WO2021235036A1 - Linear compressor and refrigerator provided with linear compressor, and air suspension device provided with linear compressor - Google Patents

Linear compressor and refrigerator provided with linear compressor, and air suspension device provided with linear compressor Download PDF

Info

Publication number
WO2021235036A1
WO2021235036A1 PCT/JP2021/006823 JP2021006823W WO2021235036A1 WO 2021235036 A1 WO2021235036 A1 WO 2021235036A1 JP 2021006823 W JP2021006823 W JP 2021006823W WO 2021235036 A1 WO2021235036 A1 WO 2021235036A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
armature
piston
linear compressor
compressor
Prior art date
Application number
PCT/JP2021/006823
Other languages
French (fr)
Japanese (ja)
Inventor
昌喜 小山
潤之介 中津川
直之 大畠
達也 鈴木
瑛人 大畠
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2021235036A1 publication Critical patent/WO2021235036A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric

Definitions

  • the present invention relates to a linear compressor, a refrigerator equipped with the linear compressor, and an air suspension device equipped with the linear compressor.
  • an air compressor used in a pneumatic device such as a refrigerator compressor or an air suspension is required to be compact and lightweight, and to have low vibration and low noise.
  • reciprocating type compressors that drive the piston directly.
  • Refrigerators and air compressors require high pressure ratio operation and long-term continuous operation, so reciprocating compressors are suitable.
  • reciprocating compressors There are two types of reciprocating compressors: a type that converts the power of a rotary motor into a linear motion using a crank mechanism, and a type that directly reciprocates a piston using a linear motor (linear compressor). In either case, the problem is that the vibration generated by the linear motion of the piston is large.
  • Patent Documents 1 and 2 Regarding the structure for reducing the vibration in the reciprocating compressor, for example, there are the techniques described in Patent Documents 1 and 2.
  • Patent Document 1 discloses a configuration in which a linear motor housed in a closed case and a compression mechanism are arranged.
  • the members on the piston side and the member on the cylinder side forming the compression mechanism are connected to the case by resonance springs, respectively, and the ratio of the spring constants on the piston side and the cylinder side to the mass of the members (spring constant).
  • the resonance frequency of each vibration is matched, and the vibration of the main body is reduced.
  • Patent Document 2 discloses a configuration having two pistons in the same cylinder.
  • two sets of linear motors drive two pistons in opposite phases to cancel out the exciting forces and attenuate the vibration.
  • An object of the present invention is to provide a linear compressor capable of reducing vibration with a simple structure while reducing the size, a refrigerator equipped with the linear compressor, and an air suspension device equipped with the linear compressor. It is in.
  • the present invention comprises a casing constituting the outer shell, a cylinder provided in the casing, a piston reciprocating in the cylinder, an armature including a coil, and a permanent magnet.
  • a field magnet provided, a piston-side elastic body connected to the piston and the casing, and a cylinder-side elastic body connected to the cylinder and the casing, and the mass of the armature and the field magnet is increased.
  • the larger one is mechanically connected to the smaller mass of the piston and the cylinder, and the smaller mass of the armature and the field magnet is to the heavier of the piston and the cylinder. It is characterized by mechanical connection.
  • the mass of the piston or the cylinder mechanically connected to the armature and the mass of the cylinder or the piston mechanically connected to the field magnet are made to be substantially the same. It is characterized by that.
  • the present invention is characterized in that, in a refrigerator equipped with a compressor, the above-mentioned linear compressor is provided as the compressor.
  • the present invention is an air suspension device including an air spring and an air compressor that supplies and discharges compressed air to and from the air spring, and the above-mentioned linear compressor is provided as the air compressor. It is characterized by.
  • a linear compressor capable of reducing vibration with a simple structure while achieving miniaturization
  • a refrigerator equipped with the linear compressor
  • an air suspension device equipped with the linear compressor. Can be done.
  • the compressor according to the first embodiment is a reciprocal compressor (linear compressor) using a direct-acting linear motor, and is a compressor suitable for use as a refrigerator compressor and an air compressor.
  • FIG. 1 is a cross-sectional view showing the configuration of the linear compressor according to the first embodiment of the present invention.
  • the linear compressor is via a linear motor composed of a field magnet 4 and an armature 5, a compression mechanism having a piston 8 and a cylinder 9, a spring 6 connected to the field magnet 4, a cylinder 9 and a cylinder head 10. It is configured to include a spring 7 connected to the armature 5.
  • the linear motor causes the field magnet 4 to reciprocate in the axial direction with respect to the armature 5 by passing an electric current through the coil 5B of the armature 5, and causes the piston 8 of the compression mechanism to move in the same direction as the field magnet 4. Drive.
  • the armature 5 reciprocates in the direction opposite to the field magnet 4 due to the reaction force, and drives the cylinder 9 of the compression mechanism unit in the same direction as the armature 5.
  • the piston 8 reciprocates in the cylinder 9 to compress the air (refrigerant) in the compression chamber.
  • the linear motor is provided as a drive source for the compression mechanism of the linear compressor.
  • the linear motor includes a casing 3 constituting a tubular outer shell, an armature 5 arranged in the casing 3, a flat plate-shaped field magnet 4 having flat surfaces in the vertical direction in the Z direction, and a spring 6, a spring 6. 7 and are included. That is, the linear motor exerts a magnetic force between the field element 4 which is connected to the piston 8 and reciprocates, the spring 6 which can vibrate (resonate) with the field element 4, and the field element 4.
  • An armature 5 that drives the coil 4 and further drives itself in the opposite direction by a reaction force, a cylinder 9 that is connected to the armature 5 and reciprocates, and a spring 7 that can vibrate (resonate) with the armature 5. Consists of including.
  • the spring 6 drives the piston 8 together with the field magnet 4, and the spring 7 drives the cylinder 9 together with the armature 5.
  • the casing 3 of the linear motor has an air suction port 1 at one end and an air discharge port 2 at the other end.
  • the spring 6 is located on one end side of the field magnet 4 and is provided in the casing 3.
  • the spring 7 is provided so that one end side is supported by a cylinder head 10 connected to a cylinder 9 connected to an armature 5, and the other end side is connected to a casing 3.
  • the spring 6 functions as a piston-side elastic body connected to the piston 8 and the casing 3
  • the spring 7 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3.
  • the field magnet 4 is basically composed of a yoke 4B and a magnet 4A (permanent magnet), and is connected to the piston 8.
  • the armature 5 is basically composed of a core 5A and a coil 5B, and is connected to the cylinder 9.
  • the field magnet 4 By passing a current through the coil 5B of the armature 5, the field magnet 4 reciprocates in the X-axis direction, and the armature 5 is opposite to the field magnet 4 due to the magnetic force acting between the field magnet 4 and the field magnet 4. It reciprocates in the direction.
  • the spring 6 and the spring 7 are elastically flexed and deformed so as to be alternately compressed and expanded and contracted in the X-axis direction.
  • the guide 14 guides the reciprocating motion of the field element 4 in the X-axis direction.
  • the compression mechanism portion of the linear compressor of the first embodiment includes a cylinder 9, a piston 8, a suction valve 11, a cylinder head 10, a discharge valve 12, and the like.
  • the compression mechanism is driven so that the piston 8 and the cylinder 9 reciprocate relatively in the X-axis direction by the reciprocating movement of the field magnet 4 and the armature 5, whereby air (refrigerator) is reciprocated in the compression chamber. ) Is compressed to generate compressed air (high pressure refrigerant).
  • the cylinder 9 is attached with one end side (opposite side of the armature 5) closed by the cylinder head 10 and the other end side fixed to the armature 5.
  • the cylinder 9 is formed in a cylindrical shape using, for example, an aluminum material.
  • the piston 8 is slidably inserted in the cylinder 9 in the X-axis direction.
  • the piston 8 constitutes a compression chamber in the cylinder 9, and a rider ring 13 is provided on the outer periphery of the piston 8 to guide linear motion and suppress leakage of compressed air in the compression chamber. Has been done.
  • the rider ring 13 is made of a material such as polytetrafluoroethylene (PTFE).
  • the suction valve 11 is provided on the piston 8.
  • a discharge hole 9B communicating with the compression chamber and a discharge valve 12 that covers the discharge hole 9B so as to be openable and closable are provided.
  • the suction valve 11 opens a suction hole 8B in the suction stroke of the compression mechanism portion to communicate the compression chamber with the suction pressure space, and closes the suction hole 8B in the compression stroke to shut off the compression chamber from the suction pressure space.
  • the discharge valve 12 closes the discharge hole 9B in the suction stroke of the compression mechanism unit to shut off the compression chamber from the discharge space, and opens the discharge hole 9B in the compression stroke to enter the compression chamber in the cylinder head 10. Communicate with the discharge space.
  • the cylinder head 10 is provided with a stretchable discharge pipe 2B that communicates with the discharge space 19 and is connected to a discharge port 2 provided in the casing 3.
  • an air suction port 1 is provided on the other end side of the casing 3.
  • the suction port 1 sucks air into the internal space of the casing 3 from the outside in the suction stroke of the compression mechanism unit. Therefore, the inside of the casing 3 is always a suction pressure space.
  • a silencer or an intake filter may be connected to the suction port 1 on the outer side of the casing 3.
  • the vibration of the linear compressor in the first embodiment is characterized in that the driving direction of the piston 8 (that is, the X-axis direction) is the largest, and the vibration in the other directions (Y-axis and Z-axis directions) is small. This is because the linear motor is driven only in the X-axis direction, so that the exciting force acts in the X-axis direction.
  • the armature 5 of the linear motor that serves as the exciting force is the magnetic force that acts between the armature 5 and the field magnet 4, and the compression reaction force of the compression mechanism is the armature 5 and the cylinder 9 and cylinder head connected to the armature 5.
  • the armature-side drive body such as 10 and the field-side drive body such as the field magnet 4 and the piston connected to the field magnet 4 and the suction valve 11 always act in opposite directions with the same size. That is, the armature-side drive body and the field-side drive body always try to reciprocate in opposite directions.
  • the field drive body Since the field drive body is connected to the spring 6 and the armature side drive body is connected to the spring 7, it vibrates at a resonance frequency determined by the respective masses and spring constants.
  • the resonance frequencies are matched and the field-side drive body and the armature-side drive body have the same mass, the respective vibration forces are canceled out, the vibration force with respect to the casing 3 becomes zero, and the vibration force in the X-axis direction becomes zero. There is no vibration.
  • FIG. 2 is a diagram showing the effect of having the same mass on vibration reduction.
  • the vertical axis of the figure shows the vibration acceleration
  • the horizontal axis shows the mass increase ratio of the field-side drive body to the mass of the armature-side drive body.
  • the mass increase ratio of the field-side drive body to the mass of the armature-side drive body is 10% or less, and the vibration acceleration is 1 m / s 2 or less.
  • the armature-side drive body is intended to be a combination of the armature 5 and the piston 8 or the cylinder 9 mechanically connected to the armature 5, and the field-side drive body is the field magnet 4 and It is intended to be a combination of a cylinder 9 or a piston 8 mechanically connected to the field armature 4.
  • the field-side drive body and the armature-side drive body must have the same mass.
  • the armature 5 and the field magnet 4 having the larger mass are mechanically connected to the piston 8 and the cylinder 9 having the smaller mass, and the armature 5 and the field magnet 4 have the mass. Whichever is smaller is mechanically connected to the piston 8 and the cylinder 9 which have the larger mass. Then, the mass of the armature 5 and the piston 8 or the piston 9 mechanically connected to the armature 5 and the mass of the field magnet 4 and the cylinder 9 or the piston 8 mechanically connected to the field magnet 4 are combined. Make it almost the same.
  • the piston 8, the suction valve 11, and the rider ring 13 are connected to the field magnet 4, and the cylinder 9, the cylinder head 10, and the discharge valve 12 are connected to the armature 5.
  • the field magnet 4 has a large yoke 4B and a large spring receiving component 4C connected to the spring 6 to increase the overall mass, and the field magnet side drive body and the armature side drive body have the same mass. I have to.
  • the mass is mainly adjusted by the spring receiving part 4C, and the size is adjusted.
  • the spring receiving component 4C functions as an adjusting component for adjusting the mass.
  • the compressor according to the second embodiment is a reciprocating compressor (linear compressor) using a direct-acting linear motor.
  • FIG. 3 is a cross-sectional view showing the configuration of the linear compressor according to the second embodiment of the present invention.
  • the configuration of the linear compressor is basically the same as the configuration of FIG. 1 shown in the first embodiment, but the piston 8, the suction valve 11, and the rider ring 13 are connected to the armature 5 and the field magnet 4 is connected.
  • the cylinder 9, the cylinder head 10, and the discharge valve 12 are connected.
  • the linear motor is a type of motor in which the armature 5 is arranged inside the field magnet 4.
  • an armature having a core made of an electromagnetic steel plate has a larger mass than a field magnet, and a cylinder covering the outside and parts attached to the cylinder have a larger mass than a piston arranged inside the cylinder.
  • the armature side drive body and the armature side drive body have the same mass, and the armature and the field magnet have the larger mass so as not to increase the total mass as much as possible. Is combined with the cylinder and cylinder accessories and the piston and piston accessories with the smaller mass.
  • the field-side drive body is supported by the spring 6 via the cylinder head 10
  • the armature-side drive body is supported by the spring 7 via the spring receiving component 5D.
  • the spring 6 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3
  • the spring 7 functions as a piston-side elastic body connected to the piston 8 and the casing 3.
  • the spring receiving component 5D functions as an adjusting component for adjusting the mass.
  • the field magnet 4 is composed of a magnet 4A and a yoke 4B constituting a magnetic path, and the mass is adjusted according to the size of the yoke 4B. Further, the core 5A is arranged in the coil 5B of the armature 5, and the periphery is a frame 5C made of a non-magnetic material.
  • the second embodiment it is possible to almost eliminate vibration without increasing the total mass of the compressor, and it is possible to provide a lightweight linear compressor that suppresses noise and vibration.
  • the compressor according to the third embodiment is a reciprocating compressor (linear compressor) using a direct-acting linear motor.
  • FIG. 4 and 5 are cross-sectional views showing the configuration of the linear compressor according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view seen from the Y-axis direction
  • FIG. 5 is a cross-sectional view seen from the Z-axis direction.
  • the configuration of the linear compressor and the linear motor is basically the same as the configuration of FIG. 3 shown in the second embodiment.
  • the armature 5 is connected to the piston 8, the suction valve 11, and the rider ring 13, and the field magnet is used.
  • the cylinder 9, the cylinder head 10, and the discharge valve 12 are connected to 4, but the spring 6 connected to the field-side drive body is a leaf spring.
  • the spring 6 is provided at the connection portion between the cylinder 9 and the field magnet 4 and at the opposite end of the field magnet 4 on the opposite side of the cylinder.
  • the spring 6 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3
  • the spring 7 functions as a piston-side elastic body connected to the piston 8 and the casing 3.
  • the field magnet 4 is composed of a magnet 4A and a yoke 4B constituting a magnetic path, and the mass is adjusted according to the size of the yoke 4B. Since the thickness of the yoke 4B (Z direction) is suppressed to be thinner than the width of the magnet 4A (Y direction) from the viewpoint of the total weight, the linear motor has a flat shape as a whole. Therefore, since the space in the vertical direction of the linear motor with respect to the casing 3 becomes large, a spring 6 for connecting to the field magnet 4 is provided in this space, and the casing 3 can be made smaller and shorter without using a coil spring having a large physique. I am trying.
  • the third embodiment it is possible to reduce the shape of the compressor, to provide a compact and lightweight linear compressor in which vibration is almost zero and noise and vibration are suppressed. can.
  • the compressor according to the fourth embodiment is a reciprocating compressor (linear compressor) using a direct-acting linear motor.
  • FIG. 6 and 7 are cross-sectional views showing the configuration of the linear compressor according to the fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view seen from the Y-axis direction
  • FIG. 7 is a cross-sectional view seen from the Z-axis direction.
  • the configuration of the linear motor is basically the same as the configurations of FIGS. 4 and 5 shown in the third embodiment, and is a type of motor in which the armature 5 is arranged inside the field magnet 4.
  • the field magnet 4 is connected to the piston 8, the suction valve 11, and the rider ring 13, and the armature 5 is connected to the cylinder 9, the cylinder head 10, and the discharge valve 12.
  • the spring 7 connected to the armature side drive body via the spring receiving component 5D is also a leaf spring, and no coil spring is used.
  • the spring receiving component 5D functions as an adjusting component for adjusting the mass.
  • the spring receiving component 5D functions as an adjusting component for adjusting the mass.
  • the field magnet 4 is composed of a magnet 4A and a yoke 4B constituting a magnetic path, and the mass is adjusted according to the size of the yoke 4B. Since the thickness of the yoke 4B (Z direction) is suppressed to be thinner than the width of the magnet 4A (Y direction) from the viewpoint of the total weight, the linear motor has a flat shape as a whole.
  • the cylinder 9 and the piston 8 have a cylindrical shape, they are connected to the field magnet 4 and the armature 5 from either the top, bottom, left or right in the circumferential direction.
  • the armature 5 and the piston 8 are connected to each other in the cross section seen from the Y-axis direction in FIG. 6, and are connected to the spring 6 at both ends of the field magnet 4.
  • the armature 5 and the cylinder 9 are connected in a cross section seen from the Z-axis direction in FIG. 7.
  • the spring 7 connected to the armature side drive body is not visible from this cross section, and is connected to one end of the armature 5 and one end of the cylinder head in the same direction as the spring 6 in the direction of FIG.
  • the casing 3 is made smaller and shorter without using a coil spring having a large body shape.
  • the spring 6 functions as a piston-side elastic body connected to the piston 8 and the casing 3
  • the spring 7 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3.
  • FIG. 8 is a diagram showing the configuration of the refrigerator according to the fifth embodiment.
  • the same reference numerals are given to the same configurations as those of Examples 1 to 4, and the description thereof will be omitted.
  • the refrigerator 21 is provided with a left-right split refrigerating room door 22a on the front side of the refrigerating room 22, and is located on the front side of the ice making room 23, the upper freezing room 24, the lower freezing room 25, and the vegetable room 26.
  • Each is provided with a pull-out type ice making room door 23a, an upper freezing room door 24a, a lower freezing room door 25a, and a vegetable room door 26a.
  • a machine room 30 is provided on the back side of the vegetable room 26, and a compressor 29 is arranged in the machine room 30. Further, an evaporator chamber 28 is provided on the back side of the ice making chamber 23, the upper freezing chamber 24, and the lower freezing chamber 25, and the evaporator 27 is provided in the evaporator chamber 28.
  • a radiator (not shown), a capillary tube as a depressurizing means, a three-way valve, and the like are connected by a refrigerant pipe to form a refrigerating cycle.
  • Example 5 the linear compressor according to any one of Examples 1 to 4 described above is adopted as the compressor 29 constituting the refrigerating cycle of the refrigerator 21.
  • the compressor of the fourth embodiment may be adopted as the compressor 29.
  • the compressor which is the vibration source of the refrigerator, can be made vibration-free and vibrates. It is possible to remove anti-vibration materials and shielding materials to reduce noise, and it is possible to suppress the enlargement of the compressor 29 that constitutes the freezing cycle, and secure a large space for the refrigerating room and freezing room. It becomes possible to provide a large-capacity refrigerator without increasing the external dimensions.
  • FIG. 9 is a configuration diagram of an air suspension device for a vehicle using a linear compressor according to a sixth embodiment of the present invention.
  • the vehicle body 32 constitutes the body of the vehicle 31. On the lower side of the vehicle body 32, a total of four wheels 33 including left and right front wheels and left and right rear wheels are provided.
  • an air suspension device 34 using air is provided as a shock absorber for alleviating an impact during traveling.
  • the air suspension device 34 includes four air springs 35 provided between the vehicle body 32 and each wheel 33, an air compressor 36 (linear compressor), a valve unit 38, and a controller 40. There is. Then, the air suspension device 34 adjusts the vehicle height by supplying and discharging compressed air from the air compressor 36 to each air spring 35.
  • Example 6 the linear compressor of Example 4 is used as the air compressor 36.
  • the air compressor 36 is connected to the valve unit 38 through a supply / exhaust pipe line (pipe) 37.
  • the valve unit 38 is provided with four supply / discharge valves 38a made of solenoid valves provided for each wheel 33.
  • a branch pipeline (pipe) 39 is provided between the valve unit 38 and the air spring 35 of each wheel 33.
  • the air spring 35 is connected to the air compressor 36 via the branch line 39, the supply / discharge valve 38a, and the supply / discharge line 37.
  • the valve unit 38 opens and closes the supply / discharge valve 38a in response to a signal from the controller 40 to supply / discharge compressed air to each air spring 35 and adjust the vehicle height.
  • the sixth embodiment it is possible to suppress the enlargement of the air compressor 36 constituting the air suspension device 34. Then, the mounting space of the air compressor 36 in the vehicle 31 can be reduced, and the degree of freedom in arranging the air compressor 36 is increased.
  • the type of the compressor is a reciprocating type compressor (referred to as a linear compressor) using a linear motor among the reciprocating type (reciprocating type) compressors, and the crank mechanism is used.
  • the compressor linear compressor
  • the compressor can be made smaller and lighter without the need for.
  • the vibration isolation mechanism in the mount structure mounted on the vehicle can be omitted, and the compressor is easy to use and does not require a complicated vibration isolation mechanism.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

The objective of the present invention is to provide a linear compressor with which it is possible to reduce noise and improve reliability, while reducing the size of the compressor. The linear compressor of the present invention is provided with: a casing 3; a cylinder 9 provided inside the casing 3; a piston 8 which reciprocates within the cylinder 9; an armature 5; a magnetic field element 4; a spring 6 connected to the piston 8 and to the casing 3; and a spring 7 connected to the cylinder 9 and the casing 3. Among the armature 5 and the magnetic field element 4, the one having the greater mass is mechanically connected to the one of the piston 8 and the cylinder 9 having the smaller mass, and the one of the armature 5 and the magnetic field element 4 having the smaller mass is mechanically connected to the one of the piston 8 and the cylinder 9 having the larger mass. Furthermore, the armature 5 and the piston 8 or the cylinder 9 that is mechanically connected to the armature 5, and the magnetic field element 4 and the cylinder 9 or the piston 8 that is mechanically connected to the magnetic field element 4 have substantially the same weight.

Description

リニア圧縮機及びこのリニア圧縮機を備えた冷蔵庫、並びにリニア圧縮機を備えたエアサスペンション装置A linear compressor, a refrigerator equipped with this linear compressor, and an air suspension device equipped with the linear compressor.
 本発明はリニア圧縮機及びこのリニア圧縮機を備えた冷蔵庫、並びにリニア圧縮機を備えたエアサスペンション装置に関する。 The present invention relates to a linear compressor, a refrigerator equipped with the linear compressor, and an air suspension device equipped with the linear compressor.
 例えば、冷蔵庫用圧縮機やエアサスペンション等の空圧機器にて用いられる空気圧縮機は、小型・軽量であり、かつ低振動・低騒音であることが要求される。 For example, an air compressor used in a pneumatic device such as a refrigerator compressor or an air suspension is required to be compact and lightweight, and to have low vibration and low noise.
 これらに用いられる圧縮機の形式としては、ピストンを直動駆動する方式のレシプロ型圧縮機が多い。冷蔵庫や空気圧縮機では高い圧力比での運転や、長時間の連続稼働が要求されるため、レシプロ型圧縮機が適している。レシプロ型圧縮機には、回転モータの動力をクランク機構を用いて直動変換する形式と、リニアモータを用いて直接ピストンを往復駆動する形式がある(リニア圧縮機)。いずれにおいても、ピストンの直動に起因して発生する振動が大きいことが問題となる。 As the type of compressor used for these, there are many reciprocating type compressors that drive the piston directly. Refrigerators and air compressors require high pressure ratio operation and long-term continuous operation, so reciprocating compressors are suitable. There are two types of reciprocating compressors: a type that converts the power of a rotary motor into a linear motion using a crank mechanism, and a type that directly reciprocates a piston using a linear motor (linear compressor). In either case, the problem is that the vibration generated by the linear motion of the piston is large.
 レシプロ型圧縮機での振動を小さくするための構造に関しては、例えば特許文献1及び2に記載の技術がある。 Regarding the structure for reducing the vibration in the reciprocating compressor, for example, there are the techniques described in Patent Documents 1 and 2.
 特許文献1には、密閉ケース内に収められたリニアモータと圧縮機構とが配置された構成が開示されている。特許文献1では、圧縮機構を形成するピストン側とシリンダ側の部材が、それぞれ共振ばねでケースに対して接続され、ピストン側とシリンダ側のそれぞれのばね定数と部材の質量との比(ばね定数/質量)を一致させることで、それぞれの振動の共振周波数を一致させ、本体振動を低減させている。 Patent Document 1 discloses a configuration in which a linear motor housed in a closed case and a compression mechanism are arranged. In Patent Document 1, the members on the piston side and the member on the cylinder side forming the compression mechanism are connected to the case by resonance springs, respectively, and the ratio of the spring constants on the piston side and the cylinder side to the mass of the members (spring constant). By matching (/ mass), the resonance frequency of each vibration is matched, and the vibration of the main body is reduced.
 特許文献2には、同一のシリンダ内に2つのピストンを有する構成が開示されている。
特許文献2では、2組のリニアモータにより、2つのピストンを逆位相で駆動することで、加振力を打ち消し合い、振動を減衰させるようにしている。
Patent Document 2 discloses a configuration having two pistons in the same cylinder.
In Patent Document 2, two sets of linear motors drive two pistons in opposite phases to cancel out the exciting forces and attenuate the vibration.
特許3686460号公報Japanese Patent No. 3686460 特開2000-299971号公報Japanese Unexamined Patent Publication No. 2000-29971
 特許文献1に記載の技術においては、両駆動体の共振周波数を一致させるようにそれぞれの質量とばね定数の比を一致させ、加振力を打ち消すようにしているが、重心バランスについては記載されておらず、質量が一致しない場合には駆動方向の振動を打ち消すことはできていなかった。 In the technique described in Patent Document 1, the ratios of the respective masses and the spring constants are matched so that the resonance frequencies of both driving bodies are matched, and the exciting force is canceled, but the balance of the center of gravity is described. If the masses do not match, the vibration in the driving direction could not be canceled.
 また、特許文献2に記載の技術においては、2組のリニアモータが必要となり、体格が大きく、重く、さらには構成が複雑であるという課題がある。 Further, in the technique described in Patent Document 2, two sets of linear motors are required, and there is a problem that the physique is large, heavy, and the configuration is complicated.
 本発明の目的は、小型化を図りつつ、簡単な構造で振動を低減することのできるリニア圧縮機及びこのリニア圧縮機を備えた冷蔵庫、並びにリニア圧縮機を備えたエアサスペンション装置を提供することにある。 An object of the present invention is to provide a linear compressor capable of reducing vibration with a simple structure while reducing the size, a refrigerator equipped with the linear compressor, and an air suspension device equipped with the linear compressor. It is in.
 上記目的を達成するために本発明は、外殻を構成するケーシングと、前記ケーシング内に備えられたシリンダと、前記シリンダ内を往復動するピストンと、コイルを備えた電機子と、永久磁石を備えた界磁子と、前記ピストン及び前記ケーシングに接続するピストン側弾性体と、前記シリンダ及び前記ケーシングに接続するシリンダ側弾性体と、を備え、前記電機子及び前記界磁子のうち質量が大きい方は、前記ピストン及び前記シリンダのうち質量が小さい方に機械的に接続し、前記電機子及び前記界磁子のうち質量が小さい方は、前記ピストン及び前記シリンダのうち質量が大きい方に機械的に接続することを特徴とする。 In order to achieve the above object, the present invention comprises a casing constituting the outer shell, a cylinder provided in the casing, a piston reciprocating in the cylinder, an armature including a coil, and a permanent magnet. A field magnet provided, a piston-side elastic body connected to the piston and the casing, and a cylinder-side elastic body connected to the cylinder and the casing, and the mass of the armature and the field magnet is increased. The larger one is mechanically connected to the smaller mass of the piston and the cylinder, and the smaller mass of the armature and the field magnet is to the heavier of the piston and the cylinder. It is characterized by mechanical connection.
 また本発明は、前記電機子と機械的に接続した前記ピストン或いは前記シリンダの質量と、前記界磁子と機械的に接続した前記シリンダ或いは前記ピストンの質量とがほぼ同一になるようにとしたことを特徴とする。 Further, in the present invention, the mass of the piston or the cylinder mechanically connected to the armature and the mass of the cylinder or the piston mechanically connected to the field magnet are made to be substantially the same. It is characterized by that.
 さらに、本発明は、圧縮機を備えた冷蔵庫において、前記圧縮機として、上記のリニア圧縮機を備えたことを特徴とする。 Further, the present invention is characterized in that, in a refrigerator equipped with a compressor, the above-mentioned linear compressor is provided as the compressor.
 さらにまた、本発明は、空気バネと、前記空気バネに対して圧縮空気を給排する空気圧縮機とを備えたエアサスペンション装置において、前記空気圧縮機として、上記のリニア圧縮機を備えたことを特徴とする。 Furthermore, the present invention is an air suspension device including an air spring and an air compressor that supplies and discharges compressed air to and from the air spring, and the above-mentioned linear compressor is provided as the air compressor. It is characterized by.
 本発明によれば、小型化を図りつつ、簡単な構造で振動を低減することのできるリニア圧縮機及びこのリニア圧縮機を備えた冷蔵庫、並びにリニア圧縮機を備えたエアサスペンション装置を提供することができる。 According to the present invention, there is provided a linear compressor capable of reducing vibration with a simple structure while achieving miniaturization, a refrigerator equipped with the linear compressor, and an air suspension device equipped with the linear compressor. Can be done.
本発明の実施例1に係るリニア圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the linear compressor which concerns on Example 1 of this invention. 振動低減に対する同質量にすることの効果を示す図である。It is a figure which shows the effect of having the same mass on vibration reduction. 本発明の実施例2に係るリニア圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the linear compressor which concerns on Example 2 of this invention. 本発明の実施例3に係るリニア圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the linear compressor which concerns on Example 3 of this invention. 本発明の実施例3に係るリニア圧縮機の構成を示す別の断面図である。It is another sectional view which shows the structure of the linear compressor which concerns on Example 3 of this invention. 本発明の実施例4に係るリニア圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the linear compressor which concerns on Example 4 of this invention. 本発明の実施例4に係るリニア圧縮機の構成を示す別の断面図である。It is another sectional view which shows the structure of the linear compressor which concerns on Example 4 of this invention. 本発明の実施例5に係る冷蔵庫の構成を示す概略図である。It is a schematic diagram which shows the structure of the refrigerator which concerns on Example 5 of this invention. 本発明の実施例6に係るリニア圧縮機を用いた車両用エアサスペンション装置の構成図である。It is a block diagram of the air suspension device for a vehicle using the linear compressor which concerns on Example 6 of this invention.
 以下、図面を用いて、本発明のリニア圧縮機及びこのリニア圧縮機を備えた冷蔵庫、エアサスペンション装置に係る実施例について説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。 Hereinafter, examples of the linear compressor of the present invention, a refrigerator equipped with the linear compressor, and an air suspension device will be described with reference to the drawings. Similar components are designated by the same reference numerals, and the same description is not repeated.
 本発明の実施例1について説明する。実施例1に係る圧縮機は、直動式のリニアモータを用いたレシプロ型圧縮機(リニア圧縮機)であり、冷蔵庫用圧縮機及び空気圧縮機として用いるのに好適な圧縮機である。 Example 1 of the present invention will be described. The compressor according to the first embodiment is a reciprocal compressor (linear compressor) using a direct-acting linear motor, and is a compressor suitable for use as a refrigerator compressor and an air compressor.
 図1は本発明の実施例1に係るリニア圧縮機の構成を示す断面図である。リニア圧縮機は、界磁子4と電機子5からなるリニアモータと、ピストン8及びシリンダ9を有する圧縮機構部と、界磁子4に接続するバネ6と、シリンダ9及びシリンダヘッド10を介して電機子5に接続するバネ7とを含んで構成されている。リニアモータは、電機子5のコイル5Bに電流を流すことにより、界磁子4を電機子5に対し軸方向に往復動させて、圧縮機構部のピストン8を界磁子4と同じ方向に駆動する。この時、電機子5は反力により界磁子4と逆方向に往復動し、圧縮機構部のシリンダ9を電機子5と同じ方向に駆動させる。これにより、圧縮機構部では、ピストン8がシリンダ9内を往復動することにより圧縮室内の空気(冷媒)が圧縮される。 FIG. 1 is a cross-sectional view showing the configuration of the linear compressor according to the first embodiment of the present invention. The linear compressor is via a linear motor composed of a field magnet 4 and an armature 5, a compression mechanism having a piston 8 and a cylinder 9, a spring 6 connected to the field magnet 4, a cylinder 9 and a cylinder head 10. It is configured to include a spring 7 connected to the armature 5. The linear motor causes the field magnet 4 to reciprocate in the axial direction with respect to the armature 5 by passing an electric current through the coil 5B of the armature 5, and causes the piston 8 of the compression mechanism to move in the same direction as the field magnet 4. Drive. At this time, the armature 5 reciprocates in the direction opposite to the field magnet 4 due to the reaction force, and drives the cylinder 9 of the compression mechanism unit in the same direction as the armature 5. As a result, in the compression mechanism section, the piston 8 reciprocates in the cylinder 9 to compress the air (refrigerant) in the compression chamber.
 リニアモータは、リニア圧縮機における圧縮機構部の駆動源として設けられている。リニアモータは、筒状の外殻を構成するケーシング3と、ケーシング3内に配設された電機子5、Z方向の上下に平らな面を有する平板状の界磁子4、及びバネ6,7とを含んで構成される。すなわちリニアモータは、ピストン8に連結されて往復動する界磁子4と、界磁子4とともに振動(共振)可能なバネ6と、界磁子4との間で磁気力を作用させて界磁子4を駆動し、更に自らは反力により逆方向に駆動する電機子5と、電機子5に連結されて往復動するシリンダ9と、電機子5とともに振動(共振)可能なバネ7とを含んで構成される。バネ6は界磁子4と共に、ピストン8を駆動し、バネ7は電機子5と共に、シリンダ9を駆動する。 The linear motor is provided as a drive source for the compression mechanism of the linear compressor. The linear motor includes a casing 3 constituting a tubular outer shell, an armature 5 arranged in the casing 3, a flat plate-shaped field magnet 4 having flat surfaces in the vertical direction in the Z direction, and a spring 6, a spring 6. 7 and are included. That is, the linear motor exerts a magnetic force between the field element 4 which is connected to the piston 8 and reciprocates, the spring 6 which can vibrate (resonate) with the field element 4, and the field element 4. An armature 5 that drives the coil 4 and further drives itself in the opposite direction by a reaction force, a cylinder 9 that is connected to the armature 5 and reciprocates, and a spring 7 that can vibrate (resonate) with the armature 5. Consists of including. The spring 6 drives the piston 8 together with the field magnet 4, and the spring 7 drives the cylinder 9 together with the armature 5.
 リニアモータのケーシング3は、一端部に空気の吸込口1を有し、他端部に空気の吐出口2を有している。 The casing 3 of the linear motor has an air suction port 1 at one end and an air discharge port 2 at the other end.
 バネ6は、界磁子4の一端側に位置して、ケーシング3内に設けられている。バネ7は、一端側が電機子5に接続したシリンダ9に接続したシリンダヘッド10に支持され、他端側がケーシング3に接続して設けられている。実施例1では、バネ6はピストン8及びケーシング3に接続するピストン側弾性体として機能し、バネ7はシリンダ9及びケーシング3に接続するシリンダ側弾性体として機能する。 The spring 6 is located on one end side of the field magnet 4 and is provided in the casing 3. The spring 7 is provided so that one end side is supported by a cylinder head 10 connected to a cylinder 9 connected to an armature 5, and the other end side is connected to a casing 3. In the first embodiment, the spring 6 functions as a piston-side elastic body connected to the piston 8 and the casing 3, and the spring 7 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3.
 界磁子4は基本的にヨーク4Bと磁石4A(永久磁石)とによって構成され、ピストン8と接続する。 The field magnet 4 is basically composed of a yoke 4B and a magnet 4A (permanent magnet), and is connected to the piston 8.
 電機子5は基本的にコア5Aとコイル5Bとによって構成され、シリンダ9と接続する。 The armature 5 is basically composed of a core 5A and a coil 5B, and is connected to the cylinder 9.
 電機子5のコイル5Bに電流を流すことにより、界磁子4がX軸方向に往復動し、電機子5は界磁子4との間で作用する磁気力によって、界磁子4と逆方向に往復動する。これに伴って、バネ6とバネ7とは交互にX軸方向に圧縮及び伸縮するように、弾性的に撓み変形される。ガイド14は、界磁子4のX軸方向に往復動を案内するものである。 By passing a current through the coil 5B of the armature 5, the field magnet 4 reciprocates in the X-axis direction, and the armature 5 is opposite to the field magnet 4 due to the magnetic force acting between the field magnet 4 and the field magnet 4. It reciprocates in the direction. Along with this, the spring 6 and the spring 7 are elastically flexed and deformed so as to be alternately compressed and expanded and contracted in the X-axis direction. The guide 14 guides the reciprocating motion of the field element 4 in the X-axis direction.
 実施例1のリニア圧縮機の圧縮機構部は、シリンダ9、ピストン8、吸込弁11、シリンダヘッド10及び吐出弁12等を含んで構成されている。圧縮機構部は、界磁子4及び電機子5が往復動することにより、ピストン8及びシリンダ9がX軸方向で相対的に往復動するように駆動され、これにより、圧縮室内で空気(冷媒)を圧縮して圧縮空気(高圧冷媒)を発生させるものである。 The compression mechanism portion of the linear compressor of the first embodiment includes a cylinder 9, a piston 8, a suction valve 11, a cylinder head 10, a discharge valve 12, and the like. The compression mechanism is driven so that the piston 8 and the cylinder 9 reciprocate relatively in the X-axis direction by the reciprocating movement of the field magnet 4 and the armature 5, whereby air (refrigerator) is reciprocated in the compression chamber. ) Is compressed to generate compressed air (high pressure refrigerant).
 シリンダ9は、その一端側(電機子5の反対側)がシリンダヘッド10により閉塞され、もう一端側が電機子5に固定された状態で取付けられている。シリンダ9は、例えばアルミニウム材料を用いて円筒状に形成されている。 The cylinder 9 is attached with one end side (opposite side of the armature 5) closed by the cylinder head 10 and the other end side fixed to the armature 5. The cylinder 9 is formed in a cylindrical shape using, for example, an aluminum material.
 ピストン8は、シリンダ9内に、X軸方向に摺動可能に挿入されている。このピストン8は、シリンダ9内にて圧縮室を構成しており、ピストン8の外周には、直動をガイドし、圧縮室内の圧縮空気がもれるのを抑制するためにライダーリング13が備えられている。ライダーリング13はポリテトラフルオロエチレン(PTFE)等の材料で構成されている。ピストン8には吸込弁11が設けられている。 The piston 8 is slidably inserted in the cylinder 9 in the X-axis direction. The piston 8 constitutes a compression chamber in the cylinder 9, and a rider ring 13 is provided on the outer periphery of the piston 8 to guide linear motion and suppress leakage of compressed air in the compression chamber. Has been done. The rider ring 13 is made of a material such as polytetrafluoroethylene (PTFE). The suction valve 11 is provided on the piston 8.
 シリンダ9の一端には、圧縮室と連通する吐出孔9Bと、吐出孔9Bを開閉可能に覆う吐出弁12と、が設けられている。 At one end of the cylinder 9, a discharge hole 9B communicating with the compression chamber and a discharge valve 12 that covers the discharge hole 9B so as to be openable and closable are provided.
 吸込弁11は、圧縮機構部の吸込行程で吸込孔8Bを開いて圧縮室を吸込圧力空間に連通させ、圧縮行程では吸込孔8Bを閉鎖して圧縮室内を吸込圧力空間に対して遮断する。
逆に、吐出弁12は、圧縮機構部の吸込行程で吐出孔9Bを閉鎖して圧縮室を吐出空間に対して遮断し、圧縮行程では吐出孔9Bを開いて圧縮室内をシリンダヘッド10内の吐出空間に対して連通させる。
The suction valve 11 opens a suction hole 8B in the suction stroke of the compression mechanism portion to communicate the compression chamber with the suction pressure space, and closes the suction hole 8B in the compression stroke to shut off the compression chamber from the suction pressure space.
On the contrary, the discharge valve 12 closes the discharge hole 9B in the suction stroke of the compression mechanism unit to shut off the compression chamber from the discharge space, and opens the discharge hole 9B in the compression stroke to enter the compression chamber in the cylinder head 10. Communicate with the discharge space.
 シリンダヘッド10には、吐出空間19に連通する伸縮可能な吐出配管2Bが設けられており、ケーシング3に設けられた吐出口2と接続している。 The cylinder head 10 is provided with a stretchable discharge pipe 2B that communicates with the discharge space 19 and is connected to a discharge port 2 provided in the casing 3.
 一方、ケーシング3の他端側には、空気の吸込口1が設けられている。この吸込口1は、圧縮機構部の吸込行程において、外部からケーシング3の内部空間に空気を吸込ませるものである。従って、ケーシング3内は常に吸込圧力空間である。吸込口1には、ケーシング3の外部側において、サイレンサや吸気フィルタを接続する場合もある。 On the other hand, an air suction port 1 is provided on the other end side of the casing 3. The suction port 1 sucks air into the internal space of the casing 3 from the outside in the suction stroke of the compression mechanism unit. Therefore, the inside of the casing 3 is always a suction pressure space. A silencer or an intake filter may be connected to the suction port 1 on the outer side of the casing 3.
 実施例1におけるリニア圧縮機の振動は、ピストン8の駆動方向(即ちX軸方向)が最も大きく、他の方向(Y軸及びZ軸方向)の振動は小さいという特徴がある。リニアモータはX軸方向にしか駆動しないため、加振力はX軸方向に作用するためである。 The vibration of the linear compressor in the first embodiment is characterized in that the driving direction of the piston 8 (that is, the X-axis direction) is the largest, and the vibration in the other directions (Y-axis and Z-axis directions) is small. This is because the linear motor is driven only in the X-axis direction, so that the exciting force acts in the X-axis direction.
 加振力となるリニアモータの電機子5は界磁子4との間で作用する磁気力、及び圧縮機構部の圧縮反力は、電機子5及び電機子5に接続したシリンダ9、シリンダヘッド10等の電機子側駆動体と、界磁子4及び界磁子4に接続したピストン、吸込弁11等の界磁子側駆動体とに、常に逆向きに同じ大きさで作用する。すなわち、電機子側駆動体と界磁子側駆動体とは常に逆向きに往復動しようとする。 The armature 5 of the linear motor that serves as the exciting force is the magnetic force that acts between the armature 5 and the field magnet 4, and the compression reaction force of the compression mechanism is the armature 5 and the cylinder 9 and cylinder head connected to the armature 5. The armature-side drive body such as 10 and the field-side drive body such as the field magnet 4 and the piston connected to the field magnet 4 and the suction valve 11 always act in opposite directions with the same size. That is, the armature-side drive body and the field-side drive body always try to reciprocate in opposite directions.
 界磁子側駆動体はバネ6に、電機子側駆動体はバネ7に接続しているため、それぞれの質量とばね定数によって決まる共振周波数で振動する。この共振周波数を一致させ、且つ、界磁子側駆動体と電機子側駆動体を同質量とすると、それぞれの加振力が相殺され、ケーシング3に対する加振力がゼロとなり、X軸方向の振動がなくなる。 Since the field drive body is connected to the spring 6 and the armature side drive body is connected to the spring 7, it vibrates at a resonance frequency determined by the respective masses and spring constants. When the resonance frequencies are matched and the field-side drive body and the armature-side drive body have the same mass, the respective vibration forces are canceled out, the vibration force with respect to the casing 3 becomes zero, and the vibration force in the X-axis direction becomes zero. There is no vibration.
 図2は振動低減に対する同質量にすることの効果を示す図である。図の縦軸は振動加速度、横軸は電機子側駆動体の質量に対する界磁子側駆動体の質量増加割合を示す。増加割合が0%の時、すなわち、界磁子側駆動体と電機子側駆動体が同質量の時には振動加速度は0m/s2であるが、質量増加割合が大きくなるにつれて、振動加速度は大きくなる。このように、界磁子側駆動体と電機子側駆動体が同質量の時には無振動が実現できる。許容範囲としては、例えば電機子側駆動体の質量に対する界磁子側駆動体の質量増加割合を10%以下とし、振動加速度を1m/s2以下とする。ここで電機子側駆動体とは電機子5及びこの電機子5と機械的に接続したピストン8或いはシリンダ9の組合せを意図しており、また界磁子側駆動体とは界磁子4及び界磁子4と機械的に接続したシリンダ9或いはピストン8の組合せを意図している。 FIG. 2 is a diagram showing the effect of having the same mass on vibration reduction. The vertical axis of the figure shows the vibration acceleration, and the horizontal axis shows the mass increase ratio of the field-side drive body to the mass of the armature-side drive body. When the increase rate is 0%, that is, when the field-side drive body and the armature-side drive body have the same mass, the vibration acceleration is 0 m / s 2 , but as the mass increase rate increases, the vibration acceleration increases. Become. In this way, vibration-free can be realized when the field-side drive body and the armature-side drive body have the same mass. As an allowable range, for example, the mass increase ratio of the field-side drive body to the mass of the armature-side drive body is 10% or less, and the vibration acceleration is 1 m / s 2 or less. Here, the armature-side drive body is intended to be a combination of the armature 5 and the piston 8 or the cylinder 9 mechanically connected to the armature 5, and the field-side drive body is the field magnet 4 and It is intended to be a combination of a cylinder 9 or a piston 8 mechanically connected to the field armature 4.
 無振動を実現するためには界磁子側駆動体と電機子側駆動体が同質量でなければならない。そのためには界磁子と電機子、またピストン及びピストンに付属する部品とシリンダ及びシリンダに付属する部品とが同程度の質量であることが望ましい。その一手段として、電機子5及び界磁子4のうち質量が大きい方は、ピストン8及びシリンダ9のうち質量が小さい方に機械的に接続し、電機子5及び界磁子4のうち質量が小さい方は、ピストン8及びシリンダ9のうち質量が大きい方に機械的に接続する。そして、電機子5及びこの電機子5と機械的に接続したピストン8或いはシリンダ9の質量と、界磁子4及びこの界磁子4と機械的に接続したシリンダ9或いはピストン8の質量とがほぼ同一になるようにする。 In order to realize vibration-free, the field-side drive body and the armature-side drive body must have the same mass. For that purpose, it is desirable that the field magnet and the armature, and the piston and the parts attached to the piston and the cylinder and the parts attached to the cylinder have the same mass. As one of the means, the armature 5 and the field magnet 4 having the larger mass are mechanically connected to the piston 8 and the cylinder 9 having the smaller mass, and the armature 5 and the field magnet 4 have the mass. Whichever is smaller is mechanically connected to the piston 8 and the cylinder 9 which have the larger mass. Then, the mass of the armature 5 and the piston 8 or the piston 9 mechanically connected to the armature 5 and the mass of the field magnet 4 and the cylinder 9 or the piston 8 mechanically connected to the field magnet 4 are combined. Make it almost the same.
 実施例1のリニア圧縮機では界磁子4にピストン8、吸込弁11、ライダーリング13を接続し、電機子5にシリンダ9、シリンダヘッド10、吐出弁12を接続している。界磁子4はヨーク4Bを大きくし、且つ、バネ6と接続するバネ受け部品4Cを大きくすることにより、全体の質量を大きくし、界磁子側駆動体と電機子側駆動体を同質量にしている。質量の調整はおもにバネ受け部品4Cで行い、大きさを調整している。バネ受け部品4Cは質量を調整する調整部品として機能する。 In the linear compressor of the first embodiment, the piston 8, the suction valve 11, and the rider ring 13 are connected to the field magnet 4, and the cylinder 9, the cylinder head 10, and the discharge valve 12 are connected to the armature 5. The field magnet 4 has a large yoke 4B and a large spring receiving component 4C connected to the spring 6 to increase the overall mass, and the field magnet side drive body and the armature side drive body have the same mass. I have to. The mass is mainly adjusted by the spring receiving part 4C, and the size is adjusted. The spring receiving component 4C functions as an adjusting component for adjusting the mass.
 このように、実施例1によれば、振動をほぼゼロすることが可能となり、騒音、振動を抑制したリニア圧縮機を提供することができる。 As described above, according to the first embodiment, it is possible to make vibration almost zero, and it is possible to provide a linear compressor that suppresses noise and vibration.
 次に本発明の実施例2について説明する。実施例2に係る圧縮機は、直動式のリニアモータを用いたレシプロ型圧縮機(リニア圧縮機)である。 Next, Example 2 of the present invention will be described. The compressor according to the second embodiment is a reciprocating compressor (linear compressor) using a direct-acting linear motor.
 図3は本発明の実施例2に係るリニア圧縮機の構成を示す断面図である。リニア圧縮機の構成は、実施例1にて示した図1の構成と基本的に同じであるが、電機子5にピストン8、吸込弁11、ライダーリング13を接続し、界磁子4にシリンダ9、シリンダヘッド10、吐出弁12を接続している。リニアモータは界磁子4の内部に電機子5が配置されるタイプのモータである。 FIG. 3 is a cross-sectional view showing the configuration of the linear compressor according to the second embodiment of the present invention. The configuration of the linear compressor is basically the same as the configuration of FIG. 1 shown in the first embodiment, but the piston 8, the suction valve 11, and the rider ring 13 are connected to the armature 5 and the field magnet 4 is connected. The cylinder 9, the cylinder head 10, and the discharge valve 12 are connected. The linear motor is a type of motor in which the armature 5 is arranged inside the field magnet 4.
 一般的に電磁鋼板からなるコアを有する電機子は界磁子より質量が大きく、また、シリンダの内部に配置されるピストンより、外側を覆うシリンダ及びシリンダに付属する部品の方が質量は大きい。実施例2のリニア圧縮機では、界磁子側駆動体と電機子側駆動体を同質量にし、且つ、全体の質量をなるべく大きくさせないために、電機子と界磁子のうち質量の大きい方を、シリンダ及びシリンダ付属部品とピストン及びピストン付属部品のうち質量の小さい方と組み合わせている。界磁子側駆動体はシリンダヘッド10を介してバネ6で支持され、電機子側駆動体は、バネ受け部品5Dを介してバネ7で支持されている。実施例2の場合、バネ6はシリンダ9及びケーシング3に接続するシリンダ側弾性体として機能し、バネ7はピストン8及びケーシング3に接続するピストン側弾性体として機能する。バネ受け部品5Dは質量を調整する調整部品として機能する。 Generally, an armature having a core made of an electromagnetic steel plate has a larger mass than a field magnet, and a cylinder covering the outside and parts attached to the cylinder have a larger mass than a piston arranged inside the cylinder. In the linear compressor of the second embodiment, the armature side drive body and the armature side drive body have the same mass, and the armature and the field magnet have the larger mass so as not to increase the total mass as much as possible. Is combined with the cylinder and cylinder accessories and the piston and piston accessories with the smaller mass. The field-side drive body is supported by the spring 6 via the cylinder head 10, and the armature-side drive body is supported by the spring 7 via the spring receiving component 5D. In the case of the second embodiment, the spring 6 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3, and the spring 7 functions as a piston-side elastic body connected to the piston 8 and the casing 3. The spring receiving component 5D functions as an adjusting component for adjusting the mass.
 界磁子4は磁石4Aと磁路を構成するヨーク4Bから構成され、ヨーク4Bの大きさにより質量の調整を行っている。また、電機子5のコイル5Bの中にコア5Aが配置され、周囲は非磁性材で構成されたフレーム5Cとしている。 The field magnet 4 is composed of a magnet 4A and a yoke 4B constituting a magnetic path, and the mass is adjusted according to the size of the yoke 4B. Further, the core 5A is arranged in the coil 5B of the armature 5, and the periphery is a frame 5C made of a non-magnetic material.
 このように、実施例2によれば、圧縮機の全体質量を大きくすることなく、振動をほぼゼロすることが可能となり、騒音、振動を抑制した軽量なリニア圧縮機を提供することができる。 As described above, according to the second embodiment, it is possible to almost eliminate vibration without increasing the total mass of the compressor, and it is possible to provide a lightweight linear compressor that suppresses noise and vibration.
 次に本発明の実施例3について説明する。実施例3に係る圧縮機は、直動式のリニアモータを用いたレシプロ型圧縮機(リニア圧縮機)である。 Next, Example 3 of the present invention will be described. The compressor according to the third embodiment is a reciprocating compressor (linear compressor) using a direct-acting linear motor.
 図4及び図5は本発明の実施例3に係るリニア圧縮機の構成を示す断面図である。図4はY軸方向から、図5はZ軸方向から見た断面図である。 4 and 5 are cross-sectional views showing the configuration of the linear compressor according to the third embodiment of the present invention. FIG. 4 is a cross-sectional view seen from the Y-axis direction, and FIG. 5 is a cross-sectional view seen from the Z-axis direction.
 リニア圧縮機及びリニアモータの構成は、実施例2にて示した図3の構成と基本的に同じであり、電機子5にピストン8、吸込弁11、ライダーリング13を接続し、界磁子4にシリンダ9、シリンダヘッド10、吐出弁12を接続しているが、界磁子側駆動体に接続するバネ6を板バネとしている。バネ6はシリンダ9と界磁子4との接続部分、及び界磁子4の反シリンダ側端部にそれぞれ備えられている。実施例3の場合、バネ6はシリンダ9及びケーシング3に接続するシリンダ側弾性体として機能し、バネ7はピストン8及びケーシング3に接続するピストン側弾性体として機能する。 The configuration of the linear compressor and the linear motor is basically the same as the configuration of FIG. 3 shown in the second embodiment. The armature 5 is connected to the piston 8, the suction valve 11, and the rider ring 13, and the field magnet is used. The cylinder 9, the cylinder head 10, and the discharge valve 12 are connected to 4, but the spring 6 connected to the field-side drive body is a leaf spring. The spring 6 is provided at the connection portion between the cylinder 9 and the field magnet 4 and at the opposite end of the field magnet 4 on the opposite side of the cylinder. In the case of the third embodiment, the spring 6 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3, and the spring 7 functions as a piston-side elastic body connected to the piston 8 and the casing 3.
 界磁子4は磁石4Aと磁路を構成するヨーク4Bから構成され、ヨーク4Bの大きさにより質量の調整を行っている。磁石4Aの幅(Y方向)に比べ、ヨーク4Bの厚さ(Z方向)は全体重量の観点から薄く抑えられるため、リニアモータは全体として扁平な形状となる。このため、ケーシング3に対するリニアモータ上下方向の空間が大きくなることから、この空間に界磁子4と接続するバネ6を設け、体格の大きいコイルバネを使用せずに、ケーシング3の小型、短小化を図っている。 The field magnet 4 is composed of a magnet 4A and a yoke 4B constituting a magnetic path, and the mass is adjusted according to the size of the yoke 4B. Since the thickness of the yoke 4B (Z direction) is suppressed to be thinner than the width of the magnet 4A (Y direction) from the viewpoint of the total weight, the linear motor has a flat shape as a whole. Therefore, since the space in the vertical direction of the linear motor with respect to the casing 3 becomes large, a spring 6 for connecting to the field magnet 4 is provided in this space, and the casing 3 can be made smaller and shorter without using a coil spring having a large physique. I am trying.
 このように、実施例3によれば、圧縮機の形状を小さくすることが可能となり、振動がほぼゼロであり、且つ、騒音、振動を抑制した小型・軽量なリニア圧縮機を提供することができる。 As described above, according to the third embodiment, it is possible to reduce the shape of the compressor, to provide a compact and lightweight linear compressor in which vibration is almost zero and noise and vibration are suppressed. can.
 次に本発明の実施例4について説明する。実施例4に係る圧縮機は、直動式のリニアモータを用いたレシプロ型圧縮機(リニア圧縮機)である。 Next, Example 4 of the present invention will be described. The compressor according to the fourth embodiment is a reciprocating compressor (linear compressor) using a direct-acting linear motor.
 図6及び図7は本発明の実施例4に係るリニア圧縮機の構成を示す断面図である。図6はY軸方向から、図7はZ軸方向から見た断面図である。リニアモータの構成は、実施例3にて示した図4及び図5の構成と基本的に同じであり、界磁子4の内部に電機子5が配置されるタイプのモータである。 6 and 7 are cross-sectional views showing the configuration of the linear compressor according to the fourth embodiment of the present invention. FIG. 6 is a cross-sectional view seen from the Y-axis direction, and FIG. 7 is a cross-sectional view seen from the Z-axis direction. The configuration of the linear motor is basically the same as the configurations of FIGS. 4 and 5 shown in the third embodiment, and is a type of motor in which the armature 5 is arranged inside the field magnet 4.
 実施例3とは異なり、界磁子4にピストン8、吸込弁11、ライダーリング13を接続し、電機子5にシリンダ9、シリンダヘッド10、吐出弁12を接続している。また、バネ受け部品5Dを介して電機子側駆動体に接続するバネ7も板バネとなっており、コイルバネは使用していない。バネ受け部品5Dは質量を調整する調整部品として機能する。バネ受け部品5Dは質量を調整する調整部品として機能する。 Unlike the third embodiment, the field magnet 4 is connected to the piston 8, the suction valve 11, and the rider ring 13, and the armature 5 is connected to the cylinder 9, the cylinder head 10, and the discharge valve 12. Further, the spring 7 connected to the armature side drive body via the spring receiving component 5D is also a leaf spring, and no coil spring is used. The spring receiving component 5D functions as an adjusting component for adjusting the mass. The spring receiving component 5D functions as an adjusting component for adjusting the mass.
 界磁子4は磁石4Aと磁路を構成するヨーク4Bから構成され、ヨーク4Bの大きさにより質量の調整を行っている。磁石4Aの幅(Y方向)に比べ、ヨーク4Bの厚さ(Z方向)は全体重量の観点から薄く抑えられるため、リニアモータは全体として扁平な形状となる。 The field magnet 4 is composed of a magnet 4A and a yoke 4B constituting a magnetic path, and the mass is adjusted according to the size of the yoke 4B. Since the thickness of the yoke 4B (Z direction) is suppressed to be thinner than the width of the magnet 4A (Y direction) from the viewpoint of the total weight, the linear motor has a flat shape as a whole.
 これに対し、シリンダ9、ピストン8は円筒形状であるため、円周方向の上下または左右のどちらかから、界磁子4及び電機子5と接続する。図6のY軸方向から見た断面にて電機子5とピストン8が接続し、界磁子4の両端でバネ6と接続している。また、図7のZ軸方向から見た断面にて電機子5とシリンダ9が接続している。電機子側駆動体と接続するバネ7はこの断面からは見えず、図6の方向にて電機子5の一端と、シリンダヘッドの一端にてバネ6と同じ方向に接続している。これにより、体格の大きいコイルバネを使用せずに、ケーシング3の小型、短小化を図っている。実施例4の場合、バネ6はピストン8及びケーシング3に接続するピストン側弾性体として機能し、バネ7はシリンダ9及びケーシング3に接続するシリンダ側弾性体として機能する。 On the other hand, since the cylinder 9 and the piston 8 have a cylindrical shape, they are connected to the field magnet 4 and the armature 5 from either the top, bottom, left or right in the circumferential direction. The armature 5 and the piston 8 are connected to each other in the cross section seen from the Y-axis direction in FIG. 6, and are connected to the spring 6 at both ends of the field magnet 4. Further, the armature 5 and the cylinder 9 are connected in a cross section seen from the Z-axis direction in FIG. 7. The spring 7 connected to the armature side drive body is not visible from this cross section, and is connected to one end of the armature 5 and one end of the cylinder head in the same direction as the spring 6 in the direction of FIG. As a result, the casing 3 is made smaller and shorter without using a coil spring having a large body shape. In the case of the fourth embodiment, the spring 6 functions as a piston-side elastic body connected to the piston 8 and the casing 3, and the spring 7 functions as a cylinder-side elastic body connected to the cylinder 9 and the casing 3.
 このように、実施例4によれば、圧縮機の形状を小さくすることが可能となり、振動がほぼゼロであり、且つ、騒音、振動を抑制した小型・軽量なリニア圧縮機を提供することができる。 As described above, according to the fourth embodiment, it is possible to reduce the shape of the compressor, to provide a compact and lightweight linear compressor in which vibration is almost zero and noise and vibration are suppressed. can.
 図8は実施例5に係る冷蔵庫の構成を示す図である。なお、実施例1乃至4と同様の構成には同じ符号を付し、説明を省略する。 FIG. 8 is a diagram showing the configuration of the refrigerator according to the fifth embodiment. The same reference numerals are given to the same configurations as those of Examples 1 to 4, and the description thereof will be omitted.
 冷蔵庫21は、冷蔵室22の前面側に左右に分割された観音開きの冷蔵室扉22aを備え、製氷室23と、上段冷凍室24と、下段冷凍室25と、野菜室26との前面側に、それぞれ引き出し式の製氷室扉23a、上段冷凍室扉24a、下段冷凍室扉25a、野菜室扉26aを備えている。 The refrigerator 21 is provided with a left-right split refrigerating room door 22a on the front side of the refrigerating room 22, and is located on the front side of the ice making room 23, the upper freezing room 24, the lower freezing room 25, and the vegetable room 26. Each is provided with a pull-out type ice making room door 23a, an upper freezing room door 24a, a lower freezing room door 25a, and a vegetable room door 26a.
 野菜室26の背面側には、機械室30が設けられ、機械室30に圧縮機29が配置されている。また、製氷室23、上段冷凍室24、及び下段冷凍室25の背面側には、蒸発器室28が設けられ、蒸発器室28に蒸発器27が設けられている。冷蔵庫21では、圧縮機29及び蒸発器27のほか、図示しない放熱器、減圧手段であるキャピラリチューブ及び三方弁等が冷媒配管で接続され、冷凍サイクルが形成されている。 A machine room 30 is provided on the back side of the vegetable room 26, and a compressor 29 is arranged in the machine room 30. Further, an evaporator chamber 28 is provided on the back side of the ice making chamber 23, the upper freezing chamber 24, and the lower freezing chamber 25, and the evaporator 27 is provided in the evaporator chamber 28. In the refrigerator 21, in addition to the compressor 29 and the evaporator 27, a radiator (not shown), a capillary tube as a depressurizing means, a three-way valve, and the like are connected by a refrigerant pipe to form a refrigerating cycle.
 実施例5では、冷蔵庫21の冷凍サイクルを構成する圧縮機29に、上述した実施例1乃至4のいずれかのリニア圧縮機を採用する。例えば、圧縮機29として実施例4の圧縮機を採用するとよい。これにより、冷蔵庫の振動源である圧縮機を無振動にすることができ、振動。騒音低減のための防振材、遮蔽材の削除が可能となり、更に、冷凍サイクルを構成する圧縮機29の大形化を抑制することができ、冷蔵室及び冷凍室のために大きなスペースを確保することが可能になり、外形寸法を大きくすることなく大容量の冷蔵庫を提供することが可能になる。 In Example 5, the linear compressor according to any one of Examples 1 to 4 described above is adopted as the compressor 29 constituting the refrigerating cycle of the refrigerator 21. For example, the compressor of the fourth embodiment may be adopted as the compressor 29. As a result, the compressor, which is the vibration source of the refrigerator, can be made vibration-free and vibrates. It is possible to remove anti-vibration materials and shielding materials to reduce noise, and it is possible to suppress the enlargement of the compressor 29 that constitutes the freezing cycle, and secure a large space for the refrigerating room and freezing room. It becomes possible to provide a large-capacity refrigerator without increasing the external dimensions.
 次に本発明の実施例6について説明する。図9は本発明の実施例6に係るリニア圧縮機を用いた車両用エアサスペンション装置の構成図である。 Next, Example 6 of the present invention will be described. FIG. 9 is a configuration diagram of an air suspension device for a vehicle using a linear compressor according to a sixth embodiment of the present invention.
 実施例6では、4輪自動車等の車両に、車両用エアサスペンション装置を搭載した場合を例に挙げて説明する。 In the sixth embodiment, a case where an air suspension device for a vehicle is mounted on a vehicle such as a four-wheeled vehicle will be described as an example.
 車体32は、車両31のボディを構成している。車体32の下側には、左右の前輪と左右の後輪とからなる合計4個の車輪33が設けられている。実施例6では走行中の衝撃を緩和する緩衝器として、空気を利用したエアサスペンション装置34を備えている。エアサスペンション装置34は、車体32と各車輪33との間にそれぞれ設けられた4個の空気バネ35と、空気圧縮機36(リニア圧縮機)と、バルブユニット38と、コントローラ40とを備えている。そして、エアサスペンション装置34は、各空気バネ35に対して空気圧縮機36から圧縮空気が給排されることにより、車高調整を行う。 The vehicle body 32 constitutes the body of the vehicle 31. On the lower side of the vehicle body 32, a total of four wheels 33 including left and right front wheels and left and right rear wheels are provided. In the sixth embodiment, an air suspension device 34 using air is provided as a shock absorber for alleviating an impact during traveling. The air suspension device 34 includes four air springs 35 provided between the vehicle body 32 and each wheel 33, an air compressor 36 (linear compressor), a valve unit 38, and a controller 40. There is. Then, the air suspension device 34 adjusts the vehicle height by supplying and discharging compressed air from the air compressor 36 to each air spring 35.
 実施例6では、空気圧縮機36として、実施例4のリニア圧縮機を利用している。空気圧縮機36は、給排管路(配管)37を通じてバルブユニット38に接続されている。バルブユニット38には、各車輪33に対して設けられた電磁弁からなる給排バルブ38aが4個設けられている。バルブユニット38と各車輪33の空気バネ35との間には、分岐管路(配管)39が設けられている。空気バネ35は、分岐管路39、給排バルブ38a、及び給排管路37を介して、空気圧縮機36に接続される。そして、バルブユニット38は、コントローラ40からの信号に応じて給排バルブ38aを開閉させることにより、各空気バネ35に対して圧縮空気を給排し、車高調整を行う。 In Example 6, the linear compressor of Example 4 is used as the air compressor 36. The air compressor 36 is connected to the valve unit 38 through a supply / exhaust pipe line (pipe) 37. The valve unit 38 is provided with four supply / discharge valves 38a made of solenoid valves provided for each wheel 33. A branch pipeline (pipe) 39 is provided between the valve unit 38 and the air spring 35 of each wheel 33. The air spring 35 is connected to the air compressor 36 via the branch line 39, the supply / discharge valve 38a, and the supply / discharge line 37. Then, the valve unit 38 opens and closes the supply / discharge valve 38a in response to a signal from the controller 40 to supply / discharge compressed air to each air spring 35 and adjust the vehicle height.
 実施例6では、エアサスペンション装置34を構成する空気圧縮機36の大形化を抑制することができる。そして、車両31における空気圧縮機36の搭載スペースを小さくすることができ、空気圧縮機36の配置の自由度が高まる。 In the sixth embodiment, it is possible to suppress the enlargement of the air compressor 36 constituting the air suspension device 34. Then, the mounting space of the air compressor 36 in the vehicle 31 can be reduced, and the degree of freedom in arranging the air compressor 36 is increased.
 実施例6によれば、圧縮機の型式として往復動型(レシプロ型)圧縮機の中でも直動式のリニアモータを用いたレシプロ型圧縮機(リニア圧縮機と呼ぶ)とすることで、クランク機構が必要なく、圧縮機(リニア圧縮機)をより小型化、軽量化することができる。 According to the sixth embodiment, the type of the compressor is a reciprocating type compressor (referred to as a linear compressor) using a linear motor among the reciprocating type (reciprocating type) compressors, and the crank mechanism is used. The compressor (linear compressor) can be made smaller and lighter without the need for.
 また実施例6によれば、無振動の圧縮機を搭載することにより、車両に搭載するマウント構造での防振機構を省略することができ、複雑な防振機構を要しない使い勝手の良い圧縮機を搭載したエアサスペンション装置を提供することができる。 Further, according to the sixth embodiment, by mounting a vibration-free compressor, the vibration isolation mechanism in the mount structure mounted on the vehicle can be omitted, and the compressor is easy to use and does not require a complicated vibration isolation mechanism. Can provide an air suspension device equipped with.
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 1…吸込口、2…吐出口、2B…吐出配管、3…ケーシング、4…界磁子、5…電機子、6…バネ、7…バネ、8…ピストン、9…シリンダ、10…シリンダヘッド、11…吸込弁、12…吐出弁、13…ライダーリング、14…ガイド、21…冷蔵庫、22…冷蔵室、24…上段冷凍室、25…下段冷凍室、26…野菜室、27…蒸発器、29…圧縮機(リニア圧縮機)、34…エアサスペンション装置、35…空気バネ、36…空気圧縮機(リニア圧縮機)。 1 ... Suction port, 2 ... Discharge port, 2B ... Discharge piping, 3 ... Casing, 4 ... Field magnet, 5 ... Armor, 6 ... Spring, 7 ... Spring, 8 ... Piston, 9 ... Cylinder, 10 ... Cylinder head , 11 ... Suction valve, 12 ... Discharge valve, 13 ... Rider ring, 14 ... Guide, 21 ... Refrigerator, 22 ... Refrigerator room, 24 ... Upper freezer room, 25 ... Lower freezer room, 26 ... Vegetable room, 27 ... Evaporator , 29 ... Compressor (linear compressor), 34 ... Air suspension device, 35 ... Air spring, 36 ... Air compressor (Linear compressor).

Claims (10)

  1.  外殻を構成するケーシングと、前記ケーシング内に備えられたシリンダと、前記シリンダ内を往復動するピストンと、コイルを備えた電機子と、永久磁石を備えた界磁子と、前記ピストン及び前記ケーシングに接続するピストン側弾性体と、前記シリンダ及び前記ケーシングに接続するシリンダ側弾性体と、を備え、
     前記電機子及び前記界磁子のうち質量が大きい方は、前記ピストン及び前記シリンダのうち質量が小さい方に機械的に接続し、
     前記電機子及び前記界磁子のうち質量が小さい方は、前記ピストン及び前記シリンダのうち質量が大きい方に機械的に接続することを特徴とするリニア圧縮機。
    The casing constituting the outer shell, the cylinder provided in the casing, the piston reciprocating in the cylinder, the armature provided with the coil, the field magnet provided with the permanent magnet, the piston and the said. A piston-side elastic body connected to the casing and a cylinder-side elastic body connected to the cylinder and the casing are provided.
    The larger mass of the armature and the field magnet is mechanically connected to the smaller mass of the piston and the cylinder.
    A linear compressor characterized in that the smaller mass of the armature and the field magnet is mechanically connected to the larger mass of the piston and the cylinder.
  2.  請求項1において、
     前記電機子と機械的に接続した前記ピストン或いは前記シリンダの質量と、前記界磁子と機械的に接続した前記シリンダ或いは前記ピストンの質量とがほぼ同一になるようにとしたことを特徴とするリニア圧縮機。
    In claim 1,
    It is characterized in that the mass of the piston or the cylinder mechanically connected to the armature and the mass of the cylinder or the piston mechanically connected to the field magnet are substantially the same. Linear compressor.
  3.  請求項1において、
    前記電機子及び前記電機子と機械的に接続した前記ピストン或いは前記シリンダの組合せを電機子側駆動体とし、前記界磁子及び前記界磁子と機械的に接続した前記シリンダ或いは前記ピストンの組合せを界磁子側駆動体とし、
     前記電機子側駆動体に対する界磁子側駆動体の質量増加割合を10%以下としたことを特徴とするリニア圧縮機。
    In claim 1,
    The armature and the combination of the piston or the cylinder mechanically connected to the armature are used as the armature side drive body, and the field magnet and the cylinder or the combination of the piston mechanically connected to the field magnet are combined. Is the field drive body,
    A linear compressor characterized in that the mass increase ratio of the field side drive body to the armature side drive body is 10% or less.
  4.  請求項1において、
     前記電機子は前記シリンダと接続し、前記界磁子は前記ピストンと接続したことを特徴とするリニア圧縮機。
    In claim 1,
    A linear compressor characterized in that the armature is connected to the cylinder and the field magnet is connected to the piston.
  5.  請求項1において、
     前記電機子は前記ピストンと接続し、前記界磁子は前記シリンダと接続したことを特徴とするリニア圧縮機。
    In claim 1,
    A linear compressor characterized in that the armature is connected to the piston and the field magnet is connected to the cylinder.
  6.  請求項1において、
     前記ピストン側弾性体と前記シリンダ側弾性体の両方、又は何れか一方がコイルバネであることを特徴とするリニア圧縮機。
    In claim 1,
    A linear compressor characterized in that both the piston-side elastic body and the cylinder-side elastic body, or one of them, is a coil spring.
  7.  請求項1において、
     前記ピストン側弾性体と前記シリンダ側弾性体の両方、又は何れか一方が板バネであることを特徴とするリニア圧縮機。
    In claim 1,
    A linear compressor characterized in that both the piston-side elastic body and the cylinder-side elastic body, or one of them, is a leaf spring.
  8.  請求項1乃至7の何れかにおいて、
     前記界磁子及びこれと機械的に接続した部材と、前記電機子及びこれと機械的に接続した部材の質量を調整するための調整部品を備えたことを特徴とするリニア圧縮機。
    In any of claims 1 to 7,
    A linear compressor comprising the field magnet and a member mechanically connected to the field magnet, and an adjusting component for adjusting the mass of the armature and the member mechanically connected to the armature.
  9.  冷蔵室、冷凍室を備え、圧縮機の駆動により冷凍サイクルが動作することで冷却される冷蔵庫において、
     前記圧縮機として、請求項1乃至7の何れか1項に記載のリニア圧縮機を備えたことを特徴とする冷蔵庫。
    In a refrigerator equipped with a refrigerator and a freezer, which is cooled by operating a freezing cycle driven by a compressor.
    A refrigerator provided with the linear compressor according to any one of claims 1 to 7 as the compressor.
  10.  空気バネと、前記空気バネに対して圧縮空気を給排する空気圧縮機とを備えたエアサスペンション装置において、
     前記空気圧縮機として、請求項1乃至7の何れか1項に記載のリニア圧縮機を備えたことを特徴とするエアサスペンション装置。
    In an air suspension device including an air spring and an air compressor that supplies and discharges compressed air to and from the air spring.
    An air suspension device comprising the linear compressor according to any one of claims 1 to 7 as the air compressor.
PCT/JP2021/006823 2020-05-20 2021-02-24 Linear compressor and refrigerator provided with linear compressor, and air suspension device provided with linear compressor WO2021235036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087928A JP2021181774A (en) 2020-05-20 2020-05-20 Linear compressor, refrigerator having the linear compressor and air suspension device having the linear compressor
JP2020-087928 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021235036A1 true WO2021235036A1 (en) 2021-11-25

Family

ID=78606195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006823 WO2021235036A1 (en) 2020-05-20 2021-02-24 Linear compressor and refrigerator provided with linear compressor, and air suspension device provided with linear compressor

Country Status (2)

Country Link
JP (1) JP2021181774A (en)
WO (1) WO2021235036A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339863A (en) * 2001-05-15 2002-11-27 Showa Electric Wire & Cable Co Ltd Linear compressor
JP2004353563A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Linear compressor
JP2009533604A (en) * 2006-04-18 2009-09-17 ワールプール・エシ・ア Linear compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339863A (en) * 2001-05-15 2002-11-27 Showa Electric Wire & Cable Co Ltd Linear compressor
JP2004353563A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Linear compressor
JP2009533604A (en) * 2006-04-18 2009-09-17 ワールプール・エシ・ア Linear compressor

Also Published As

Publication number Publication date
JP2021181774A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
KR101308115B1 (en) Linear compressor
US7614251B2 (en) Reciprocating compressor and refrigerator having the same
JP4819374B2 (en) Linear compressor
KR101766242B1 (en) Receprocating compressor
US7901192B2 (en) Two stage reciprocating compressor and refrigerator having the same
JP2005195023A (en) Linear compressor having external vibration-proofing structure
CN102985694B (en) Reciprocating compressor
KR102280431B1 (en) Compressor
US4721440A (en) Linear gas compressor
WO2021235036A1 (en) Linear compressor and refrigerator provided with linear compressor, and air suspension device provided with linear compressor
KR101856281B1 (en) Reciprocating compressor
KR101766245B1 (en) Type compressor
KR101484539B1 (en) Hermetic compressor and refrigerator having the same
WO2019017028A1 (en) Reciprocating-type linear motor
KR20100132277A (en) Linear compressor
US11434887B2 (en) Linear compressor with suction guide and suction muffler
JP2002339863A (en) Linear compressor
WO2021124625A1 (en) Dynamic vibration absorber, linear compressor and reciprocating compressor that are equipped with dynamic vibration absorber, and air suspension device equipped with linear compressor
KR102271808B1 (en) Compressor
KR20190031828A (en) Linear compressor
WO2020158369A1 (en) Linear compressor
KR101480239B1 (en) Linear compressor
CN113123943B (en) Compressor
KR100851013B1 (en) Two stage reciprocating compressor and refrigerator having the same
KR100847484B1 (en) Reciprocating compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808258

Country of ref document: EP

Kind code of ref document: A1