JP2022132084A - 冷間加工用機械構造用鋼およびその製造方法 - Google Patents

冷間加工用機械構造用鋼およびその製造方法 Download PDF

Info

Publication number
JP2022132084A
JP2022132084A JP2021209428A JP2021209428A JP2022132084A JP 2022132084 A JP2022132084 A JP 2022132084A JP 2021209428 A JP2021209428 A JP 2021209428A JP 2021209428 A JP2021209428 A JP 2021209428A JP 2022132084 A JP2022132084 A JP 2022132084A
Authority
JP
Japan
Prior art keywords
mass
less
steel
cooling
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021209428A
Other languages
English (en)
Inventor
浩司 山下
Koji Yamashita
悠太 井上
Yuta Inoue
昌之 坂田
Masayuki Sakata
琢哉 高知
Takuya Kochi
洋介 松本
Yosuke Matsumoto
辰徳 内田
Tatsunori Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to US18/546,718 priority Critical patent/US20240150861A1/en
Priority to PCT/JP2022/004045 priority patent/WO2022181272A1/ja
Priority to CA3210932A priority patent/CA3210932A1/en
Priority to CN202280015614.XA priority patent/CN116888293A/zh
Priority to KR1020237027510A priority patent/KR20230132523A/ko
Priority to TW111105576A priority patent/TWI799142B/zh
Publication of JP2022132084A publication Critical patent/JP2022132084A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

【課題】比較的低い球状化焼鈍温度において、球状化処理時間を短くしても十分に軟質化することができる冷間加工用機械構造用鋼およびその製造方法を提供する。【解決手段】C:0.30~0.45質量%、Si:0.10~0.40質量%、Mn:0.50~1.00質量%、P:0.050質量%以下、S:0.050質量%以下、Cr:0.80~1.30質量%、Al:0.01~0.10質量%、残部:鉄および不可避不純物からなり、初析フェライトの面積率が10%以上、70%以下であり、且つベイナイト、マルテンサイトおよびパーライトからなる群から選択される1つ以上を含み、転位密度が3.5×1014m-2以上である冷間加工用機械構造用鋼である。【選択図】図1

Description

本開示は、冷間加工用機械構造用鋼およびその製造方法に関する。
自動車用部品、建設機械用部品等の各種部品を製造するにあたって、炭素鋼または合金鋼などの熱間圧延材に、冷間加工性を付与する目的で球状化焼鈍が施される場合が多い。球状化焼鈍後を行うことで冷間加工性を向上した圧延材に対して冷間加工を行い、必要に応じて更に切削加工などの機械加工を施し、所定の形状に成形し、その後焼入れ焼戻し処理を行って最終的な強度調整が行われる。
近年は、省エネルギー化の観点により、球状化焼鈍の条件が見直しされ、特に球状化焼鈍の短時間化が要求されている。球状化焼鈍の処理時間を削減することができれば、それに応じてエネルギー消費量、CO排出量の削減が期待できる。
しかしながら、従来から知られている熱間圧延材を用い、球状化焼鈍処理の時間(以下、「球状化焼鈍時間」と呼ぶことがある)を大幅に短くした場合、セメンタイトの球状化程度の指標である球状化度が悪化し、鋼を十分に軟質化させることが困難となり、冷間加工性が劣化することが知られており、球状化焼鈍時間の短時間化は容易ではない。そのため、球状化焼鈍時間を短くした場合であっても、鋼を十分に軟質化させるための技術が検討されている。
例えば、特許文献1では、所定の成分を有する圧延材において、初析フェライトの面積率を30%以上70%以下とし、フェライト結晶粒の平均粒径を5~15μmとすることで、球状化焼鈍時間を短縮しても冷間成形性を確保できる機械構造用鋼が示されている。
特開2020-125538号公報
特許文献1に記載の機械構造用鋼を用いていることにより、従来15時間程度要していた球状化焼鈍時間(所定の保持温度での保持時間および保持温度から所定の空冷開始温度までの冷却時間の合計)を10時間程度までは短縮できる。しかし、球状化焼鈍時間を短くしたいとの要望は以前にも増して強くなっており、特許文献1に記載の機械構造用鋼を用いてもこのような要望に応えられないという問題があった。
本発明は、このような状況を鑑みてなされたものであり、例えば750℃程度のような比較的低い球状化焼鈍温度において、球状化処理時間を例えば10時間よりも顕著に短い時間のように、従来と比べ明らかに短くしても十分に軟質化することができる冷間加工用機械構造用鋼およびその製造方法を提供することである。
本発明の態様1は、
C :0.30~0.45質量%、
Si:0.10~0.40質量%、
Mn:0.50~1.00質量%、
P :0.050質量%以下、
S :0.050質量%以下、
Cr:0.80~1.30質量%、
Al:0.01~0.10質量%、
残部:鉄および不可避不純物からなり、
初析フェライトの面積率が10%以上、70%以下であり、且つベイナイト、マルテンサイトおよびパーライトからなる群から選択される1つ以上を含み、
転位密度が3.5×1014-2以上である
冷間加工用機械構造用鋼である。
本発明の態様2は、前記初析フェライトの平均結晶粒径が6μm以下である、態様1に記載の冷間加工用機械構造用鋼である。
本発明の態様3は、
Cu:0.25質量%以下(0質量%を含まない)、
Ni:0.25質量%以下(0質量%を含まない)、および
Mo:0.40質量%以下(0質量%を含まない)、よりなる群から選択される1つ以上を更に含有する態様1または2に記載の冷間加工用機械構造用鋼である。
本発明の態様4は、
Ti:0.20質量%以下(0質量%を含まない)、
Nb:0.20質量%以下(0質量%を含まない)、および
V :1.50質量%以下(0質量%を含まない)よりなる群から選択される1つ以上を更に含有する態様1~3のいずれか1つに記載の冷間加工用機械構造用鋼である。
本発明の態様5は、
N :0.01質量%以下(0質量%を含まない)、
Mg :0.02質量%以下(0質量%を含まない)、
Ca :0.05質量%以下(0質量%を含まない)、
Li :0.02質量%以下(0質量%を含まない)、および
REM:0.05質量%以下(0質量%を含まない)よりなる群から選択される1つ以上を更に含有する態様1~4のいずれか1つに記載の冷間加工用機械構造用鋼である。
本発明の態様6は、
(a)800℃超1000℃以下の加工温度T0において、圧縮率20%以上で熱間加工を行う工程と、
(b)前記工程(a)の後、670℃以上730℃以下の第1冷却温度T1まで5℃/秒以上の第1冷却速度CR1で冷却する工程と、
(c)前記工程(b)の後、前記第1冷却温度T1で10~600秒の保持時間t1の間保持する工程と、
(d)前記工程(c)の後、550℃以下の第2冷却温度T2まで5℃/秒以上の第2冷却速度CR2で冷却する工程と、を含む態様1~5のいずれか1つに記載の冷間加工用機械構造用鋼の製造方法である。
本発明の態様7は、態様6に記載の方法で製造した冷間加工用機械構造用鋼に、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行う鋼線の製造方法である。
本発明の1つの実施形態では、比較的低い球状化焼鈍温度で従来と比べ明らかに短い球状化焼鈍時間であっても十分に軟質化することができる冷間加工用機械構造用鋼およびその製造を提供することが可能である。
図1は本発明に係る冷間加工用構造用鋼の製造方法における鋼材の加工熱処理パターン(加工熱処理履歴)を示す模式図である。 図2は球状化焼鈍条件(SA1)を示す模式図である。
本発明者らは様々な角度から検討をした。そして、所定の成分を有する冷間加工用機械構造用鋼において、面積率で10%以上、70%以下という適正な量の初析フェライトを含み、金属組織の初析フェライト以外の部分がベイナイト、マルテンサイトおよびパーライトからなる群から選択される1つ以上を含み、転位密度を3.5×1014-2以上とすることで、球状化焼鈍において温度が比較的低く、且つ時間が明らかに短い場合でも十分に軟質化することができる冷間加工用機械構造用鋼を実現できることを見出した。
また、このような冷間加工用機械構造用鋼は、所定の組成を有する鋼に対して、(a)800℃超1000℃以下の加工温度T0において、圧縮率20%以上で熱間加工を行うこと、(b)工程(a)の後、670℃以上730℃以下の第1冷却温度T1まで5℃/秒以上の第1冷却速度CR1で冷却すること、(c)工程(b)の後、第1冷却温度T1で10~600秒の保持時間t1の間保持すること、および(d)工程(c)の後、550℃以下の第2冷却温度T2まで5℃/秒以上の第2冷却速度CR2で冷却すること、を含むことで製造可能であることを見出した。
以下に、本発明の実施形態の詳細を示す。
なお、本明細書において、「線材」とは、圧延線材の意味で用い、熱間圧延およびその後の室温までの冷却工程を経た線状の鋼材を指す。また「鋼線」とは、上記圧延線材に焼鈍等を施して特性を調整した線状の鋼材を指す。
<1.化学成分組成>
本発明の実施形態に係る冷間加工用機械構造用鋼は、C:0.30~0.45質量%、Si:0.10~0.40質量%、Mn:0.50~1.00質量%、P:0.050%質量%以下、S:0.050質量%以下、Cr:0.80~1.30質量%、Al:0.01~0.10質量%を含有する。
以下、各元素について詳述する。
(C:0.30~0.45質量%)
Cは、強度付与元素であり、0.30質量%未満では必要な最終製品の強度が得られない。一方、0.45質量%を超えると鋼の冷間加工性および靱性が低下する。そのため、Cの含有量は、0.30~0.45質量%とする。また、Cの含有量は好ましくは0.43質量%以下、より好ましくは0.40質量%以下である。初析フェライトをより多く析出させることができるからである。
(Si:0.10~0.40質量%)
Siは、脱酸元素として、および固溶体硬化による最終製品の強度を増加させることを目的として含有させる強度向上元素として有用である。このような効果を有効に発揮させるため、Si含有量を0.10質量%以上とする。一方、Siが過剰に含有されると硬さが過度に上昇して鋼の冷間加工性が劣化する。そのため、Si含有量を0.40質量%以下とする。
(Mn:0.50~1.00質量%)
Mnは、焼入れ性の向上を通じて、最終製品の強度を増加させるのに有効な元素である。このような効果を有効に発揮させるため、Mn含有量を0.50質量%以上とする。一方、Mnが過剰に含有されると硬さが上昇して鋼の冷間加工性が劣化する。そのため、Mn含有量を1.00質量%以下とする。
(P:0.050質量%以下)
Pは、鋼中に不可避的に含まれる元素であり、鋼中で粒界偏析を起こし、鋼の延性の劣化の原因となる。そのため、P含有量を0.050質量%以下とする。
(S:0.050質量%以下)
Sは、鋼中に不可避的に含まれる元素であり、鋼中でMnSとして存在して鋼の延性を劣化させるので、鋼の冷間加工性を劣化させる有害な元素である。そのため、S含有量を0.050質量%以下とする。
(Cr:0.80質量%以上1.30質量%以下)
Crは、鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素である。こうした効果を有効に発揮させるため、Cr含有量は0.80質量%以上とする。このような効果は、Cr含有量が増加するに従って大きくなる。しかしながら、Cr含有量が過剰になると、強度が高くなり過ぎて鋼の冷間加工性を劣化させるため、1.30質量%以下とする。
(Al:0.01質量%以上0.10質量%以下)
Alは、脱酸剤として有用であると共に、Nと結合してAlNを析出し、加工時に結晶粒が異常成長して強度が低下するのを防止する元素である。こうした効果を有効に発揮させるため、Al含有量は0.01質量%以上とし、好ましくは0.015質量%以上、より好ましくは0.020質量%以上である。しかし、Al含有量が過剰になると、Alが過剰に生成して冷間鍛造性を劣化させる。そのため、Al含有量は0.10質量%以下とし、好ましくは0.090質量%以下、より好ましくは0.080質量%以下である。
基本成分は上記のとおりであり、好ましい実施形態の1つでは、残部は鉄および不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、B、As、Sn、Sb、Ca、O、H等)の混入が許容される。
なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
(その他の選択的元素)
さらに、本発明の別の好ましい実施形態では、本発明の実施形態に係る作用を損なわない範囲で必要に応じて上述した以外の元素を含有させてよい。そのような選択元素の例を以下に示す。含有される成分に応じて鋼の特性が更に改善される。
なお、その他の選択元素における「0質量%を含まない」の記載は、不純物として不可避的に含まれる量(不純物レベルの量)を除き、意図的に添加を行うことを意味する。
(Cu:0.25質量%以下(0質量%を含まない)、Ni:0.25質量%以下(0質量%を含まない)およびMo:0.40質量%以下(0質量%を含まない)よりなる群から選択される1つ以上)
Cu:0.25質量%以下(0質量%を含まない)、Ni:0.25質量%以下(0質量%を含まない)
CuおよびNiは、焼入れ性を向上させると共に、製品強度を高めるのに有効に作用する元素である。こうした作用は、これらの元素の含有量が増加するにつれて増大するが、有効に発揮させるには、CuおよびNiは夫々好ましくは0.05質量%以上、より好ましくは0.08質量%以上、更に好ましくは0.10質量%以上である。しかし過剰に含有させると過冷組織が過剰に生成し、強度が高くなりすぎて冷間鍛造性が低下する。従ってCuおよびNiは夫々0.25質量%以下とすることが好ましい。より好ましくは0.22質量%以下、更に好ましくは0.20質量%以下である。なお、CuおよびNiは、夫々、単独で含有させてもよいし、両方を含有させてもよい。またCuおよびNiの両方を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
Mo:0.40質量%以下(0質量%を含まない)
Moは、鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素であることから意図的に添加して含有させてよい。このような効果は、Mo含有量が増加するに従って大きくなる。しかしながら、Mo含有量が過剰になると、強度が高くなり過ぎて鋼の冷間加工性が劣化する。特に、MoをCrと共に鋼に含有させることにより、鋼が球状化焼鈍後に顕著に軟質化し難くなり得る。そのため、Moは0.40質量%以下とする。
(Ti:0.20質量%以下(0質量%を含まない)、Nb:0.20質量%以下(0質量%を含まない)、およびV:1.50質量%以下(0質量%を含まない)よりなる群から選択される1つ以上)
Ti、Nb、Vは、Nと結合して化合物(窒化物)を形成し、鋼中の固溶N量を低減させて、変形抵抗低減効果が得られる元素である。こうした効果を発揮させるためには、Ti、Nb、Vは夫々、好ましくは0.05質量%以上、より好ましくは0.06質量%以上、更に好ましくは0.08質量%以上含有される。しかし、これらの元素を過剰に含有すると、窒化物量が増加し、変形抵抗が上昇して冷間鍛造性が劣化するため、Ti、Nbは夫々好ましくは0.20質量%以下、より好ましくは0.18質量%以下、更に好ましくは、0.15質量%以下であり、Vは好ましくは1.50質量%以下、より好ましくは1.30質量%以下、更に好ましくは1.00質量%以下である。なお、Ti、NbおよびVは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
(N:0.01質量%以下(0質量%を含まない)、Mg:0.02質量%以下(0質量%を含まない)、Ca:0.05質量%以下(0質量%を含まない)、Li:0.02質量%(0質量%を含まない)、および希土類元素(Rare Earth Metal:REM):0.05質量%以下(0質量%を含まない)よりなる群から選択される1つ以上)
Nは、鋼に不可避的に含まれる不純物であるが、鋼中に固溶Nが含まれていると、ひずみ時効による硬さ上昇、延性低下を招き、冷間鍛造性が劣化する。したがって、Nは、0.01質量%以下が好ましく、より好ましくは0.009質量%以下、更に好ましくは0.008質量%以下である。また、Mg、Ca、Li、及びREMは、MnS等の硫化化合物系介在物を球状化させ、鋼の変形能を向上させるのに有効な元素である。こうした作用はその含有量が増加するにつれて増大するが、有効に発揮させるためには、Mg、Ca、Li及びREMの含有量は、夫々好ましくは0.0001質量%以上、より好ましくは0.0005質量%以上である。しかし過剰に含有させてもその効果は飽和し、含有量に見合う効果が期待できないので、Mg及びLiの含有量は夫々好ましくは0.02質量%以下、より好ましくは0.018質量%以下、更に好ましくは0.015質量%以下である。CaとREMの含有量は夫々好ましくは0.05質量%以下、より好ましくは0.045質量%以下、更に好ましくは0.040質量%以下である。なお、N、Ca、Mg、LiおよびREMは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
REM含有量とはSc、Yの2元素と、LaからLuまでの15元素の計17元素の合計含有量を意味し、REMを含有するとは、これら17元素から選択される1つ以上を含有することを意味する。
<2.金属組織>
本発明の実施形態に係る冷間加工用機械構造用鋼は、初析フェライトを面積率で10%以上、70%以下含む。初析フェライトは、球状化焼鈍後の鋼の軟質化に寄与する。しかし、単に初析フェライトを含むだけでは、比較的低い温度および短い時間での球状化焼鈍後に十分に軟質化することができる鋼を実現できない。
そこで、転位密度を高くすることで、喩え、比較的低い温度および短い時間での球状化焼鈍であっても硬さおよび硬さのばらつきを抑制でき、十分に軟質化できることを本願の発明者らは見出した。
具体的には、初析フェライト以外の部分(残部の金属組織)にベイナイト、マルテンサイトおよびパーライトからなる群から選択される1つ以上を含む。以下に詳述するように、ベイナイト、マルテンサイトおよびパーライトは適切な加工熱処理を行うことでその内部の転位密度を高くできる。これにより全体として(すなわち、全ての金属組織の全体の平均として)、転位密度を3.5×1014-2以上にできる。
[2-1.初析フェライトの面積率:10%以上70%以下]
初析フェライトを多く存在させることで、球状化焼鈍中にセメンタイトなどの炭化物の凝集・球状化を促進させることができ、その結果、鋼の硬さを低減できる。こうした観点から、初析フェライトの面積率は10%以上とする必要がある。初析フェライトの面積率は好ましくは20%以上、より好ましくは30%以上、更に好ましくは40%以上である。一方、面積率で70%を超える初析フェライトを得るためには、非常に長時間の徐冷および保持などの特別な処理が必要となることから、一般的な量産設備を用いることが困難である。このため、初析フェライトの面積率の上限を70%とする。
初析フェライト等の特定の金属組織の面積率は、金属組織写真上に格子状に線を引き、当該組織が存在する交点(格子点)の点数をカウントし、カウントした値の全交点数に対する割合から求めることができる。この際、交点上が初析フェライト等の対象の金属組織と他の金属組織との境界である場合は、0.5点としてカウントする。
また、金属組織を観察する位置は、中心部と表面の中間点、すなわち線材であれば表面から線材の直径Dの4分の1の位置(D/4位置)とする。
[2-2.ベイナイト、マルテンサイトおよびパーライトからなる群から選択される1つ以上を含む]
上記の初析フェライトに加えて、ベイナイト、マルテンサイトおよびパーライトからなる群から選択される1つ以上を含む。
ベイナイト、マルテンサイトおよびパーライトは、後述するように適切な加工熱処理を行うことで、変態に伴い内部に形成される転位の密度を高くすることできる。そして、このように転位密度が高い金属組織が形成されることで、全体として3.5×1014-2以上の高い転位密度を得ることができる。
ベイナイト、マルテンサイトおよびパーライトはこれらのうちのいずれか1つが存在していてもよいし、2つ以上が存在していてもよい。
また、ベイナイト、マルテンサイトおよびパーライトの量(面積率)は、全体として3.5×1014-2以上の転位密度が得られていれば任意の値であってよい。ベイナイト、マルテンサイトおよびパーライトの合計(ベイナイト、マルテンサイトおよびパーライトのうち存在するものの合計)が前述の初析フェライト以外の金属組織(残部金属組織)全体に対して面積率で、50%以上であることが好ましく、70%以上であることがより好ましい。
更により好ましくは、残部金属組織全体がベイナイト、マルテンサイトおよびパーライトのいずれか1つ以上から成ることが好ましい。より容易に所望の転位密度を得ることができるからである。なお、「残部金属組織全体がベイナイト、マルテンサイトおよびパーライトのいずれか1つ以上から成る」とは、比較的狭い視野面積を観察した結果、残部金属組織にベイナイト、マルテンサイトおよびパーライト以外の金属組織が認められなかったが、より広い視野面積を観察することで少量のベイナイト、マルテンサイトおよびパーライト以外の金属組織が認められる場合を包含してよい。
なお、本明細書で用いる用語「パーライト」とは所謂ラメラ組織が明確に観察できる形態だけでなく、セメンタイトが分断され、きれいなラメラ構造となっていない所謂「微細パーライト」を含む概念である。
パーライトは、微細パーライトから成ることが好ましい。より容易に所望の転位密度を得ることができるからである。
[2-3.転位密度が3.5×1014-2以上]
本発明の実施形態に係る冷間加工用機械構造用鋼は、転位密度が3.5×1014-2以上であり、好ましくは5×1014-2以上である。高い転位密度とすることで球状化焼鈍時において炭化物の分断および固溶を促進することができる。この結果、比較的低い温度で短い時間で球状化焼鈍を行った場合でも、硬さのばらつきを抑制し、十分な軟質化を行うことができる。
転位密度はより好ましくは、1×1016-2以下である。転位密度が1×1016-2を超えると、球状化焼鈍での熱処理条件によっては球状化焼鈍後の転位密度が比較的高くなり、硬度が高くなる虞があるからである。
このような高い転位密度は、単にベイナイト、マルテンサイトおよびパーライトの1つ以上が存在するだけでは達成できず、後述するように適正な加工熱処理を行うことで、変態に伴い導入される転位を増加させることにより達成できる。
転位密度は、詳細を実施例に示すように、X線回折において、Williamson-Hall(WH)法によって得た歪(格子歪)とバーガースベクトルの値から求めることができる。
[2-4.初析フェライトの平均結晶粒径が6μm以下]
本発明の実施形態に係る冷間加工用機械構造用鋼は、好ましくは初析フェライトの平均結晶粒径が6μm以下である。初析フェライトの平均結晶粒径を6μm以下とすることで、球状化焼鈍後の硬さばらつきをより確実に抑制できるからである。
<3.製造方法>
本発明の実施形態に係る冷間加工用機械構造用鋼は、以下に詳細を示すように、所定の温度域で所定の熱間加工を行った後に所定の条件で冷却および保持を伴う加工熱処理を行うことで製造することができる。
図1は、本発明に係る冷間加工用構造用鋼の製造方法における鋼材の加工熱処理パターン(加工熱処理履歴)を示す模式図である。図1に示す製造方法では、上述の化学成分を有する、例えば線材のような鋼材に対して以下の工程(a)~(d)を含む加工熱処理を行う。
(a)800℃超1000℃以下の加工温度T0において、圧縮率20%以上で熱間加工を行う工程
(b)工程(a)の後、670℃以上730℃以下の第1冷却温度T1まで5℃/秒以上の第1冷却速度CR1で冷却する工程
(c)工程(b)の後、第1冷却温度T1で10~600秒の保持時間t1の間、保持する工程
(d)工程(c)の後、550℃以下の第2冷却温度T2まで5℃/秒以上の第2冷却速度CR2で冷却する工程
各工程について、以下に説明する。
[工程(a):800℃超1000℃以下の加工温度T0において、圧縮率20%以上で熱間加工を行う工程]
図1に示したように上述の化学組成を有する鋼材(例えば、線材)を温度T0(加工温度T0)に加熱し、熱間加工を行う。加工温度T0は800℃超1000℃以下である。また、熱間加工の圧縮率は20%以上とする。
初析フェライトを必要量確保するために、加工温度T0を1000℃以下とし且つ熱間加工の圧縮率を20%以上とする。また、加工温度T0を1000℃以下とし、熱間加工の圧縮率を20%以上とすることで、初析フェライト粒を微細にできるという効果も有する。
加工温度T0が800℃以下となると、続いて行う冷却時に高温域での変態が促進され転位密度を3.5×1014-2以上とできないことから、加工温度T0は800℃超とする。
熱間加工は、圧縮率を20%以上とできるものであれば任意の形態であってよい。熱間加工の例としてプレス加工および圧延加工を挙げることができる。
圧縮率は、以下のように計算される。
<プレス加工を施す場合の圧縮率(この場合圧縮率は圧下率ともいう)>
圧縮率(%)=(h1-h2)/h1×100
h1:加工前の鋼材の高さ、h2:加工後の鋼材の高さ
<圧延加工により線材を得る場合の圧縮率(この場合圧縮率は減面率ともいう)>
圧縮率(%)=(S1-S2)/S1×100
S1:加工前の鋼材の断面積、h2:加工後の鋼材の断面積
1度の熱間加工で圧縮率20%以上としてもよく、また温度T0に保持した状態で複数回の熱間加工を行い、トータルの圧縮率を20%以上としてもよい。
[工程(b):工程(a)の後、670℃以上730℃以下の第1冷却温度T1まで5℃/秒以上の第1冷却速度CR1で冷却する工程]
工程(a)の後、図1に示すように、第1冷却温度T1まで第1冷却速度CR1で冷却する。第1冷却温度T1は、670℃以上730℃以下である。第1冷却速度CR1は5℃/秒以上である。第1冷却温度T1まで5℃/秒以上で冷却することにより、得られた冷間加工用構造用鋼の転位密度を3.5×1014-2以上とすることができる。また、第1冷却速度CR1を5℃/秒以上とすることで初析フェライト粒を微細化することができる。
冷却速度は、鋼材に熱電対等の接触型温度計を接触させて測定してもよい。また、簡便な方法として非接触型の温度計を用いて鋼材の表面温度を測定してもよい。
[工程(c):工程(b)の後、第1冷却温度T1で10~600秒の保持時間t1の間保持する工程]
工程(b)の後、図1に示すように、第1冷却温度T1で保持時間t1の間保持する。
保持時間t1は、10~600秒、好ましくは10~400秒、より好ましくは10~200秒である。面積率で10~70%の初析フェライト量を得るために第1冷却温度T1での保持時間t1は10秒以上とする。一方、保持時間t1が600秒を超えると第1冷却温度T1からさらに冷却する際に起こる相変態に伴って生じる転位の密度が3.5×1014-2未満となる虞がある。また、保持時間t1が長過ぎるとオーステナイト中にCおよびその他の合金元素が濃化しその後の冷却過程で生ずるフェライトの成長が抑制されて十分なフェライト面積率を確保するのが困難になる可能性があるため保持時間t1は600秒以下とする。保持時間t1は好ましくは400秒以下であり、より好ましくは200秒以下である。
[工程(d):工程(c)の後、550℃以下の第2冷却温度T2まで5℃/秒以上の第2冷却速度CR2で冷却する工程]
工程(c)の後、図1に示すように、第2冷却温度T2まで第2冷却速度CR2で冷却する。第2冷却温度T2は550℃以下である。また第2冷却速度CR2は5℃/秒以上である。第2冷却速度CR2は50℃/秒以下であることが好ましい。得られた冷間加工用構造用鋼の転位密度を3.5×1014-2以上とするために、第1冷却温度T1から550℃以下の温度T2の間を5℃/秒以上の冷却速度で冷却する。
工程(d)の後の第2冷却温度T2より低い温度への冷却について、図1に示す実施形態では例示として、第2冷却温度T2で保持時間t2の間保持し、第3冷却速度CR3(例えば、炉冷、放冷または急冷(例えばガス急冷))で室温まで冷却することを示している。
しかし、これに限定されるものでなく、任意の冷却を行ってよい。このような冷却の例として、第2冷却温度T2を室温として、第1冷却温度T1から室温まで第2冷却速度CR2で冷却してもよい。
第2冷却温度T2で保持時間t2の間保持する場合、第2冷却温度T2を400℃~550℃とし、保持時間t2を100~3000秒とすることが好ましい。第2冷却温度T2を400℃以上とすることで、より容易に所望のフェライト面積率を得ることができる。第2冷却温度T2はより好ましくは500℃以上である。第2冷却温度T2を550℃以下とすることでより容易に高い転位密度を得ることができる。第2冷却温度T2はより好ましくは540℃以下である。保持時間t2を100秒以上とすることでより容易に所望のフェライト面積率を得ることができる。保持時間t2はより好ましくは150秒以上であり、更に好ましくは210秒以上である。保持時間t2を3000秒以下とすることで高い生産性を確保しつつ、より容易に高い転位密度を得ることができる。保持時間t2はより好ましくは1500秒以下である。
また、第2冷却温度T2まで第2冷却速度CR2まで冷却した後、保持を行わず(すなわち、保持時間t2が0秒)、第2冷却温度T2から室温まで、第2冷却速度CR2とは異なる第3冷却速度CR3で冷却してよい。この際、第3冷却速度CR3は第2冷却速度CR2よりも速くてもよく、遅くてもよい。第3冷却速度CR3を得る冷却方法として炉冷、放冷または急冷(例えばガス急冷)を例示できる。この場合、第2冷却速度CR2および第3冷却速度CR3は、1~25℃/秒であることが好ましい。第2冷却速度CR2および第3冷却速度CR3が1℃/秒以上だとより容易に高い転位密度を得ることができ、第2冷却速度CR2および第3冷却速度CR3が25℃/以下だとより容易に所望のフェライト面積率を得ることができる。
以上に説明した製造方法により本発明の実施形態に係る冷間加工用機械構造用鋼を得ることができる。
本発明の実施形態に係る冷間加工用機械構造用鋼は、その後球状化焼鈍が施されることを想定しているが、場合によっては、球状化焼鈍前又は球状化焼鈍後に他の加工(伸線加工等)が施されてもよい。
本発明の実施形態に係る冷間加工用機械構造用鋼は、例えば後述する実施例で示すように750℃という比較的低い温度であっても球状化焼鈍時間(所定の保持温度での保持時間および保持温度から所定の空冷開始温度までの冷却時間の合計)を5時間程度以下と従来(特許文献1では約11時間)よりも大幅に短縮しても十分に軟質化することができる。また、本発明において、上記製造条件で得た鋼材(冷間加工用構造用鋼)に対し、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行うことにより、鋼線を製造することができる。ここでいう鋼線とは、上記製造条件で得た鋼材に対し、焼鈍、球状化焼鈍、伸線加工、圧造、焼入れ焼戻し等を施して特性を調整した線状の鋼材を指すが、上記焼鈍等の工程以外に、2次加工メーカーが一般的に行う工程を経た、線状の鋼材も含む。
以上のように本発明の実施形態に係る冷間加工用機械構造用鋼の製造方法を説明したが、本発明の実施形態に係る冷間加工用機械構造用鋼の所望の特性を理解した当業者が試行錯誤を行い、本発明の実施形態に係る所望の特性を有する冷間加工用機械構造用鋼を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。
以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
Figure 2022132084000002
表1に記載の鋼種1(SCM435)、鋼種2(SCM440)および鋼種3(SCR440)の圧延材を用いてφ8mm×12mmの加工フォーマスタ用の試験片を作製した。SCM435、SCM440およびSCR440は日本工業規格 JIS G 4053に規定された鋼種である。
なお、表1に示すように鋼種1および鋼種2はCuおよびNiを含むが、いずれも不純物レベルであり、すなわち、CuおよびNiは不可避不純物であり意図して添加したものではない。また、鋼種3はMoを0.01質量%含むが、不純物レベルであり、すなわち、鋼種3のMoは不可避不純物であり意図して添加したものではない。
作製した加工フォーマスタ用の試験片に対して、加工フォーマスタ試験機を用いて、上述の図1に示す加工熱処理を行い、冷間加工用構造用鋼のサンプルを作製した。
加工温度T0までは10℃/秒で加熱し、加工温度T0に到達後300秒保持した後、熱間加工として2回のプレス加工を行った。1回目のプレス加工は歪速度50/秒で試験片の高さを12mmから7mmにし(ε=0.54)、5秒後に2回目のプレス加工として歪速度50/秒で試験片の高さを7mmから3mmにした(ε=0.85)。
表2に加工温度T0、第1冷却温度T1、第1冷却速度CR1、保持時間t1、第2冷却温度T2および第2冷却速度CR2を示す。また、参考として保持時間t2と第3冷却速度CR3も表2に示す。
サンプルNo.1-3およびNo.1-4は、第2冷却温度T2が室温であり、従って、第1冷却温度T1から室温まで第2冷却速度CR2で冷却したサンプルである。サンプルNo.1-5、No.2-2およびNo.3-4は加工温度T0で熱間加工後、室温まで30℃/秒で冷却したサンプルである。
なお、上述の本発明の実施形態の製造方法で示した条件から外れる場合には下線を付した。
Figure 2022132084000003
加工熱処理後のサンプルを中心軸に沿って切断して4等分し、縦断面を含む4つのサンプルを得た。そのうちの1つは球状化焼鈍を施さないサンプル(以下、球状化焼鈍前サンプルと呼ぶことがある)とし、別の1つには球状化焼鈍を施した(以下、球状化焼鈍後サンプルと呼ぶことがある)とした。球状化焼鈍は、サンプルをそれぞれ真空封入管に入れて行った。
図2は球状化焼鈍条件(SA1)を示す模式図である。
球状化焼鈍は、80℃/時間で750℃まで加熱し1時間保持後、冷却速度30℃/時間で660℃まで冷却し、その後放冷して行った。
すなわち、球状化焼鈍温度は750℃と比較的低く、球状化焼鈍時間は約4.7時間と顕著に短い。また保持時間も1時間と顕著に短い。
球状化焼鈍前サンプルについて、縦断面が観察できるよう樹脂埋めし、(1)初析フェライトの面積率の測定および初析フェライト以外の組織の観察(2)初析フェライトの平均結晶粒径の測定、および(3)転位密度の測定を行った。
また、球状化焼鈍後サンプルについても、上記と同様に、縦断面が観察できるよう樹脂埋めし、(4)球状化焼鈍後の硬さとそのばらつきを測定した。
(1)~(4)のいずれの測定および観察についても、サンプルの直径をDとし、サンプルの表面から中心軸に向かってD/4の位置で実施した。
(1)初析フェライトの面積率の測定
球状化焼鈍前サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置を光学顕微鏡にて倍率400倍(視野領域:横220μm×縦165μm)で写真を撮影した。得られた写真について、等間隔の15本の縦線、等間隔の10本の横線を格子状に引き、150個の交点上に存在する初析フェライトの点数を測定して、当該点数を150で除した値を初析フェライトの面積率(%)とした。
この際、格子上が初析フェライトと他の組織の境界であれば0.5とした。
また、併せて初析フェライト以外の部分(残部金属組織)については、その相が何であるかを金属組織観察により同定した。
(2)初析フェライトの平均結晶粒径の測定
球状化焼鈍前サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置を光学顕微鏡にて倍率400倍(視野領域:横220μm×縦165μm)または倍率1000倍(視野領域:横147μm×縦110μm)で写真を撮影した。そして、画像解析ソフト(Image-Pro Plus ver7.0)を用いて、視野中の各初析フェライト粒のサイズ(円相当径)を算出し、その平均値を初析フェライトの平均結晶粒径とした。
なお、写真の端部に接している初析フェライト粒(本来の粒径が測定できない初析フェライト粒)はカウント対象から除外した。
(3)転位密度の測定
球状化焼鈍前サンプルを電解研磨し、転位密度の測定用のサンプルを作製した。このサンプルについて、株式会社リガク製水平型X線回折装置SmartLabを用いてX線回折を行った。
X線回折プロファイルの測定は、ターゲット用金属をCoとして、θ/2θ回折法によって2θで40°から130°の範囲で測定を行った。
得られた回折プロファイルを用いて、Williamson-Hall(WH)法によって歪を求めた。WH法では次の式を用いた。

βcosθ/λ=0.9/D+2εsinθ/λ (式1)
β=β -β (式2)
ここで、βは真の半価幅(rad)、θはブラッグ角(rad)、λは入射X線波長(nm)(λとして0.1789nmを用いた)、Dは結晶子の大きさ(nm)、εは格子歪である。
なお、装置定数による回折線幅の広がりは近似式(式2)により補正した。βは実測した半価幅、βは無歪試料における半価幅(装置関数)である。無歪試料としてNIST製のSi640dを用いた。
より詳細には、サンプルの初析フェライト(α-Fe)の(110)、(211)、(220)面の回折ピークを測定し、回折角2θと半価幅βを求めた。
そして、横軸にsinθ/λ、縦軸にβcosθ/λをとり、上記の各結晶面の測定結果をプロットした。
プロットに対して1次関数(y=ax+b)で近似曲線を引いた。その直線の傾きと切片から歪(ε)および結晶子サイズ(D)を求めることができることから、これにより歪(ε)を求めた。
転位密度ρは歪εとバーガースベクトルbを用いて、(式3)のように記述できる。
ρ=14.4ε/b (式3)
ここで、バーガースベクトルbの大きさには0.25×10-9mを用いた。
これより、転位密度ρを算出した。
(4)球状化焼鈍後の硬さとそのばらつき
球状化焼鈍による軟質化の効果を確認するために、球状化焼鈍後サンプルの縦断面について、ビッカース硬さ計を用いて、D/4位置にて荷重1kgfで硬さを5個所(5点)測定した。その平均値(HV)をサンプルの硬さ(HV)とし、また測定した値から標準偏差を求め、これを硬さばらつき(HV)とした。鋼種1(SCM435)に係るサンプルについては、硬さHV 165以下であり、硬さばらつきがHV 7.0以下であれば十分に軟質化されていると判断した。一方、よりC量の多い鋼種2(SCM440)および鋼種3(SCR440)に係るサンプルについては、硬さHV 180以下であり、硬さばらつきがHV 7.0以下であれば十分に軟質化されていると判断した。
以上に述べた方法により求めた、初析フェライトの面積率および初析フェライト以外の組織、初析フェライトの平均結晶粒径の測定、転位密度、球状化焼鈍後の硬さおよび当該硬さのばらつきを表3に示す。
表3では、本発明の実施形態に示した要件から外れる場合、および軟質化評価の基準から外れる場合には下線を付した。
また、初析フェライト以外の組織について「主体」とは、上記の観察した視野領域(横220μm×縦165μm)内では当該1種類の金属組織以外の金属組織が認められなかったことを意味する(但し、より広い視野領域を観察した場合に少量の他の金属組織が認められる可能性を否定するものではない)。
なお、サンプルNo.2-1の初析フェライト以外の組織で認められたパーライトは微細パーライトであった。
Figure 2022132084000004
表2および表3より、次のように考察できる。
サンプルNo.1-1、1-2、1-3、2-1および3-1~3-3は、いずれも本発明の実施形態で規定する要件の全てを満足する例である。そして、750℃と比較的低い温度で、且つかなり短い時間(保持1時間、球状化焼鈍時間約4.7時間)の球状化焼鈍後において、硬さおよび硬さばらつきがいずれも良好、すなわち十分に軟質化されていた。
一方、サンプルNo.1-4、1-5、1-6、2-2および3-4は、本発明で規定する要件の1つ以上を満たしていない例であり、球状化焼鈍後の硬さおよび硬さばらつきの少なくとも一方が不良、すなわち軟質化が不十分であった。
サンプルNo.1-4は、加工温度T0が高過ぎ、第1冷却温度T1が低過ぎ、さらに保持時間t1が長過ぎた。このため、転位密度が過小となっている。そして、球状化焼鈍後の硬さおよび硬さばらつきが不良となった。
サンプルNo.1-5は、第1冷却温度T1が室温と低過ぎ、またこのため適正な第1冷却温度T1(670℃~730℃)で保持時間t1を確保することができなかった。この結果、十分な初析フェライトを得ることがでなかった。そして球状化焼鈍後の硬さが不良となった。
サンプルNo.1-6は、加工温度T0が高過ぎ、第1冷却温度T1が高過ぎ、さらに第2冷却速度CR2が遅過ぎた。このため、転位密度が過小となっている。初析フェライトの量は十分であるため、球状化焼鈍後の硬さの値は良好であるが、転位密度が低いため硬さばらつきが不良となった。
サンプルNo.2-2は、第1冷却温度T1が室温と低過ぎ、またこのため適正な第1冷却温度T1(670℃~730℃)で保持時間t1を確保することができなかった。この結果、十分な初析フェライトを得ることができなかった。そして球状化焼鈍後の硬さが不良となった。
サンプルNo.3-4は、第1冷却温度T1が室温と低過ぎ、またこのため適正な第1冷却温度T1(670℃~730℃)で保持時間t1を確保することができなかった。この結果、十分な初析フェライトを得ることができなかった。そして球状化焼鈍後の硬さが不良となった。
本発明に係る冷間加工用機械構造用鋼は、冷間鍛造、冷間圧造又は冷間転造等の冷間加工によって製造される各種部品の素材に好適である。鋼の形態は特に限定されないが、例えば線材または棒鋼等の圧延材とすることができる。
前記部品には、例えば、自動車用部品、建設機械用部品が含まれ、具体的には、ボルト、ねじ、ナット、ソケット、ボールジョイント、インナーチューブ、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクタ、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグ、ピニオンギヤ、ステアリングシャフト及びコモンレール等が含まれる。本発明に係る冷間加工用機械構造用鋼は、上記の部品の素材として好適に用いられる機械構造用鋼として産業上有用であり、球状化焼鈍後、室温および加工発熱領域において上記の各種部品に製造される際、変形抵抗が低く、優れた冷間加工性を発揮することができる。

Claims (7)

  1. C :0.30~0.45質量%、
    Si:0.10~0.40質量%、
    Mn:0.50~1.00質量%、
    P :0.050質量%以下、
    S :0.050質量%以下、
    Cr:0.80~1.30質量%、
    Al:0.01~0.10質量%、
    残部:鉄および不可避不純物からなり、
    初析フェライトの面積率が10%以上、70%以下であり、且つベイナイト、マルテンサイトおよびパーライトからなる群から選択される1つ以上を含み、
    転位密度が3.5×1014-2以上である
    冷間加工用機械構造用鋼。
  2. 前記初析フェライトの平均結晶粒径が6μm以下である、請求項1に記載の冷間加工用機械構造用鋼。
  3. Cu:0.25質量%以下(0質量%を含まない)、
    Ni:0.25質量%以下(0質量%を含まない)、および
    Mo:0.40質量%以下(0質量%を含まない)、よりなる群から選択される1つ以上を更に含有する請求項1または2に記載の冷間加工用機械構造用鋼。
  4. Ti:0.20質量%以下(0質量%を含まない)、
    Nb:0.20質量%以下(0質量%を含まない)、および
    V :1.50質量%以下(0質量%を含まない)よりなる群から選択される1つ以上を更に含有する請求項1~3のいずれか1項に記載の冷間加工用機械構造用鋼。
  5. N :0.01質量%以下(0質量%を含まない)、
    Mg :0.02質量%以下(0質量%を含まない)、
    Ca :0.05質量%以下(0質量%を含まない)、
    Li :0.02質量%以下(0質量%を含まない)、および
    REM:0.05質量%以下(0質量%を含まない)よりなる群から選択される1つ以上を更に含有する請求項1~4のいずれか1項に記載の冷間加工用機械構造用鋼。
  6. (a)800℃超1000℃以下の加工温度T0において、圧縮率20%以上で熱間加工を行う工程と、
    (b)前記工程(a)の後、670℃以上730℃以下の第1冷却温度T1まで5℃/秒以上の第1冷却速度CR1で冷却する工程と、
    (c)前記工程(b)の後、前記第1冷却温度T1で10~600秒の保持時間t1の間保持する工程と、
    (d)前記工程(c)の後、550℃以下の第2冷却温度T2まで5℃/秒以上の第2冷却速度CR2で冷却する工程と、を含む請求項1~5のいずれか1項に記載の冷間加工用機械構造用鋼の製造方法。
  7. 請求項6に記載の方法で製造した冷間加工用機械構造用鋼に、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行う鋼線の製造方法。
JP2021209428A 2021-02-26 2021-12-23 冷間加工用機械構造用鋼およびその製造方法 Pending JP2022132084A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/546,718 US20240150861A1 (en) 2021-02-26 2022-02-02 Cold-workable mechanical structural steel, and method for manufacturing same
PCT/JP2022/004045 WO2022181272A1 (ja) 2021-02-26 2022-02-02 冷間加工用機械構造用鋼およびその製造方法
CA3210932A CA3210932A1 (en) 2021-02-26 2022-02-02 Cold-workable mechanical structural steel, and method for manufacturing same
CN202280015614.XA CN116888293A (zh) 2021-02-26 2022-02-02 冷加工用机械结构用钢及其制造方法
KR1020237027510A KR20230132523A (ko) 2021-02-26 2022-02-02 냉간 가공용 기계 구조용 강 및 그 제조 방법
TW111105576A TWI799142B (zh) 2021-02-26 2022-02-16 冷間加工用機械構造用鋼及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030472 2021-02-26
JP2021030472 2021-02-26

Publications (1)

Publication Number Publication Date
JP2022132084A true JP2022132084A (ja) 2022-09-07

Family

ID=83153307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021209428A Pending JP2022132084A (ja) 2021-02-26 2021-12-23 冷間加工用機械構造用鋼およびその製造方法

Country Status (1)

Country Link
JP (1) JP2022132084A (ja)

Similar Documents

Publication Publication Date Title
JP5486634B2 (ja) 冷間加工用機械構造用鋼及びその製造方法
US6866724B2 (en) Steel bar or wire rod for cold forging and method of producing the same
US20170058376A1 (en) Rolled material for high strength spring, and wire for high strength spring
US10837080B2 (en) Rolled steel bar or rolled wire rod for cold-forged component
JP6384626B2 (ja) 高周波焼入れ用鋼
JP7247078B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
US10829842B2 (en) Rolled steel bar or rolled wire rod for cold-forged component
JP6244701B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
CN108315637B (zh) 高碳热轧钢板及其制造方法
US20170219000A1 (en) Steel for bolts, and bolt
JP6384627B2 (ja) 高周波焼入れ用鋼
JPWO2018016505A1 (ja) 高周波焼入れ用鋼
WO2022181272A1 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP5867285B2 (ja) ボルト用鋼材
JP2018024909A (ja) 冷間加工用機械構造用鋼およびその製造方法
CN112969808A (zh) 螺栓用钢及其制造方法
JP5679440B2 (ja) 冷間鍛造性に優れ、高周波焼入れ後におけるねじり強度に優れた高周波焼入れ用鋼、およびその製造方法
JP2022132084A (ja) 冷間加工用機械構造用鋼およびその製造方法
JP5884781B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
US20220106670A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP2016074951A (ja) 肌焼鋼の製造方法
JP7555080B2 (ja) 冷延鋼板の製造方法および鋼製部品の製造方法
CN116888293A (zh) 冷加工用机械结构用钢及其制造方法
JP7156021B2 (ja) 浸炭鋼部品用鋼材
JP2024013082A (ja) 肌焼鋼

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230901