction (longitudinal direction), and such an arrangement will be referred to as a vertical arrangement.
  • 1A and 1B show a state in which the compressor body is vertically arranged.
  • the mover 8 may be arranged so that the plate thickness direction (Y-axis direction) is the vertical direction, as shown in FIGS. 1D and 1E.
  • the plate-shaped mover 8 is arranged with its plate surface (that is, the Z-axis) oriented in the horizontal direction (sideways), and such an arrangement will be referred to as a horizontal arrangement.
  • Each core 7A of the armature 7 has a magnetic pole at its end face facing the mover 8 and is excited by energizing each coil 7B.
  • the core 7A of the armature 7 and the permanent magnets 8B of the mover 8 generate a magnetic attractive force and a repulsive force between the coils 7B by energizing the coils 7B, whereby the mover 8 is
  • the pair of armatures 7 arranged in the Y-axis direction are driven so as to repeat the reciprocating motion in the longitudinal direction (X-axis direction) in the motor case 6A.
  • a plurality of pairs of support members 9 functioning as bearings are provided between the armature 7 and the mover 8.
  • the support member 9 of each set supports the mover 8 movably in the length direction (X-axis direction) thereof.
  • the support member 9 is composed of rollers, but it may be composed of a member that slidably supports the mover 8.
  • the spring 10 is located inside the motor case 6A, located on the other end side (rear side) of the linear motor 5.
  • the spring 10 has a spring 10A whose one end is supported on the other end (rear end) side of the armature 7 and one end which is supported on a connector 8C provided on the other end (rear end) side of the mover 8. 10B and two sets of springs.
  • the other end of the spring 10A is supported by the connector 8C, and the other end of the spring 10B is supported by the motor case end plate 6C.
  • the spring 10A and the spring 10B expand and contract in the X-axis direction, and the other end side of the spring 10A and the one end side of the spring 10B are configured to be movable in the X-axis direction together with the connector 8C.
  • the mover 8 is basically composed of the yoke 8A and the permanent magnet 8B, but the connector 8C may be regarded as an element of the mover 8.
  • the spring 10 is composed of a compression coil spring and is always installed in a compressed state. As the mover 8 reciprocates in the X-axis direction, the spring 10 is elastically deformed so that the springs 10A and 10B alternately expand and contract in the X-axis direction (axial direction of the spring). ..
  • the spring 10 (10A, 10B) constitutes a resonant spring capable of vibrating together with the mover. Therefore, the spring 10 (10A, 10B) may be called a vibration spring.
  • the linear motor 5 of the present embodiment is arranged so that the casing 6, the armature 7 fixedly arranged in the casing 6, and the casing 6 are movable so as to face the armature 7.
  • a mover 8 formed in a flat plate shape, a plurality of permanent magnets 8B arranged in the mover 8 at a distance from each other in the longitudinal direction of the mover 8, and the mover 8 relatively moves in the longitudinal direction with respect to the armature 7.
  • a plurality of magnetic poles arranged on the armature 7 and a plurality of support members 9 provided between the armature 7 and the mover 8 for supporting the mover 8 movably in the longitudinal direction thereof. It is configured to include.
  • the compression unit 11 of the linear compressor 4 includes a cylinder 12, a piston 13, a suction valve 14, a cylinder head 17, a discharge valve 16 and the like. Note that, in FIG. 1, the intake valve 14 is in a position that cannot be seen, so that position is indicated by reference numeral 14.
  • the suction valve 14 is provided at the position of the suction hole 15A as shown by the broken line in FIG.
  • the compression unit 11 is driven so that the piston 13 reciprocates forward and backward in the X-axis direction by the reciprocating movement of the mover 8 of the linear motor 5, and thereby the air (outside air) in the compression chamber 12B. It is compressed to generate compressed air (that is, working gas).
  • the cylinder 12 is closed at one end side (front side in the X-axis direction) by the head plate 15 to which the suction valve 14 is attached and fixed at the other end side (rear side in the X-axis direction) to the linear base 6B. Installed.
  • the cylinder 12 is formed in a cylindrical shape using, for example, an aluminum material.
  • the piston 13 is fitted in the cylinder 12 so as to be slidable in the X-axis direction.
  • the piston 13 constitutes a movable partition wall that divides the inside of the cylinder 12 into a non-compression chamber 12A and a compression chamber 12B.
  • the piston 13 is connected to the mover 8 of the linear motor 5 by a connecting tool 13A.
  • the piston 13 is provided so as to be slidably displaced with respect to the cylinder 12 in the axial direction of the linear motor 5 (motor case 6A), that is, in the X-axis direction, and the cylinder 12 is interlocked with the reciprocating motion of the mover 8. Reciprocates inside.
  • the piston 13 is arranged on the axis line in the moving direction (X axis) of the mover 8 of the linear motor 5.
  • the head plate 15 is provided on one end side of the cylinder 12 so as to close one end of the cylinder 12. As shown in FIGS. 3 and 4, the head plate 15 has a suction hole 15A that is in constant communication with the compression chamber 12B of the cylinder 12, a suction valve 14 that covers the suction hole 15A so that the suction hole 15A can be opened and closed, and a compression chamber 12B of the cylinder 12. A discharge hole 15B that is in constant communication with the discharge hole 15B and a discharge valve 16 that covers the discharge hole 15B so as to be opened and closed are provided.
  • the suction valve 14 opens the suction hole 15A in the suction stroke of the compression unit 11 to communicate the compression chamber 12B with the suction space 18, and closes the suction hole 15A in the compression stroke to close the inside of the compression chamber 12B to the suction space 18. Cut off.
  • the discharge valve 16 closes the discharge hole 15B in the suction stroke of the compression section 11 to shut off the compression chamber 12B from the discharge space 19 side, and opens the discharge hole 15B in the compression stroke to open the inside of the compression chamber 12B. It communicates with the discharge space 19.
  • the cylinder head 17 is arranged together with the head plate 15 on one end side of the cylinder 12 (an end side opposite to the side where the linear motor is provided) so as to close one end of the cylinder 12.
  • the cylinder head 17 has a suction space 18 and a discharge space 19, and the suction chamber 18 and the discharge space 19 are fitted to the head plate 15 on the compression chamber 12B side.
  • the suction space 18 communicates with the suction hole 15A
  • the discharge space 19 communicates with the discharge hole 15B with the discharge valve 16 opened.
  • the cylinder head 17 has a head suction port 17A communicating with the suction space 18 and a discharge port 17B communicating with the discharge space 19.
  • a motor case end plate 6C provided on the other end side of the motor case 6A is provided with an air suction port 24.
  • the suction port 24 sucks air from the outside into the internal space of the motor case 6A in the suction stroke of the compression unit 11.
  • the suction port 24 is connected to the suction silencer 25 on the outer side of the motor case 6A.
  • the suction silencer 25 is a sound absorbing silencer, and is connected to the suction side of the compression unit 11 via the suction port 24.
  • the suction silencer 25 is always in communication with the atmosphere and reduces noise leaking from the suction port 24 to the outside due to the sound absorbing effect of the intake filter.
  • a suction communication hole 6D is opened on the side surface (upper side surface in FIG. 1) of the motor case 6A.
  • the suction communication hole 6D is arranged in the X-axis direction at a position overlapping the range in which the armature 7 of the linear motor 5 is arranged. That is, the intermediate suction passage 16 is connected to a position that overlaps with the range in which the stator (the armature 7 in this embodiment) is arranged in the X-axis direction (the reciprocating direction of the mover 8).
  • a pipe joint 27 that connects the intermediate intake passage 26 is provided in the suction communication hole 6D.
  • the cylinder head 17 has a head suction port 17A opened in a direction orthogonal to the X axis, and a pipe joint 27 is provided at the head suction port 17A.
  • An intermediate suction passage 26 is connected to the pipe joint 27 of the suction communication hole 6D and the pipe joint 27 at the head suction port 17A.
  • the intermediate suction passage 26 is provided between the suction valve 14 provided at the inlet of the compression chamber 12B and the spring accommodating space V2.
  • the intermediate suction passage 26 connects the suction communication hole 6D of the motor case 6A and the head suction port 17A of the cylinder head 17, and introduces the air sucked into the motor case 6A into the suction space 18.
  • the intermediate suction passage 26 is arranged outside the armature (stator) 7, the motor case 6A and the cylinder 12 in a direction orthogonal to the X axis so as to bypass the cylinder 12, and the suction communication hole 6D (spring accommodating hole).
  • the space V2) and the head suction port 17A (suction space 18) are constituted by a passage member (pipe).
  • the armature 7 that constitutes the stator has notches 7SA and 7SB formed on its outer peripheral surface.
  • the cutouts 7SA, 7SB are provided at two positions with a circumferential interval.
  • the outer peripheral surface 7SC between the two adjacent cutout portions 7SA and 7SB is in contact with the inner peripheral surface of the motor case 6A.
  • Gaps V7 and V8 are formed between the armature 7 and the inner peripheral surface of the motor case 6A at the portions where the cutouts 7SA and 7SB are provided, and the pipe joint 27 is arranged on the one gap V7 side. .. That is, the intermediate suction passage 26 is connected so as to communicate with the gap V7.
  • each core 7A of the armature 7 and each permanent magnet 8B of the mover 8 generate a magnetic attraction force and a repulsive force between the coils 7B by energizing each coil 7B.
  • the armature 8 moves in the motor case 6A along the X-axis direction between the pair of armatures 7 arranged in the Y-axis direction.
  • the thrust resulting from the reciprocating movement of the mover 8 is transmitted to the piston 13 arranged in the cylinder 12 of the compression unit 11.
  • the piston 13 repeatedly reciprocates in the cylinder 12 in the axial direction (X-axis direction) to perform compression operation. That is, in the suction stroke, the compression chamber 12B in the cylinder 12 tends to have a negative pressure, and the intake valve 14 opens accordingly.
  • the suction space 18 and the compression chamber 12B communicate with each other through the suction hole 15A (see FIG. 4) provided in the head plate 15. Therefore, the air in the motor case 6A is sucked into the suction space 18 through the intermediate suction passage 26, and the outside air further flows into the motor case 6A from the suction port 24 of the motor case end plate 6C.
  • the outside air sucked through the suction silencer 25 is sucked into the motor case 6A through the suction port 24, further passes through the intermediate suction passage 26, the suction space 18, and the suction hole 15A into the compression chamber 12B. Be sucked.
  • the suction valve 14 is closed, and the displacement of the piston 13 in the cylinder 12 increases the pressure in the compression chamber 12B. Then, when the pressure in the compression chamber 12B becomes higher than the valve opening pressure of the discharge valve 16, the discharge valve 16 opens. As a result, the compressed air generated in the compression chamber 12B is discharged toward the discharge space 19 in the cylinder head 17. After that, the gas is discharged to the outside of the compressor through the discharge port 17B and is supplied to the device connected to the linear compressor.
  • the most dominant noises of the compressor during operation are the valve operating noises of the discharge valve 16 and the suction valve 14 and the fluid noises when air passes through the respective valves.
  • the discharge side path is connected to the equipment outside the compressor from the discharge port 17B, so noise due to the discharge valve 16 is unlikely to leak to the outside, but the suction side path is the suction silencer attached to the suction port 24. Since 25 communicates with the external space, noise propagates to the external space. That is, the noise caused by the suction valve 14 propagates in the air suction path in the opposite direction to the air flow, and propagates from the suction space 18 to the motor case 6A through the intermediate suction passage 26. The noise propagated to the motor case 6A further propagates to the suction silencer 25 through the suction port 24 and propagates to the outside.
  • the sound wave transmission path is constituted by the first space V1, the second space V2, and the third space V3.
  • the first space V1 is a space formed by the passage space of the intermediate suction passage 26 and the space formed between the armature 7 that is the stator and the inner peripheral surface of the motor case 6A.
  • the space forming the first space V1 is the second space from the portion to which the intermediate suction passage 26 (pipe joint 27) is connected. The part on the V2 side.
  • stator outer peripheral passage space V7 is defined by a gap V7 formed between the armature 7 and the inner peripheral surface of the motor case 6A by the cutout portion 7SA. Since the outer peripheral surface 7SC of the armature 7 is in contact with the inner peripheral surface of the motor case 6A between the two adjacent cutout portions 7SA and 7SB, the gap V7 is in communication with the other gap V8. Therefore, the cross-sectional area of the stator outer peripheral passage space V7 can be reduced.
  • the cross-sectional area of the stator outer periphery passage space V7 is configured to be the same size as the cross-sectional area S 1 of the intermediate suction passage 26 Is desirable.
  • the second space V2 is a space formed within the range of the length L 2 of the motor case 6A in FIG. 1B, and the spring 10 is arranged in the second space V2. Therefore, the second space V2 may be referred to as a spring arrangement space.
  • the second space V2 is a space (space volume V 2 ) having a case length L 2 and an equivalent cross-sectional area S 2 .
  • the cross-sectional area S 2 of the second space V2 has a size excluding the area occupied by the spring 10 and the like. Therefore, the sectional area S 2 of the second space V2 is called an equivalent sectional area or an effective sectional area.
  • the equivalent cross-sectional area S 2 is a cross-sectional area of a substantial space obtained by removing the area occupied by the spring 10 and the like from the cross-sectional area of the motor case 6A forming the second space V2.
  • the cross-sectional area of this substantial space will be simply referred to as a space cross-sectional area for description.
  • the substantial volume of the second space V2 is greater than the volume V 3 volume V 1 and the third space V3 of the first space V1.
  • the space cross-sectional area S 2 in the second space (spring accommodating space) V 2 perpendicular to the reciprocating direction (X-axis direction) of the mover 8 is the passage cross-sectional area S 1 of the intermediate suction passage 26 and the suction port 24. Is larger than the cross-sectional area S 3 of the passage.
  • the sound wave propagates from the first space V1 to the second space V2 having a larger space volume and passage cross-sectional area than the first space V1, and further from the second space V2 to the space volume and passage disconnection than the second space V2. It passes through the third space V3 having a small area. That is, in such a sound wave transmission path, when the sound wave propagates from the first space V1 to the second space V2, the cross-sectional area of the transmission path increases, and when the sound wave propagates from the second space V2 to the third space V3. , The cross-sectional area of the transmission path becomes smaller.
  • the second space V2 in the motor case 6A plays the role of a reactive expansion silencer, and noise is reduced due to the acoustic impedance of the connection portion of each space in the transmission path. It has the effect of reducing the noise that propagates to.
  • the cross-sectional areas of the first space V1, the second space V2, and the third space V3 may be referred to as the space cross-sectional area or the passage cross-sectional area.
  • the passage cross-sectional area means the cross-sectional area of the intake passage
  • the space cross-sectional area is used as a name including the passage cross-sectional area.
  • the spatial cross-sectional areas of the first space V1 and the third space V3 are areas in a cross section perpendicular to the intake air flow direction
  • the spatial cross-sectional area of the second space V2 is an area in a cross section perpendicular to the X axis.
  • FIG. 5 is a diagram showing the muffling characteristics of the linear compressor of the first embodiment.
  • FIG. 5 shows the result of obtaining the silencing effect of the expansion silencer in the sound wave transmission path of the present embodiment.
  • the horizontal axis shows the noise frequency and the vertical axis shows the silencing effect.
  • the muffling effect has a negative value in the frequency band up to 0-400 Hz, and there is no muffling effect, but a maximum muffling effect of about 10 dB is exhibited in the frequency band up to 400-1250 Hz.
  • the muffling effect becomes zero once, but at a frequency band higher than that, the muffling effect appears again.
  • the assumption that sound waves are transmitted as plane waves is no longer valid, and although the characteristics can be expressed by calculation, the silencing effect does not appear.
  • FIG. 6 is a diagram showing an example of noise measurement results of the linear compressor of the first embodiment.
  • the horizontal axis represents noise frequency and the vertical axis represents sound pressure level. Note that FIG. 6 also shows the sound pressure level of the conventional structure in order to make the effects of the embodiment easier to understand.
  • the conventional structure has a structure in which a suction silencer is connected to the suction space 18, and the suction space 18 does not have an expansion portion having an expansion-type silencer effect between the suction silencer and the intake silencer.
  • the noise of the conventional structure was 67 dB overall.
  • the noise value is 59 dB, and a noise reduction effect of about 7 dB is exhibited. Looking at each frequency, it can be seen that the configuration of the present example reduces noise in the 300 to 1800 Hz band as compared with the conventional structure, and exhibits characteristics close to the silencing effect shown in FIG.
  • the coil 7B of the armature 7 when the motor is energized during operation, the coil 7B of the armature 7 generates heat, and in the compression chamber 12B of the compression unit 11, the cylinder 12 generates heat due to the temperature rise accompanying the compression of air.
  • heat is generated due to friction on the side surface of the piston 13 and sliding parts such as bearings, but heat generation of the coil 7B and the cylinder 12 is dominant. This heat generation amount is basically radiated by heat transfer with the outside air.
  • FIG. 7 is a diagram showing a temperature change of the linear compressor of the first embodiment.
  • FIG. 7 shows changes in coil temperature and cylinder temperature from the start of operation in the conventional compressor and the compressor of the present embodiment.
  • the horizontal axis represents the time elapsed from the start of operation, and the vertical axis represents the temperatures of the coil and the cylinder.
  • the motor inside the motor case does not come into direct contact with the outside air, so the motor temperature easily rises and the coil temperature rises significantly compared to other parts. Therefore, in the case of a compressor having a conventional structure, it is necessary to mount a fan for cooling the motor and accelerate the heat transfer around the motor to lower the coil temperature.
  • the outside air sucked through the suction silencer 25 is sucked into the motor case 6A through the suction port 24 and exchanges heat with the coil 7B, and then the intermediate suction passage 26, Since it is configured to be sucked into the compression chamber 12B through the space 18 and the suction hole 15A, the temperature rise of the coil 7B can be suppressed and the temperature can be suppressed low. Therefore, the compressor of this embodiment does not need to be equipped with a self-cooling fan for cooling the motor.
  • the linear compressor of the present embodiment can reduce the noise propagating from the suction pipe to the outside by using the motor case 6A as the expansion silencer of the suction pipe, and further cools the linear motor 5 by the suction air. It is possible to provide an air compressor that can reduce heat generation, has high quietness, is small, and is highly reliable.
  • the intermediate suction passage 26 is formed as a passage for exclusive use of intake air outside the armature (stator) 7, the motor case 6A and the cylinder 12 in the direction orthogonal to the X axis, the design of its cross-sectional area is provided. High degree of freedom. For this reason, it is easy to make the relationship of the space cross-sectional area between the intermediate suction passage 26 and the second space (spring accommodation space) V2 appropriate to the expansion silencer.
  • the motor can be made smaller than the cylindrical shape. -By bringing the back side (opposite side of the core) of the armature 7 that is the stator into contact with the motor case 6A, the heat of the motor can be transferred to the motor case 6A and efficiently dissipated to the outside air, and the compressor body can be made smaller Can be converted.
  • the reciprocating direction of the plate-shaped mover 8 is the X direction and the direction of the magnetic flux of the magnet is the Y direction
  • the contact with the motor case 6A is the Y direction.
  • FIG. 8 is a cross-sectional view showing the configuration of the linear compressor of the second embodiment.
  • the same components as those in the first embodiment described above are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.
  • the configuration different from that of the first embodiment will be described below.
  • the mover 8 is formed in a flat plate shape, and the reciprocating direction (X axis direction) and the flat plate thickness direction (Y axis direction) are horizontal directions. It is arranged in (vertical arrangement).
  • the suction communication hole 6D that is opened on the side surface (the upper side surface in FIG. 8) of the motor case 6A connected to the intermediate suction passage 26 shown in the first embodiment is located on the rear side of the linear motor 5. It is provided on the upper part of 10. That is, the suction communication hole 6D is arranged so as to overlap the range in which the spring 10 is arranged in the X-axis direction. Further, in this embodiment, the linear compressor is supported by a support spring (vibration isolation spring) 81 having an anti-vibration effect.
  • the linear motor 5 and the compression unit 11 are provided with a base member 80 in the lower portion in the vertical direction (lower portion in the direction of gravity), and the base member 80 is supported by the support spring 81.
  • the intermediate suction passage 26 is arranged in a range that overlaps the support spring 81 in the vertical direction. That is, the intermediate suction passage 26 is arranged vertically between the lower end of the support spring 81 and the lower portions of the linear motor 5 and the compression portion 11 which form the compressor body. In other words, the intermediate suction passage 26 is arranged between the upper end and the lower end of the support spring 81.
  • the other configuration is the same as that of the first embodiment.
  • the suction communication hole 6D opened on the side surface of the motor case 6A connected to the intermediate suction passage 26 is provided in a range overlapping with the range in which the spring 10 is arranged. That is, the intermediate suction passage 26 is connected to a position that overlaps the range in which the spring 10 is arranged in the X-axis direction (the reciprocating direction of the mover 8).
  • the intermediate suction passage 26 directly communicates with the second space V2. That is, the first space V1 is formed by the intermediate suction passage 26, and the gap 7SA is not included in the first space V1.
  • the amount of heat exchange between the intake air and the coil 7B is suppressed, and the coil temperature rises by about 5°C.
  • the temperature of the suction air sucked into the suction space 18 through the intermediate suction passage 26 decreases and the density of the suction air increases, so that the compression flow rate increases and the efficiency also increases.
  • the coil temperature slightly rises, it is possible to provide a small-sized air compressor having higher efficiency, higher quietness, and higher efficiency.
  • the effect that the armature 7 arranged inside the motor case 6A is cooled by the intake air is the same as that of the first embodiment, although there is a degree of difference.
  • the intermediate suction passage 26 is configured as a passage for exclusive use of intake air outside the armature (stator) 7, the motor case 6A and the cylinder 12 in the direction orthogonal to the X axis, the passage of the intermediate suction passage 26. High degree of freedom in designing the cross-sectional area. Further, in this embodiment, unlike the first embodiment, the stator outer peripheral passage space V7 is not included in the first space V1, so that the first space V1 has a simple shape and the expansion silencer can be easily designed.
  • the support body 81 is arranged below the linear motor 5 and the compression section 11 which form the compressor body in the vertical direction.
  • the intermediate suction passage 26 is disposed on the same side as the support portion of the compressor body supported by the support body 81.
  • the support 81 is composed of a coil spring (support spring), but it may be composed of a vibration insulator or a vibration isolation mount.
  • the support 81 may be arranged above the compressor body. When the support body 81 is arranged on the upper side of the compressor body, the compressor body may be supported in a state of being suspended by the support body 81, or together with the support body 81 arranged on the lower side of the compressor body, The compressor body may be supported from both the lower side and the upper side of the compressor body.
  • the end surface of the permanent magnet 8B facing the magnetic pole of the core 7A is arranged along the vertical direction. That is, the Z direction is the vertical direction, and the mover 8 is in the vertical arrangement. Since the intermediate suction passage 26 is arranged in the range that overlaps with the support spring 81 in the vertical direction, the height dimension of the linear compressor can be reduced, and the size increase in the vertical direction is suppressed.
  • the support 81 can be applied to the first embodiment, and the arrangement relationship between the support 81 and the intermediate suction passage 26 described in the first embodiment in the first embodiment can be adopted.
  • the support 81 will be referred to as a support spring in the following description.
  • FIG. 9A is a sectional view parallel to the X axis, showing the configuration of the linear compressor of the third embodiment.
  • 9B is a sectional view parallel to the X axis of the linear compressor, which is different from FIG. 9A.
  • 9C is a sectional view taken along line IX-IX of FIG. 9B.
  • the same components as those in the first and second embodiments described above are designated by the same reference numerals as those in the first and second embodiments, and description thereof will be omitted.
  • the configuration different from that of the embodiment will be described below.
  • the intermediate suction passage 26 shown in the first and second embodiments is not provided outside the compressor but is provided inside the compressor.
  • the mover 8 is formed in a flat plate shape, and the reciprocating direction (X axis direction) and the flat plate thickness direction (Y axis direction) are horizontal directions. It is arranged in (vertical arrangement).
  • the intermediate suction passage 26 is arranged inside the motor case 6A, and serves as a suction passage that connects the first space (spring accommodation space) V1 with the suction space (non-compression chamber 12A) on the back surface of the piston 13.
  • the piston 13 is provided with a communication hole 13C that connects the non-compression chamber 12A and the compression chamber 12B, and a suction valve 14 that covers the communication hole 13C so as to be opened and closed.
  • the suction valve 14 opens the communication hole 13C in the suction stroke of the compression portion 11 (piston 13) and connects the non-compression chamber 12A and the compression chamber 12B. In the compression stroke of the compression portion 11 (piston 13), the suction valve 14 closes the communication hole 13C, and the compression chamber 12B is shut off from the non-compression chamber 12A.
  • the thrust resulting from the reciprocating movement of the mover 8 is transmitted to the piston 13 in the compression section 11 (cylinder 12).
  • the piston 13 repeatedly reciprocates in the cylinder 12 in the axial direction (X-axis direction) to perform compression operation. That is, in the suction stroke of the piston 13, the compression chamber 12B in the cylinder 12 tends to have a negative pressure, and the suction valve 14 opens accordingly. As a result, the non-compression chamber 12A and the compression chamber 12B communicate with each other through the communication hole 13C provided in the piston 13.
  • the noise is further transmitted to the suction silencer 25 through the suction port 24 and propagates to the outside.
  • an intermediate suction passage 26 is formed between the communication port 7E and the second space V2, and the first space V1 is composed of the communication port 7E and the intermediate suction passage 26. .. That is, the suction passage that connects the linear motor 5 and the suction space (the non-compression chamber 12A) on the back surface of the piston 13 includes the communication port 7E in addition to the intermediate suction passage 26.
  • the intermediate suction passage 26 is formed on the outer peripheral side of the armature 7 forming the stator and inside the motor case 6A in the direction orthogonal to the X axis. It is desirable that the opening area of the communication port 7E be the same as the passage cross-sectional area of the intermediate suction passage 26. Therefore, the opening area of the communication port 7E is formed smaller than the cross-sectional area (cross-sectional area perpendicular to the X axis) of the non-compression chamber 12A formed on the rear side of the piston 13.
  • the second space V2 and the third space V3 are similar to those in the first and second embodiments, and the relationship between the volume of the first space V1, the second space V2, and the third space V3 and the space cross-sectional area is the first and second embodiments. It is constructed in the same way as.
  • the second space V2 in the motor case 6A plays the role of a reactive expansion silencer, and noise is generated by the acoustic impedance of the connection part of each space in the transmission path. Is reduced, and the noise transmitted to the outside is reduced.
  • the motor case 6A can be used as an expansion silencer for the suction pipe without providing the intermediate suction passage 26 outside the motor case 6A.
  • the noise leaking to the outside can be reduced.
  • the linear compressor of the present embodiment can reduce heat generation by cooling the linear motor 5 with suction air.
  • the intermediate suction passage 26 inside the motor case 6A, it is possible to suppress the size increase of the linear compressor in the direction orthogonal to the X axis. As a result, the linear compressor of the present embodiment can provide an air compressor with high quietness, smaller size, and higher reliability.
  • the compressor main body is arranged vertically and the intermediate suction passage 26 is arranged on the side where the support spring 81 is located in the Z direction, so that the increase in size in the direction perpendicular to the X axis can be suppressed. .. In this case, it is advisable to provide the wire connection portion of the coil in the Z direction.
  • a space is provided between the armature 7 and the motor case 6A for the coil connecting portion, and this space can be used as the intermediate suction passage 26.
  • FIG. 10 is a configuration diagram of an embodiment of a refrigerator 2001 using the linear compressor according to the present invention.
  • Refrigerator 2001 is provided with a left and right double-door split refrigerating compartment door 2002a on the front side of refrigerating compartment 2002, and on the front side of ice making compartment 2003, upper freezing compartment 2004, lower freezing compartment 2005, and vegetable compartment 2006. , A drawer type ice making chamber door 2003a, an upper freezing chamber door 2004a, a lower freezing chamber door 2005a, and a vegetable chamber door 2006a, respectively.
  • a machine room 2020 is provided on the back side of the vegetable room 2006, and a linear compressor 2024 is arranged in the machine room 2020. Further, an evaporator chamber 2008 is provided on the back side of the ice making chamber 2003, the upper freezing chamber 2004, and the lower freezing chamber 2005, and the evaporator 2007 is provided in the evaporator chamber 2008.
  • a radiator not shown
  • a capillary tube as a pressure reducing means, a three-way valve, and the like are connected by a refrigerant pipe to form a refrigeration cycle 2030.
  • the linear compressor according to any one of the above-described embodiments is adopted as the compressor 2024 that constitutes the refrigeration cycle 2030 of the refrigerator 2001.
  • the refrigerator 2001 of the present embodiment can prevent the compressor constituting the refrigeration cycle 2030 from increasing in size by adopting the linear compressor of the above-described embodiment. Further, it becomes possible to secure a large space for the refrigerating room and the freezing room, and it is possible to provide a large-capacity refrigerator without increasing the outer dimensions.
  • FIG. 11 is a configuration diagram of an embodiment of a vehicle air suspension 3004 using the linear compressor according to the present invention.
  • the vehicle body 3002 constitutes the body of the vehicle 3001. On the lower side of the vehicle body 3002, a total of four wheels 3003 including left and right front wheels and left and right rear wheels are provided.
  • the air suspension 3004 includes four air springs 3005 provided between the vehicle body 3002 and each wheel 3003, an air compressor (linear compressor) 3006, a valve unit 3008, and a controller 3011.
  • the air suspension 3004 adjusts the vehicle height by supplying and discharging compressed air from the air compressor 3006 to and from each air spring 3005.
  • any one of the linear compressors of the above-described embodiments is adopted.
  • the air compressor 3006 is connected to the valve unit 3008 through a supply/discharge pipe line (pipe) 3007.
  • the valve unit 3008 is provided with four supply/discharge valves 3008a, which are electromagnetic valves and are provided for each wheel 3003.
  • a branch pipe (pipe) 3009 is provided between the valve unit 3008 and the air spring 3005 of each wheel 3003.
  • the air spring 3005 is connected to the air compressor 3006 via a branch conduit 3009, a valve 3008a, and a supply/discharge conduit 3007.
  • the valve unit 3008 opens and closes the supply/exhaust valve 3008a in response to a signal from the controller 3011, thereby supplying/discharging compressed air to/from each air spring 3005 to adjust the vehicle height.
  • the air compressor 3006 forming the air suspension 3004 it is possible to prevent the air compressor 3006 forming the air suspension 3004 from becoming large. Then, the mounting space of the air compressor 3006 in the vehicle 3001 can be reduced, and the degree of freedom in arranging the air compressor 3006 is increased.
  • a reciprocating compressor (referred to as a linear compressor) that uses a linear motor of a direct-acting type among reciprocating (reciprocating) compressors is used as the compressor type. Since a crank mechanism is not required, the compressor (linear compressor) can be made smaller and have a lower profile. Further, in the embodiment according to the present invention, noise from the suction pipe can be reduced by using the motor case as an expansion silencer of the suction pipe, and the size of the compressor can be reduced and the height can be reduced by integrating the motor case and the silencer. To be achieved. Further, by cooling the linear motor with the intake air, heat generation is reduced, and it is possible to provide a compact, highly quiet and highly reliable compressor.
  • the temperature rise of the suction air can be further reduced due to the heat radiation effect described in the first embodiment, and the intermediate suction passage can be further reduced. Even if it is provided, a compact compressor is possible without increasing the size of the compressor.
  • the present invention is not limited to the above-mentioned embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • other configurations can be added/deleted/replaced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Linear Motors (AREA)

Abstract

The present invention provides a technology suitable for reducing the size and noise of an air compressor. This linear compressor is provided with a compression part 11 which compresses air in a compression chamber 12B by means of the reciprocating motion of a piston 13, and a linear motor 5 which drives the piston 13. The linear motor 5 is provided with a movable element 8 which is connected to the piston 13 and reciprocates, a spring 10 which vibrates together with the movable element 8, and a fixed element 7 which causes a magnetic force to act between the fixed element 7 and the movable element 8. A casing 6 constitutes a spring accommodating space for accommodating the spring 10 between the fixed element 7, which is accommodated on one end side of the casing 6, and an air inlet 24 provided in the other end of the casing 6. An intermediate drawing suction passageway 26 is formed between an intake valve 14 provided at the entrance of the compression chamber 12B and the spring accommodating space V2. The spring accommodating space V2 has a spatial cross-sectional area greater than the passageway cross-sectional area of the intermediate suction passageway 26 and the passageway cross-sectional area constituted by the inlet 24.

Description

リニア圧縮機Linear compressor
 本発明は、リニアモータを用いてピストンを往復駆動するリニア圧縮機に関する。 The present invention relates to a linear compressor that reciprocally drives a piston using a linear motor.
 機器組込み型空気圧縮機は、圧縮空気を動力源として使用する機器や高圧力の空気を使用する機器に用いられているものであり、小型・軽量であり、かつ低騒音であることが要求される。 Equipment built-in air compressors are used in equipment that uses compressed air as a power source or equipment that uses high-pressure air, and are required to be small, lightweight, and low in noise. It
 例えば、国際公開第2014/051016号パンフレット(特許文献1)の要約書には、「消音器搭載と装置の小型化という、相反する技術課題を解決する」圧縮機として、「コンプレッサの円筒状ケーシングの一部を構成すると共に、コンプレッサの吸気口を形成する小孔を備えた第1の蓋部、円筒状部、第一の蓋部と共に小室を形成する第2に蓋部を備え、第2の蓋部に該小室内に空気を吸入する吸入ノズルを備えることを特徴とするコンプレッサ」が開示されている。また特許文献1の第5頁及び図2には、円筒状ケーシングがクランク部分を収容するクランクケースで構成され、クランクケースの外側に配置したモータの回転運動を、クランクを介してピストンの往復運動に変換する構成が記載されている。さらに特許文献1の第6頁には、前述の吸気口、小室及び吸入ノズルで膨脹型消音機能を実現することが記載されている。 For example, in the abstract of International Publication No. WO 2014/051016 (Patent Document 1), "a cylindrical casing of a compressor is described as a compressor that solves conflicting technical problems of mounting a silencer and downsizing the device". And a second lid portion that forms a small chamber together with the first lid portion, the cylindrical portion, and the first lid portion that form a part of Is provided with a suction nozzle for sucking air into the small chamber in the lid part of the compressor. In addition, in page 5 and FIG. 2 of Patent Document 1, a cylindrical casing is composed of a crankcase for accommodating a crank portion, and the rotational movement of a motor arranged outside the crankcase is reciprocated by a piston through the crank. The configuration for converting to is described. Further, on page 6 of Patent Document 1, it is described that the expansion-type silencing function is realized by the intake port, the small chamber, and the intake nozzle described above.
国際公開第2014/051016号パンフレットInternational publication 2014/051016 pamphlet
 機器組込み型空気圧縮機に対しては、小型、軽量化及び静音化の要求が更に強くなるとともに、長時間連続運転が可能な高信頼性が求められる。中でも長時間連続運転によってモータの発熱による温度上昇が問題となる。この為、モータには冷却用のファンを搭載することが必須であるが、圧縮機を小型化する上で、相反する技術課題となる。特許文献1では、クランクケースの外側に配置したモータの冷却に対する配慮がない。また特許文献1のコンプレッサでは、膨脹型消音機能を実現するために、クランクケースの外側に新たに小室を構成する必要があり、膨脹型消音機能を向上しようとすると小室の容積を大きくする必要があり、コンプレッサが大型化することになる。 Demand for smaller, lighter, and quieter air compressors with built-in equipment is becoming stronger, and high reliability that enables long-term continuous operation is required. Above all, the temperature rise due to heat generation of the motor becomes a problem due to continuous operation for a long time. For this reason, it is indispensable to mount a cooling fan on the motor, but this is a conflicting technical issue in reducing the size of the compressor. In Patent Document 1, there is no consideration for cooling the motor arranged outside the crankcase. Further, in the compressor of Patent Document 1, it is necessary to newly form a small chamber outside the crankcase in order to realize the expansion type muffling function, and it is necessary to increase the volume of the small chamber to improve the expansion type muffling function. Yes, the compressor becomes larger.
 本発明は、空気圧縮機の小型化及び静音化に適した技術を提供するものである。 The present invention provides a technology suitable for downsizing and noise reduction of an air compressor.
 本発明のリニア圧縮機は、
 ピストンの往復動により圧縮室内の空気を圧縮する圧縮部と、前記ピストンを駆動するリニアモータと、を備え、
 前記リニアモータは、前記ピストンに連結されて往復動する可動子と、前記可動子とともに振動可能な振動ばねと、前記可動子との間で磁気力を作用させて前記可動子を駆動する固定子と、
を備えるリニア圧縮機において、
 前記リニアモータの前記固定子を一端部側に収容し、他端部に空気の吸込口を有し、前記固定子と前記吸込口との間に前記振動ばねを収容するばね収容空間を構成したケーシングを備え、
 前記圧縮室の入口に設けられた吸込弁と前記ばね収容空間と間に中間吸込通路を備え、
 前記ばね収容空間における、前記可動子の往復動方向に垂直な空間断面積が、前記中間吸込通路の通路断面積及び前記吸込口に構成される通路断面積よりも大きいことを特徴とする。
The linear compressor of the present invention is
A compression unit that compresses the air in the compression chamber by the reciprocating motion of the piston, and a linear motor that drives the piston,
The linear motor is a stator that drives the mover by applying a magnetic force between the mover that is connected to the piston and reciprocates, a vibration spring that can vibrate with the mover, and the mover. When,
In a linear compressor equipped with
A housing for accommodating the stator of the linear motor is provided on one end side, an air inlet is provided at the other end, and a spring accommodating space for accommodating the vibration spring is formed between the stator and the inlet. Equipped with a casing,
An intermediate suction passage is provided between the suction valve provided at the inlet of the compression chamber and the spring accommodating space,
In the spring accommodating space, a space sectional area perpendicular to the reciprocating direction of the mover is larger than a passage sectional area of the intermediate suction passage and a passage sectional area of the suction port.
 本発明によれば、モータケース(ケーシング)とサイレンサとの一体化による圧縮機の小型化及び低背化が達成さるとともに、吸込空気によりリニアモータを冷却することより圧縮機の発熱を低減することができる。これにより本発明は、小型で静粛性が高く、かつ高信頼な空気圧縮機(リニア圧縮機)を提供することができる。 According to the present invention, it is possible to reduce the size and height of the compressor by integrating the motor case (casing) and the silencer, and reduce the heat generation of the compressor by cooling the linear motor with the intake air. You can As a result, the present invention can provide a compact, highly quiet, and highly reliable air compressor (linear compressor).
実施例1のリニア圧縮機の構成を示す、X軸に平行な断面図(縦型配置)。FIG. 3 is a cross-sectional view (vertical arrangement) parallel to the X axis, showing the configuration of the linear compressor according to the first embodiment. 図1Aとは異なる、リニア圧縮機のX軸に平行な断面図(縦型配置)。Sectional drawing parallel to the X-axis of a linear compressor different from FIG. 1A (vertical arrangement). 図1BのIC-IC断面図(縦型配置)。IC-IC cross section of Figure 1B (vertical layout). 横型配置におけるリニア圧縮機の構成を示す、X軸に平行な断面図である。It is a sectional view parallel to an X-axis showing composition of a linear compressor in horizontal type arrangement. 図1Dとは異なる、(横型配置)リニア圧縮機のX軸に平行な断面図である。It is a sectional view parallel to the X-axis of a (horizontal type arrangement) linear compressor different from FIG. 1D. 実施例1のリニア圧縮機のリニアモータの構成を概念的に示す断面図。FIG. 3 is a sectional view conceptually showing the structure of a linear motor of the linear compressor of the first embodiment. 図1Aのリニア圧縮機のIII-III断面を示す断面図。Sectional drawing which shows the III-III cross section of the linear compressor of FIG. 1A. 図1Aのリニア圧縮機のIV-IV断面を示す断面図。Sectional drawing which shows the IV-IV cross section of the linear compressor of FIG. 1A. 実施例1のリニア圧縮機の消音特性を示す図。FIG. 3 is a diagram showing the muffling characteristics of the linear compressor of the first embodiment. 実施例1のリニア圧縮機の騒音測定結果の一例を示す図。FIG. 4 is a diagram showing an example of noise measurement results of the linear compressor of the first embodiment. 実施例1のリニア圧縮機の温度変化を示す図。FIG. 3 is a diagram showing a temperature change of the linear compressor of the first embodiment. 実施例2のリニア圧縮機の構成を示す横断面図。FIG. 6 is a transverse cross-sectional view showing the configuration of the linear compressor according to the second embodiment. 実施例3のリニア圧縮機の構成を示す、X軸に平行な断面図。Sectional drawing parallel to an X-axis which shows the structure of the linear compressor of Example 3. FIG. 図9Aとは異なる、リニア圧縮機のX軸に平行な断面図。Sectional drawing parallel to the X-axis of a linear compressor different from FIG. 9A. 図9BのIX-IX断面図。9B is a sectional view taken along line IX-IX in FIG. 9B. 本発明に係るリニア圧縮機を用いた冷蔵庫の実施例の構成図。The block diagram of the Example of the refrigerator using the linear compressor which concerns on this invention. 本発明に係るリニア圧縮機を用いた車両用エアサスペンションの実施例の構成図。The block diagram of the Example of the air suspension for vehicles using the linear compressor which concerns on this invention.
 以下、図面を用いて、本発明のリニア圧縮機、及びリニア圧縮機を搭載した機器に係る実施例について、説明する。 Hereinafter, embodiments of the linear compressor of the present invention and devices equipped with the linear compressor will be described with reference to the drawings.
 本発明に係る圧縮機は、往復動型(レシプロ型)圧縮機の中でも、直動式のモータ(リニアモータ)を用いたレシプロ型圧縮機(以下、リニア圧縮機と呼ぶ)であり、レシプロ型空気圧縮機(以下、空気圧縮機と呼ぶ)として用いるのに好適な圧縮機である。 The compressor according to the present invention is a reciprocating compressor (hereinafter referred to as a linear compressor) using a direct-acting motor (linear motor) among reciprocating compressors (reciprocating compressor). It is a compressor suitable for use as an air compressor (hereinafter referred to as an air compressor).
 なお本実施例では、X軸、Y軸及びZ軸が各図に示すように定義される。X軸は可動子8の長手方向に沿う方向に定義され、可動子8の移動方向に沿う。Y軸は平板状を成す可動子8の平板面に対して垂直方向に定義され、X軸に直交する。Z軸は、X軸及びY軸に垂直な方向に定義される。したがって、X軸、Y軸及びZ軸は相互に直交する。また、Y軸方向は可動子8の厚み方向であり、Z軸方向は可動子8の幅方向である。また可動子8の移動方向(X軸方向)に基づいて、リニアモータ5の固定子(以下の実施例では電機子
7)に対して圧縮部11側を前側と呼び、その反対側(ばね10が配置される側)を後ろ側と呼んで説明する場合がある。
In this embodiment, the X axis, the Y axis and the Z axis are defined as shown in each figure. The X axis is defined in the direction along the longitudinal direction of the mover 8 and along the moving direction of the mover 8. The Y axis is defined in a direction perpendicular to the flat plate surface of the movable element 8 having a flat plate shape, and is orthogonal to the X axis. The Z axis is defined in the direction perpendicular to the X axis and the Y axis. Therefore, the X axis, the Y axis, and the Z axis are orthogonal to each other. The Y-axis direction is the thickness direction of the mover 8, and the Z-axis direction is the width direction of the mover 8. Further, based on the moving direction of the mover 8 (X-axis direction), the side of the compression unit 11 with respect to the stator of the linear motor 5 (armature 7 in the following embodiments) is called the front side, and the opposite side (spring 10). May be described as the back side.
 [実施例1]
 図1Aは、実施例1のリニア圧縮機の構成を示す、X軸に平行な断面図である(縦型配置)。図1Bは、図1Aとは異なる、リニア圧縮機のX軸に平行な断面図である(縦型配置)。図1Cは、図1BのIC-IC断面図である(縦型配置)。図1Dは、横型配置におけるリニア圧縮機の構成を示す、X軸に平行な断面図である。図1Eは、図1Dとは異なる、(横型配置)リニア圧縮機のX軸に平行な断面図である。図2は、実施例1のリニア圧縮機のリニアモータの構成を概念的に示す断面図である。図3は、図1Aのリニア圧縮機のIII-III断面を示す断面図である。図4は、図1Aのリニア圧縮機のIV-IV断面を示す断面図である。
[Example 1]
FIG. 1A is a cross-sectional view parallel to the X axis, showing the configuration of the linear compressor of the first embodiment (vertical arrangement). FIG. 1B is a sectional view parallel to the X axis of the linear compressor, which is different from FIG. 1A (vertical arrangement). FIG. 1C is a cross-sectional view of the IC-IC in FIG. 1B (vertical arrangement). FIG. 1D is a cross-sectional view parallel to the X axis, showing the configuration of the linear compressor in the horizontal arrangement. FIG. 1E is a sectional view parallel to the X-axis of the (horizontal arrangement) linear compressor, which is different from FIG. 1D. FIG. 2 is a sectional view conceptually showing the structure of the linear motor of the linear compressor of the first embodiment. FIG. 3 is a sectional view showing a III-III section of the linear compressor of FIG. 1A. FIG. 4 is a sectional view showing a IV-IV section of the linear compressor of FIG. 1A.
 リニア圧縮機は、リニアモータ5と、シリンダ12およびピストン13を有する圧縮部11と、を含んで構成されている。リニアモータ5は、電機子7のコイル7Bに電流を流すことにより、可動子8を軸方向に往復動させて、圧縮部11のピストン13を可動子8と同じ方向に駆動して往復動させるものである。このために、圧縮部11はリニアモータ5の一端側(前側)に配置されている。また圧縮部11は、ピストン13の往復動により圧縮室12B内の空気を圧縮する装置により構成される。 The linear compressor includes a linear motor 5 and a compression unit 11 having a cylinder 12 and a piston 13. The linear motor 5 causes an electric current to flow through the coil 7B of the armature 7 to reciprocate the mover 8 in the axial direction and drive the piston 13 of the compression unit 11 in the same direction as the mover 8 to reciprocate. It is a thing. For this reason, the compression unit 11 is arranged on one end side (front side) of the linear motor 5. The compression unit 11 is configured by a device that compresses the air in the compression chamber 12B by the reciprocating motion of the piston 13.
 リニアモータ5は、リニア圧縮機における圧縮部11の駆動源として設けられている。リニアモータ5は、筒状の外殻を構成するケーシング6と、ケーシング6内に配設された電機子7、可動子8、およびばね10(10A,10B)とを含んで構成される。すなわちリニアモータ5は、ピストン13に連結されて往復動する可動子8と、可動子8とともに振動可能なばね10と、可動子8との間で磁気力を作用させて可動子8を駆動する固定子(本実施例では電機子7)と、を含んで構成される。 The linear motor 5 is provided as a drive source for the compression unit 11 in the linear compressor. The linear motor 5 is configured to include a casing 6 that forms a cylindrical outer shell, an armature 7 that is disposed inside the casing 6, a mover 8, and a spring 10 (10A, 10B). That is, the linear motor 5 drives the mover 8 by applying a magnetic force between the mover 8 that is connected to the piston 13 and reciprocates, the spring 10 that can vibrate together with the mover 8, and the mover 8. And a stator (the armature 7 in this embodiment).
 リニアモータ5のケーシング6は、モータケース6Aとリニアベース6Bとケース端板6Cとにより構成されている。ケーシング6は、リニアモータ5の固定子(電機子7)を一端部側に収容し、他端部に空気の吸込口24を有し、固定子(電機子7)と吸込口24との間にばね10を収容するばね収容空間V2が構成される。 The casing 6 of the linear motor 5 is composed of a motor case 6A, a linear base 6B, and a case end plate 6C. The casing 6 accommodates the stator (armature 7) of the linear motor 5 on one end side, and has an air suction port 24 at the other end, and between the stator (armature 7) and the suction port 24. A spring housing space V2 for housing the spring 10 is formed.
 モータケース6Aの内部には、電機子7のほか、可動子8およびばね10が収容されている。モータケース6Aの一端側(圧縮部11が設けられた側、前端側)にはリニアベース6Bが設けられている。またモータケース6Aの他端側(後端側)には、その開口を塞ぐようにケース端板6Cが設けられている。 In addition to the armature 7, a mover 8 and a spring 10 are housed inside the motor case 6A. A linear base 6B is provided on one end side of the motor case 6A (on the side where the compression section 11 is provided, on the front end side). On the other end side (rear end side) of the motor case 6A, a case end plate 6C is provided so as to close the opening.
 リニアモータ5のモータケース6A内には、一対の電機子7と、平板状の可動子8とが設けられている。一対の電機子7は、可動子8を挟んで設けられ、モータケース6A内に固定された固定子を構成している。各電機子7は、例えば積層された電磁鋼板により形成され、図2中のX軸方向に離間した複数のコア7Aと、各コア7Aにそれぞれ巻回して設けられた複数のコイル7Bと、これらのコア7Aおよびコイル7Bを予備組立て状態で保持する複数の保持体7Cと、隣接するコア7Aの間で磁気回路を形成するブリッジ7Dと、により構成されている。 A pair of armatures 7 and a plate-shaped mover 8 are provided in the motor case 6A of the linear motor 5. The pair of armatures 7 are provided so as to sandwich the mover 8 and form a stator fixed in the motor case 6A. Each armature 7 is formed of, for example, laminated electromagnetic steel sheets, and has a plurality of cores 7A spaced apart in the X-axis direction in FIG. 2, a plurality of coils 7B wound around each core 7A, and these. Of cores 7A and coils 7B in a pre-assembled state, and a bridge 7D that forms a magnetic circuit between adjacent cores 7A.
 一方、可動子8は、一対の電機子7間に挟まれた状態でモータケース6Aの軸方向(X軸方向)に延びた長方形状の平板体(平板状部材)として形成されている。即ち、可動子8は、リニアモータ5の中心軸線に沿ってモータケース6A内を軸方向(X軸方向)に延び、その両側に一対の電機子7が配置されている。可動子8は、磁性材料を用いて平板状に形成されたヨーク8Aと、ヨーク8Aの表面および裏面に平板状に配置された複数の永久磁石8Bとによって構成されている。本実施例では、永久磁石8BはY軸方向の両端面がそれぞれ平坦面で構成され、一方の平坦面(一端面)がヨーク8Aの表面側に、他方の平坦面(他端面)がヨーク8Aの裏面側に配置されている。永久磁石8Bは、図2に示すように四角形の板体として形成され、合計3枚の永久磁石8Bが可動子8の長さ方向(X軸方向)に離間して配設されている。 On the other hand, the mover 8 is formed as a rectangular flat plate member (flat plate member) extending in the axial direction (X-axis direction) of the motor case 6A while being sandwiched between the pair of armatures 7. That is, the mover 8 extends in the axial direction (X-axis direction) in the motor case 6A along the central axis of the linear motor 5, and the pair of armatures 7 are arranged on both sides thereof. The mover 8 includes a yoke 8A formed of a magnetic material in a flat plate shape, and a plurality of permanent magnets 8B arranged in a flat plate shape on the front surface and the back surface of the yoke 8A. In the present embodiment, the permanent magnet 8B has flat surfaces on both end surfaces in the Y-axis direction, one flat surface (one end surface) on the front surface side of the yoke 8A, and the other flat surface (the other end surface) on the yoke 8A. Is located on the back side of. The permanent magnet 8B is formed as a quadrangular plate body as shown in FIG. 2, and a total of three permanent magnets 8B are arranged at intervals in the length direction (X-axis direction) of the mover 8.
 本実施例では、リニアモータ5及び圧縮部11を含む圧縮機本体は、Y軸が水平方向に沿う向きに配置されている。すなわち可動子8は、平板状に形成されて、往復動方向(X軸方向)および平板状の板厚方向(Y軸方向)が水平方向となる向きに配置される。この場合、平板状の可動子8はその板面(すなわちZ軸)が鉛直方向に沿う向き(縦向き)に配置され、このような配置を縦型配置と呼ぶことにする。なお、図1A及び1Bでは、圧縮機本体が縦型配置された状態を示している。 In the present embodiment, the compressor main body including the linear motor 5 and the compression unit 11 is arranged with the Y axis in the horizontal direction. That is, the mover 8 is formed in a flat plate shape, and is arranged such that the reciprocating direction (X axis direction) and the flat plate thickness direction (Y axis direction) are horizontal. In this case, the plate-shaped mover 8 is arranged such that its plate surface (that is, the Z axis) is oriented along the vertical direction (longitudinal direction), and such an arrangement will be referred to as a vertical arrangement. 1A and 1B show a state in which the compressor body is vertically arranged.
 可動子8は、図1D及び1Eに示すように、板厚方向(Y軸方向)が鉛直方向となる向きに配置されてもよい。この場合、平板状の可動子8はその板面(すなわちZ軸)が水平方向に沿う向き(横向き)に配置され、このような配置を横型配置と呼ぶことにする。 The mover 8 may be arranged so that the plate thickness direction (Y-axis direction) is the vertical direction, as shown in FIGS. 1D and 1E. In this case, the plate-shaped mover 8 is arranged with its plate surface (that is, the Z-axis) oriented in the horizontal direction (sideways), and such an arrangement will be referred to as a horizontal arrangement.
 電機子7の各コア7Aは、可動子8と対向する端面が磁極となり、各コイル7Bへの通電によって励磁される。電機子7の各コア7Aと可動子8の各永久磁石8Bとは、各コイル7Bへの通電によって両者間に磁気的な吸引力と反発力とが発生し、これにより、可動子8は、Y軸方向に配置された一対の電機子7間でモータケース6A内を長手方向(X軸方向)に往復動を繰返すように駆動される。 Each core 7A of the armature 7 has a magnetic pole at its end face facing the mover 8 and is excited by energizing each coil 7B. The core 7A of the armature 7 and the permanent magnets 8B of the mover 8 generate a magnetic attractive force and a repulsive force between the coils 7B by energizing the coils 7B, whereby the mover 8 is The pair of armatures 7 arranged in the Y-axis direction are driven so as to repeat the reciprocating motion in the longitudinal direction (X-axis direction) in the motor case 6A.
 また、電機子7と可動子8との間には、軸受として機能する一対の支持部材9が、複数組設けられている。各組の支持部材9は、可動子8がその長さ方向(X軸方向)に移動可能に支持している。本実施例では、支持部材9はローラにより構成されているが、可動子8を摺動可能に支持する部材で構成してもよい。 A plurality of pairs of support members 9 functioning as bearings are provided between the armature 7 and the mover 8. The support member 9 of each set supports the mover 8 movably in the length direction (X-axis direction) thereof. In this embodiment, the support member 9 is composed of rollers, but it may be composed of a member that slidably supports the mover 8.
 ばね10は、リニアモータ5の他端側(後側)に位置して、モータケース6A内に設けられている。ばね10は、一端側が電機子7の他端(後端)側に支持されるばね10Aと、一端側が可動子8の他端(後端)側に設けられた連結具8Cに支持されるばね10Bとの、2組のばねにより構成される。ばね10Aの他端側は連結具8Cに支持され、ばね10Bの他端側はモータケース端板6Cに支持される。ばね10A及びばね10BはX軸方向に伸縮し、ばね10Aの他端側及びばね10Bの一端側が連結具8CとともにX軸方向に移動可能に構成されている。可動子8は基本的にヨーク8Aと永久磁石8Bとによって構成されるが、連結具8Cを可動子8の要素とみなしてもよい。 The spring 10 is located inside the motor case 6A, located on the other end side (rear side) of the linear motor 5. The spring 10 has a spring 10A whose one end is supported on the other end (rear end) side of the armature 7 and one end which is supported on a connector 8C provided on the other end (rear end) side of the mover 8. 10B and two sets of springs. The other end of the spring 10A is supported by the connector 8C, and the other end of the spring 10B is supported by the motor case end plate 6C. The spring 10A and the spring 10B expand and contract in the X-axis direction, and the other end side of the spring 10A and the one end side of the spring 10B are configured to be movable in the X-axis direction together with the connector 8C. The mover 8 is basically composed of the yoke 8A and the permanent magnet 8B, but the connector 8C may be regarded as an element of the mover 8.
 ばね10は、圧縮コイルばねにより構成され、常時圧縮された状態で設置されている。可動子8がX軸方向で往復動するのに伴って、ばね10はばね10Aとばね10Bとが交互にX軸方向(ばねの軸方向)に伸縮するように、弾性的に撓み変形される。ばね10(10A,10B)は可動子とともに振動可能な共振ばねを構成する。このため、ばね10(10A,10B)は振動ばねと呼ぶ場合もある。 The spring 10 is composed of a compression coil spring and is always installed in a compressed state. As the mover 8 reciprocates in the X-axis direction, the spring 10 is elastically deformed so that the springs 10A and 10B alternately expand and contract in the X-axis direction (axial direction of the spring). .. The spring 10 (10A, 10B) constitutes a resonant spring capable of vibrating together with the mover. Therefore, the spring 10 (10A, 10B) may be called a vibration spring.
 このように、本実施例のリニアモータ5は、ケーシング6と、ケーシング6内に固定して配置された電機子7と、電機子7に対向するようにケーシング6内に移動可能に配置され、平板状に形成された可動子8と、可動子8の長手方向に離間して可動子8に配置された複数の永久磁石8Bと、可動子8が電機子7に対して長手方向に相対移動するように電機子7に配置された複数の磁極と、電機子7と可動子8との間に設けられ、可動子8がその長手方向に移動可能に支持する複数の支持部材9と、を含んで構成されている。 As described above, the linear motor 5 of the present embodiment is arranged so that the casing 6, the armature 7 fixedly arranged in the casing 6, and the casing 6 are movable so as to face the armature 7. A mover 8 formed in a flat plate shape, a plurality of permanent magnets 8B arranged in the mover 8 at a distance from each other in the longitudinal direction of the mover 8, and the mover 8 relatively moves in the longitudinal direction with respect to the armature 7. A plurality of magnetic poles arranged on the armature 7 and a plurality of support members 9 provided between the armature 7 and the mover 8 for supporting the mover 8 movably in the longitudinal direction thereof. It is configured to include.
 リニア圧縮機4の圧縮部11は、シリンダ12、ピストン13、吸込弁14、シリンダヘッド17および吐出弁16等を含んで構成されている。なお図1では、吸気弁14は見えない位置にあるため、その位置を符号14で示している。吸込弁14は、図4に破線で示すように、吸込孔15Aの位置に設けられている。圧縮部11は、リニアモータ5の可動子8が往復動することにより、ピストン13がX軸方向で前,後に往復動するように駆動され、これにより、圧縮室12B内で空気(外気)を圧縮して圧縮空気(即ち、作動気体)を発生させるものである。 The compression unit 11 of the linear compressor 4 includes a cylinder 12, a piston 13, a suction valve 14, a cylinder head 17, a discharge valve 16 and the like. Note that, in FIG. 1, the intake valve 14 is in a position that cannot be seen, so that position is indicated by reference numeral 14. The suction valve 14 is provided at the position of the suction hole 15A as shown by the broken line in FIG. The compression unit 11 is driven so that the piston 13 reciprocates forward and backward in the X-axis direction by the reciprocating movement of the mover 8 of the linear motor 5, and thereby the air (outside air) in the compression chamber 12B. It is compressed to generate compressed air (that is, working gas).
 シリンダ12は、その一端側(X軸方向の前側)が吸込弁14の取り付けられたヘッドプレート15により閉塞され、その他端側(X軸方向の後側)がリニアベース6Bに固定された状態で取付けられている。シリンダ12は、例えばアルミニウム材料を用いて円筒状に形成されている。 The cylinder 12 is closed at one end side (front side in the X-axis direction) by the head plate 15 to which the suction valve 14 is attached and fixed at the other end side (rear side in the X-axis direction) to the linear base 6B. Installed. The cylinder 12 is formed in a cylindrical shape using, for example, an aluminum material.
 ピストン13は、シリンダ12内に、X軸方向に摺動可能に挿嵌されている。このピストン13は、シリンダ12内を非圧縮室12Aと圧縮室12Bとに画成する可動隔壁を構成している。ピストン13は連結具13Aによりリニアモータ5の可動子8に連結されている。これにより、ピストン13は、リニアモータ5(モータケース6A)の軸線方向、即ちX軸方向でシリンダ12に対して摺動変位するように設けられ、可動子8の往復動に連動してシリンダ12内を往復動する。換言すると、ピストン13は、リニアモータ5の可動子8の移動方向(X軸)の軸線上に配置されている。 The piston 13 is fitted in the cylinder 12 so as to be slidable in the X-axis direction. The piston 13 constitutes a movable partition wall that divides the inside of the cylinder 12 into a non-compression chamber 12A and a compression chamber 12B. The piston 13 is connected to the mover 8 of the linear motor 5 by a connecting tool 13A. Accordingly, the piston 13 is provided so as to be slidably displaced with respect to the cylinder 12 in the axial direction of the linear motor 5 (motor case 6A), that is, in the X-axis direction, and the cylinder 12 is interlocked with the reciprocating motion of the mover 8. Reciprocates inside. In other words, the piston 13 is arranged on the axis line in the moving direction (X axis) of the mover 8 of the linear motor 5.
 ヘッドプレート15は、シリンダ12の一端を閉塞するようにシリンダ12の一端側に設けられている。図3及び図4に示すように、ヘッドプレート15には、シリンダ12の圧縮室12Bと常時連通する吸込孔15Aと、吸込孔15Aを開閉可能に覆う吸込弁14と、シリンダ12の圧縮室12Bと常時連通する吐出孔15Bと、吐出孔15Bを開閉可能に覆う吐出弁16と、が設けられている。吸込弁14は、圧縮部11の吸込行程で吸込孔15Aを開いて圧縮室12Bを吸込空間18に連通させ、圧縮行程では吸込孔15Aを閉鎖して圧縮室12B内を吸込空間18に対して遮断する。逆に、吐出弁16は、圧縮部11の吸込行程で吐出孔15Bを閉鎖して圧縮室12Bを吐出空間19側に対して遮断し、圧縮行程では吐出孔15Bを開いて圧縮室12B内を吐出空間19に対して連通させる。 The head plate 15 is provided on one end side of the cylinder 12 so as to close one end of the cylinder 12. As shown in FIGS. 3 and 4, the head plate 15 has a suction hole 15A that is in constant communication with the compression chamber 12B of the cylinder 12, a suction valve 14 that covers the suction hole 15A so that the suction hole 15A can be opened and closed, and a compression chamber 12B of the cylinder 12. A discharge hole 15B that is in constant communication with the discharge hole 15B and a discharge valve 16 that covers the discharge hole 15B so as to be opened and closed are provided. The suction valve 14 opens the suction hole 15A in the suction stroke of the compression unit 11 to communicate the compression chamber 12B with the suction space 18, and closes the suction hole 15A in the compression stroke to close the inside of the compression chamber 12B to the suction space 18. Cut off. On the contrary, the discharge valve 16 closes the discharge hole 15B in the suction stroke of the compression section 11 to shut off the compression chamber 12B from the discharge space 19 side, and opens the discharge hole 15B in the compression stroke to open the inside of the compression chamber 12B. It communicates with the discharge space 19.
 シリンダヘッド17は、ヘッドプレート15と一緒にシリンダ12の一端を閉塞するようにシリンダ12の一端側(リニアモータが設けられる側とは反対側の端部側)に配設されている。シリンダヘッド17は、吸込空間18および吐出空間19を有し、吸込空間18および吐出空間19の圧縮室12B側がヘッドプレート15に嵌合される。これにより、吸込空間18は吸込孔15Aと連通し、吐出空間19は吐出弁16が開弁した状態で吐出孔15Bと連通する。またシリンダヘッド17は、吸込空間18に連通するヘッド吸込口17A、および吐出空間19に連通する吐出口17Bを有する。 The cylinder head 17 is arranged together with the head plate 15 on one end side of the cylinder 12 (an end side opposite to the side where the linear motor is provided) so as to close one end of the cylinder 12. The cylinder head 17 has a suction space 18 and a discharge space 19, and the suction chamber 18 and the discharge space 19 are fitted to the head plate 15 on the compression chamber 12B side. As a result, the suction space 18 communicates with the suction hole 15A, and the discharge space 19 communicates with the discharge hole 15B with the discharge valve 16 opened. Further, the cylinder head 17 has a head suction port 17A communicating with the suction space 18 and a discharge port 17B communicating with the discharge space 19.
 一方、モータケース6Aの他端側に設けられたモータケース端板6Cには、空気の吸込口24が設けられている。この吸込口24は、圧縮部11の吸込行程において、外部からモータケース6Aの内部空間に空気を吸込ませるものである。吸込口24は、モータケース6Aの外部側において吸込サイレンサ25に接続されている。吸込サイレンサ25は、吸音型サイレンサであり、圧縮部11の吸込み側に吸込口24を介して接続されている。この吸込サイレンサ25は、常時大気と連通し、吸気フィルタの吸音効果により、吸込口24から外部に漏れる騒音を低減させるものである。 On the other hand, a motor case end plate 6C provided on the other end side of the motor case 6A is provided with an air suction port 24. The suction port 24 sucks air from the outside into the internal space of the motor case 6A in the suction stroke of the compression unit 11. The suction port 24 is connected to the suction silencer 25 on the outer side of the motor case 6A. The suction silencer 25 is a sound absorbing silencer, and is connected to the suction side of the compression unit 11 via the suction port 24. The suction silencer 25 is always in communication with the atmosphere and reduces noise leaking from the suction port 24 to the outside due to the sound absorbing effect of the intake filter.
 また、モータケース6Aの側面(図1の上部側面)には吸込連通孔6Dが開口している。本実施例では、吸込連通孔6Dは、X軸方向において、リニアモータ5の電機子7が配置されている範囲とオーバーラップする位置に、配置されている。すなわち中間吸込通路16は、X軸方向(可動子8の往復動方向)において、固定子(本実施例では電機子7)が配置されている範囲とオーバーラップする位置に接続されている。 Also, a suction communication hole 6D is opened on the side surface (upper side surface in FIG. 1) of the motor case 6A. In the present embodiment, the suction communication hole 6D is arranged in the X-axis direction at a position overlapping the range in which the armature 7 of the linear motor 5 is arranged. That is, the intermediate suction passage 16 is connected to a position that overlaps with the range in which the stator (the armature 7 in this embodiment) is arranged in the X-axis direction (the reciprocating direction of the mover 8).
 吸込連通孔6Dには、中間吸気通路26を接続する配管継手27が設けられている。一方、シリンダヘッド17にはX軸と直交する方向にヘッド吸込口17Aが開口し、ヘッド吸込口17Aに配管継手27が設けられている。吸込連通孔6Dの配管継手27とヘッド吸込口17Aに配管継手27とに中間吸込通路26が接続される。これにより中間吸込通路26は、圧縮室12Bの入口に設けられた吸込弁14とばね収容空間V2と間に設けられる。 A pipe joint 27 that connects the intermediate intake passage 26 is provided in the suction communication hole 6D. On the other hand, the cylinder head 17 has a head suction port 17A opened in a direction orthogonal to the X axis, and a pipe joint 27 is provided at the head suction port 17A. An intermediate suction passage 26 is connected to the pipe joint 27 of the suction communication hole 6D and the pipe joint 27 at the head suction port 17A. Thus, the intermediate suction passage 26 is provided between the suction valve 14 provided at the inlet of the compression chamber 12B and the spring accommodating space V2.
 中間吸込通路26は、モータケース6Aの吸込連通孔6Dとシリンダヘッド17のヘッド吸込口17Aとをつなぎ、モータケース6Aに吸込まれた空気を吸込空間18に導入する。中間吸込通路26は、シリンダ12をバイパスするように、X軸と直交する方向において、電機子(固定子)7、モータケース6Aおよびシリンダ12の外側に配設され、吸込連通孔6D(ばね収容空間V2)とヘッド吸込口17A(吸込空間18)とを連通する通路部材(配管)により構成される。 The intermediate suction passage 26 connects the suction communication hole 6D of the motor case 6A and the head suction port 17A of the cylinder head 17, and introduces the air sucked into the motor case 6A into the suction space 18. The intermediate suction passage 26 is arranged outside the armature (stator) 7, the motor case 6A and the cylinder 12 in a direction orthogonal to the X axis so as to bypass the cylinder 12, and the suction communication hole 6D (spring accommodating hole). The space V2) and the head suction port 17A (suction space 18) are constituted by a passage member (pipe).
 図1Cに示すように、固定子を構成する電機子7はその外周面に切り欠き部7SA、7SBが形成されている。本実施例では、切り欠き部7SA、7SBは、周方向に間隔を設けて、2か所に構成されている。隣接する2つの切り欠き部7SA、7SBの間の外周面7SCは、モータケース6Aの内周面に接触している。切り欠き部7SA、7SBが設けられている部位では電機子7とモータケース6Aの内周面との間に隙間V7,V8が形成され、配管継手27は一方の隙間V7側に配設される。すなわち中間吸込通路26は、隙間V7に連通するように接続される。 As shown in FIG. 1C, the armature 7 that constitutes the stator has notches 7SA and 7SB formed on its outer peripheral surface. In the present embodiment, the cutouts 7SA, 7SB are provided at two positions with a circumferential interval. The outer peripheral surface 7SC between the two adjacent cutout portions 7SA and 7SB is in contact with the inner peripheral surface of the motor case 6A. Gaps V7 and V8 are formed between the armature 7 and the inner peripheral surface of the motor case 6A at the portions where the cutouts 7SA and 7SB are provided, and the pipe joint 27 is arranged on the one gap V7 side. .. That is, the intermediate suction passage 26 is connected so as to communicate with the gap V7.
 本実施例のリニア圧縮機の動作について説明する。 The operation of the linear compressor of this embodiment will be described.
 まず、リニアモータ5の電機子7のコイル7Bに電流を供給(通電)すると、可動子8の永久磁石8Bは軸方向に推力を受け、可動子8全体がX軸方向に沿って駆動される。このとき、電機子7の各コア7Aと可動子8の各永久磁石8Bとは、各コイル7Bへの通電によって、両者間に磁気的な吸引力と反発力とが発生し、これにより、可動子8はY軸方向に配置された一対の電機子7の間でモータケース6A内をX軸方向に沿って動く。 First, when a current is supplied (energized) to the coil 7B of the armature 7 of the linear motor 5, the permanent magnet 8B of the mover 8 receives a thrust force in the axial direction, and the entire mover 8 is driven along the X-axis direction. .. At this time, each core 7A of the armature 7 and each permanent magnet 8B of the mover 8 generate a magnetic attraction force and a repulsive force between the coils 7B by energizing each coil 7B. The armature 8 moves in the motor case 6A along the X-axis direction between the pair of armatures 7 arranged in the Y-axis direction.
 また、このとき、ばね10では、交互に圧縮されるばね10Aとばね10Bとにより、常に可動子8を中立位置に留める方向にばね力が発生する。このばね力と協調するように各コイル7Bへ交流通電することによって、可動子8はX軸方向に往復動を繰返すように駆動される。 Further, at this time, in the spring 10, a spring force is always generated in a direction in which the mover 8 is kept at the neutral position due to the springs 10A and the springs 10B that are alternately compressed. By applying an alternating current to each coil 7B so as to cooperate with this spring force, the mover 8 is driven so as to repeat the reciprocating motion in the X-axis direction.
 可動子8の往復動に伴う推力は、圧縮部11のシリンダ12内に配置されたピストン13に伝えられる。ピストン13は、シリンダ12内で軸方向(X軸方向)に往復動を繰返し、圧縮運転が行われる。即ち、吸込行程ではシリンダ12内の圧縮室12Bが負圧傾向になり、これに伴って吸気弁14が開弁する。これにより、吸込空間18と圧縮室12Bとはヘッドプレート15に設けられた吸込孔15A(図4参照)を介して連通する。このため、吸込空間18には、中間吸込通路26を通って、モータケース6A内の空気が吸込まれ、更に、外気がモータケース端板6Cの吸込口24からモータケース6A内に流入する。即ち、吸込サイレンサ25を通って吸込まれる外気は、吸込口24を通ってモータケース6A内に吸込まれ、更に中間吸込通路26、吸込空間18、および吸込孔15Aを通って圧縮室12B内に吸込まれる。 The thrust resulting from the reciprocating movement of the mover 8 is transmitted to the piston 13 arranged in the cylinder 12 of the compression unit 11. The piston 13 repeatedly reciprocates in the cylinder 12 in the axial direction (X-axis direction) to perform compression operation. That is, in the suction stroke, the compression chamber 12B in the cylinder 12 tends to have a negative pressure, and the intake valve 14 opens accordingly. As a result, the suction space 18 and the compression chamber 12B communicate with each other through the suction hole 15A (see FIG. 4) provided in the head plate 15. Therefore, the air in the motor case 6A is sucked into the suction space 18 through the intermediate suction passage 26, and the outside air further flows into the motor case 6A from the suction port 24 of the motor case end plate 6C. That is, the outside air sucked through the suction silencer 25 is sucked into the motor case 6A through the suction port 24, further passes through the intermediate suction passage 26, the suction space 18, and the suction hole 15A into the compression chamber 12B. Be sucked.
 一方、圧縮行程では、吸込弁14が閉弁して、シリンダ12内でのピストン13の変位により圧縮室12B内の圧力が上昇する。そして、圧縮室12B内の圧力が吐出弁16の開弁圧力よりも高くなると、吐出弁16が開弁する。これにより、圧縮室12B内で発生した圧縮空気は、シリンダヘッド17内の吐出空間19内に向けて吐出される。その後、吐出口17Bを介して圧縮機外へ吐き出され、リニア圧縮機に接続された機器へと供給される。 On the other hand, in the compression stroke, the suction valve 14 is closed, and the displacement of the piston 13 in the cylinder 12 increases the pressure in the compression chamber 12B. Then, when the pressure in the compression chamber 12B becomes higher than the valve opening pressure of the discharge valve 16, the discharge valve 16 opens. As a result, the compressed air generated in the compression chamber 12B is discharged toward the discharge space 19 in the cylinder head 17. After that, the gas is discharged to the outside of the compressor through the discharge port 17B and is supplied to the device connected to the linear compressor.
 本実施例に係るリニア圧縮機の作動時に発生する騒音の伝播について説明する。 The propagation of noise generated during operation of the linear compressor according to this embodiment will be described.
 作動中の圧縮機の騒音で最も支配的なのは吐出弁16および吸込弁14の弁動作音と、空気がそれぞれの弁を通過する際の流体音である。このうち、吐出側経路は吐出口17Bから圧縮機外の機器へ繋がっているため、吐出弁16に起因する騒音は外部に漏れてきにくいが、吸込側経路は吸込口24に取り付けられた吸込サイレンサ25が外部空間に連通しているため、騒音が外部空間に伝播してくる。すなわち、この吸込弁14に起因する騒音は、空気の吸込経路を空気の流れとは逆に伝播し、吸込空間18から中間吸込通路26を通ってモータケース6Aに伝播する。モータケース6Aに伝播した騒音は、更に吸込口24を通って吸込サイレンサ25に伝わり、外部に伝播する。 The most dominant noises of the compressor during operation are the valve operating noises of the discharge valve 16 and the suction valve 14 and the fluid noises when air passes through the respective valves. Of these, the discharge side path is connected to the equipment outside the compressor from the discharge port 17B, so noise due to the discharge valve 16 is unlikely to leak to the outside, but the suction side path is the suction silencer attached to the suction port 24. Since 25 communicates with the external space, noise propagates to the external space. That is, the noise caused by the suction valve 14 propagates in the air suction path in the opposite direction to the air flow, and propagates from the suction space 18 to the motor case 6A through the intermediate suction passage 26. The noise propagated to the motor case 6A further propagates to the suction silencer 25 through the suction port 24 and propagates to the outside.
 このとき、音波の伝達経路は、第1空間V1、第2空間V2および第3空間V3により構成される。 At this time, the sound wave transmission path is constituted by the first space V1, the second space V2, and the third space V3.
 第1空間V1は、中間吸込通路26の通路空間と、固定子である電機子7とモータケース6Aの内周面との間に形成される空間と、により構成される空間である。第1空間V1は、通路断面積Sおよび通路長さLを持つ空間(容積V=S×L)である。電機子7とモータケース6Aの内周面との間に形成される空間のうち、第1空間V1を構成する空間は、中間吸込通路26(配管継手27)が接続される部位から第2空間V2側の部分とする。 The first space V1 is a space formed by the passage space of the intermediate suction passage 26 and the space formed between the armature 7 that is the stator and the inner peripheral surface of the motor case 6A. The first space V1 is the space (volume V 1 = S 1 × L 1 ) having the cross-sectional area S 1 and path length L 1. Of the space formed between the armature 7 and the inner peripheral surface of the motor case 6A, the space forming the first space V1 is the second space from the portion to which the intermediate suction passage 26 (pipe joint 27) is connected. The part on the V2 side.
 ここで、電機子7とモータケース6Aの内周面との間に形成される空間のうち、第1空間V1を構成する空間を、固定子外周側通路空間V7と呼ぶことにする。固定子外周側通路空間V7は、切り欠き部7SAにより電機子7とモータケース6Aの内周面との間に形成される隙間V7によって構成される。電機子7は、隣接する2つの切り欠き部7SA、7SBの間において、外周面7SCがモータケース6Aの内周面に接触しているため、隙間V7は他方の隙間V8とは連通しておらず、固定子外周側通路空間V7の断面積を小さくすることができる。この場合、第1空間V1の通路断面積がSとなるように、固定子外周側通路空間V7の断面積は中間吸込通路26の通路断面積Sと同じ大きさになるように構成されることが望ましい。 Here, among the spaces formed between the armature 7 and the inner peripheral surface of the motor case 6A, the space forming the first space V1 will be referred to as a stator outer peripheral passage space V7. The stator outer peripheral passage space V7 is defined by a gap V7 formed between the armature 7 and the inner peripheral surface of the motor case 6A by the cutout portion 7SA. Since the outer peripheral surface 7SC of the armature 7 is in contact with the inner peripheral surface of the motor case 6A between the two adjacent cutout portions 7SA and 7SB, the gap V7 is in communication with the other gap V8. Therefore, the cross-sectional area of the stator outer peripheral passage space V7 can be reduced. In this case, as the passage cross-sectional area of the first space V1 is S 1, the cross-sectional area of the stator outer periphery passage space V7 is configured to be the same size as the cross-sectional area S 1 of the intermediate suction passage 26 Is desirable.
 第2空間V2は、図1Bにおいて、モータケース6Aの長さLの範囲に構成される空間であり、第2空間V2にはばね10が配置される。このため第2空間V2はばね配置空間を呼ぶ場合もある。第2空間V2は、ケース長さLおよび相当断面積Sを持つ空間(空間容積V)である。ここで、第2空間V2内にはばね10などが配置されるため、第2空間V2の断面積Sはばね10などが占める面積分を除いた大きさになる。そこで第2空間V2の断面積Sは、相当断面積又は実効断面積という呼び方をしている。すなわち相当断面積Sは、第2空間V2を構成するモータケース6Aの断面積からばね10などが占める面積分を除いた実質的な空間の断面積である。以下、この実質的な空間の断面積を単に空間断面積と呼んで説明する。 The second space V2 is a space formed within the range of the length L 2 of the motor case 6A in FIG. 1B, and the spring 10 is arranged in the second space V2. Therefore, the second space V2 may be referred to as a spring arrangement space. The second space V2 is a space (space volume V 2 ) having a case length L 2 and an equivalent cross-sectional area S 2 . Here, since the spring 10 and the like are arranged in the second space V2, the cross-sectional area S 2 of the second space V2 has a size excluding the area occupied by the spring 10 and the like. Therefore, the sectional area S 2 of the second space V2 is called an equivalent sectional area or an effective sectional area. That is, the equivalent cross-sectional area S 2 is a cross-sectional area of a substantial space obtained by removing the area occupied by the spring 10 and the like from the cross-sectional area of the motor case 6A forming the second space V2. Hereinafter, the cross-sectional area of this substantial space will be simply referred to as a space cross-sectional area for description.
 第3空間V3は、通路断面積Sおよび通路長さLを持つ吸込口24に形成される空間(容積V=S×L)である。 Third space V3 is the space formed suction port 24 having a cross-sectional area S 3 and the passage length L 3 (volume V 3 = S 3 × L 3 ).
 本実施例では、第2空間V2の実質的な容積は、第1空間V1の容積Vおよび第3空間V3の容積Vよりも大きい。この場合、第2空間(ばね収容空間)V2における、可動子8の往復動方向(X軸方向)に垂直な空間断面積Sが、中間吸込通路26の通路断面積S及び吸込口24に構成される通路断面積Sよりも大きい。 In this embodiment, the substantial volume of the second space V2 is greater than the volume V 3 volume V 1 and the third space V3 of the first space V1. In this case, the space cross-sectional area S 2 in the second space (spring accommodating space) V 2 perpendicular to the reciprocating direction (X-axis direction) of the mover 8 is the passage cross-sectional area S 1 of the intermediate suction passage 26 and the suction port 24. Is larger than the cross-sectional area S 3 of the passage.
 そして音波は、第1空間V1から、第1空間V1よりも空間容積および通路断面積の大きい第2空間V2の伝播し、さらに第2空間V2から、第2空間V2よりも空間容積および通路断面積の小さい第3空間V3を通過する。すなわち、このような音波の伝達経路において、音波が第1空間V1から第2空間V2に伝播する際、伝達経路の断面積は大きくなり、音波が第2空間V2から第3空間V3伝播する際、伝達経路の断面積は小さくなる。このような伝達経路にあって、モータケース6A内の第2空間V2は、リアクティブ型の膨張サイレンサの役割を果たし、伝達経路内の各空間の接続部の音響インピーダンスにより騒音が低減し、外部に伝播する騒音を小さくする効果を発揮する。 Then, the sound wave propagates from the first space V1 to the second space V2 having a larger space volume and passage cross-sectional area than the first space V1, and further from the second space V2 to the space volume and passage disconnection than the second space V2. It passes through the third space V3 having a small area. That is, in such a sound wave transmission path, when the sound wave propagates from the first space V1 to the second space V2, the cross-sectional area of the transmission path increases, and when the sound wave propagates from the second space V2 to the third space V3. , The cross-sectional area of the transmission path becomes smaller. In such a transmission path, the second space V2 in the motor case 6A plays the role of a reactive expansion silencer, and noise is reduced due to the acoustic impedance of the connection portion of each space in the transmission path. It has the effect of reducing the noise that propagates to.
 なお、第1空間V1、第2空間V2および第3空間V3の断面積について、空間断面積と呼んだり、通路断面積と呼んだりする場合がある。ここで通路断面積は吸気通路の断面積を意味しており、空間断面積は通路断面積を含む呼び方として使用する。なお、第1空間V1および第3空間V3の空間断面積は吸気の流れる方向に垂直な断面における面積であり、第2空間V2の空間断面積はX軸に垂直な断面における面積である。 Note that the cross-sectional areas of the first space V1, the second space V2, and the third space V3 may be referred to as the space cross-sectional area or the passage cross-sectional area. Here, the passage cross-sectional area means the cross-sectional area of the intake passage, and the space cross-sectional area is used as a name including the passage cross-sectional area. The spatial cross-sectional areas of the first space V1 and the third space V3 are areas in a cross section perpendicular to the intake air flow direction, and the spatial cross-sectional area of the second space V2 is an area in a cross section perpendicular to the X axis.
 図5は、実施例1のリニア圧縮機の消音特性を示す図である。図5では、本実施例の音波の伝達経路での膨張サイレンサの消音効果を求めた結果を示している。横軸は騒音の周波数、縦軸は消音効果を示している。 FIG. 5 is a diagram showing the muffling characteristics of the linear compressor of the first embodiment. FIG. 5 shows the result of obtaining the silencing effect of the expansion silencer in the sound wave transmission path of the present embodiment. The horizontal axis shows the noise frequency and the vertical axis shows the silencing effect.
 本実施例は、0-400Hzまでの周波数帯では消音効果がマイナスの値となっており、消音効果はないが、400-1250Hzまでの周波数帯では最大で約10dBの消音効果が発揮される。1250Hzで一旦消音効果はゼロになるものの、それ以上の周波数帯で再び消音効果が表れる。ただし、図中の点線で示した1580Hz以上の領域については、平面波として音波が伝達する仮定が成り立たなくなり、計算では特性が表せるものの、消音効果は現れない。 In this embodiment, the muffling effect has a negative value in the frequency band up to 0-400 Hz, and there is no muffling effect, but a maximum muffling effect of about 10 dB is exhibited in the frequency band up to 400-1250 Hz. At 1250Hz, the muffling effect becomes zero once, but at a frequency band higher than that, the muffling effect appears again. However, in the region above 1580 Hz indicated by the dotted line in the figure, the assumption that sound waves are transmitted as plane waves is no longer valid, and although the characteristics can be expressed by calculation, the silencing effect does not appear.
 図6は、実施例1のリニア圧縮機の騒音測定結果の一例を示す図である。横軸は騒音の周波数、縦軸は音圧レベルを示している。なお図6では、実施例の効果を分かり易くするため、従来構造の音圧レベルも示している。 FIG. 6 is a diagram showing an example of noise measurement results of the linear compressor of the first embodiment. The horizontal axis represents noise frequency and the vertical axis represents sound pressure level. Note that FIG. 6 also shows the sound pressure level of the conventional structure in order to make the effects of the embodiment easier to understand.
 従来構造は吸込空間18に吸込サイレンサが繋がった構成であり、吸込空間18に吸気サイレンサとの間に膨張型サイレンサ効果を有する拡張部を持たない構造である。従来構造の騒音はオーバーオールで67dBであった。これに対し、本実施例の構成では騒音値は59dBであり、約7dBの騒音低減効果を発揮する。周波数ごとにみると、本実施例の構成では、従来構造に比べ、300-1800Hz帯での騒音が低減しており、概ね図5に示した消音効果に近い特性が現れていることが分かる。 The conventional structure has a structure in which a suction silencer is connected to the suction space 18, and the suction space 18 does not have an expansion portion having an expansion-type silencer effect between the suction silencer and the intake silencer. The noise of the conventional structure was 67 dB overall. On the other hand, with the configuration of the present embodiment, the noise value is 59 dB, and a noise reduction effect of about 7 dB is exhibited. Looking at each frequency, it can be seen that the configuration of the present example reduces noise in the 300 to 1800 Hz band as compared with the conventional structure, and exhibits characteristics close to the silencing effect shown in FIG.
 本実施例に係るリニア圧縮機の温度上昇について説明する。 The temperature rise of the linear compressor according to this embodiment will be described.
 圧縮機では運転中のモータ通電により、電機子7のコイル7Bが発熱するとともに、圧縮部11の圧縮室12Bでは、空気の圧縮に伴う温度上昇によりシリンダ12が発熱する。その他にも、ピストン13の側面や軸受等の摺動部で、摩擦による発熱が発生するが、コイル7Bおよびシリンダ12の発熱が支配的である。この発熱量は、基本的に外気との熱伝達により放熱される。 In the compressor, when the motor is energized during operation, the coil 7B of the armature 7 generates heat, and in the compression chamber 12B of the compression unit 11, the cylinder 12 generates heat due to the temperature rise accompanying the compression of air. In addition, heat is generated due to friction on the side surface of the piston 13 and sliding parts such as bearings, but heat generation of the coil 7B and the cylinder 12 is dominant. This heat generation amount is basically radiated by heat transfer with the outside air.
 図7は、実施例1のリニア圧縮機の温度変化を示す図である。図7では、従来の圧縮機と本実施例の圧縮機とにおける、コイル温度とシリンダ温度との運転開始からの変化を示している。横軸は運転開始からの時間経過、縦軸はコイル及びシリンダの温度を示す。 FIG. 7 is a diagram showing a temperature change of the linear compressor of the first embodiment. FIG. 7 shows changes in coil temperature and cylinder temperature from the start of operation in the conventional compressor and the compressor of the present embodiment. The horizontal axis represents the time elapsed from the start of operation, and the vertical axis represents the temperatures of the coil and the cylinder.
 従来構造では、モータケース内部に配置されたモータは外気と直接接しないため、モータ温度は上昇しやすく、コイル温度は他の部品に比べ大きく上昇する。そのため従来構造の圧縮機の場合、モータを冷却するためのファンを搭載し、モータ周辺の熱伝達を促進することでコイル温度を下げる構成が必須であった。しかしながら、本実施例の圧縮機は、吸込サイレンサ25を通って吸込まれた外気が、吸込口24を通ってモータケース6A内に吸込まれ、コイル7Bと熱交換した後、中間吸込通路26、吸込空間18、および吸込孔15Aを通って圧縮室12B内に吸込まれる構成となっているため、コイル7Bの温度上昇を抑制し、温度を低く抑えることができる。このため本実施例の圧縮機は、モータを冷却するための自冷ファンを搭載する必要がない。 In the conventional structure, the motor inside the motor case does not come into direct contact with the outside air, so the motor temperature easily rises and the coil temperature rises significantly compared to other parts. Therefore, in the case of a compressor having a conventional structure, it is necessary to mount a fan for cooling the motor and accelerate the heat transfer around the motor to lower the coil temperature. However, in the compressor of the present embodiment, the outside air sucked through the suction silencer 25 is sucked into the motor case 6A through the suction port 24 and exchanges heat with the coil 7B, and then the intermediate suction passage 26, Since it is configured to be sucked into the compression chamber 12B through the space 18 and the suction hole 15A, the temperature rise of the coil 7B can be suppressed and the temperature can be suppressed low. Therefore, the compressor of this embodiment does not need to be equipped with a self-cooling fan for cooling the motor.
 以上により、本実施例のリニア圧縮機は、モータケース6Aを吸込配管の膨張サイレンサとして使用することで吸込配管から外部に伝播する騒音を低減でき、更に吸込空気によりリニアモータ5を冷却することより発熱を低減でき、静粛性が高く、小型でかつ高信頼な空気圧縮機を提供することができる。 As described above, the linear compressor of the present embodiment can reduce the noise propagating from the suction pipe to the outside by using the motor case 6A as the expansion silencer of the suction pipe, and further cools the linear motor 5 by the suction air. It is possible to provide an air compressor that can reduce heat generation, has high quietness, is small, and is highly reliable.
 さらに本実施例では、中間吸込通路26がX軸と直交する方向において電機子(固定子)7、モータケース6A及びシリンダ12の外側に吸気専用の通路として構成されるため、その断面積の設計自由度が高い。このため、中間吸込通路26と第2空間(ばね収容空間)V2との空間断面積の関係を、膨張サイレンサとしての適正な関係にすることが容易である。 Further, in this embodiment, since the intermediate suction passage 26 is formed as a passage for exclusive use of intake air outside the armature (stator) 7, the motor case 6A and the cylinder 12 in the direction orthogonal to the X axis, the design of its cross-sectional area is provided. High degree of freedom. For this reason, it is easy to make the relationship of the space cross-sectional area between the intermediate suction passage 26 and the second space (spring accommodation space) V2 appropriate to the expansion silencer.
 本実施例によれば、上述した効果のほか、さらに以下の効果が得られる。
・可動子8が平板状であることにより、円筒形にくらべモータが小型化できる。
・固定子である電機子7の背面側(コアと反対側)をモータケース6Aと接触させることにより、モータの熱をモータケース6Aに伝えて効率よく外気に放熱でき、更に圧縮機本体を小型化できる。この場合、平板状の可動子8の往復動方向をX方向、磁石の磁束の方向をY方向とすると、モータケース6Aと接触するのはY方向となる。
According to this embodiment, in addition to the effects described above, the following effects can be obtained.
Since the mover 8 has a flat plate shape, the motor can be made smaller than the cylindrical shape.
-By bringing the back side (opposite side of the core) of the armature 7 that is the stator into contact with the motor case 6A, the heat of the motor can be transferred to the motor case 6A and efficiently dissipated to the outside air, and the compressor body can be made smaller Can be converted. In this case, assuming that the reciprocating direction of the plate-shaped mover 8 is the X direction and the direction of the magnetic flux of the magnet is the Y direction, the contact with the motor case 6A is the Y direction.
 [実施例2]
 次に、図8を用いて、本発明の実施例2のリニア圧縮機を説明する。図8は、実施例2のリニア圧縮機の構成を示す横断面図である。なお、上述した実施例1と共通する構成には実施例1と同じ符号を付し、説明を省略する。以下、実施例1と異なる構成について説明する。
[Example 2]
Next, a linear compressor according to a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a cross-sectional view showing the configuration of the linear compressor of the second embodiment. The same components as those in the first embodiment described above are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted. The configuration different from that of the first embodiment will be described below.
 本実施例では、実施例1と同様に、可動子8は、平板状に形成されて、往復動方向(X軸方向)および平板状の板厚方向(Y軸方向)が水平方向となる向きに配置(縦型配置)されている。 In this embodiment, similarly to the first embodiment, the mover 8 is formed in a flat plate shape, and the reciprocating direction (X axis direction) and the flat plate thickness direction (Y axis direction) are horizontal directions. It is arranged in (vertical arrangement).
 図8に示すように、実施例1に示した中間吸込通路26に繋がるモータケース6Aの側面(図8の上部側面)に開口する吸込連通孔6Dが、リニアモータ5の後側に位置するばね10の上部に設けられている。すなわち吸込連通孔6Dは、X軸方向において、ばね10の配置されている範囲とオーバーラップするように、配置されている。また、本実施例では、リニア圧縮機は防振効果を有する支持ばね(防振ばね)81により支持される。このために、リニアモータ5及び圧縮部11に鉛直方向下部(重力方向下部)にベース部材80を設け、ベース部材80を支持ばね81により支持する。さらに、中間吸込通路26は鉛直方向において支持ばね81とオーバーラップする範囲に配置されている。すなわち、中間吸込通路26は鉛直方向において支持ばね81の下端と圧縮機本体を構成するリニアモータ5及び圧縮部11の下部との間に配置されている。言い換えれば、中間吸込通路26は支持ばね81の上端と下端との間に配置されている。それ以外の構成は実施例1と同じである。 As shown in FIG. 8, the suction communication hole 6D that is opened on the side surface (the upper side surface in FIG. 8) of the motor case 6A connected to the intermediate suction passage 26 shown in the first embodiment is located on the rear side of the linear motor 5. It is provided on the upper part of 10. That is, the suction communication hole 6D is arranged so as to overlap the range in which the spring 10 is arranged in the X-axis direction. Further, in this embodiment, the linear compressor is supported by a support spring (vibration isolation spring) 81 having an anti-vibration effect. For this purpose, the linear motor 5 and the compression unit 11 are provided with a base member 80 in the lower portion in the vertical direction (lower portion in the direction of gravity), and the base member 80 is supported by the support spring 81. Further, the intermediate suction passage 26 is arranged in a range that overlaps the support spring 81 in the vertical direction. That is, the intermediate suction passage 26 is arranged vertically between the lower end of the support spring 81 and the lower portions of the linear motor 5 and the compression portion 11 which form the compressor body. In other words, the intermediate suction passage 26 is arranged between the upper end and the lower end of the support spring 81. The other configuration is the same as that of the first embodiment.
 本実施例では、中間吸込通路26に繋がるモータケース6Aの側面に開口する吸込連通孔6Dが、ばね10の配置されている範囲とオーバーラップする範囲に設けられている。すなわち、中間吸込通路26は、X軸方向(可動子8の往復動方向)において、ばね10が配置されている範囲とオーバーラップする位置に接続されている。 In the present embodiment, the suction communication hole 6D opened on the side surface of the motor case 6A connected to the intermediate suction passage 26 is provided in a range overlapping with the range in which the spring 10 is arranged. That is, the intermediate suction passage 26 is connected to a position that overlaps the range in which the spring 10 is arranged in the X-axis direction (the reciprocating direction of the mover 8).
 本実施例では、中間吸込通路26が直接、第2空間V2に連通する。すなわち、第1空間V1が中間吸込通路26で構成され、隙間7SAは第1空間V1に含まれない。本実施例では、吸込空気が電機子7の外周側に流れ難くなるため、吸込空気とコイル7Bとの熱交換量が抑えられ、コイル温度が約5℃上昇する。しかしながら、逆に中間吸込通路26を通って吸込空間18に吸込まれる吸込空気温度は低下し、吸込空気の密度が増加するため、圧縮流量が増加し、効率も上昇する。 In this embodiment, the intermediate suction passage 26 directly communicates with the second space V2. That is, the first space V1 is formed by the intermediate suction passage 26, and the gap 7SA is not included in the first space V1. In this embodiment, since it is difficult for the intake air to flow to the outer peripheral side of the armature 7, the amount of heat exchange between the intake air and the coil 7B is suppressed, and the coil temperature rises by about 5°C. However, conversely, the temperature of the suction air sucked into the suction space 18 through the intermediate suction passage 26 decreases and the density of the suction air increases, so that the compression flow rate increases and the efficiency also increases.
 本実施例では、コイル温度は若干上昇するものの、より高効率で、静粛性が高く、小型な空気圧縮機を提供することができる。なお、モータケース6Aの内側に配置した電機子7が吸込空気により冷却される効果が得られることは、程度の差はあるものの、実施例1と変わりがない。 In the present embodiment, although the coil temperature slightly rises, it is possible to provide a small-sized air compressor having higher efficiency, higher quietness, and higher efficiency. The effect that the armature 7 arranged inside the motor case 6A is cooled by the intake air is the same as that of the first embodiment, although there is a degree of difference.
 本実施例では、中間吸込通路26がX軸と直交する方向において電機子(固定子)7、モータケース6A及びシリンダ12の外側に吸気専用の通路として構成されるため、中間吸込通路26の通路断面積の設計自由度が高い。さらに本実施例では、実施例1のように第1空間V1に固定子外周側通路空間V7が含まれないため、第1空間V1が単純な形状になり、膨張サイレンサの設計が容易になる。 In the present embodiment, since the intermediate suction passage 26 is configured as a passage for exclusive use of intake air outside the armature (stator) 7, the motor case 6A and the cylinder 12 in the direction orthogonal to the X axis, the passage of the intermediate suction passage 26. High degree of freedom in designing the cross-sectional area. Further, in this embodiment, unlike the first embodiment, the stator outer peripheral passage space V7 is not included in the first space V1, so that the first space V1 has a simple shape and the expansion silencer can be easily designed.
 本実施例では、支持体81は、鉛直方向において、圧縮機本体を構成するリニアモータ5及び圧縮部11の下側に配置される。中間吸込通路26は、支持体81による圧縮機本体の支持部と同じ側に配置されている。本実施例では、支持体81はコイルばね(支持ばね)で構成しているが、振動絶縁体または防振マウントで構成してもよい。また支持体81は圧縮機本体の上側に配置してもよい。支持体81を圧縮機本体の上側に配置する場合、圧縮機本体は支持体81に吊り下げられた状態で支持されてもよいし、圧縮機本体の下側に配置された支持体81と共に、圧縮機本体の下側と上側の両方から圧縮機本体を支持されるようにしてもよい。 In the present embodiment, the support body 81 is arranged below the linear motor 5 and the compression section 11 which form the compressor body in the vertical direction. The intermediate suction passage 26 is disposed on the same side as the support portion of the compressor body supported by the support body 81. In this embodiment, the support 81 is composed of a coil spring (support spring), but it may be composed of a vibration insulator or a vibration isolation mount. The support 81 may be arranged above the compressor body. When the support body 81 is arranged on the upper side of the compressor body, the compressor body may be supported in a state of being suspended by the support body 81, or together with the support body 81 arranged on the lower side of the compressor body, The compressor body may be supported from both the lower side and the upper side of the compressor body.
 図8に示す構成では、コア7Aの磁極と対向する永久磁石8Bの端面は、鉛直方向に沿うように配置される。すなわち、Z方向が鉛直方向になり、可動子8は縦型配置となる。そして、中間吸込通路26が鉛直方向において支持ばね81とオーバーラップする範囲に配置されていることにより、リニア圧縮機の高さ寸法を小さくすることができ、鉛直方向のサイズアップを抑制する。 In the configuration shown in FIG. 8, the end surface of the permanent magnet 8B facing the magnetic pole of the core 7A is arranged along the vertical direction. That is, the Z direction is the vertical direction, and the mover 8 is in the vertical arrangement. Since the intermediate suction passage 26 is arranged in the range that overlaps with the support spring 81 in the vertical direction, the height dimension of the linear compressor can be reduced, and the size increase in the vertical direction is suppressed.
 なお、支持体81は実施例1に適用することができ、実施例1において本実施例で説明した支持体81と中間吸込通路26との配置関係を採用することができる。なお支持体81は、以下、支持ばねと呼んで説明する。 The support 81 can be applied to the first embodiment, and the arrangement relationship between the support 81 and the intermediate suction passage 26 described in the first embodiment in the first embodiment can be adopted. The support 81 will be referred to as a support spring in the following description.
 本実施例では、圧縮機本体が縦向きに配置される構成(縦型配置)について説明したが、支持ばね81の配置を変更することにより、横型に配置にすることもできる。 In the present embodiment, the configuration in which the compressor main body is vertically arranged (vertical arrangement) has been described, but the arrangement can be changed to the horizontal type by changing the arrangement of the support spring 81.
 [実施例3]
 次に、図9A,9Bおよび9Cを用いて、本発明に係る実施例3のリニア圧縮機を説明する。図9Aは、実施例3のリニア圧縮機の構成を示す、X軸に平行な断面図である。図9Bは、図9Aとは異なる、リニア圧縮機のX軸に平行な断面図である。図9Cは、図9BのIX-IX断面図である。なお、上述した実施例1及び2と共通する構成には実施例1及び2と同じ符号を付し、説明を省略する。以下実施例と異なる構成について説明する。
[Example 3]
Next, a linear compressor according to a third embodiment of the present invention will be described with reference to FIGS. 9A, 9B and 9C. FIG. 9A is a sectional view parallel to the X axis, showing the configuration of the linear compressor of the third embodiment. 9B is a sectional view parallel to the X axis of the linear compressor, which is different from FIG. 9A. 9C is a sectional view taken along line IX-IX of FIG. 9B. The same components as those in the first and second embodiments described above are designated by the same reference numerals as those in the first and second embodiments, and description thereof will be omitted. The configuration different from that of the embodiment will be described below.
 本実施例は、図9Aに示すように、実施例1および2に示した中間吸込通路26を圧縮機外に設けず、圧縮機内に設けた例である。 In this embodiment, as shown in FIG. 9A, the intermediate suction passage 26 shown in the first and second embodiments is not provided outside the compressor but is provided inside the compressor.
 本実施例では、実施例1と同様に、可動子8は、平板状に形成されて、往復動方向(X軸方向)および平板状の板厚方向(Y軸方向)が水平方向となる向きに配置(縦型配置)されている。 In this embodiment, similarly to the first embodiment, the mover 8 is formed in a flat plate shape, and the reciprocating direction (X axis direction) and the flat plate thickness direction (Y axis direction) are horizontal directions. It is arranged in (vertical arrangement).
 中間吸込通路26をモータケース6Aの内部に配置し、第1空間(ばね収容空間)V1とピストン13の背面の吸込空間(非圧縮室12A)とを連通させる吸込通路とする。さらにピストン13には、非圧縮室12Aと圧縮室12Bとを連通させる連通孔13Cと、連通孔13Cを開閉可能に覆う吸込弁14とを設ける。この吸込弁14は、圧縮部11(ピストン13)の吸込行程において連通孔13Cを開放し、非圧縮室12Aと圧縮室12Bとを連通させる。圧縮部11(ピストン13)の圧縮行程では、吸込弁14が連通孔13Cを閉鎖し、圧縮室12Bは非圧縮室12Aに対して遮断される。 The intermediate suction passage 26 is arranged inside the motor case 6A, and serves as a suction passage that connects the first space (spring accommodation space) V1 with the suction space (non-compression chamber 12A) on the back surface of the piston 13. Further, the piston 13 is provided with a communication hole 13C that connects the non-compression chamber 12A and the compression chamber 12B, and a suction valve 14 that covers the communication hole 13C so as to be opened and closed. The suction valve 14 opens the communication hole 13C in the suction stroke of the compression portion 11 (piston 13) and connects the non-compression chamber 12A and the compression chamber 12B. In the compression stroke of the compression portion 11 (piston 13), the suction valve 14 closes the communication hole 13C, and the compression chamber 12B is shut off from the non-compression chamber 12A.
 可動子8の往復動に伴う推力は、圧縮部11(シリンダ12)内のピストン13に伝えられる。ピストン13は、シリンダ12内で軸方向(X軸方向)に往復動を繰返し、圧縮運転が行われる。即ち、ピストン13の吸込行程では、シリンダ12内の圧縮室12Bが負圧傾向になり、これに伴って吸込弁14が開弁する。これにより、非圧縮室12Aと圧縮室12Bとはピストン13に設けられた連通孔13Cを介して連通する。このため、シリンダ12内の非圧縮室12Aには、外気が吸込サイレンサ25を通ってモータケース6Aの吸込口24からモータケース6A内に流入し、モータケース6Aとリニアモータ5との間の隙間(空間)V7を通って、リニアモータ5の保持体7Cに設けられた連通口7Eから非圧縮室12Aに流入する。非圧縮室12Aに流入した空気は、ピストン13の連通孔13Cを介して圧縮室12B内に吸込まれる。 The thrust resulting from the reciprocating movement of the mover 8 is transmitted to the piston 13 in the compression section 11 (cylinder 12). The piston 13 repeatedly reciprocates in the cylinder 12 in the axial direction (X-axis direction) to perform compression operation. That is, in the suction stroke of the piston 13, the compression chamber 12B in the cylinder 12 tends to have a negative pressure, and the suction valve 14 opens accordingly. As a result, the non-compression chamber 12A and the compression chamber 12B communicate with each other through the communication hole 13C provided in the piston 13. Therefore, in the non-compression chamber 12A in the cylinder 12, outside air passes through the suction silencer 25 and flows into the motor case 6A from the suction port 24 of the motor case 6A, and a gap between the motor case 6A and the linear motor 5 is generated. The (space) V7 flows into the non-compression chamber 12A from the communication port 7E provided in the holder 7C of the linear motor 5. The air flowing into the non-compression chamber 12A is sucked into the compression chamber 12B via the communication hole 13C of the piston 13.
 一方、ピストン13の圧縮行程では、吸込弁14が閉弁してピストン13の連通孔13Cが塞がれた状態で、シリンダ12内でのピストン13の変位(圧縮室12Bが狭まる変位)により圧縮室12B内の圧力が上昇する。そして、圧縮室12B内の圧力が吐出弁16の開弁圧力よりも高くなると、吐出弁16が開弁する。これにより、圧縮室12B内で発生した圧縮空気は、シリンダヘッド17内の吐出空間19内に向けて吐出される。その後、圧縮空気は吐出口17Bを介してリニア圧縮機に接続された機器へと供給される。 On the other hand, in the compression stroke of the piston 13, when the suction valve 14 is closed and the communication hole 13C of the piston 13 is closed, compression is performed by displacement of the piston 13 in the cylinder 12 (displacement in which the compression chamber 12B narrows). The pressure in the chamber 12B rises. Then, when the pressure in the compression chamber 12B becomes higher than the valve opening pressure of the discharge valve 16, the discharge valve 16 opens. As a result, the compressed air generated in the compression chamber 12B is discharged toward the discharge space 19 in the cylinder head 17. Thereafter, the compressed air is supplied to the device connected to the linear compressor via the discharge port 17B.
 本実施例に係るリニア圧縮機の騒音伝播について説明する。 The noise propagation of the linear compressor according to this embodiment will be described.
 作動中の圧縮機の騒音の中で支配的な吸込弁14に起因する騒音は、空気の吸込経路を空気の流れとは逆に伝播し、ピストン13の連通孔13Cを介して非圧縮室12Aへ伝わり、リニアモータ5の保持体7Cに設けられた連通口7Eからモータケース6Aに伝わる。この騒音は、更に吸込口24を通って吸込サイレンサ25に伝わり、外部に伝播する。 The noise caused by the suction valve 14, which is dominant among the noises of the compressor in operation, propagates in the suction path of air in the opposite direction to the flow of air, and flows through the communication hole 13C of the piston 13 into the non-compression chamber 12A. To the motor case 6A through the communication port 7E provided in the holder 7C of the linear motor 5. This noise is further transmitted to the suction silencer 25 through the suction port 24 and propagates to the outside.
 本実施例では、図9Aに示すように、連通口7Eと第2空間V2との間に中間吸込通路26が形成され、第1空間V1は連通口7Eと中間吸込通路26とで構成される。すなわち、リニアモータ5とピストン13の背面の吸込空間(非圧縮室12A)とを連通させる吸込通路は、中間吸込通路26のほかに連通口7Eを含む。 In this embodiment, as shown in FIG. 9A, an intermediate suction passage 26 is formed between the communication port 7E and the second space V2, and the first space V1 is composed of the communication port 7E and the intermediate suction passage 26. .. That is, the suction passage that connects the linear motor 5 and the suction space (the non-compression chamber 12A) on the back surface of the piston 13 includes the communication port 7E in addition to the intermediate suction passage 26.
 第1空間V1は、通路断面積Sおよび通路長さLを持つ空間(容積V=S×L)である。中間吸込通路26は、X軸と直交する方向において、固定子を構成する電機子7の外周側で、かつモータケース6Aの内側に構成される。連通口7Eの開口面積を中間吸込通路26の通路断面積と同じ大きさにすることが望ましい。このために、連通口7Eの開口面積は、ピストン13の後側に形成される非圧縮室12Aの断面積(X軸に垂直な断面積)よりも小さく形成される。 The first space V1 is the space (volume V 1 = S 1 × L 1 ) having the cross-sectional area S 1 and path length L 1. The intermediate suction passage 26 is formed on the outer peripheral side of the armature 7 forming the stator and inside the motor case 6A in the direction orthogonal to the X axis. It is desirable that the opening area of the communication port 7E be the same as the passage cross-sectional area of the intermediate suction passage 26. Therefore, the opening area of the communication port 7E is formed smaller than the cross-sectional area (cross-sectional area perpendicular to the X axis) of the non-compression chamber 12A formed on the rear side of the piston 13.
 第2空間V2及び第3空間V3は、実施例1及び2と同様であり、第1空間V1、第2空間V2及び第3空間V3の容積と空間断面積との関係は実施例1及び2と同様に構成される。 The second space V2 and the third space V3 are similar to those in the first and second embodiments, and the relationship between the volume of the first space V1, the second space V2, and the third space V3 and the space cross-sectional area is the first and second embodiments. It is constructed in the same way as.
 本実施例においても、実施例1及び2と同様に、モータケース6A内の第2空間V2がリアクティブ型の膨張サイレンサの役割を果たし、伝達経路内の各空間の接続部の音響インピーダンスにより騒音が低減し、外部に伝播する騒音が小さくなる。 Also in the present embodiment, as in the first and second embodiments, the second space V2 in the motor case 6A plays the role of a reactive expansion silencer, and noise is generated by the acoustic impedance of the connection part of each space in the transmission path. Is reduced, and the noise transmitted to the outside is reduced.
 以上により、本実施例のリニア圧縮機は、中間吸込通路26をモータケース6Aの外部に設けることなく、モータケース6Aを吸込配管の膨張サイレンサとして使用することができ、吸込配管からリニア圧縮機の外部に漏れる騒音を低減できる。更に本実施例のリニア圧縮機は、吸込空気によりリニアモータ5を冷却することより発熱を低減できる。また、中間吸込通路26がモータケース6Aの内側に配置されることで、リニア圧縮機のX軸に直交する方向におけるサイズアップを抑制することができる。その結果、本実施例のリニア圧縮機は、静粛性が高く、より一層小型でかつ高信頼な空気圧縮機を提供することができる。 As described above, in the linear compressor of this embodiment, the motor case 6A can be used as an expansion silencer for the suction pipe without providing the intermediate suction passage 26 outside the motor case 6A. The noise leaking to the outside can be reduced. Further, the linear compressor of the present embodiment can reduce heat generation by cooling the linear motor 5 with suction air. Further, by disposing the intermediate suction passage 26 inside the motor case 6A, it is possible to suppress the size increase of the linear compressor in the direction orthogonal to the X axis. As a result, the linear compressor of the present embodiment can provide an air compressor with high quietness, smaller size, and higher reliability.
 本実施例でも、圧縮機本体を縦型配置として、中間吸込通路26をZ方向において支持ばね81のある側に配置することで、X軸に垂直な方向における寸法の増大を抑制することができる。この場合、Z方向にコイルの結線部を設けるとよい。コイルの結線部のために電機子7とモータケース6Aとの間に空間を設け、この空間を中間吸込通路26として使うことができる。 Also in the present embodiment, the compressor main body is arranged vertically and the intermediate suction passage 26 is arranged on the side where the support spring 81 is located in the Z direction, so that the increase in size in the direction perpendicular to the X axis can be suppressed. .. In this case, it is advisable to provide the wire connection portion of the coil in the Z direction. A space is provided between the armature 7 and the motor case 6A for the coil connecting portion, and this space can be used as the intermediate suction passage 26.
 本実施例では、圧縮機本体が縦向きに配置される構成(縦型配置)について説明したが、支持ばね81の配置を変更することにより、横型に配置にすることもできる。 In this embodiment, the configuration in which the compressor main body is vertically arranged (vertical arrangement) has been described, but by changing the arrangement of the support spring 81, it is possible to arrange the compressor horizontally.
 [実施例4]
 図10は、本発明に係るリニア圧縮機を用いた冷蔵庫2001の実施例の構成図である。
[Example 4]
FIG. 10 is a configuration diagram of an embodiment of a refrigerator 2001 using the linear compressor according to the present invention.
 冷蔵庫2001は、冷蔵室2002の前面側に左右に分割された観音開きの冷蔵室扉2002aを備え、製氷室2003と、上段冷凍室2004と、下段冷凍室2005と、野菜室2006との前面側に、それぞれ引き出し式の製氷室扉2003a、上段冷凍室扉2004a、下段冷凍室扉2005a、野菜室扉2006aを備えている。 Refrigerator 2001 is provided with a left and right double-door split refrigerating compartment door 2002a on the front side of refrigerating compartment 2002, and on the front side of ice making compartment 2003, upper freezing compartment 2004, lower freezing compartment 2005, and vegetable compartment 2006. , A drawer type ice making chamber door 2003a, an upper freezing chamber door 2004a, a lower freezing chamber door 2005a, and a vegetable chamber door 2006a, respectively.
 野菜室2006の背面側には、機械室2020が設けられ、機械室2020にリニア圧縮機2024が配置されている。また、製氷室2003、上段冷凍室2004、及び下段冷凍室2005の背面側には、蒸発器室2008が設けられ、蒸発器室2008に蒸発器2007が設けられている。冷蔵庫2001では、圧縮機2024及び蒸発器2007のほか、図示しない放熱器、減圧手段であるキャピラリチューブ及び三方弁等が冷媒配管で接続され、冷凍サイクル2030が形成されている。 A machine room 2020 is provided on the back side of the vegetable room 2006, and a linear compressor 2024 is arranged in the machine room 2020. Further, an evaporator chamber 2008 is provided on the back side of the ice making chamber 2003, the upper freezing chamber 2004, and the lower freezing chamber 2005, and the evaporator 2007 is provided in the evaporator chamber 2008. In the refrigerator 2001, in addition to the compressor 2024 and the evaporator 2007, a radiator (not shown), a capillary tube as a pressure reducing means, a three-way valve, and the like are connected by a refrigerant pipe to form a refrigeration cycle 2030.
 本実施例では、冷蔵庫2001の冷凍サイクル2030を構成する圧縮機2024に、上述した各実施例のいずれかのリニア圧縮機を採用する。本実施例の冷蔵庫2001は、上述した実施例のリニア圧縮機を採用することにより、冷凍サイクル2030を構成する圧縮機の大形化を抑制することができる。そして冷蔵室及び冷凍室のために大きなスペースを確保することが可能になり、外形寸法を大きくすることなく大容量の冷蔵庫を提供することが可能になる。 In this embodiment, the linear compressor according to any one of the above-described embodiments is adopted as the compressor 2024 that constitutes the refrigeration cycle 2030 of the refrigerator 2001. The refrigerator 2001 of the present embodiment can prevent the compressor constituting the refrigeration cycle 2030 from increasing in size by adopting the linear compressor of the above-described embodiment. Further, it becomes possible to secure a large space for the refrigerating room and the freezing room, and it is possible to provide a large-capacity refrigerator without increasing the outer dimensions.
 [実施例5]
 図11は、本発明に係るリニア圧縮機を用いた車両用エアサスペンション3004の実施例の構成図である。
[Example 5]
FIG. 11 is a configuration diagram of an embodiment of a vehicle air suspension 3004 using the linear compressor according to the present invention.
 本実施例では、4輪自動車等の車両に、車両用エアサスペンションを搭載した場合を例に挙げて説明する。 In this embodiment, a case where a vehicle air suspension is mounted on a vehicle such as a four-wheeled vehicle will be described as an example.
 車体3002は、車両3001のボディを構成している。車体3002の下側には、左、右の前輪と左、右の後輪とからなる合計4個の車輪3003が設けられている。エアサスペンション3004は、車体3002と各車輪3003との間にそれぞれ設けられた4個の空気ばね3005と、空気圧縮機(リニア圧縮機)3006と、バルブユニット3008と、コントローラ3011とを備える。そして、エアサスペンション3004は、各空気ばね3005に対して空気圧縮機3006から圧縮空気が給排されることにより、車高調整を行う。 The vehicle body 3002 constitutes the body of the vehicle 3001. On the lower side of the vehicle body 3002, a total of four wheels 3003 including left and right front wheels and left and right rear wheels are provided. The air suspension 3004 includes four air springs 3005 provided between the vehicle body 3002 and each wheel 3003, an air compressor (linear compressor) 3006, a valve unit 3008, and a controller 3011. The air suspension 3004 adjusts the vehicle height by supplying and discharging compressed air from the air compressor 3006 to and from each air spring 3005.
 本実施例では、空気圧縮機3006として、上述した各実施例のいずれかのリニア圧縮機を採用する。空気圧縮機3006は、給排管路(配管)3007を通じてバルブユニット3008に接続されている。バルブユニット3008には、各車輪3003に対して設けられた、電磁弁からなる給排バルブ3008aが4個設けられている。バルブユニット3008と各車輪3003の空気ばね3005との間には、分岐管路(配管)3009が設けられている。空気ばね3005は、分岐管路3009、バルブ3008a、及び給排管路3007を介して、空気圧縮機3006に接続される。そして、バルブユニット3008は、コントローラ3011からの信号に応じて給排バルブ3008aを開、閉弁させることにより、各空気ばね3005に対して圧縮空気を給排し、車高調整を行う。 In this embodiment, as the air compressor 3006, any one of the linear compressors of the above-described embodiments is adopted. The air compressor 3006 is connected to the valve unit 3008 through a supply/discharge pipe line (pipe) 3007. The valve unit 3008 is provided with four supply/discharge valves 3008a, which are electromagnetic valves and are provided for each wheel 3003. A branch pipe (pipe) 3009 is provided between the valve unit 3008 and the air spring 3005 of each wheel 3003. The air spring 3005 is connected to the air compressor 3006 via a branch conduit 3009, a valve 3008a, and a supply/discharge conduit 3007. Then, the valve unit 3008 opens and closes the supply/exhaust valve 3008a in response to a signal from the controller 3011, thereby supplying/discharging compressed air to/from each air spring 3005 to adjust the vehicle height.
 本実施例では、エアサスペンション3004を構成する空気圧縮機3006の大形化を抑制することができる。そして、車両3001における空気圧縮機3006の搭載スペースを小さくすることができ、空気圧縮機3006の配置の自由度が高まる。 In the present embodiment, it is possible to prevent the air compressor 3006 forming the air suspension 3004 from becoming large. Then, the mounting space of the air compressor 3006 in the vehicle 3001 can be reduced, and the degree of freedom in arranging the air compressor 3006 is increased.
 本発明に係る実施例によれば、圧縮機の型式として往復動型(レシプロ型)圧縮機の中でも直動式のリニアモータを用いたレシプロ型圧縮機(リニア圧縮機と呼ぶ)とすることで、クランク機構が必要なく、圧縮機(リニア圧縮機)をより小型化、低背化することができる。また本発明に係る実施例は、モータケースを吸込配管の膨張サイレンサとして使用することで吸込配管からの騒音を低減できるとともに、モータケースとサイレンサの一体化により圧縮機の小型化、低背化が達成される。さらに、吸込空気によりリニアモータを冷却することより発熱を低減し、小型で静粛性が高く、かつ高信頼な圧縮機を提供することができる。また本発明に係るリニア圧縮機では、中間吸込通路26の構成に係る冷却効果のほか、実施例1で説明した放熱の効果により、吸込空気の温度上昇を更に低減することができ、中間吸込通路を設けても圧縮機の寸法を大きくせずに小型な圧縮機が可能になる。 According to the embodiment of the present invention, a reciprocating compressor (referred to as a linear compressor) that uses a linear motor of a direct-acting type among reciprocating (reciprocating) compressors is used as the compressor type. Since a crank mechanism is not required, the compressor (linear compressor) can be made smaller and have a lower profile. Further, in the embodiment according to the present invention, noise from the suction pipe can be reduced by using the motor case as an expansion silencer of the suction pipe, and the size of the compressor can be reduced and the height can be reduced by integrating the motor case and the silencer. To be achieved. Further, by cooling the linear motor with the intake air, heat generation is reduced, and it is possible to provide a compact, highly quiet and highly reliable compressor. Further, in the linear compressor according to the present invention, in addition to the cooling effect related to the structure of the intermediate suction passage 26, the temperature rise of the suction air can be further reduced due to the heat radiation effect described in the first embodiment, and the intermediate suction passage can be further reduced. Even if it is provided, a compact compressor is possible without increasing the size of the compressor.
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-mentioned embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, with respect to a part of the configuration of each embodiment, other configurations can be added/deleted/replaced.
 5…リニアモータ、6…ケーシング、7…電機子(固定子)、8…可動子、10(10A,10B)…ばね、11…圧縮部、12…シリンダ、12A…非圧縮室(吸込空間)、12B…圧縮室、13…ピストン、13C…連通孔、14…吸込弁、17…シリンダヘッド、18…吸込空間、24…吸込口、25…吸音型サイレンサ、26…中間吸込通路、2001…冷蔵庫、2024…圧縮機(リニア圧縮機)、2030…冷凍サイクル、3004…エアサスペンション、3005…空気ばね、3006…空気圧縮機(リニア圧縮機)、V1…第1空間、V2…第2空間(ばね収容空間)、V3…第3空間。 5... Linear motor, 6... Casing, 7... Armature (stator), 8... Mover, 10 (10A, 10B)... Spring, 11... Compression part, 12... Cylinder, 12A... Non-compression chamber (suction space) , 12B... Compression chamber, 13... Piston, 13C... Communication hole, 14... Suction valve, 17... Cylinder head, 18... Suction space, 24... Suction port, 25... Sound absorbing silencer, 26... Intermediate suction passage, 2001... Refrigerator , 2024... Compressor (linear compressor), 2030... Refrigeration cycle, 3004... Air suspension, 3005... Air spring, 3006... Air compressor (linear compressor), V1... First space, V2... Second space (spring) (Accommodation space), V3... third space.

Claims (11)

  1.  ピストンの往復動により圧縮室内の空気を圧縮する圧縮部と、前記ピストンを駆動するリニアモータと、を備え、
     前記リニアモータは、前記ピストンに連結されて往復動する可動子と、前記可動子とともに振動可能な振動ばねと、前記可動子との間で磁気力を作用させて前記可動子を駆動する固定子と、
    を備えるリニア圧縮機において、
     前記リニアモータの前記固定子を一端部側に収容し、他端部に空気の吸込口を有し、前記固定子と前記吸込口との間に前記振動ばねを収容するばね収容空間を構成したケーシングを備え、
     前記圧縮室の入口に設けられた吸込弁と前記ばね収容空間と間に中間吸込通路を備え、
     前記ばね収容空間における、前記可動子の往復動方向に垂直な空間断面積が、前記中間吸込通路の通路断面積及び前記吸込口に構成される通路断面積よりも大きいことを特徴とするリニア圧縮機。
    A compression unit that compresses the air in the compression chamber by the reciprocating motion of the piston, and a linear motor that drives the piston,
    The linear motor is a stator that drives the mover by applying a magnetic force between the mover that is connected to the piston and reciprocates, a vibration spring that can vibrate with the mover, and the mover. When,
    In a linear compressor equipped with
    A housing for accommodating the stator of the linear motor is provided on one end side, an air inlet is provided at the other end, and a spring accommodating space for accommodating the vibration spring is formed between the stator and the inlet. Equipped with a casing,
    An intermediate suction passage is provided between the suction valve provided at the inlet of the compression chamber and the spring accommodating space,
    A linear compression characterized in that a space sectional area in the spring accommodating space perpendicular to the reciprocating direction of the mover is larger than a passage sectional area of the intermediate suction passage and a passage sectional area of the suction port. Machine.
  2.  請求項1に記載のリニア圧縮機において、
     前記中間吸込通路は、前記固定子の外側に配置されていることを特徴とするリニア圧縮機。
    The linear compressor according to claim 1,
    The linear compressor according to claim 1, wherein the intermediate suction passage is arranged outside the stator.
  3.  請求項2に記載のリニア圧縮機において、
     前記圧縮部及び前記リニアモータにより構成される圧縮機本体を支持する支持体を備え、
     前記中間吸込通路は、前記支持体の支持部と同じ側に配置されていることを特徴とするリニア圧縮機。
    The linear compressor according to claim 2,
    A support body that supports a compressor body configured by the compression unit and the linear motor,
    The linear compressor, wherein the intermediate suction passage is disposed on the same side as the support portion of the support body.
  4.  請求項1に記載のリニア圧縮機において、
     前記圧縮部及び前記リニアモータにより構成される圧縮機本体を支持する支持体を備え、
     前記可動子は、平板状に形成されて、往復動方向および平板状の板厚方向が水平方向となる向きに配置され、
     前記支持体による前記圧縮機本体の支持部は、前記圧縮機本体の上側または下側に配置されることを特徴とするリニア圧縮機。
    The linear compressor according to claim 1,
    A support body that supports a compressor body configured by the compression unit and the linear motor,
    The mover is formed in a flat plate shape, and is arranged in a direction in which the reciprocating direction and the flat plate thickness direction are horizontal.
    The linear compressor, wherein the support portion of the compressor body by the support body is disposed above or below the compressor body.
  5.  請求項1に記載のリニア圧縮機において、
     前記圧縮室を構成するシリンダの、前記リニアモータが設けられる側とは反対側の端部に、前記吸込弁を介して前記圧縮室に連通する吸込空間を有するシリンダヘッドを備え、
     前記中間吸込通路は、前記ケーシングの外側に配設されて、前記吸込空間と前記ばね収容空間とを連通させることを特徴とするリニア圧縮機。
    The linear compressor according to claim 1,
    A cylinder head having a suction space communicating with the compression chamber via the suction valve is provided at an end of the cylinder forming the compression chamber on the side opposite to the side where the linear motor is provided,
    The linear compressor is characterized in that the intermediate suction passage is arranged outside the casing to communicate the suction space and the spring accommodating space.
  6.  請求項5に記載のリニア圧縮機において、
     前記中間吸込通路は、前記可動子の往復動方向において、前記固定子が配置されている範囲とオーバーラップする位置に接続されていることを特徴とするリニア圧縮機。
    The linear compressor according to claim 5,
    The linear compressor is characterized in that the intermediate suction passage is connected to a position where the intermediate suction passage overlaps a range in which the stator is arranged in the reciprocating direction of the mover.
  7.  請求項5に記載のリニア圧縮機において、
     前記中間吸込通路は、前記可動子の往復動方向において、前記振動ばねが配置されている範囲とオーバーラップする位置に接続されていることを特徴とするリニア圧縮機。
    The linear compressor according to claim 5,
    The linear compressor is characterized in that the intermediate suction passage is connected to a position in the reciprocating direction of the mover so as to overlap a range in which the vibration spring is arranged.
  8.  請求項5に記載のリニア圧縮機において、
     前記中間吸込通路は、前記ケーシングの内側に配置され、前記ばね収容空間と前記ピストンの背面に形成された吸込空間とを連通させ、
     前記ピストンに前記吸込空間と前記圧縮室とを連通させる連通孔を設けるとともに、前記連通孔を前記吸込弁で開閉可能に覆うことを特徴とするリニア圧縮機。
    The linear compressor according to claim 5,
    The intermediate suction passage is arranged inside the casing, and connects the spring accommodating space and a suction space formed on the back surface of the piston,
    A linear compressor characterized in that the piston is provided with a communication hole that allows the suction space and the compression chamber to communicate with each other, and the communication hole is covered by the suction valve so as to be opened and closed.
  9.  請求項1に記載のリニア圧縮機において、
     前記吸込口に吸音型サイレンサを設けたことを特徴とするリニア圧縮機。
    The linear compressor according to claim 1,
    A linear compressor characterized in that a sound absorbing silencer is provided at the suction port.
  10.  空気ばねと、前記空気ばねに対して圧縮空気を給排する空気圧縮機とを備えたエアサスペンションにおいて、
     前記空気圧縮機として、請求項1に記載のリニア圧縮機を備えたことを特徴とするエアサスペンション。
    In an air suspension including an air spring and an air compressor that supplies and discharges compressed air to and from the air spring,
    An air suspension comprising the linear compressor according to claim 1 as the air compressor.
  11.  冷凍サイクルを備えた冷蔵庫において、
     前記冷凍サイクルを構成する圧縮機として、請求項1に記載のリニア圧縮機を備えたことを特徴とする冷蔵庫。
    In a refrigerator equipped with a refrigeration cycle,
    A refrigerator comprising the linear compressor according to claim 1 as a compressor constituting the refrigeration cycle.
PCT/JP2020/000841 2019-01-31 2020-01-14 Linear compressor WO2020158369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015737 2019-01-31
JP2019015737A JP7199239B2 (en) 2019-01-31 2019-01-31 linear compressor

Publications (1)

Publication Number Publication Date
WO2020158369A1 true WO2020158369A1 (en) 2020-08-06

Family

ID=71842248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000841 WO2020158369A1 (en) 2019-01-31 2020-01-14 Linear compressor

Country Status (2)

Country Link
JP (1) JP7199239B2 (en)
WO (1) WO2020158369A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112353A (en) * 2004-10-15 2006-04-27 Hitachi Ltd Package type compressor
US20150377228A1 (en) * 2014-06-25 2015-12-31 Lg Electronics Inc. Linear compressor, shell for linear compressor, and method for manufacturing shell of linear compressor
JP2016008610A (en) * 2014-06-26 2016-01-18 エルジー エレクトロニクス インコーポレイティド Linear compressor and refrigerator including the same
JP2018062907A (en) * 2016-10-14 2018-04-19 日立オートモティブシステムズ株式会社 Linear compressor and device mounted with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112353A (en) * 2004-10-15 2006-04-27 Hitachi Ltd Package type compressor
US20150377228A1 (en) * 2014-06-25 2015-12-31 Lg Electronics Inc. Linear compressor, shell for linear compressor, and method for manufacturing shell of linear compressor
JP2016008610A (en) * 2014-06-26 2016-01-18 エルジー エレクトロニクス インコーポレイティド Linear compressor and refrigerator including the same
JP2018062907A (en) * 2016-10-14 2018-04-19 日立オートモティブシステムズ株式会社 Linear compressor and device mounted with the same

Also Published As

Publication number Publication date
JP7199239B2 (en) 2023-01-05
JP2020122456A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US7901192B2 (en) Two stage reciprocating compressor and refrigerator having the same
KR101764027B1 (en) A linear compressor
KR20150040027A (en) A linear compressor
KR20150077155A (en) Reciprocating compressor
US7775775B2 (en) Two stage reciprocating compressor and refrigerator having the same
KR20180090519A (en) Reciprocating compressor
JP4735084B2 (en) Hermetic compressor
KR20160001055A (en) A linear compressor
KR102280431B1 (en) Compressor
KR20180093526A (en) Linear compressor
WO2020158369A1 (en) Linear compressor
KR20090044890A (en) Reciprocating compressor
KR20050121053A (en) Compressor
US11359617B2 (en) Compressor
JP4241192B2 (en) Linear compressor
WO2021235036A1 (en) Linear compressor and refrigerator provided with linear compressor, and air suspension device provided with linear compressor
JP2004332651A (en) Oilless linear compressor
ES2332897T3 (en) LINEAR COMPRESSOR UNIT.
US11434887B2 (en) Linear compressor with suction guide and suction muffler
KR102458151B1 (en) Linear compressor
KR100657486B1 (en) Linear compressor
KR200255941Y1 (en) Linear compressor
US12031533B2 (en) Linear compressor
KR102399507B1 (en) Motor and compressor including thereof
KR20190040429A (en) Linear compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747823

Country of ref document: EP

Kind code of ref document: A1