WO2020158368A1 - 冷間加工用機械構造用鋼およびその製造方法 - Google Patents

冷間加工用機械構造用鋼およびその製造方法 Download PDF

Info

Publication number
WO2020158368A1
WO2020158368A1 PCT/JP2020/000840 JP2020000840W WO2020158368A1 WO 2020158368 A1 WO2020158368 A1 WO 2020158368A1 JP 2020000840 W JP2020000840 W JP 2020000840W WO 2020158368 A1 WO2020158368 A1 WO 2020158368A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel
cold working
cooling
Prior art date
Application number
PCT/JP2020/000840
Other languages
English (en)
French (fr)
Inventor
山下 浩司
昌吾 村上
昌之 坂田
千葉 政道
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019211181A external-priority patent/JP7247078B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202080010594.8A priority Critical patent/CN113348256A/zh
Priority to CA3126378A priority patent/CA3126378C/en
Priority to KR1020217025731A priority patent/KR102629833B1/ko
Priority to US17/426,412 priority patent/US20220106670A1/en
Publication of WO2020158368A1 publication Critical patent/WO2020158368A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present disclosure relates to a cold working machine structural steel and a manufacturing method thereof.
  • hot-rolled material such as carbon steel or alloy steel is subjected to spheroidizing annealing for the purpose of imparting cold workability. Then, cold rolling is performed on the rolled material after spheroidizing annealing, and thereafter, mechanical processing such as cutting is performed to form a predetermined shape, and quenching and tempering is performed to perform final strength adjustment. ..
  • the spheroidizing degree which is an index of the degree of spheroidizing of cementite, deteriorates. It is known that it is difficult to sufficiently soften the alloy and that the cold workability is deteriorated, and it is not easy to shorten the spheroidizing annealing time. Therefore, a technique for sufficiently softening the steel without deteriorating the degree of spheroidization even when annealed for a short time has been studied.
  • the chemical composition by mass ratio is C: 0.3 to 0.6%, Mn: 0.2 to 1.5%, Si: 0.05 to 2.0%, Cr:0. .04-2.0%, balance: iron and unavoidable impurities , spheroidization characterized by having a mean austenite grain size of 100 ⁇ m or more in the metal structure and a ferrite fraction of 20% or less
  • a mechanical structural steel having excellent cold forgeability after annealing is disclosed. It is said that the steel for machine structural use can sufficiently secure the cold forgeability even with a relatively short spheroidizing annealing.
  • Patent Document 1 contains Cr but does not contain Mo as an essential component. Although the strength of steel can be remarkably increased by including both Cr and Mo, such increase in strength cannot be expected in the steel of Patent Document 1. Further, although steel containing both Cr and Mo may not be easily softened after spheroidizing annealing, in Patent Document 1, steel containing both Cr and Mo is sufficiently softened when annealed for a short time. It does not disclose that.
  • the embodiment of the present invention has been made in view of such a situation, and one of its purposes is to include Cr and Mo, and even when the spheroidizing annealing is performed for a relatively short time.
  • Another object of the present invention is to provide a steel for mechanical working for cold working, which has excellent spheroidization degree and can be sufficiently softened, and another object is to contain Cr and Mo and to treat spheroidizing annealing. It is an object of the present invention to provide a method for manufacturing a steel for mechanical working for cold working, which can be sufficiently softened even if the time is shortened.
  • Aspect 1 of the present invention is C: 0.32-0.44% by mass, Si: 0.15 to 0.35% by mass, Mn: 0.55 to 0.95% by mass, P: 0.030 mass% or less, S: 0.030 mass% or less, Cr: 0.85 to 1.25 mass%, Mo: 0.15 to 0.35% by mass, Al: 0.01 to 0.1% by mass,
  • the area ratio of proeutectoid ferrite is 30% or more and 70% or less, It is a machine structural steel for cold working in which the average grain size of ferrite crystal grains is 5 to 15 ⁇ m.
  • Aspect 2 of the present invention is the cold working mechanical structural steel according to Aspect 1, wherein the ratio of the area ratio of pearlite to the total area ratio of the structures other than the proeutectoid ferrite is 80% or less.
  • Aspect 3 of the present invention is the cold working machine structural steel according to Aspect 1 or 2, which has a hardness of HV 300 or less.
  • Aspect 4 of the present invention is Aspects 1 to 1 further containing one or more selected from the group consisting of Cu: 0.25% by mass or less (excluding 0% by mass) and Ni: 0.25% by mass or less (excluding 0% by mass).
  • Aspect 5 of the present invention is Ti: 0.2% by mass or less (not including 0% by mass), Aspects 1 to 1 further containing one or more selected from the group consisting of Nb: 0.2% by mass or less (not including 0% by mass), and V: 1.5% by mass or less (not including 0% by mass).
  • Nb 0.2% by mass or less
  • V 1.5% by mass or less (not including 0% by mass).
  • Aspect 6 of the present invention is N: 0.01% by mass or less (not including 0% by mass), Mg: 0.02% by mass or less (not including 0% by mass), Ca: 0.05% by mass or less (not including 0% by mass), Aspects 1 to 1 further containing one or more selected from the group consisting of Li: 0.02 mass% or less (0 mass% is not included), and REM: 0.05 mass% or less (0 mass% is not included).
  • Aspect 7 of the present invention provides a steel having the chemical composition as set forth in any one of Aspects 1 to 6, (A) a step of performing pre-processing at a compression rate of 20% or more and a holding time of 10 seconds or less, (B) after the step (a), a step of performing finishing at a temperature higher than 800° C. and 1050° C. or lower and a compression rate of 20% or higher; (C) a step of cooling from 750° C. to 840° C. in 10 seconds or less after the step (b), (D) After the step (c), a step of cooling to 500° C. or less at an average cooling rate of 0.1° C./second or more and less than 10° C./second is a method for producing a steel for cold working machine structural steel. ..
  • Aspect 8 of the present invention relates to a steel wire for machine work for cold working produced by the method of Aspect 7, wherein the steel wire is subjected to one or more of annealing, spheroidizing annealing, wire drawing, forging and quenching and tempering. It is a manufacturing method.
  • a mechanical structure for cold working which contains Cr and Mo and is excellent in spheroidization degree and can be sufficiently softened even when the spheroidizing annealing time is shortened more than usual.
  • a steel for cold working which can provide a steel for use, and in another embodiment, includes Cr and Mo and can be sufficiently softened even when the processing time of spheroidizing annealing is shortened. It is possible to provide a method for manufacturing structural steel.
  • the inventors of the present application provide a steel for cold working mechanical structure which contains Cr and Mo and which is excellent in spheroidization degree and can be sufficiently softened even if the spheroidizing annealing time is shortened more than usual. We examined it from various angles to realize it.
  • the chemical composition including Cr and Mo is appropriately adjusted, and the proeutectoid ferrite is contained, and the area ratio of the proeutectoid ferrite and the average grain size of the ferrite crystal grains are controlled to be predetermined values.
  • wire material is used to mean a rolled wire material, and refers to a linear steel material that has been cooled to room temperature after hot rolling. Further, the “steel wire” refers to a linear steel material in which the rolled wire material is annealed or the like to adjust its characteristics.
  • the steel for machine work for cold working according to the embodiment of the present invention has C: 0.32 to 0.44 mass%, Si: 0.15 to 0.35 mass%, Mn: 0.55 to 0.95. % By mass, P: 0.030% by mass or less, S: 0.030% by mass or less, Cr: 0.85 to 1.25% by mass, Mo: 0.15 to 0.35% by mass, Al: 0. 01 to 0.1% by mass, and the balance: iron and inevitable impurities.
  • P 0.030% by mass or less
  • S 0.030% by mass or less
  • Cr 0.85 to 1.25% by mass
  • Mo 0.15 to 0.35% by mass
  • Al 0. 01 to 0.1% by mass
  • iron and inevitable impurities iron and inevitable impurities.
  • C 0.32-0.44 mass%
  • C is a strength imparting element, and if the content is less than 0.32% by mass, the required strength of the final product cannot be obtained. On the other hand, if it exceeds 0.44 mass %, the cold workability and toughness of the steel deteriorate. Therefore, the content of C is set to 0.32 to 0.44 mass %. Further, when the C content is less than 0.40% by mass, more proeutectoid ferrite can be precipitated, which is preferable.
  • Si 0.15 to 0.35 mass%
  • Si is useful as a deoxidizing element and as an improving element to be contained for the purpose of increasing the strength of the final product by solid solution hardening.
  • the Si content is set to 0.15 mass% or more.
  • the Si content is 0.35 mass% or less.
  • Mn 0.55 to 0.95 mass%
  • Mn is an element effective in increasing the strength of the final product through improving the hardenability. In order to effectively exhibit such effects, the Mn content is set to 0.55 mass% or more. On the other hand, if Mn is excessively contained, the hardness increases and the cold workability of steel deteriorates. Therefore, the Mn content is set to 0.95 mass% or less.
  • P 0.030 mass% or less
  • P is an element that is inevitably contained in the steel and causes grain boundary segregation in the steel, which causes deterioration of the ductility of the steel. Therefore, the P content is set to 0.030 mass% or less.
  • S is an element that is inevitably contained in the steel, exists as MnS in the steel and deteriorates the ductility of the steel, and is a harmful element that deteriorates the cold workability of the steel. Therefore, the S content is set to 0.030 mass% or less.
  • Cr 0.85 mass% or more and 1.25 mass% or less
  • Cr is an element effective in increasing the strength of the final product by improving the hardenability of the steel material.
  • the Cr content is 0.85 mass% or more. Such an effect increases as the Cr content increases.
  • the Cr content becomes excessive, the strength becomes too high and the cold workability of the steel deteriorates, so the content is made 1.25 mass% or less.
  • Mo 0.15 mass% or more and 0.35 mass% or less
  • Mo is an element effective in increasing the strength of the final product by improving the hardenability of the steel material.
  • Mo content is set to 0.15 mass% or more.
  • Mo is 0.35 mass% or less.
  • Al 0.01 mass% or more and 0.1 mass% or less
  • Al is an element that is useful as a deoxidizing agent and also prevents AlN from precipitating AlN by combining with N to prevent crystal grains from abnormally growing during processing to lower the strength.
  • the Al content is 0.01% by mass or more, preferably 0.015% by mass or more, and more preferably 0.020% by mass or more.
  • the Al content is 0.1% by mass or less, preferably 0.090% by mass or less, and more preferably 0.080% by mass or less.
  • the balance is iron and inevitable impurities.
  • the unavoidable impurities it is permissible to mix in elements (for example, B, As, Sn, Sb, Ca, O, H, etc.) brought in depending on the situation of raw materials, materials, manufacturing equipment and the like.
  • elements for example, B, As, Sn, Sb, Ca, O, H, etc.
  • P and S are usually preferable as the content is smaller, and thus they are inevitable impurities, but there are elements whose composition range is separately specified as described above. Therefore, in this specification, the term “unavoidable impurities” constituting the balance is a concept excluding elements whose composition range is separately defined.
  • the cold working machine structural steel according to the embodiment of the present invention may optionally contain the following optional elements, and the properties of the steel are further improved depending on the contained components. It
  • Cu and Ni are elements that improve the hardenability and effectively act to increase the product strength. Such action increases as the contents of these elements increase, but in order to effectively exhibit, Cu and Ni are preferably each 0.05 mass% or more, more preferably 0.08 mass% or more, further It is preferably 0.10 mass% or more. However, if it is contained excessively, a supercooled structure is excessively generated, the strength becomes too high, and the cold forgeability deteriorates. Therefore, Cu and Ni are preferably 0.25 mass% or less, respectively.
  • Cu and Ni may be contained individually, or may be contained in two or more kinds, and in the case of containing two or more kinds, the content may be any content within the above range. ..
  • Ti 0.2 mass% or less (0 mass% is not included)
  • Nb 0.2 mass% or less (0 mass% is not included
  • V 1.5 mass% or less (0 mass% is included.
  • Ti, Nb, and V are elements that combine with N to form a compound (nitride), reduce the amount of solute N in steel, and obtain a deformation resistance reducing effect.
  • each of Ti, Nb, and V is preferably 0.05 mass% or more, more preferably 0.06 mass% or more, still more preferably 0.08 mass% or more.
  • the amount of nitride increases, the deformation resistance increases, and the cold forgeability deteriorates.
  • Ti and Nb are each preferably 0.2 mass% or less, and more preferably 0% by mass or less. 0.1% by mass or less, more preferably 0.15% by mass or less, V is preferably 1.5% by mass or less, more preferably 1.3% by mass or less, still more preferably 1.0% by mass or less. is there.
  • Each of Ti, Nb and V may be contained alone, or may be contained in two or more kinds, and the content in the case of containing two or more kinds is any content within the above range. Good.
  • N 0.01 mass% or less (0 mass% is not included), Mg: 0.02 mass% or less (0 mass% is not included), Ca: 0.05 mass% or less (0 mass% is not included. ), Li: 0.02% by mass (not including 0% by mass), and rare earth element (Rare Earth Metal: REM): 0.05% by mass or less (not including 0% by mass).
  • N is an impurity that is unavoidably contained in steel, but when solid solution N is contained in steel, the hardness increases and the ductility decreases due to strain aging, and cold forgeability deteriorates. Therefore, N is preferably 0.01% by mass or less, more preferably 0.009% by mass or less, and further preferably 0.008% by mass or less.
  • Mg, Ca, Li, and REM are effective elements for making the sulfide compound inclusions such as MnS spherical and improving the deformability of the steel. Such action increases as the content thereof increases, but in order to effectively exhibit, Mg, Ca, Li and REM are preferably each 0.0001 mass% or more, more preferably 0.0005 mass% or more. is there.
  • Mg and Li are preferably 0.02% by mass or less, more preferably 0.018% by mass or less, and further preferably 0.015 mass% or less
  • Ca and REM are preferably each 0.05 mass% or less, more preferably 0.045 mass% or less, still more preferably 0.040 mass% or less.
  • N, Ca, Mg, Li and REM may be contained alone, or may be contained in two or more kinds, and the content in the case of containing two or more kinds is each within the above range. Any content may be used.
  • the steel for machine work for cold working according to the embodiment of the present invention contains proeutectoid ferrite.
  • Proeutectoid ferrite contributes to softening of steel after spheroidizing annealing.
  • Cr and Mo it is not possible to realize a steel which is excellent in spheroidization degree and can be sufficiently softened after being annealed for a short time only by including proeutectoid ferrite.
  • the area ratio of proeutectoid ferrite is 30% or more and 70% or less, and the average grain size of ferrite crystal grains is It is controlled to be 5 to 15 ⁇ m.
  • the presence of a large amount of proeutectoid ferrite can promote agglomeration and spheroidization of carbides such as cementite during spheroidization annealing, and as a result, the spheroidization degree of steel can be improved and the hardness of steel can be reduced.
  • the area ratio of proeutectoid ferrite needs to be 30% or more.
  • the area ratio of proeutectoid ferrite is preferably more than 30%, more preferably more than 35%, further preferably more than 40%.
  • ferrite crystal grain as used herein means a boundary (also referred to as a large-angle grain boundary) having a crystal orientation difference (oblique angle) of more than 15° as a crystal grain boundary as a result of backscattering electron diffraction image (Electron backscattering pattern; EBSP) analysis.
  • EBSP Electro backscattering pattern
  • the average grain size referred to here means an average value of diameters when the area of the region surrounded by the crystal grain boundaries is converted into a circle, that is, an average circle equivalent diameter.
  • the average grain size of ferrite crystal grains is measured by using, for example, a field emission high-resolution scanning electron microscope (FE-SEM) and an EBSP analyzer.
  • FE-SEM field emission high-resolution scanning electron microscope
  • the cold working machine structural steel according to the embodiment of the present invention may have any of the following metallographic structures as necessary, whereby the properties of the steel after spheroidizing annealing are further improved. ..
  • Ratio of area ratio of pearlite to total area ratio of structures other than proeutectoid ferrite 80% or less
  • it is effective to reduce the proportion of pearlite in the structure other than proeutectoid ferrite (hereinafter sometimes referred to as "residual structure"). If the proportion of pearlite in the balance structure is too high, rod-shaped carbides are likely to be present even after spheroidizing annealing, and the spheroidization degree of the steel tends to deteriorate.
  • the ratio of the area ratio of pearlite to the total area ratio of the structures other than the pro-eutectoid ferrite is preferably 80% or less, more preferably 70% or less.
  • the structure other than pearlite in the balance structure include bainite, martensite, austenite and the like, but all of bainite is more preferable for improving the spheroidization degree of steel.
  • the area ratio of pearlite in the residual structure is 80% or less, it is more preferable that the area ratio of bainite in the residual structure is 20% or more, and the area of pearlite in the residual structure is more than 20%.
  • the ratio of the ratio is 70% or less, the ratio of the area ratio of bainite in the balance structure is more preferably 30% or more.
  • the cold working machine structural steel according to the embodiment of the present invention may have any of the following hardness as necessary, thereby further improving the properties of the steel after spheroidizing annealing. To be done.
  • the hardness of steel is set to HV350 or less, preferably HV300 or less. More preferably, it is HV290 or less.
  • a steel material satisfying the above-described chemical composition is used, and working and cooling after working are performed.
  • the processing and the cooling after the processing are each performed in two stages.
  • the method for producing a cold working machine structural steel according to an embodiment of the present invention a steel material having the above chemical composition, (A) a step of performing pre-processing at a compression rate of 20% or more and a holding time of 10 seconds or less, (B) after the step (a), a step of performing finishing at a temperature higher than 800° C. and 1050° C. or lower and a compression rate of 20% or higher; (C) a step of cooling from 750° C.
  • step (c) After the step (c), cooling to 500° C. or lower at an average cooling rate of 0.1° C./second or more and less than 10° C./second is included.
  • the processing here may be any processing as long as the above-mentioned requirements are satisfied, and may include, for example, press processing and rolling processing. Further, the steps (c) and (d) may be referred to as first cooling and second cooling, respectively.
  • Step of performing pre-processing at a compression rate of 20% or more and a holding time of 10 seconds or less In order to increase the proportion of pro-eutectoid ferrite and refine the ferrite crystal grains, pre-processing with a compression rate of 20% or more is performed.
  • the compression rate is preferably 30% or more.
  • the compression rate is calculated as follows.
  • finish processing is performed at a compression rate of 20% or more.
  • the compression rate is preferably 50% or more.
  • the processing temperature is more than 800° C. and 1050° C. or less so that the average grain size of ferrite crystal grains is 5 to 15 ⁇ m.
  • the temperature is preferably 1000°C or lower, more preferably 950°C or lower.
  • the temperature is preferably 825°C or higher, more preferably 850°C or higher.
  • step (c) After step (b), a step of cooling from 750°C to 840°C in 10 seconds or less]
  • the material is rapidly cooled to a predetermined temperature (hereinafter sometimes referred to as a first cooling stop temperature) after finishing.
  • the time for cooling from the finishing temperature to the first cooling stop temperature is 10 seconds or less. It is preferably 5 seconds or less, more preferably 3 seconds or less.
  • the first cooling stop temperature is set to 750° C. or higher and 840° C. or lower in order to increase the proportion of proeutectoid ferrite and set the average grain size of ferrite crystal grains to 5 to 15 ⁇ m.
  • step (d) after step (c), cooling to 500° C. or lower at an average cooling rate of 0.1° C./sec or more and less than 10° C./sec]
  • the first cooling was performed at an average cooling rate of 0.1°C/sec or more and less than 10°C/sec Cool from stop temperature to below 500°C.
  • a preferable average cooling rate is 1 to 3° C./second.
  • the cooling method in the temperature range of 500° C. or lower is not particularly limited, and may be, for example, standing cooling, or the average cooling rate of the second cooling is relatively slow, for example, less than 1° C./second. In this case, gas quenching or the like may be used to shorten the time.
  • the cold working mechanical structure steel according to the embodiment of the present invention can be obtained.
  • the steel for cold working machine structural steel according to the embodiment of the present invention is assumed to be subjected to spheroidizing annealing after that, but in some cases, other processing before or after spheroidizing annealing ( Wire drawing etc.) may be performed.
  • the steel for mechanical working for cold working according to the embodiment of the present invention is then subjected to spheroidizing annealing for a relatively short time (for example, conventional: spheroidizing annealing for about 15 hours is shortened to about 11 hours). Even in the case of being treated, the degree of spheroidization is excellent and the material can be sufficiently softened.
  • a steel wire is manufactured by performing one or more steps of annealing, spheroidizing annealing, wire drawing, forging, and quenching and tempering on the steel material obtained under the above manufacturing conditions.
  • the steel wire here refers to a steel material obtained under the above manufacturing conditions, which is a linear steel material whose properties are adjusted by annealing, spheroidizing annealing, wire drawing, forging, quenching and tempering, etc. In addition to these processes, it also includes linear steel products that have undergone the processes generally performed by secondary processing manufacturers.
  • test pieces for ⁇ 4 mm ⁇ 15 mm for forming master were prepared.
  • press processing and cooling were performed by the processing Formaster tester under the conditions shown in Table 2.
  • Table 2 when cooling in the temperature range of 500° C. or lower, when the average cooling rate during the second cooling is 1° C./sec or more, the average cooling rate during the second cooling is around room temperature (25 C. to 40.degree. C.), and when the average cooling rate during the second cooling was less than 1.degree. C./sec, gas quenching was performed.
  • the test piece subjected to the thermo-mechanical treatment test was cut along the central axis and divided into four equal parts to obtain four samples including a longitudinal section.
  • One of them is a sample which is not subjected to spheroidizing annealing (hereinafter may be referred to as a sample before spheroidizing annealing), and the other is a sample which is subjected to spheroidizing annealing (hereinafter referred to as a sample after spheroidizing annealing).
  • the spheroidizing annealing was performed by placing each test piece in a vacuum sealed tube.
  • the spheroidizing annealing was performed under the following two conditions (SA1 and SA2).
  • SA1 After soaking at 760°C for 5 hours, cooled to 685°C at an average cooling rate of 13°C/hour, and then allowed to cool.
  • SA2 After soaking at 2750°C for 2 hours, 660 at an average cooling rate of 13°C/hour.
  • the spheroidizing annealing time in the conventional technique was reduced to about 11 hours, while the spheroidizing annealing time in the conventional technique was reduced to about 11 hours.
  • the spheroidizing annealing time referred to here was the time obtained by adding the soaking and holding time and the cooling time until cooling.
  • the condition of SA2 is set to be low at a temperature lower than that of SA1 in consideration of a delay in temperature follow-up.
  • the value divided by was taken as the area ratio (%) of proeutectoid ferrite.
  • a sample having an average grain size of ferrite crystal grains of 10 ⁇ m or more, which will be described later, is measured by using a photograph at a magnification of 400 times, and a sample having an average grain size of less than 5 ⁇ m is measured by using a photograph at a magnification of 1000 times.
  • a photograph of 400 times or 1000 times magnification was appropriately selected and measured.
  • the average grain size of ferrite crystal grains was measured using an FE-SEM and an EBSP analyzer.
  • a backscattered electron diffraction image was obtained by FE-SEM at the D/4 position of the longitudinal section of the sample before spheroidization annealing.
  • a “grain” is defined with a boundary having a crystal orientation difference (oblique angle) exceeding 15°, that is, a large-angle grain boundary as a grain boundary, and The average particle size was determined.
  • the measurement region was measured at 200 ⁇ m ⁇ 200 ⁇ m, and the measurement step was performed at 0.4 ⁇ m intervals, and the measurement points with a confidence index (Confidence Index) of 0.1 or less indicating the reliability of the measurement orientation were deleted from the analysis target.
  • a confidence index Confidence Index
  • the point B of pearlite existing on 150 intersections is measured, and the value obtained by dividing the point B by the point (150-A) is the area ratio of pearlite to the total area ratio of the structures other than proeutectoid ferrite. (%).
  • a sample having an average grain size of ferrite crystal grains of 10 ⁇ m or more, which will be described later, is measured by using a photograph at a magnification of 400 times, and a sample having an average grain size of less than 5 ⁇ m is measured by using a photograph at a magnification of 1000 times. For samples of less than 100, a photograph of 400 times or 1000 times magnification was appropriately selected and measured.
  • the criterion for determining the hardness after spheroidizing annealing of this example was set according to the carbon equivalent (Ceq) of the steel type. Specifically, the hardness after SA1 was determined by whether or not the following formula (2) was satisfied. (Hardness (HV)) ⁇ 97.3 ⁇ Ceq+84 (2) The case where the hardness after SA1 satisfies the above formula (2) is the best ( ⁇ ), and the case where the hardness does not satisfy the above formula (2) is the poor (x). In addition, when the carbon equivalent is 0.70 or more, the hardness after SA1 is more preferably HV150 or less.
  • the hardness after SA2 is set to a standard (gradual standard) different from the above formula (2). Specifically, the hardness after SA2 was determined by whether or not the following formula (3) was satisfied. (Hardness (HV)) ⁇ 97.3 ⁇ Ceq+98 (3) The case where the hardness after SA2 satisfies the above formula (3) is the best ( ⁇ ), and the case where the hardness does not satisfy the above formula (3) is the poor (x). In addition, when the carbon equivalent is 0.70 or more, it is more preferable that the hardness after SA2 is HV165 or less.
  • Table 3 shows the structure and hardness before spheroidizing annealing, and the hardness and spheroidizing degree after spheroidizing annealing, which were evaluated according to the above procedures (1) to (6).
  • SA1 comprehensive evaluation after SA1
  • the hardness and the degree of spheroidization after SA1 were all ⁇ , the result was the best ( ⁇ ).
  • ⁇ and ⁇ coexisted, it was evaluated as good ( ⁇ ).
  • x When even one x was mixed, it was determined to be defective (x).
  • Test No. of Table 3 All of 1-1 to 1-4, 1-9 and 1-10 are examples satisfying all the requirements specified in the embodiment of the present invention, and after spheroidizing annealing time is shorter than before, after SA1. In, the hardness and the degree of spheroidization were both good or the best. Test No. Test Nos. 1-1 and 1-2 are test Nos.
  • the carbon content is in the preferable range (less than 0.40 mass%) and the average cooling rate during the second cooling is within the preferable range (1 3 to 3° C./sec), and as a result, the preferred requirements (more than 40% of pro-eutectoid ferrite area ratio and 80% or less of pearlite area ratio of the remaining structure) were satisfied, the spheroidization degree after SA1 was the best, and the overall judgment was made. Was the best.
  • the test No. Nos. 1-5 to 1-8 are examples that did not satisfy the requirements specified in the embodiments of the present invention, and the hardness or spheroidization degree after SA1 was poor.
  • the average cooling rate of the second cooling was as high as 10° C./second, so that the area ratio of proeutectoid ferrite was less than 30%, and the hardness after SA1 was poor.
  • the finishing temperature was as high as 1200° C.
  • the area ratio of proeutectoid ferrite was less than 30%
  • the average grain size of ferrite crystal grains was more than 15 ⁇ m
  • the hardness after SA1 was poor.
  • test No. of Table 3 By satisfying all the requirements defined in the embodiment of the present invention, such as 1-1 to 1-4, 1-9, and 1-10, it is possible to reduce the temperature following the SA1 in comparison with SA1. It was found that even after SA2 in which the spheroidizing annealing was performed, the softening was sufficiently performed.
  • SA3 was set to a condition in which the spheroidizing annealing time in the prior art: about 15 hours was shortened to the spheroidizing annealing time: about 9 hours. Further, the condition of SA4 is set at a low temperature in consideration of a delay in temperature follow-up as compared with SA3.
  • SA3 After soaking and maintaining at 770°C for 2 hours, it was cooled to 685°C at an average cooling rate of 13°C/hour, and then allowed to cool. Cool to °C, then let cool.
  • Example 1 As in Example 1, (1) area ratio of pro-eutectoid ferrite, (2) average particle size of ferrite crystal grains, (3) ratio of area ratio of pearlite to total area ratio of structures other than pro-eutectoid ferrite, (4) Hardness before spheroidizing annealing, (5) Hardness after spheroidizing annealing, and (6) Spheroidizing degree were measured and evaluated.
  • the hardness after SA3 satisfies the above formula (2) is the best ( ⁇ ), and the case where the above formula (2) is not satisfied is poor ( ⁇ ). ). Further, when the carbon equivalent is 0.70 or more, the hardness after SA3 is more preferably HV150 or less.
  • the hardness after SA4 is the best ( ⁇ ), and the case where the above formula (3) is not satisfied is the poor (x).
  • the carbon equivalent is 0.70 or more
  • the hardness after SA4 is more preferably HV165 or less. The results are shown in Table 5.
  • No. of Table 5 No. 2-2 is an example that satisfies all the requirements defined in the embodiment of the present invention, and the hardness and the degree of spheroidization after SA3 were both the best or the best.
  • the cooling stop temperature of the first cooling was more than 840°C
  • the area ratio of proeutectoid ferrite was less than 30%
  • the average grain size of ferrite crystal grains was more than 15 ⁇ m.
  • the degree of spheroidization was poor.
  • the steel for machine structural use for cold working according to the embodiment of the present invention is suitable as a raw material for various parts manufactured by cold working such as cold forging, cold forging or cold rolling.
  • the form of steel is not particularly limited, but may be a rolled material such as a wire rod or a steel bar.
  • the components include, for example, automobile components and construction machinery components, and specifically, bolts, screws, nuts, sockets, ball joints, inner tubes, torsion bars, clutch cases, cages, housings, hubs, Cover, case, washer, tappet, saddle, balg, inner case, clutch, sleeve, outer race, sprocket, stator, anvil, spider, rocker arm, body, flange, drum, fitting, connector, pulley, metal fitting, yoke, It includes bases, valve lifters, spark plugs, pinion gears, steering shafts, and common rails.
  • the cold working machine structural steel according to the embodiment of the present invention is industrially useful as a machine structural steel that is preferably used as a material for the above-mentioned components, and after spheroidizing annealing, at room temperature and a working heat generation region, When it is manufactured into various parts, the deformation resistance is low and excellent cold workability can be exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

C:0.32~0.44質量%、Si:0.15~0.35質量%、Mn:0.55~0.95質量%、P:0.030質量%以下、S:0.030質量%以下、Cr:0.85~1.25質量%、Mo:0.15~0.35質量%、Al:0.01~0.1質量%、残部:鉄および不可避不純物からなり、初析フェライトの面積率が30%以上70%以下であり、フェライト結晶粒の平均粒径が5~15μmである冷間加工用機械構造用鋼である。

Description

冷間加工用機械構造用鋼およびその製造方法
 本開示は、冷間加工用機械構造用鋼およびその製造方法に関する。
 自動車用部品、建設機械用部品等の各種部品を製造するにあたっては、通常、炭素鋼または合金鋼などの熱間圧延材に、冷間加工性を付与する目的で球状化焼鈍が施される。そして、球状化焼鈍後の圧延材に対して冷間加工を行い、その後切削加工などの機械加工を施すことによって所定の形状に成形し、焼入れ焼戻し処理を行って最終的な強度調整が行われる。
 近年は、省エネルギー化の観点により、球状化焼鈍の条件が見直しされ、特に球状化焼鈍の短時間化が要求されている。球状化焼鈍の処理時間を2~3割削減することができれば、それに応じてエネルギー消費量、CO排出量の削減が期待できる。
 しかしながら、通常よりも処理時間を短縮した球状化焼鈍処理(以下、「短時間焼鈍」と呼ぶことがある)を施した場合、セメンタイトの球状化程度の指標である球状化度が悪化し、鋼を十分に軟質化させることが難しく、冷間加工性が劣化することが知られており、球状化焼鈍時間の短時間化は容易ではない。そのため、短時間焼鈍を施した場合であっても、球状化度を悪化させず、鋼を十分に軟質化させるための技術が検討されている。
 例えば特許文献1では、化学組成が、質量比で、C:0.3~0.6%、Mn:0.2~1.5%、Si:0.05~2.0%、Cr:0.04~2.0%、残部:鉄および不可避不純物から成り、金属組織において旧オーステナイトの平均粒径が100μm以上であり、かつフェライト分率が20%以下であることを特徴とする球状化焼鈍後の冷間鍛造性に優れた機械構造用鋼が開示されている。当該機械構造用鋼は、比較的短時間の球状化焼鈍でも、冷間鍛造性を十分確保できるとしている。
特許第3783666号
 しかし、特許文献1に記載の機械構造用鋼には、Crは含まれるもののMoは必須成分として含まれていない。CrおよびMoを共に含むことで鋼の強度が顕著に増加し得るところ、特許文献1の鋼ではそのような強度増加が期待できない。さらに、CrおよびMoを共に含む鋼では球状化焼鈍後に軟質化しにくい場合があるが、特許文献1では、CrおよびMoを共に含む鋼に対して短時間焼鈍を施した場合に十分に軟質化させることは開示していない。
 本発明の実施形態は、このような状況を鑑みてなされたものであり、その目的の1つは、CrおよびMoを含み、且つ比較的短時間の球状化焼鈍を施した場合であっても、球状化度に優れ、且つ十分に軟質化することができる冷間加工用機械構造用鋼を提供することであり、別の1つの目的は、CrおよびMoを含み、且つ球状化焼鈍の処理時間を短縮しても十分に軟質化することができる冷間加工用機械構造用鋼の製造方法を提供することである。
 本発明の態様1は、
 C :0.32~0.44質量%、
 Si:0.15~0.35質量%、
 Mn:0.55~0.95質量%、
 P :0.030質量%以下、
 S :0.030質量%以下、
 Cr:0.85~1.25質量%、
 Mo:0.15~0.35質量%、
 Al:0.01~0.1質量%、
 残部:鉄および不可避不純物からなり、
 初析フェライトの面積率が30%以上70%以下であり、
 フェライト結晶粒の平均粒径が5~15μmである冷間加工用機械構造用鋼である。
 本発明の態様2は、前記初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合が80%以下である、態様1に記載の冷間加工用機械構造用鋼である。
 本発明の態様3は、硬さがHV300以下である、態様1または2に記載の冷間加工用機械構造用鋼である。
 本発明の態様4は、
 Cu:0.25質量%以下(0質量%を含まない)、および
 Ni:0.25質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する態様1~3のいずれか1つに記載の冷間加工用機械構造用鋼である。
 本発明の態様5は、
 Ti:0.2質量%以下(0質量%を含まない)、
 Nb:0.2質量%以下(0質量%を含まない)、および
 V :1.5質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する態様1~4のいずれか1つに記載の冷間加工用機械構造用鋼である。
 本発明の態様6は、
 N  :0.01質量%以下(0質量%を含まない)、
 Mg :0.02質量%以下(0質量%を含まない)、
 Ca :0.05質量%以下(0質量%を含まない)、
 Li :0.02質量%以下(0質量%を含まない)、および
 REM:0.05質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する態様1~5のいずれか1つに記載の冷間加工用機械構造用鋼である。
 本発明の態様7は、態様1~6のいずれか1つに記載の化学成分組成の鋼を用意し、
(a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程と、
(b)前記工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程と、
(c)前記工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程と、
(d)前記工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程とを含む冷間加工用機械構造用鋼の製造方法である。
 本発明の態様8は、態様7の方法で製造した冷間加工用機械構造用鋼に、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行う鋼線の製造方法である。
 本発明の1つの実施形態では、CrおよびMoを含み、且つ通常よりも球状化焼鈍時間を短縮しても、球状化度に優れ、且つ十分に軟質化することができる冷間加工用機械構造用鋼を提供することが可能であり、別の1つの実施形態では、CrおよびMoを含み、且つ球状化焼鈍の処理時間を短縮しても十分に軟質化することができる冷間加工用機械構造用鋼の製造方法を提供することが可能である。
 本願発明者らは、CrおよびMoを含み、且つ通常よりも球状化焼鈍時間を短縮しても、球状化度に優れ、且つ十分に軟質化することができる冷間加工用機械構造用鋼を実現するべく、様々な角度から検討した。
 その結果、CrおよびMoを含めた化学成分組成を適切に調整すると共に、初析フェライトを含み、且つ初析フェライトの面積率、およびフェライト結晶粒の平均粒径が所定値になるように制御することにより、球状化焼鈍の処理時間を短縮しても、球状化度に優れ、十分に軟質化することができる冷間加工用機械構造用鋼を実現できることを見出した。
 さらに、初析フェライトの面積率およびフェライト結晶粒の平均粒径の制御により、球状化焼鈍時の温度にばらつきが生じたとしても十分に軟質化することができる冷間加工用機械構造用鋼を実現できることも同時に見出した。このことは、球状化焼鈍を大型の炉で処理する際には非常に有益となる。すなわち、大型の炉内では、設定温度よりも温度が低い場所や昇温速度が遅れる場所の存在により、かなり温度がばらつくが、本発明の実施形態に係る冷間加工用機械構造用鋼は、そのような炉で球状化焼鈍が施されても、十分に軟質化することができることを見出した。
 以下に、本発明の実施形態が規定する各要件の詳細を示す。
なお、本明細書において、「線材」とは、圧延線材の意味で用い、熱間圧延後、室温まで冷却した線状の鋼材を指す。また「鋼線」とは、上記圧延線材に焼鈍等を施して特性を調整した線状の鋼材を指す。
<1.化学成分組成>
 本発明の実施形態に係る冷間加工用機械構造用鋼は、C:0.32~0.44質量%、Si:0.15~0.35質量%、Mn:0.55~0.95質量%、P:0.030%質量%以下、S:0.030質量%以下、Cr:0.85~1.25質量%、Mo:0.15~0.35質量%、Al:0.01~0.1質量%、および残部:鉄及び不可避不純物からなる。
 以下、各元素について詳述する。
(C:0.32~0.44質量%)
 Cは、強度付与元素であり、0.32質量%未満では必要な最終製品の強度が得られない。一方、0.44質量%を超えると鋼の冷間加工性および靱性が低下する。そのため、Cの含有量は、0.32~0.44質量%とする。また、Cの含有量を0.40質量%未満にすることで、初析フェライトをより多く析出させることができるため好ましい。
(Si:0.15~0.35質量%)
 Siは、脱酸元素として、および固溶体硬化による最終製品の強度を増加させることを目的として含有させる向上元素として有用である。このような効果を有効に発揮させるため、Si含有量を0.15質量%以上とする。一方、Siが過剰に含有されると硬度が過度に上昇して鋼の冷間加工性が劣化する。そのため、Si含有量を0.35質量%以下とする。
(Mn:0.55~0.95質量%)
 Mnは、焼入れ性の向上を通じて、最終製品の強度を増加させるのに有効な元素である。このような効果を有効に発揮させるため、Mn含有量を0.55質量%以上とする。一方、Mnが過剰に含有されると硬度が上昇して鋼の冷間加工性が劣化する。そのため、Mn含有量を0.95質量%以下とする。
(P:0.030質量%以下)
 Pは、鋼中に不可避的に含まれる元素であり、鋼中で粒界偏析を起こし、鋼の延性の劣化の原因となる。そのため、P含有量を0.030質量%以下とする。
(S:0.030質量%以下)
 Sは、鋼中に不可避的に含まれる元素であり、鋼中でMnSとして存在して鋼の延性を劣化させるので、鋼の冷間加工性を劣化させる有害な元素である。そのため、S含有量を0.030質量%以下とする。
(Cr:0.85質量%以上1.25質量%以下)
 Crは、鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素である。こうした効果を有効に発揮させるため、Cr含有量は0.85質量%以上とする。このような効果は、Cr含有量が増加するに従って大きくなる。しかしながら、Cr含有量が過剰になると、強度が高くなり過ぎて鋼の冷間加工性を劣化させるため、1.25質量%以下とする。
(Mo:0.15質量%以上0.35質量%以下)
 Moは、鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素である。特に、MoをCrと共に鋼に含有させることにより、最終製品の強度が顕著に増加し得る。こうした効果を有効に発揮させるため、Mo含有量は0.15質量%以上とする。このような効果は、Mo含有量が増加するに従って大きくなる。しかしながら、Mo含有量が過剰になると、強度が高くなり過ぎて鋼の冷間加工性が劣化する。特に、MoをCrと共に鋼に含有させることにより、鋼が球状化焼鈍後に顕著に軟質化しにくくなり得る。そのため、Moは0.35質量%以下とする。
(Al:0.01質量%以上0.1質量%以下)
 Alは、脱酸剤として有用であると共に、Nと結合してAlNを析出し、加工時に結晶粒が異常成長して強度が低下するのを防止する元素である。こうした効果を有効に発揮させるため、Al含有量は0.01質量%以上とし、好ましくは0.015質量%以上、より好ましくは0.020質量%以上である。しかし、Al含有量が過剰になると、Alが過剰に生成して冷間鍛造性を劣化させる。そのため、Al含有量は0.1%質量以下とし、好ましくは0.090質量%以下、より好ましくは0.080質量%以下である。
 残部は鉄及び不可避不純物である。不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、B、As、Sn、Sb、Ca、O、H等)の混入が許容される。
 なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
 さらに、本発明の実施形態に係る冷間加工用機械構造用鋼は、必要に応じて以下の任意元素を選択的に含有してよく、含有される成分に応じて鋼の特性が更に改善される。
(Cu:0.25質量%以下(0質量%を含まない)、およびNi:0.25%質量以下(0質量%を含まない)よりなる群から選択される一種以上)
 CuおよびNiは、焼入れ性を向上させると共に、製品強度を高めるのに有効に作用する元素である。こうした作用は、これらの元素の含有量が増加するにつれて増大するが、有効に発揮させるには、CuおよびNiは夫々好ましくは0.05質量%以上、より好ましくは0.08質量%以上、更に好ましくは0.10質量%以上である。しかし過剰に含有させると過冷組織が過剰に生成し、強度が高くなりすぎて冷間鍛造性が低下する。したがってCuおよびNiは夫々0.25質量%以下とすることが好ましい。より好ましくは0.22質量%以下、更に好ましくは0.20質量%以下である。なお、CuおよびNiは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
(Ti:0.2質量%以下(0質量%を含まない)、Nb:0.2質量%以下(0質量%を含まない)、およびV:1.5質量%以下(0質量%を含まない)よりなる群から選択される一種以上)
 Ti、Nb、Vは、Nと結合して化合物(窒化物)を形成し、鋼中の固溶N量を低減させて、変形抵抗低減効果が得られる元素である。こうした効果を発揮させるためには、Ti、Nb、Vは夫々、好ましくは0.05質量%以上、より好ましくは0.06質量%以上、更に好ましくは0.08質量%以上である。しかし、これらの元素を過剰に含有すると、窒化物量が増加し、変形抵抗が上昇して冷間鍛造性が劣化するため、Ti、Nbは夫々好ましくは0.2質量%以下、より好ましくは0.18質量%以下、更に好ましくは、0.15質量%以下であり、Vは好ましくは1.5質量%以下、より好ましくは1.3質量%以下、更に好ましくは1.0質量%以下である。なお、Ti、NbおよびVは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
(N:0.01質量%以下(0質量%を含まない)、Mg:0.02質量%以下(0質量%を含まない)、Ca:0.05質量%以下(0質量%を含まない)、Li:0.02質量%(0質量%を含まない)、および希土類元素(Rare Earth Metal:REM):0.05質量%以下(0質量%を含まない)よりなる群から選択される一種以上)
 Nは、鋼に不可避的に含まれる不純物であるが、鋼中に固溶Nが含まれていると、ひずみ時効による硬度上昇、延性低下を招き、冷間鍛造性が劣化する。したがって、Nは、0.01質量%以下が好ましく、より好ましくは0.009質量%以下、更に好ましくは0.008質量%以下である。また、Mg、Ca、Li、及びREMは、MnS等の硫化化合物系介在物を球状化させ、鋼の変形能を向上させるのに有効な元素である。こうした作用はその含有量が増加するにつれて増大するが、有効に発揮させるためには、Mg、Ca、Li及びREMは夫々好ましくは0.0001質量%以上、より好ましくは0.0005質量%以上である。しかし過剰に含有させてもその効果は飽和し、含有量に見合う効果が期待できないので、Mg及びLiは夫々好ましくは0.02質量%以下、より好ましくは0.018質量%以下、更に好ましくは0.015質量%以下、CaとREMは夫々好ましくは0.05質量%以下、より好ましくは0.045質量%以下、更に好ましくは0.040質量%以下である。なお、N、Ca、Mg、LiおよびREMは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
<2.金属組織>
 本発明の実施形態に係る冷間加工用機械構造用鋼は、初析フェライトを含む。初析フェライトは、球状化焼鈍後の鋼の軟質化に寄与する。しかしながら、特にCrおよびMoを含有する場合、単に初析フェライトを含むだけでは、短時間焼鈍後に、球状化度に優れ、且つ十分に軟質化することができる鋼を実現できない。
 そこで、以下に詳述するように、本発明の実施形態に係る冷間加工用機械構造用鋼は、初析フェライトの面積率が30%以上70%以下、およびフェライト結晶粒の平均粒径が5~15μmとなるように制御されている。
[2-1.初析フェライトの面積率:30%以上70%以下]
 初析フェライトを多く存在させることで、球状化焼鈍中にセメンタイトなどの炭化物の凝集・球状化を促進させることができ、その結果、鋼の球状化度向上および鋼の硬さを低減できる。こうした観点から、初析フェライトの面積率は30%以上とする必要がある。初析フェライトの面積率は好ましくは30%超、より好ましくは35%超、更に好ましくは40%超である。一方、初析フェライトを多く存在させようとすると、製造時間が増加する。現実的な製造時間を考慮すると、初析フェライトの面積率は70%以下に抑える必要がある。
[2-2.フェライト結晶粒の平均粒径:5~15μm]
 フェライトの結晶粒の平均粒径を微細化することで、球状化焼鈍後におけるセメンタイトなどの炭化物の凝集・球状化を促進させることができ、その結果、鋼の球状化度向上および硬さ低減を実現できる。こうした観点から、フェライト結晶粒の平均粒径を15μm以下に制御する必要がある。好ましくは13μm以下である。一方、微細化しすぎると硬さ上昇を招くため、5μm以上に制御する必要がある。好ましくは7μm以上である。
 ここでいうフェライト結晶粒とは、後方散乱電子回折像(Electron backscattering pattern;EBSP)解析の結果、結晶方位差(斜角)が15°を超える境界(大角粒界ともいう)を結晶粒界として、その結晶粒界に囲まれたフェライト領域をいう。また、ここでいう平均粒径とは、結晶粒界で囲まれた領域の面積を円に換算したときの直径の平均値、すなわち平均円相当直径をいう。
 フェライト結晶粒の平均粒径は、例えば電界放出型高分解能走査電子顕微鏡(Field emission scanning electron microscope;FE-SEM)およびEBSP解析装置を用いて測定される。
 さらに、本発明の実施形態に係る冷間加工用機械構造用鋼は、必要に応じて以下の任意の金属組織であってもよく、それによって球状化焼鈍後の鋼の特性が更に改善される。
[2-3.初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合:80%以下]
 より球状化焼鈍後の鋼の球状化度を向上させる観点から、初析フェライト以外の組織(以下、「残部組織」と呼ぶことがある)において、パーライトの割合を減らすことが有効である。残部組織中のパーライトの割合が多すぎると、球状化焼鈍後も棒状の炭化物が存在しやすく、鋼の球状化度が悪くなりやすい。好ましくは、初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合は80%以下であり、より好ましくは70%以下である。
 残部組織におけるパーライト以外の組織としては、ベイナイト、マルテンサイト、オーステナイト等が挙げられるが、全てベイナイトであることが鋼の球状化度を向上させる上でより好ましい。具体的には、残部組織中のパーライトの面積率の割合が80%以下の場合、残部組織中のベイナイトの面積率の割合が20%以上であることがより好ましく、残部組織中のパーライトの面積率の割合が70%以下の場合、残部組織中のベイナイトの面積率の割合が30%以上であることがより好ましい。
<3.硬さ>
 さらに、本発明の実施形態に係る冷間加工用機械構造用鋼は、必要に応じて以下の任意の硬さを有していてもよく、それによって球状化焼鈍後の鋼の特性が更に改善される。
[3.硬さが300HV以下]
 球状化焼鈍後の鋼の軟質化を図る上で、鋼の硬さを下げておくことが有効である。そのため、鋼の硬さを、HV350以下とし、好ましくはHV300以下とする。より好ましくはHV290以下である。
<4.製造方法>
 本発明の実施形態に係る冷間加工用機械構造用鋼の製造方法において、上述の化学成分組成を満足する鋼材を用い、加工および加工後の冷却を行う。加工および加工後の冷却は、それぞれ2段階で行う。
 具体的には、本発明の実施形態に係る冷間加工用機械構造用鋼の製造方法は、上述の化学成分組成を有する鋼材に、
 (a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程と、
 (b)前記工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程と、
 (c)前記工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程と、
 (d)前記工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程と、を含む。
 以下、各工程について詳述する。なお、ここでいう加工は、上述の要件を満たす限り任意の加工であってよく、例えばプレス加工、圧延加工がこれに含まれ得る。また、工程(c)および(d)をそれぞれ、第1冷却および第2冷却と呼ぶことがある。
[(a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程]
 初析フェライトの割合増加およびフェライト結晶粒の微細化のために、圧縮率20%以上の前加工を行う。好ましくは圧縮率が30%以上である。なお、圧縮率は、以下のように計算される。
<プレス加工を施す場合の圧縮率(この場合圧縮率は圧下率ともいう)>
  圧縮率(%)=(h1-h2)/h1×100
  h1:加工前の鋼の高さ、h2:加工後の鋼の高さ
<圧延加工により線材を得る場合の圧縮率(この場合圧縮率は減面率ともいう)>
  圧縮率(%)=(S1-S2)/S1×100
  S1:加工前の鋼の断面積、h2:加工後の鋼の断面積
 前加工時の温度は、初析フェライトの割合増加およびフェライト結晶粒の微細化のために、比較的低温であることが好ましい。
 また、前加工から仕上げ加工までの保持時間は、フェライト結晶粒の成長を抑制するために比較的短くする必要がある。そのため、保持時間は10秒以下とし、好ましくは5秒以下とする。
[(b)工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程]
 初析フェライトの割合増加およびフェライト結晶粒の微細化のために、20%以上の圧縮率で仕上げ加工を行う。好ましくは圧縮率が50%以上である。また、加工温度は、フェライト結晶粒の平均粒径を5~15μmとするために、800℃超1050℃以下とする。フェライト結晶粒の微細化のためには、1000℃以下が好ましく、950℃以下がより好ましい。一方、フェライト結晶粒の過度の微細化を防止するためには、825℃以上が好ましく、850℃以上がより好ましい。
[第1冷却:(c)工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程]
 初析フェライトの割合増加およびフェライト結晶粒の微細化のために、仕上げ加工後は速やかに所定の温度(以下、第1冷却停止温度と呼ぶことがある)まで冷却させる。仕上げ加工温度から第1冷却停止温度まで冷却させる時間は10秒以下とする。好ましくは5秒以下、更に好ましくは3秒以下とする。
 初析フェライトの割合増加およびフェライト結晶粒の平均粒径を5~15μmとするために、第1冷却停止温度は、750℃以上840℃以下とする。初析フェライトの割合増加のためには、775℃以上が好ましい。一方、温度が高すぎるとフェライト結晶粒の平均粒径が大きくなりやすいため、820℃以下が好ましい。
[第2冷却:(d)工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程]
 初析フェライトの割合増加、フェライト結晶粒微細化、残部組織中のパーライトの割合低減および硬さ低減のために、0.1℃/秒以上10℃/秒未満の平均冷却速度で、第1冷却停止温度から500℃以下まで冷却する。好ましい平均冷却速度としては、1~3℃/秒である。
 工程(d)後、500℃以下の温度範囲における冷却方法は特に限定されず、例えば、放冷であってもよく、又は第2冷却の平均冷却速度が例えば1℃/秒未満と比較的遅い場合には時間短縮のためにガス急冷等であってもよい。
 以上のように本発明の実施形態に係る冷間加工用機械構造用鋼を得ることができる。本発明の実施形態に係る冷間加工用機械構造用鋼は、その後球状化焼鈍が施されることを想定しているが、場合によっては、球状化焼鈍前又は球状化焼鈍後に他の加工(伸線加工等)が施されてもよい。
本発明の実施形態に係る冷間加工用機械構造用鋼は、その後比較的時間を短縮した球状化焼鈍(例えば、従来:約15時間に対して約11時間に短縮した球状化焼鈍)が施された場合においても、球状化度に優れ、且つ十分に軟質化することができる。また、本発明の実施形態において、上記製造条件で得た鋼材に対し、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行うことにより、鋼線を製造することができる。ここでいう鋼線とは、上記製造条件で得た鋼材に対し、焼鈍、球状化焼鈍、伸線加工、圧造、焼入れ焼戻し等を施して特性を調整した線状の鋼材を指すが、上記焼鈍等の工程以外に、2次加工メーカーが一般的に行う工程を経た、線状の鋼材も含む。
 以上のように本発明の実施形態に係る冷間加工用機械構造用鋼の製造方法を説明したが、本発明の実施形態に係る冷間加工用機械構造用鋼の所望の特性を理解した当業者が試行錯誤を行い、本発明の実施形態に係る所望の特性を有する冷間加工用機械構造用鋼を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の実施形態の技術的範囲に包含される。
 表1の鋼種AおよびDで示される化学成分組成の鋼を用いて、φ10mm×15mmの加工フォーマスタ用の試験片を作製した。作製した加工フォーマスタ用の試験片を用いて、表2に記載の条件にて加工フォーマスタ試験機によりプレス加工および冷却を行った。表2に記載されていないが、500℃以下の温度域の冷却は、第2冷却時の平均冷却速度が1℃/秒以上の場合、その第2冷却時の平均冷却速度で室温付近(25℃~40℃)まで冷却し、第2冷却時の平均冷却速度が1℃/秒未満の場合、ガス急冷とした。
 表1および表2、ならびに後述する表3~5において、下線を付した数値は本発明の実施形態の範囲から外れていることを示す。なお、表1の炭素当量の欄には、下記式(1)で計算される値を記載した。

 炭素当量(Ceq)=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 ・・・(1)

 ここで、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]および[V]は、それぞれ、質量%で示したC、Si、Mn、Ni、Cr、MoおよびVの含有量を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 加工熱処理試験を施した試験片を中心軸に沿って切断して4等分し、縦断面を含む4つのサンプルを得た。そのうちの1つは球状化焼鈍を施さないサンプル(以下、球状化焼鈍前サンプルと呼ぶことがある)とし、他の1つは球状化焼鈍を施したサンプル(以下、球状化焼鈍後サンプルと呼ぶことがある)とした。球状化焼鈍は、試験片をそれぞれ真空封入管に入れて行った。
 球状化焼鈍は以下の2条件(SA1およびSA2)で実施した。
 SA1:760℃で5時間均熱保持後、平均冷却速度13℃/時で685℃まで冷却し、その後放冷
 SA2:750℃で2時間均熱保持後、平均冷却速度13℃/時で660℃まで冷却し、その後放冷
 SA1は、従来技術における球状化焼鈍時間:約15時間に対して、球状化焼鈍時間:約11時間に短縮した条件とした。なお、ここでいう球状化焼鈍時間は、均熱保持時間と放冷するまでの冷却時間とを足し合わせた時間とした。また、SA2は、SA1と比較して温度の追従の遅れを想定して低温で行う条件とした。
 球状化焼鈍前サンプルについて、縦断面が観察できるよう樹脂埋めし、(1)初析フェライトの面積率、(2)フェライト結晶粒の平均粒径、(3)初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合、および(4)球状化焼鈍前の硬さを測定した。
 また、球状化焼鈍後サンプルについても、上記と同様に、縦断面が観察できるよう樹脂埋めし、(5)球状化焼鈍後の硬さおよび(6)球状化度を測定した。
 (1)~(6)のいずれの測定についても、試験片の直径をDとし、試験片の側面から中心軸に向かってD/4の位置を測定した。
(1)初析フェライトの面積率の測定
 球状化焼鈍前サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置を光学顕微鏡にて倍率400倍(視野領域:横220μm×縦165μm)および1000倍(視野領域:横88μm×縦66μm)で写真を撮影した。得られた写真について、等間隔の15本の縦線、等間隔の10本の横線を格子状に引き、150個の交点上に存在する初析フェライトの点数を測定して、当該点数を150で除した値を初析フェライトの面積率(%)とした。
 この際、後述するフェライト結晶粒の平均粒径が10μm以上のサンプルについては倍率400倍の写真を用いて測定し、5μm未満のサンプルについては倍率1000倍の写真を用いて測定し、5μm以上10μm未満のサンプルについては倍率400倍または1000倍のいずれかの写真を適宜選択して測定した。
(2)フェライト結晶粒の平均粒径の測定
 フェライト結晶粒の平均粒径は、FE-SEMおよびEBSP解析装置を用いて測定した。
 球状化焼鈍前サンプルの縦断面のD/4位置について、FE-SEMにより後方散乱電子回折像を得た。得られた像において、EBSP解析装置を用いて、結晶方位差(斜角)が15°を超える境界、すなわち、大角粒界を結晶粒界として「結晶粒」を定義し、フェライトにおける結晶粒の平均粒径を決定した。その際、測定領域は200μm×200μm、測定ステップは0.4μm間隔として測定し、測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1以下の測定点は解析対象から削除した。
(3)初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合の測定
 球状化焼鈍前サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置を光学顕微鏡にて倍率400倍(視野領域:横220μm×縦165μm)および1000倍(視野領域:横88μm×縦66μm)で写真を撮影した。得られた写真について、等間隔の15本の縦線、等間隔の10本の横線を格子状に引き、150個の交点上に存在する初析フェライトの点数Aを測定した。次に、150個の交点上に存在するパーライトの点数Bを測定して、点数Bを点数(150-A)で除した値を初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合(%)とした。
 この際、後述するフェライト結晶粒の平均粒径が10μm以上のサンプルについては倍率400倍の写真を用いて測定し、5μm未満のサンプルについては倍率1000倍の写真を用いて測定し、5μm以上10μm未満のサンプルについては倍率400倍または1000倍のいずれかの写真を適宜選択して測定した。
(4)球状化焼鈍前の硬さの測定
 球状化焼鈍前サンプルの縦断面について、ビッカース硬度計を用いて、D/4位置にて荷重1kgfで3~5点測定し、その平均値(HV)を求めた。
(5)球状化焼鈍後の硬さの測定
 球状化焼鈍後サンプルの縦断面について、ビッカース硬度計を用いて、D/4位置にて荷重1kgfで3~5点測定し、その平均値(HV)を求めた。
 硬さは、鋼種の炭素当量が大きい程増大することが知られているため、本実施例の球状化焼鈍後の硬さの判定基準は、鋼種の炭素当量(Ceq)に応じて設定した。具体的には、SA1後の硬さについては、下記式(2)を満たすか否かにより判定した。

 (硬さ(HV)) < 97.3×Ceq+84 ・・・(2)

 SA1後の硬さが、上記式(2)を満たす場合を最も良好(◎)とし、上記式(2)を満たさない場合を不良(×)とした。
 なお、炭素当量が0.70以上の場合、SA1後の硬さがHV150以下であれば、より好ましい。
 また、SA2は、SA1よりも低温で軟質化しにくい焼鈍条件であるため、SA2後の硬さについては、上記式(2)とは異なる基準(緩やかな基準)を設定した。具体的には、SA2後の硬さについては、下記式(3)を満たすか否かにより判定した。

 (硬さ(HV)) < 97.3×Ceq+98 ・・・(3)

 SA2後の硬さが、上記式(3)を満たす場合を最も良好(◎)とし、上記式(3)を満たさない場合を不良(×)とした。
 なお、炭素当量が0.70以上の場合、SA2後の硬さがHV165以下であれば、より好ましい。
(6)球状化度の測定
 球状化焼鈍後サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置にて光学顕微鏡を用いて倍率400倍(視野領域:横220μm×縦165μm)で観察した。観察した像について、JISG3509-2に記載されている「球状化組織の程度」に従って、球状化度1~3番を決定した。判定は球状化度が1番のときは最も良好(◎)とし、2番のときは良好(○)とし、3番のときは不良(×)とした。
 上記(1)~(6)の要領で評価した球状化焼鈍前の組織および硬さ、ならびに球状化焼鈍後の硬さおよび球状化度を表3に示す。なお、SA1後の総合判定については、SA1後の硬さおよび球状化度において、全て◎のときは最も良好(◎)とした。◎と○が混在するときは、良好(○)とした。×が1つでも混在するときは、不良(×)とした。
Figure JPOXMLDOC01-appb-T000003
 表3の結果において、残部組織の内、パーライト以外は全てベイナイトであった。
 表3の結果より、次のように考察できる。表3の試験No.1-1~1-4、1-9および1-10は、いずれも本発明の実施形態で規定する要件の全てを満足する例であり、従来よりも球状化焼鈍時間が短縮されたSA1後において、硬さおよび球状化度がいずれも良好または最も良好であった。特に試験No.1-1~1-2は、試験No.1-3~1-4、1-9および1-10とは異なり、炭素含有量が好ましい範囲(0.40質量%未満)で、且つ第2冷却時の平均冷却速度が好ましい範囲内(1~3℃/秒)にあり、その結果好ましい要件(初析フェライト面積率40%超および残部組織のパーライト面積率80%以下)を満たしたため、SA1後の球状化度が最も良好となり、総合判定において最も良好となった。
 一方、表3の試験No.1-5~1-8は、本発明の実施形態で規定する要件を満たしていない例であり、SA1後の硬さまたは球状化度が不良であった。
 試験No.1-5は、仕上げ加工温度が1200℃と高かったため、フェライト結晶粒の平均粒径が15μm超となり、SA1後の球状化度が不良であった。
 試験No.1-6は、仕上げ加工温度が800℃と低いため、フェライト結晶粒の平均粒径が5μm未満となり、SA1後の硬さが不良であった。
 試験No.1-7は、第2冷却の平均冷却速度が10℃/秒と速かったため、初析フェライトの面積率が30%未満となり、SA1後の硬さが不良であった。
 試験No.1-8は、仕上げ加工温度が1200℃と高く、初析フェライトの面積率が30%未満となり、かつフェライト結晶粒の平均粒径が15μm超となり、SA1後の硬さが不良であった。
 また、表3の試験No.1-1~1-4、1-9および1-10のように本発明の実施形態で規定する要件の全てを満足することにより、SA1と比較して温度の追従の遅れを想定して低温で球状化焼鈍を行ったSA2後においても、十分に軟質化することがわかった。
 表1の鋼種B、Cで示される化学成分組成の鋼を用いて、実機の圧延ラインで表4の条件で圧延加工および冷却を行った。なお、実機の圧延ラインでは、加熱炉、粗列圧延機、中間列圧延機、中間水冷帯、ブロックミル圧延機、サイジングミル圧延機、製品水冷帯、冷却コンベアおよび立体倉庫がこの順に接続されており、前加工はブロックミル圧延機で行い、仕上げ加工はサイジングミル圧延機で行い、第1冷却および第2冷却は冷却コンベアで行った。表4に記載されていないが、500℃以下の温度域の冷却は、約400℃までは第2冷却時の平均冷却速度で冷却し、その後は放冷とした。得られた圧延材からサンプルを切り出し、そのうちの1つは球状化焼鈍を施さないサンプルとし、他の1つは球状化焼鈍を施したサンプルとした。
 球状化焼鈍は以下の2条件(SA3およびSA4)で実施した。SA3は、従来技術における球状化焼鈍時間:約15時間に対して、球状化焼鈍時間:約9時間に短縮した条件とした。また、SA4はSA3と比較して温度の追従の遅れを想定して低温で行う条件とした。
 SA3:770℃で2時間均熱保持後、平均冷却速度13℃/時で685℃まで冷却し、その後放冷
 SA4:750℃で2時間均熱保持後、平均冷却速度13℃/時で660℃まで冷却し、その後放冷。
Figure JPOXMLDOC01-appb-T000004
 実施例1と同様に、(1)初析フェライトの面積率、(2)フェライト結晶粒の平均粒径、(3)初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合、(4)球状化焼鈍前の硬さ、(5)球状化焼鈍後の硬さおよび(6)球状化度を測定、評価した。なお、球状化焼鈍後の硬さの判定としては、SA3後の硬さについて、上記式(2)を満たす場合を最も良好(◎)とし、上記式(2)を満たさない場合を不良(×)とした。また、炭素当量が0.70以上の場合、SA3後の硬さがHV150以下であれば、より好ましい。SA4後の硬さについて、上記式(3)を満たす場合を最も良好(◎)とし、上記式(3)を満たさない場合を不良(×)とした。なお、炭素当量が0.70以上の場合、SA4後の硬さがHV165以下であれば、より好ましい。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果において、残部組織の内、パーライト以外は全てベイナイトであった。
 表5の結果より、次のように考察できる。表5のNo.2-2はいずれも本発明の実施形態で規定する要件の全てを満足する例であり、SA3後の硬さおよび球状化度が、いずれも最も良好または良好であった。
 一方、表5のNo.2-1は、第1冷却の冷却停止温度が840℃超であり、初析フェライトの面積率が30%未満となり、かつフェライト結晶粒の平均粒径が15μm超となり、SA3後の硬さおよび球状化度が不良であった。
 本発明の実施形態に係る冷間加工用機械構造用鋼は、冷間鍛造、冷間圧造又は冷間転造等の冷間加工によって製造される各種部品の素材に好適である。鋼の形態は特に限定されないが、例えば線材または棒鋼等の圧延材とすることができる。
 前記部品には、例えば、自動車用部品、建設機械用部品が含まれ、具体的には、ボルト、ねじ、ナット、ソケット、ボールジョイント、インナーチューブ、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクタ、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグ、ピニオンギヤ、ステアリングシャフト及びコモンレール等が含まれる。本発明の実施形態に係る冷間加工用機械構造用鋼は、上記の部品の素材として好適に用いられる機械構造用鋼として産業上有用であり、球状化焼鈍後、室温および加工発熱領域において上記の各種部品に製造される際、変形抵抗が低く、優れた冷間加工性を発揮することができる。
 本出願は、出願日が2019年1月31日である日本国特許出願、特願第2019-016219号および2019年11月22日である日本国特許出願、特願第2019-211181号を基礎出願とする優先権主張を伴う。特願第2019-016219号および特願第2019-211181号は参照することにより本明細書に取り込まれる。

Claims (7)

  1.  C :0.32~0.44質量%、
     Si:0.15~0.35質量%、
     Mn:0.55~0.95質量%、
     P :0.030質量%以下、
     S :0.030質量%以下、
     Cr:0.85~1.25質量%、
     Mo:0.15~0.35質量%、
     Al:0.01~0.1質量%、
     残部:鉄および不可避不純物からなり、
     初析フェライトの面積率が30%以上70%以下であり、
     フェライト結晶粒の平均粒径が5~15μmである冷間加工用機械構造用鋼。
  2.  前記初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合が80%以下である、請求項1に記載の冷間加工用機械構造用鋼。
  3.  硬さがHV300以下である、請求項1に記載の冷間加工用機械構造用鋼。
  4.  以下の(a)~(c)の少なくとも1つをさらに含有する請求項1~3のいずれか1つに記載の冷間加工用機械構造用鋼。
     (a)Cu:0.25質量%以下(0質量%を含まない)、およびNi:0.25質量%以下(0質量%を含まない)よりなる群から選択される一種以上
     (b)Ti:0.2質量%以下(0質量%を含まない)、Nb:0.2質量%以下(0質量%を含まない)、およびV:1.5質量%以下(0質量%を含まない)よりなる群から選択される一種以上
     (c)N:0.01質量%以下(0質量%を含まない)、Mg:0.02質量%以下(0質量%を含まない)、Ca:0.05質量%以下(0質量%を含まない)、Li:0.02質量%以下(0質量%を含まない)、およびREM:0.05質量%以下(0質量%を含まない)よりなる群から選択される一種以上
  5.  請求項1に記載の化学成分組成の鋼を用意し、
    (a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程と、
    (b)前記工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程と、
    (c)前記工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程と、
    (d)前記工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程とを含む冷間加工用機械構造用鋼の製造方法。
  6.  請求項4に記載の化学成分組成の鋼を用意し、
    (a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程と、
    (b)前記工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程と、
    (c)前記工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程と、
    (d)前記工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程とを含む冷間加工用機械構造用鋼の製造方法。
  7.  請求項5または6の方法で製造した冷間加工用機械構造用鋼に、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行う鋼線の製造方法。
PCT/JP2020/000840 2019-01-31 2020-01-14 冷間加工用機械構造用鋼およびその製造方法 WO2020158368A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080010594.8A CN113348256A (zh) 2019-01-31 2020-01-14 冷加工用机械结构用钢及其制造方法
CA3126378A CA3126378C (en) 2019-01-31 2020-01-14 Mechanical structure steel for cold-working and manufacturing method therefor
KR1020217025731A KR102629833B1 (ko) 2019-01-31 2020-01-14 냉간 가공용 기계 구조용 강 및 그 제조 방법
US17/426,412 US20220106670A1 (en) 2019-01-31 2020-01-14 Mechanical structure steel for cold-working and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019016219 2019-01-31
JP2019-016219 2019-01-31
JP2019211181A JP7247078B2 (ja) 2019-01-31 2019-11-22 冷間加工用機械構造用鋼およびその製造方法
JP2019-211181 2019-11-22

Publications (1)

Publication Number Publication Date
WO2020158368A1 true WO2020158368A1 (ja) 2020-08-06

Family

ID=71842241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000840 WO2020158368A1 (ja) 2019-01-31 2020-01-14 冷間加工用機械構造用鋼およびその製造方法

Country Status (2)

Country Link
US (1) US20220106670A1 (ja)
WO (1) WO2020158368A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959479B (zh) * 2022-05-30 2023-08-25 包头钢铁(集团)有限责任公司 一种稀土耐磨合金钢棒用钢及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269552A (ja) * 1998-03-25 1999-10-05 Nisshin Steel Co Ltd 伸びフランジ性に優れた中・高炭素鋼板の製造法
JP2002256378A (ja) * 2001-03-06 2002-09-11 Mitsubishi Heavy Ind Ltd 低合金耐熱鋼及びその熱処理方法並びにタービンロータ
JP2012241216A (ja) * 2011-05-18 2012-12-10 Jfe Steel Corp 高炭素薄鋼板およびその製造方法
WO2013031640A1 (ja) * 2011-08-26 2013-03-07 新日鐵住金株式会社 非調質機械部品用線材、非調質機械部品用鋼線、及び、非調質機械部品とそれらの製造方法
JP2013227602A (ja) * 2012-04-24 2013-11-07 Kobe Steel Ltd 冷間加工用機械構造用鋼及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269552A (ja) * 1998-03-25 1999-10-05 Nisshin Steel Co Ltd 伸びフランジ性に優れた中・高炭素鋼板の製造法
JP2002256378A (ja) * 2001-03-06 2002-09-11 Mitsubishi Heavy Ind Ltd 低合金耐熱鋼及びその熱処理方法並びにタービンロータ
JP2012241216A (ja) * 2011-05-18 2012-12-10 Jfe Steel Corp 高炭素薄鋼板およびその製造方法
WO2013031640A1 (ja) * 2011-08-26 2013-03-07 新日鐵住金株式会社 非調質機械部品用線材、非調質機械部品用鋼線、及び、非調質機械部品とそれらの製造方法
JP2013227602A (ja) * 2012-04-24 2013-11-07 Kobe Steel Ltd 冷間加工用機械構造用鋼及びその製造方法

Also Published As

Publication number Publication date
US20220106670A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP5486634B2 (ja) 冷間加工用機械構造用鋼及びその製造方法
JP4435954B2 (ja) 冷間鍛造用棒線材とその製造方法
JP4435953B2 (ja) 冷間鍛造用棒線材とその製造方法
JP7247078B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
WO2015194411A1 (ja) 冷間加工用機械構造用鋼及びその製造方法
JP6461672B2 (ja) 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト
US8034199B2 (en) Case-hardening steel excellent in cold forgeability and low carburization distortion property
JP5704716B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
WO2018061101A1 (ja)
JP2006233269A (ja) 強度−捻れ特性バランスに優れた鋼部品およびその製造方法と該鋼部品用鋼材
JP7151885B2 (ja) 鋼線
JP4485148B2 (ja) 冷間鍛造加工性と転造加工性に優れた高炭素鋼管およびその製造方法
WO2020158368A1 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP2018024909A (ja) 冷間加工用機械構造用鋼およびその製造方法
JP4801485B2 (ja) 冷間鍛造部品、それを得るための製造方法および鋼材
JP3999457B2 (ja) 冷間加工性に優れた線材・棒鋼およびその製造方法
JP5147272B2 (ja) 軸方向に対して直交する方向での衝撃特性に優れた冷間鍛造非調質高強度鋼部品
WO2020090149A1 (ja) ボルト用鋼及びその製造方法
WO2022181272A1 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP6645638B1 (ja) ボルト用鋼
JP2022132084A (ja) 冷間加工用機械構造用鋼およびその製造方法
JP3282491B2 (ja) 冷間加工性に優れた機械構造用鋼材及びその製造方法
JP2021183710A (ja) 鋼線、非調質機械部品用線材、及び非調質機械部品
CN116888293A (zh) 冷加工用机械结构用钢及其制造方法
JPH11236617A (ja) 冷間加工性と耐遅れ破壊性に優れた高強度ボルト用鋼およびその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3126378

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025731

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20749210

Country of ref document: EP

Kind code of ref document: A1