WO2020158063A1 - 高強度溶融亜鉛めっき鋼板およびその製造方法 - Google Patents
高強度溶融亜鉛めっき鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2020158063A1 WO2020158063A1 PCT/JP2019/041005 JP2019041005W WO2020158063A1 WO 2020158063 A1 WO2020158063 A1 WO 2020158063A1 JP 2019041005 W JP2019041005 W JP 2019041005W WO 2020158063 A1 WO2020158063 A1 WO 2020158063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- hot
- less
- strength
- dip galvanized
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/185—Hardening; Quenching with or without subsequent tempering from an intercritical temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength hot-dip galvanized steel sheet which is suitable for use as a steel sheet for automobiles and has excellent fracture resistance during collision, and a method for producing the same.
- a high-strength steel sheet of over 980 MPa is likely to cause member breakage starting from a portion that has undergone primary processing during forming during a collision, and cannot stably exhibit collision energy absorbing ability. There is. Therefore, a high-strength steel plate of 980 MPa or higher has not yet been applied to the energy absorbing member, and there is room for contributing to environmental conservation by reducing the weight. Therefore, it is necessary to apply a high-strength steel sheet of 980 MPa or more excellent in fracture resistance to the energy absorbing member.
- Patent Document 1 discloses a technique relating to an ultrahigh-strength steel sheet having a TS of 1180 MPa, which is excellent in formability and impact resistance.
- Patent Document 2 discloses a technique relating to a high-strength steel sheet having a maximum tensile strength of 780 MPa or more and applicable to a shock absorbing member at the time of collision.
- Patent Document 1 Although the collision characteristic is examined, the impact resistance is examined on the assumption that the member does not break at the time of collision, and the collision characteristic from the viewpoint of breakage of the member is examined. Not not. Further, in Patent Document 2, crack determination in a dynamic axial crushing test by a falling weight is performed on a hat material, and fracture resistance of 780 MPa or more is evaluated. However, in the crack judgment after crushing, it is not possible to evaluate the process from the occurrence of cracks to rupture during crushing. The reason is that if cracks occur early in the process of crushing, even a slight crack that does not penetrate the plate thickness may reduce the absorbed energy. Further, when cracks occur in the latter stage of the crushing process, even large cracks that penetrate the plate thickness may have little effect on the absorbed energy. Therefore, it is considered that only the judgment of cracking after crushing is insufficient for evaluating the fracture resistance.
- the present invention has been made in view of the above circumstances, and has a tensile strength (TS) of 980 MPa or more, which is suitable as a high-strength steel sheet for an energy absorbing member of an automobile, and has excellent fracture resistance during collision.
- TS tensile strength
- An object is to provide a high-strength hot-dip galvanized steel sheet and a method for producing the same.
- the present inventors have found the following as a result of earnest research from the viewpoints of the component composition, structure and manufacturing method of the steel sheet.
- the area ratio is ferrite: 60% or less, tempered martensite: 40% or more, fresh martensite: 10% or less, and the void number density of the bent portion in the VDA bending test is 1500/ It was found that by setting the thickness to mm 2 or less, a high-strength galvanized steel sheet having a TS of 980 MPa or more and excellent fracture resistance at the time of collision can be obtained.
- the present invention has been made on the basis of such findings, and the summary thereof is as follows.
- S 0.05% or less
- Sol. Al 0.005 to 0.1%
- the steel structure has an area ratio of ferrite: 60% or less, tempered martensite: 40% or more, fresh martensite: 10% or less, and the void number density of the bent portion in the VDA bending test is 1500 pieces/mm 2.
- the following is a high-strength galvanized steel sheet having a galvanized layer on the surface of the steel sheet.
- High strength hot-dip galvanized steel sheet according to any one of [1] to [3], containing one or more elements selected from 005 to 1.0% and Cu: 0.005 to 1.0%. .. [5] Further, the steel composition contains, in mass %, one or two elements selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% [1]
- a steel slab having the steel composition according to any one of [1] and [3] to [5] is hot-rolled at a finish rolling temperature of 850 to 950°C, and a winding temperature of 600°C or less.
- a method for producing a high-strength hot-dip galvanized steel sheet which comprises a hot-dip galvanizing step of performing hot-dip galvanizing.
- a high-strength hot-dip galvanized steel sheet having a tensile strength (TS) of 980 MPa or more which is suitable as a high-strength steel sheet for an energy absorbing member of an automobile, and which has excellent fracture resistance at the time of collision. it can.
- TS tensile strength
- Steel composition C 0.07 to 0.20% C is an element necessary for improving strength because it facilitates the formation of phases other than ferrite and forms an alloy compound with Nb, Ti and the like. If C is less than 0.07%, the desired strength cannot be secured even if the manufacturing conditions are optimized. On the other hand, when C exceeds 0.20%, martensite increases, and the steel structure of the present invention may not be obtained even if the production conditions are optimized. It is preferably 0.10% or more, and preferably 1.8% or less.
- Si 0.1-2.0%
- Si is a ferrite-forming element and also a solid solution strengthening element. Therefore, it contributes to the improvement of the balance between strength and ductility. To obtain this effect, Si needs to be 0.1% or more. On the other hand, if the Si content exceeds 2.0%, the zinc plating may adhere, the adhesiveness may deteriorate, and the surface quality may deteriorate. It is preferably 0.2% or more, and preferably 1.5% or less.
- Mn 2.0-3.5%
- Mn is a martensite-forming element and also a solid solution strengthening element. It also contributes to the stabilization of retained austenite. In order to obtain these effects, Mn needs to be 2.0% or more. On the other hand, if Mn exceeds 3.5%, the martensite fraction in the second phase may increase and the workability may decrease. It is preferably 2.1% or more, and preferably 3.0% or less.
- P 0.05% or less
- P is an element effective for strengthening steel.
- the alloying rate is significantly delayed.
- it is contained in excess of 0.05% segregation at the grain boundaries causes embrittlement, which may deteriorate the fracture resistance at the time of collision.
- It is preferably 0.01% or less.
- the lower limit is not particularly specified, it is 0.0005% or more from the economical aspect of melting.
- S 0.05% or less S becomes an inclusion such as MnS and causes deterioration of impact resistance and cracking along the metal flow of the welded portion. Therefore, the amount of S is preferably as low as possible, but from the viewpoint of manufacturing cost, S is 0.05% or less. It is preferably 0.01% or less. Although the lower limit is not particularly defined, it is 0.0001% or more from the economical aspect of melting.
- Sol. Al 0.005-0.1% Al acts as a deoxidizing agent and is also a solid solution strengthening element. Sol. If Al is less than 0.005%, these effects cannot be obtained. On the other hand, Sol. If Al exceeds 0.1%, the slab quality during steelmaking deteriorates. It is preferably 0.005% or more, and preferably 0.04% or less.
- the above are the basic ingredients.
- the high-strength hot-dip galvanized steel sheet of the present invention contains the above-mentioned basic components, and the balance other than the above-mentioned basic components has a component composition containing Fe (iron) and inevitable impurities.
- the high-strength hot-dip galvanized steel sheet of the present invention contains the above-mentioned basic components, and the balance has a composition of Fe and inevitable impurities.
- N is allowed to be contained as an unavoidable impurity in the range of 0.0060% or less.
- the high-strength hot-dip galvanized steel sheet of the present invention may optionally contain one or more elements selected from the following Cr, Mo, and V in addition to the above-mentioned composition.
- Cr 0.005-1.0%
- Mo 0.005-0.5%
- V 0.005-0.5% Cr
- Mo and V are elements effective for strengthening steel by increasing hardenability. The effect is obtained at 0.005% or more, respectively.
- Cr is added in excess of 1.0%
- the above effect is saturated and the raw material cost is further increased.
- the second phase fraction may become excessively large, and the fracture resistance during collision may deteriorate.
- the high-strength hot-dip galvanized steel sheet of the present invention may further contain one or more elements selected from the following Ti, Nb, B, Ni, and Cu in addition to the above-mentioned composition.
- Ti and Nb are effective for precipitation strengthening of steel, and the effects are obtained at 0.005% or more, respectively, and they can be used for strengthening steel as long as they are within the range specified in the present invention. However, if the content of each exceeds 0.5%, the fracture resistance at the time of collision may deteriorate.
- B 0.0003 to 0.005% B suppresses the generation and growth of ferrite from the austenite grain boundaries and contributes to the improvement of hardenability, so B can be added as necessary. The effect is obtained at 0.0003% or more. However, if it exceeds 0.005%, the fracture resistance at the time of collision may deteriorate.
- Ni and Cu are effective elements for strengthening steel, and may be used for strengthening steel as long as they are within the range specified in the present invention. In order to obtain these effects, it is preferable that the content of each is 0.005% or more. On the other hand, if both Ni and Cu exceed 1.0%, the fracture resistance at the time of collision may be deteriorated.
- the high-strength hot-dip galvanized steel sheet of the present invention may optionally contain one or two elements selected from the following Ca and REM in addition to the above component composition.
- Ca 0.001 to 0.005%
- REM 0.001 to 0.005%
- Both Ca and REM are effective elements for improving workability by controlling the morphology of sulfides.
- the Ca and REM contents are preferably 0.001% or more.
- the content of each of Ca and REM exceeds 0.005%, the cleanliness of steel may be adversely affected and the properties may be deteriorated.
- the area ratio of ferrite is 60% or less.
- the area ratio is 40% or less.
- the lower limit is not particularly defined, but the area ratio is preferably 10% or more.
- Tempered martensite 40% or more Tempered martensite is effective in improving the fracture resistance during collision. If the area ratio of tempered martensite is less than 40%, such effects cannot be sufficiently obtained.
- the area ratio is preferably 50 to 80%.
- Area ratio of fresh martensite 10% or less Fresh martensite is effective for increasing strength. However, voids are likely to occur at grain boundaries with the soft phase, and if the area ratio of fresh martensite exceeds 10%, the fracture resistance at the time of collision may be deteriorated.
- the area ratio is 5% or less.
- the lower limit is not particularly defined, but the area ratio is preferably 1% or more.
- Void number density of bent portion in VDA bending test 1500 pieces/mm 2 or less
- the void number density of bending portion in VDA bending test is set to 1500 pieces/mm 2 or less, which is high. Collision characteristics are obtained. This mechanism is not clear, but it is considered as follows. The fracture at the time of collision, which causes deterioration of the collision characteristics, starts from the occurrence and development of cracks. It is considered that cracking is likely to occur due to a decrease in work hardening ability and generation/connection of voids observed in the steel sheet structure in the high hardness difference region.
- the parts that have undergone the primary processing are deformed so as to be bent back in the direction orthogonal to the primary processing.
- the void number density of the bent portion in the VDA bending test is set to 1500 pieces/mm 2 or less. It is preferably 1000 pieces/mm 2 or less.
- a desired void number density can be obtained by controlling the cooling rate after annealing described later.
- the cooling rate is slowed down to temper the martensite during cooling. The subsequent reheating further tempers the martensite firmly and contributes significantly to the relief of the height difference. As a result, void formation during primary processing is suppressed.
- the void number density of the bent portion in the VDA bending test means the value after the primary working in the bending-orthogonal bending test (VDA bending test) based on the VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association. It is the number of voids observed in the steel sheet structure when the structure of the bent part (after the primary bending process) is observed.
- VDA bending test the microstructure was observed for the test piece which was compliant with the VDA standard and which was subjected to primary bending under the following conditions using a 90 degree V block. , The void number density of the bent portion is measured.
- the number density of voids was determined from the obtained image data using Image-Pro manufactured by Media Cybernetics, and the average value of the number density of three fields of view was defined as the void number density. It should be noted that the voids are darker in color than ferrite and can be clearly distinguished from each structure.
- Area ratio of retained austenite 3 to 10% (suitable condition) Retained austenite is effective in delaying the occurrence of cracks at the time of collision and improving the fracture resistance. If the area ratio of retained austenite is less than 3%, such an effect cannot be obtained. On the other hand, if the area ratio of retained austenite exceeds 10%, the rupture resistance at the time of collision may be deteriorated by the fresh martensite generated by the work-induced transformation. More preferably, the area ratio is 5 to 10%.
- tempered martensite, fresh martensite, and retained austenite, bainite, cementite, and pearlite may be contained in a total amount of 5% or less in total, but as long as the above conditions of the steel structure are satisfied, the object of the present invention is Is achieved.
- the area ratio of ferrite, fresh martensite, and tempered martensite is the ratio of the area of each phase to the observed area.
- the area ratio of each structure is 1500 times the plate thickness 1/4 position by SEM (scanning electron microscope) at the plate thickness 1/4 position after polishing the plate thickness cross section of the steel plate cut at a right angle to the rolling direction and corroding it with 3 mass% Nital.
- the area ratio of each tissue was obtained from the obtained image data using Image-Pro manufactured by Media Cybernetics, and the average value of the area ratios of the three fields was taken as the area ratio of each tissue.
- ferrite in the image data, ferrite can be distinguished as black, tempered martensite can be distinguished as light gray containing fine non-uniformly oriented carbide, retained austenite and fresh martensite as white.
- the volume ratio of retained austenite means (200), (211) of bcc iron in the 1/4 plane of the plate thickness, (200), (220) of fcc iron with respect to the X-ray diffraction integrated intensity of the (220) plane, It is the ratio of the X-ray diffraction integrated intensity of the (311) plane. Since it is difficult to distinguish between fresh martensite and retained austenite in an SEM image, the area ratio of fresh martensite is obtained by subtracting the area ratio of retained austenite from the total area ratio of fresh martensite and retained austenite.
- the hot-dip galvanized layer on the surface of the steel sheet of the present invention is preferably an alloyed hot-dip galvanized layer.
- the surface defined in the present invention means the interface between the plating layer and the steel sheet.
- a steel slab having the above-mentioned steel composition is hot-rolled at a finish rolling temperature of 850 to 950°C and wound at a winding temperature of 600°C or lower.
- annealing temperature to martensite transformation start temperature After cooling in the temperature range of (Ms) at an average cooling rate of 20°C/s or more, cooling is performed at an average cooling rate of 2 to 10°C/s up to the cooling stop temperature of (Ms-200°C) to (Ms-100°C). Then, it is characterized by having a quenching and tempering step of holding at 300 to 500° C. for 20 seconds or more, and a hot dip galvanizing step of applying hot dip galvanizing. Further, the hot dip galvanizing step may include an alloying step of performing an alloying treatment after the hot dip galvanizing.
- Finish rolling temperature 850-950°C
- 850° C. ferrite transformation occurs during rolling and the strength locally decreases, so that the structure and properties of the present invention cannot be obtained.
- the finish rolling temperature is set to 850 to 950°C.
- Winding temperature 600°C or less When the winding temperature exceeds 600°C, carbides in the hot-rolled sheet are coarsened, and such coarsened carbides are not melted during soaking during annealing. May not be able to get.
- the hot-rolled sheet obtained by the hot-rolling process is usually subjected to a pretreatment such as pickling and degreasing by a known method, and then cold-rolled if necessary.
- a pretreatment such as pickling and degreasing by a known method
- Cold rolling reduction more than 20% If the cold rolling reduction is 20% or less, recrystallization of ferrite is not promoted, unrecrystallized ferrite remains, and workability may be deteriorated.
- Annealing temperature 750° C. or more
- holding time 30 seconds or more
- austenite is insufficiently produced and excessive ferrite is produced, so that the steel structure of the present invention cannot be obtained.
- the temperature is preferably 750 to 900°C.
- austenite is insufficiently produced, excessive ferrite is produced, and the steel structure of the present invention cannot be obtained. It is preferably 30 seconds or longer, and preferably 600 seconds or shorter.
- the steel plate after being annealed at the above annealing temperature is averaged in the temperature range from the annealing temperature to the martensite state start temperature (Ms). If the cooling rate is less than 20°C/s, the fracture resistance of the present invention cannot be obtained. The reason for this is not clear, but it is considered as follows. If the cooling rate is less than 20°C/s, ferrite and bainite are excessively generated during cooling, and the Ms point is lowered.
- the average cooling rate is set to 20° C./s or more.
- each element symbol represents the content (mass %) of each element, and the element that does not contain each element is 0.
- [ ⁇ area%] is the area ratio of ferrite during annealing.
- the area ratio of ferrite during annealing is determined in advance by simulating the rate of temperature rise, the annealing temperature, and the holding time during annealing with a thermal expansion measuring device.
- the average cooling rate in the temperature range from the annealing temperature to the martensitic transformation start temperature (Ms) is preferably 22°C/s or more.
- the average cooling rate in the temperature range from the annealing temperature to the martensitic transformation start temperature (Ms) is more preferably 50° C./s or more.
- Cooling stop temperature (Ms-200°C) to (Ms-100°C) If the cooling stop temperature exceeds (Ms-100°C), tempered martensite is not sufficiently formed, and the steel structure of the present invention cannot be obtained. On the other hand, if it is less than (Ms-200° C.), tempered martensite may be excessive, and retained austenite may be insufficiently produced. It is preferably (Ms-200°C) to (Ms-150°C).
- the tempering temperature is 300 to 500° C. and the holding time is 20 seconds or more and less than 300° C.
- the tempering of martensite is insufficient and the steel structure and fracture resistance of the present invention cannot be obtained.
- it exceeds 500° C. ferrite is excessively formed and the steel structure of the present invention cannot be obtained.
- It is preferably 350° C. or higher, and preferably 450° C. or lower.
- the holding time is less than 20 seconds, tempering of martensite will be insufficient and the steel structure and fracture resistance of the present invention will not be obtained. It is preferably 30 seconds or longer, and preferably 500 seconds or shorter.
- the hot dip galvanizing treatment is preferably performed by immersing the steel plate obtained above in a galvanizing bath at 440° C. or higher and 500° C. or lower, and then adjusting the coating adhesion amount by gas wiping or the like.
- the steel sheet After the hot-dip galvanizing treatment or alloying hot-dip galvanizing treatment, the steel sheet can be temper-rolled for the purpose of shape correction and surface roughness adjustment.
- the pressure regulation ratio exceeds 0.5%, the bendability may deteriorate due to surface layer hardening, so the pressure regulation ratio is preferably 0.5% or less. It is more preferably 0.3% or less.
- various coating treatments such as resin and oil coating can be applied.
- the conditions of other manufacturing methods are not particularly limited, but it is preferable to carry out under the following conditions.
- the slab is preferably manufactured by a continuous casting method to prevent macro segregation, and can also be manufactured by an ingot making method or a thin slab casting method.
- the slab may be once cooled to room temperature and then reheated to be hot-rolled. Further, the slab can be charged into a heating furnace without being cooled to room temperature and hot-rolled. Alternatively, an energy-saving process in which hot rolling is performed immediately after a slight heat retention is also applicable.
- the slab is heated, it is preferable to heat it to 1100° C. or higher in order to prevent the rolling load from increasing and to dissolve the carbide. Further, in order to prevent an increase in scale loss, it is preferable that the heating temperature of the slab is 1300°C or lower.
- the steel plate after winding may be removed by pickling the scale. After pickling, cold rolling, annealing and hot dip galvanizing are performed under the above conditions.
- N is an unavoidable impurity.
- Table 2 shows hot rolling conditions, cold rolling conditions, and annealing conditions.
- the steel sheets produced under the conditions shown in Table 2 were immersed in a plating bath to form a hot dip galvanized layer (GI) having a coating weight of 20 to 80 g/m 2 . Further, a part of them was subjected to an alloying treatment after forming the hot-dip galvanized layer to obtain an alloyed hot-dip galvanized steel sheet (GA).
- GI hot dip galvanized layer
- TS tensile strength
- each of the invention examples has a TS of 980 MPa or more and excellent rupture resistance at the time of collision.
- a high-strength hot-dip galvanized steel sheet having a TS of 980 MPa or more and excellent in fracture resistance during collision can be obtained.
- INDUSTRIAL APPLICABILITY The present invention has an excellent effect of contributing to weight reduction of an automobile and greatly improving performance of an automobile body.
- the present invention it is possible to obtain a high-strength hot-dip galvanized steel sheet having a TS of 980 MPa or more and excellent fracture resistance during collision.
- the high-strength hot-dip galvanized steel sheet of the present invention is used for automobile parts, it can contribute to weight reduction of automobiles and to high performance of automobile bodies.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
[1]鋼組成として、質量%で、C:0.07~0.20%、Si:0.1~2.0%、Mn:2.0~3.5%、P:0.05%以下、S:0.05%以下、Sol.Al:0.005~0.1%を含有し、残部がFeおよび不可避的不純物からなり、
鋼組織は、面積率で、フェライト:60%以下、焼戻しマルテンサイト:40%以上、フレッシュマルテンサイト:10%以下であり、かつ、VDA曲げ試験における曲げ部のボイド数密度が1500個/mm2以下である、鋼板表面に溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板。
[2]前記鋼組織は、さらに、面積率で、残留オーステナイト:3~10%である[1]に記載の高強度溶融亜鉛めっき鋼板。
[3]さらに、鋼組成として、質量%で、Cr:0.005~1.0%、Mo:0.005~0.5%、V:0.005~0.5%から選ばれる1種または2種以上の元素を含有する[1]または[2]に記載の高強度溶融亜鉛めっき鋼板。
[4]さらに、鋼組成として、質量%で、Ti:0.005~0.5%、Nb:0.005~0.5%、B:0.0003~0.005%、Ni:0.005~1.0%、Cu:0.005~1.0%から選ばれる1種または2種以上の元素を含有する[1]~[3]のいずれかに記載の高強度溶融亜鉛めっき鋼板。
[5]さらに、鋼組成として、質量%で、Ca:0.001~0.005%、REM:0.001~0.005%から選ばれる1種または2種の元素を含有する[1]~[4]のいずれかに記載の高強度溶融亜鉛めっき鋼板。
[6]鋼板表面の溶融亜鉛めっき層は、合金化溶融亜鉛めっき層である[1]~[5]のいずれかに記載の高強度溶融亜鉛めっき鋼板。
[7][1]、[3]~[5]のいずれかに記載の鋼組成を有する鋼スラブに、仕上げ圧延温度を850~950℃として熱間圧延を施し、600℃以下の巻取温度で巻取る熱間圧延工程と、
20%超えの圧下率で冷間圧延する冷間圧延工程と、
750℃以上の焼鈍温度まで加熱し、30秒以上保持する焼鈍工程と、
焼鈍温度からマルテンサイト変態開始温度(Ms)の温度域を平均冷却速度20℃/s以上で冷却した後、(Ms-200℃)~(Ms-100℃)の冷却停止温度までの平均冷却速度2~10℃/sで冷却し、その後300~500℃で20秒以上保持する焼入れ焼戻し工程と、
溶融亜鉛めっきを施す溶融亜鉛めっき工程とを有する高強度溶融亜鉛めっき鋼板の製造方法。
[8]前記溶融亜鉛めっき工程において、溶融亜鉛めっきを施した後に合金化処理を施す合金化工程を有する[7]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
C:0.07~0.20%
Cはフェライト以外の相を生成しやすくし、また、NbやTiなどと合金化合物を形成するため、強度向上に必要な元素である。Cが0.07%未満では、製造条件の最適化を図っても、所望の強度を確保できない。一方、Cが0.20%を超えるとマルテンサイトが増加し、製造条件の最適化を図っても本発明の鋼組織が得られない場合がある。好ましくは、0.10%以上であり、好ましくは1.8%以下とする。
Siはフェライト生成元素であり、また、固溶強化元素でもある。したがって、強度と延性のバランスの向上に寄与する。この効果を得るために、Siは0.1%以上とすることが必要である。一方、Siが2.0%を超えると、亜鉛めっき付着、密着性の低下および表面性状の劣化を引き起こす場合がある。好ましくは、0.2%以上であり、好ましくは1.5%以下とする。
Mnはマルテンサイトの生成元素であり、また、固溶強化元素でもある。また、残留オーステナイト安定化に寄与する。これらの効果を得るために、Mnは2.0%以上とすることが必要である。一方、Mnが3.5%を超えると第2相中のマルテンサイト分率が増加し、加工性が低下する場合がある。好ましくは、2.1%以上であり、好ましくは3.0%以下とする。
Pは、鋼の強化に有効な元素である。しかしながら、Pが0.05%を超えると合金化速度を大幅に遅延させる。また、0.05%を超えて過剰に含有させると、粒界偏析により脆化を引き起こし、衝突時の耐破断特性を劣化させる場合がある。好ましくは、0.01%以下とする。下限については特に定めないが、溶製上の経済性から、0.0005%以上である。
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。したがって、S量は極力低い方がよいが、製造コストの面からSは0.05%以下とする。好ましくは、0.01%以下とする。下限については特に定めないが、溶製上の経済性から、0.0001%以上である。
Alは脱酸剤として作用し、また、固溶強化元素でもある。Sol.Alが0.005%未満ではこれらの効果は得られない。一方、Sol.Alが0.1%を超えると製鋼時におけるスラブ品質を劣化させる。好ましくは、0.005%以上であり、好ましくは0.04%以下とする。
Cr、Mo、Vは焼き入れ性を上げ、鋼の強化に有効な元素である。その効果は、それぞれ0.005%以上で得られる。一方、Cr:1.0%、Mo:0.5%、V:0.5%を超えて過剰に添加すると、上記の効果が飽和し、さらに原料コストが増加する。また、第2相分率が過大となり衝突時の耐破断特性を劣化させる場合がある。
Ti、Nbは鋼の析出強化に有効で、その効果はそれぞれ0.005%以上で得られ、本発明で規定した範囲内であれば鋼の強化に使用して差し支えない。しかし、それぞれが0.5%を超えると衝突時の耐破断特性を劣化させる場合がある。
Bはオーステナイト粒界からのフェライトの生成・成長を抑制することで焼入れ性の向上に寄与するので、必要に応じて添加することができる。その効果は、0.0003%以上で得られる。しかし、0.005%を超えると衝突時の耐破断特性を劣化させる場合がある。
Ni、Cuは鋼の強化に有効な元素であり、本発明で規定した範囲内であれば鋼の強化に使用して差し支えない。これらの効果を得るためには,それぞれ0.005%以上含有することが好ましい。一方、Ni、Cuともに1.0%を超えると、衝突時の耐破断特性を劣化させる場合がある。
Ca、REMは、いずれも硫化物の形態制御により加工性を改善させるのに有効な元素である。こうした効果を得るには、Ca、REMの含有量はそれぞれ0.001%以上とすることが好ましい。一方、Ca、REMのそれぞれの含有量が0.005%を超えると、鋼の清浄度に悪影響を及ぼし特性が低下するおそれがある。
フェライトの面積率:60%以下
フェライトの面積率が60%を超えると、980MPa以上のTSと衝突時の耐破断特性を両立することが困難となる。したがって、フェライトの面積率は60%以下とする。好ましくは、面積率は40%以下とする。下限はとくに定めないが、面積率は10%以上であることが好ましい。
焼戻しマルテンサイトは、衝突時の耐破断特性を向上させるのに有効である。焼戻しマルテンサイトの面積率が40%未満では、こうした効果を十分に得られない。好ましくは、面積率は50~80%とする。
フレッシュマルテンサイトは高強度化には有効である。しかしながら、軟質相との粒界でボイドが生じやすく、フレッシュマルテンサイトの面積率が10%を超えると衝突時の耐破断特性を低下させる場合がある。好ましくは、面積率は5%以下とする。下限はとくに定めないが、面積率は1%以上であることが好ましい。
本発明の高強度溶融亜鉛めっき鋼板において、VDA曲げ試験における曲げ部のボイド数密度を1500個/mm2以下とすることで高い衝突特性が得られる。このメカニズムは明らかではないが、次のように考えられる。衝突特性劣化の原因となる衝突時の破断は、割れの発生および進展が起点となる。割れは加工硬化能の低下および高硬度差領域での鋼板組織内で観察されるボイドの生成・連結によって発生しやすくなると考えられる。また、実部材の衝突では一次加工を受けた箇所で一次加工と直交方向に曲げ戻されるように変形する。このとき一次加工の高硬度差領域でボイドが発生するとボイドの周辺に応力が集中し、割れの発生・進展が助長され、その結果破断に至る。そこで、焼戻しマルテンサイトによって高硬度差領域を減少させ、さらに必要に応じて残留オーステナイトを活用し変形中に一次加工部での応力集中を抑制することで、一次加工部におけるボイド発生・進展およびそれに伴う部材破断を抑制し、高い耐破断特性が得られる。したがって、これらの効果を得るためにVDA曲げ試験における曲げ部のボイド数密度を1500個/mm2以下とする。好ましくは、1000個/mm2以下である。
[一次曲げ加工条件]
ポンチ先端R:5mm
成形荷重:15ton
ストローク速度:30mm/min
保持時間:5秒
曲げ方向:圧延平行方向
[直交曲げ条件]
試験方法:ロール支持、ポンチ押し込み。
ロール径:φ30mm
ポンチ先端R:0.4mm
ロール間距離:(板厚×2)+0.5 mm
ストローク速度:20mm/min
試験片サイズ:60mm×60mm
曲げ方向:圧延直角方向
ボイド数密度は、一次加工部を圧延方向に対して直角に切断した板厚断面を研磨後、一次加工時の曲げ内側の板厚表層をSEM(走査型電子顕微鏡)で1500倍の倍率で3視野撮影し、得られた画像データからMedia Cybernetics社製のImage-Proを用いてボイドの数密度を求め、3視野の数密度の平均値をボイド数密度とした。なお、ボイドはフェライトより濃い黒色で各組織と明確に区別できる。
残留オーステナイトは衝突時の割れ発生を遅延させ、耐破断特性を向上させるのに有効である。残留オーステナイトの面積率が3%未満ではこうした効果を得られない。一方、残留オーステナイトの面積率が10%を超えると、加工誘起変態によって生成したフレッシュマルテンサイトによって衝突時の耐破断特性を低下させる場合がある。より好ましくは、面積率は5~10%とする。
本発明の高強度鋼板の製造方法は、上記の鋼組成を有する鋼スラブに、仕上げ圧延温度を850~950℃として熱間圧延を施し、600℃以下の巻取温度で巻取る熱間圧延工程と、20%超えの圧下率で冷間圧延する冷間圧延工程と、750℃以上の焼鈍温度まで加熱し、30秒以上保持する焼鈍工程と、焼鈍温度~マルテンサイト変態開始温度(Ms)の温度域を平均冷却速度20℃/s以上で冷却した後、(Ms-200℃)~(Ms-100℃)の冷却停止温度までの平均冷却速度2~10℃/sで冷却し、その後300~500℃で20秒以上保持する焼入れ焼戻し工程と、溶融亜鉛めっきを施す溶融亜鉛めっき工程とを有することを特徴とする。また、溶融亜鉛めっき工程において、溶融亜鉛めっきを施した後、合金化処理を施す合金化工程を有してもよい。
仕上げ圧延温度が850℃未満の場合、圧延時にフェライト変態が起こり、局所的に強度が低下するため、本発明の組織および特性が得られない。一方、950℃を超えると結晶粒が粗大化し、本発明の鋼組織が得られない。したがって、仕上げ圧延温度は850~950℃とする。
巻取温度が600℃を超えた場合、熱延板中の炭化物が粗大化し、このような粗大化した炭化物は焼鈍時の均熱中に溶けきらないため、必要な強度を得ることができない場合がある。
冷間圧延の圧下率が20%以下では、フェライトの再結晶が促進されず、未再結晶フェライトが残存し、加工性が低下する場合がある。
焼鈍温度が750℃未満では、オーステナイトの生成が不十分となり、過剰なフェライトが生成して本発明の鋼組織が得られない。好ましくは750~900℃とする。また、保持時間が30秒未満では、オーステナイトの生成が不十分となり、過剰なフェライトが生成して本発明の鋼組織が得られない。好ましくは30秒以上であり、好ましくは600秒以下とする。
上記焼鈍温度で焼鈍後の鋼板を、焼鈍温度からマルテンサイト態開始温度(Ms)の温度域における平均冷却速度が20℃/s未満では、本発明の耐破断特性が得られない。この理由は明らかではないが以下のように考えられる。冷却速度が20℃/s未満では冷却中にフェライトやベイナイトが過度に生成し、Ms点が低下する。そのため冷却停止時のマルテンサイト変態量が減少し、また、より低温でマルテンサイト変態するため、Ms点が高い場合に比べて冷却中におけるマルテンサイトの焼戻しが不十分となる。その結果、焼戻しマルテンサイトによる硬度差緩和の効果が小さくなり、一次加工時にボイドが発生しやすくなると考えられる。したがって、平均冷却速度は20℃/s以上とする。
なお、Msは以下の式により求めることができる。
Ms(℃)=539-423×{[C%]×100/(100-[α面積%])}-30×[Mn%]-12×[Cr%]-18×[Ni%]
-8×[Mo%]
上記式において、各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
平均冷却速度が2℃/s未満では、冷却中に炭化物を含むベイナイトが過度に生成して本発明の鋼組織が得られない。また、10℃/sを超える平均冷却速度で冷却すると、本発明の耐破断特性が得られない。この理由は明らかではないが以下のように考えられる。冷却速度を10℃/s以下とすることでMs点から冷却停止温度に到達するまでの時間が長くなり、マルテンサイトが冷却中にも焼戻され、焼戻しマルテンサイトによる硬度差の緩和の効果がより大きくなると考えられる。冷却速度が10℃/sを超えるとこの効果が得られなくなり、その結果一次加工時にボイドが発生しやすくなると考えられる。したがって、平均冷却速度は2~10℃/sとする。
冷却停止温度が(Ms-100℃)超えでは焼戻しマルテンサイトの生成が不十分であり、本発明の鋼組織が得られない。一方、(Ms-200℃)未満では焼戻しマルテンサイトが過剰になり、残留オーステナイトの生成が不十分となる場合がある。好ましくは(Ms-200℃)~(Ms-150℃)とする。
300℃未満ではマルテンサイトの焼戻しが不十分となり、本発明の鋼組織および耐破断特性が得られない。一方、500℃を超えるとフェライトが過剰に生成して本発明の鋼組織が得られない。好ましくは350℃以上であり、好ましくは450℃以下とする。また、保持時間が20秒未満ではマルテンサイトの焼戻しが不十分となり、本発明の鋼組織および耐破断特性が得られない。好ましくは30秒以上であり、好ましくは500秒以下とする。
冷間圧延、焼鈍、溶融亜鉛めっきが施される。
お、表1中、Nは不可避的不純物である。
キンパス圧延を施した後、上記した手法にしたがい、フェライト(F)、ベイナイト(B)、焼戻しマルテンサイト(TM)、フレッシュマルテンサイト(FM)および残留オーステナイト(RA)の面積率をそれぞれ求めた。
圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度が10-3/sとするJIS Z2241の規定に準拠した引張試験を行い、引張強度(TS)を求めた。なお、TSが980MPa以上を合格とした。
曲げ試験はドイツ自動車工業会で規定されたVDA規格(VDA238-100)に基づき、以下の測定条件で評価を行った。なお、試験片にはあらかじめ90度Vブロックを用いて以下の条件で一次曲げ加工を施した。一次加工部における変形過程での割れ評価によって耐破断特性を評価した。
[一次曲げ加工条件]
ポンチ先端R:5mm
成形荷重:15ton
ストローク速度:30mm/min
保持時間:5秒
曲げ方向:圧延平行方向
[直交曲げ条件]
試験方法:ロール支持、ポンチ押し込み。
ロール径:φ30mm
ポンチ先端R:0.4mm
ロール間距離:(板厚×2)+0.5 mm
ストローク速度:20mm/min
試験片サイズ:60mm×60mm
曲げ方向:圧延直角方向
直交曲げ試験時に得られるストローク-荷重曲線において、試験片が平坦になってから荷重最大時までのストロークを求め、曲げ-直交曲げ試験を3回実施した平均値をΔSとした。なお、試験片が平坦になる点はストローク-荷重曲線において、荷重がほぼ一定となった後再度増加し始める点とする。ΔSが8mm以上で耐破断特性が良好と評価した。
Claims (8)
- 鋼組成として、質量%で、C:0.07~0.20%、
Si:0.1~2.0%、
Mn:2.0~3.5%、
P:0.05%以下、
S:0.05%以下、
Sol.Al:0.005~0.1%を含有し、残部がFeおよび不可避的不純物からなり、
鋼組織は、面積率で、フェライト:60%以下、焼戻しマルテンサイト:40%以上、フレッシュマルテンサイト:10%以下であり、かつ、VDA曲げ試験における曲げ部のボイド数密度が1500個/mm2以下である、鋼板表面に溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板。 - 前記鋼組織は、さらに、面積率で、残留オーステナイト:3~10%である請求項1に記載の高強度溶融亜鉛めっき鋼板。
- さらに、鋼組成として、質量%で、Cr:0.005~1.0%、
Mo:0.005~0.5%、
V:0.005~0.5%から選ばれる1種または2種以上の元素を含有する請求項1または2に記載の高強度溶融亜鉛めっき鋼板。 - さらに、鋼組成として、質量%で、Ti:0.005~0.5%、
Nb:0.005~0.5%、
B:0.0003~0.005%、
Ni:0.005~1.0%、
Cu:0.005~1.0%から選ばれる1種または2種以上の元素を含有する請求項1~3のいずれか一項に記載の高強度溶融亜鉛めっき鋼板。 - さらに、鋼組成として、質量%で、Ca:0.001~0.005%、
REM:0.001~0.005%から選ばれる1種または2種の元素を含有する請求項1~4のいずれか一項に記載の高強度溶融亜鉛めっき鋼板。 - 鋼板表面の溶融亜鉛めっき層は、合金化溶融亜鉛めっき層である請求項1~5のいずれか一項に記載の高強度溶融亜鉛めっき鋼板。
- 請求項1、3~5のいずれか一項に記載の鋼組成を有する鋼スラブに、仕上げ圧延温度を850~950℃として熱間圧延を施し、600℃以下の巻取温度で巻取る熱間圧延工程と、
20%超えの圧下率で冷間圧延する冷間圧延工程と、
750℃以上の焼鈍温度まで加熱し、30秒以上保持する焼鈍工程と、
焼鈍温度からマルテンサイト変態開始温度(Ms)の温度域を平均冷却速度20℃/s以上で冷却した後、(Ms-200℃)~(Ms-100℃)の冷却停止温度までの平均冷却速度2~10℃/sで冷却し、その後300~500℃で20秒以上保持する焼入れ焼戻し工程と、
溶融亜鉛めっきを施す溶融亜鉛めっき工程とを有する高強度溶融亜鉛めっき鋼板の製造方法。 - 前記溶融亜鉛めっき工程において、溶融亜鉛めっきを施した後に合金化処理を施す合金化工程を有する請求項7に記載の高強度溶融亜鉛めっき鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/425,096 US11643701B2 (en) | 2019-01-29 | 2019-10-18 | High-strength hot-dip galvanized steel sheet and manufacturing method therefor |
KR1020217023392A KR102500089B1 (ko) | 2019-01-29 | 2019-10-18 | 고강도 용융 아연 도금 강판 및 그의 제조 방법 |
MX2021009065A MX2021009065A (es) | 2019-01-29 | 2019-10-18 | Lamina de acero galvanizada por inmersion en caliente de alta resistencia y metodo de fabricacion para la misma. |
CN201980090428.0A CN113348259B (zh) | 2019-01-29 | 2019-10-18 | 高强度热浸镀锌钢板和其制造方法 |
EP19913827.2A EP3901293B1 (en) | 2019-01-29 | 2019-10-18 | High-strength hot-dip galvanized steel sheet and manufacturing method therefor |
JP2020505521A JP6795122B1 (ja) | 2019-01-29 | 2019-10-18 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-013074 | 2019-01-29 | ||
JP2019013074 | 2019-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158063A1 true WO2020158063A1 (ja) | 2020-08-06 |
Family
ID=71840833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041005 WO2020158063A1 (ja) | 2019-01-29 | 2019-10-18 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11643701B2 (ja) |
EP (1) | EP3901293B1 (ja) |
JP (1) | JP6795122B1 (ja) |
KR (1) | KR102500089B1 (ja) |
CN (1) | CN113348259B (ja) |
MX (1) | MX2021009065A (ja) |
WO (1) | WO2020158063A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022004817A1 (ja) * | 2020-06-30 | 2022-01-06 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
WO2022004820A1 (ja) * | 2020-06-30 | 2022-01-06 | Jfeスチール株式会社 | 亜鉛めっき鋼板、部材及びそれらの製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117043375A (zh) | 2021-03-24 | 2023-11-10 | 杰富意钢铁株式会社 | 镀锌系钢板和冷轧钢板 |
CN115558844B (zh) * | 2022-09-15 | 2023-07-11 | 首钢集团有限公司 | 1180MPa级钢材、镀锌钢及其制备方法、汽车配件 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011157583A (ja) * | 2010-01-29 | 2011-08-18 | Kobe Steel Ltd | 加工性に優れた高強度冷延鋼板およびその製造方法 |
JP2012031462A (ja) | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2014092025A1 (ja) * | 2012-12-12 | 2014-06-19 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP2015175061A (ja) | 2014-03-18 | 2015-10-05 | 新日鐵住金株式会社 | 引張最大強度780MPaを有する衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法。 |
JP2017115238A (ja) * | 2015-12-22 | 2017-06-29 | ポスコPosco | 曲げ加工性に優れた高強度冷延鋼板及びその製造方法 |
WO2018073919A1 (ja) * | 2016-10-19 | 2018-04-26 | 新日鐵住金株式会社 | めっき鋼板、溶融亜鉛めっき鋼板の製造方法及び合金化溶融亜鉛めっき鋼板の製造方法 |
WO2018138898A1 (ja) * | 2017-01-30 | 2018-08-02 | 新日鐵住金株式会社 | 鋼板 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5738796A (en) | 1980-08-20 | 1982-03-03 | Kyowa Hakko Kogyo Co Ltd | Tetrocarcins and their preparations |
TWI406966B (zh) | 2007-10-25 | 2013-09-01 | Jfe Steel Corp | 加工性優異之高強度熔融鍍鋅鋼板及其製造方法 |
CA2697352C (en) | 2008-03-25 | 2013-04-02 | Nippon Steel Corporation | Steel rod and high strength steel wire having superior ductility and methods of production of same |
JP5021108B2 (ja) * | 2010-09-16 | 2012-09-05 | 新日本製鐵株式会社 | 延性と伸びフランジ性に優れた高強度鋼板、高強度亜鉛めっき鋼板およびこれらの製造方法 |
CN107709598B (zh) * | 2015-06-30 | 2020-03-24 | 日本制铁株式会社 | 高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板 |
KR102186204B1 (ko) * | 2016-08-30 | 2020-12-03 | 제이에프이 스틸 가부시키가이샤 | 박강판 및 그의 제조 방법 |
WO2018234839A1 (en) * | 2017-06-20 | 2018-12-27 | Arcelormittal | ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY |
US11208705B2 (en) * | 2017-11-15 | 2021-12-28 | Nippon Steel Corporation | High-strength cold-rolled steel sheet |
-
2019
- 2019-10-18 EP EP19913827.2A patent/EP3901293B1/en active Active
- 2019-10-18 JP JP2020505521A patent/JP6795122B1/ja active Active
- 2019-10-18 MX MX2021009065A patent/MX2021009065A/es unknown
- 2019-10-18 US US17/425,096 patent/US11643701B2/en active Active
- 2019-10-18 CN CN201980090428.0A patent/CN113348259B/zh active Active
- 2019-10-18 WO PCT/JP2019/041005 patent/WO2020158063A1/ja unknown
- 2019-10-18 KR KR1020217023392A patent/KR102500089B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011157583A (ja) * | 2010-01-29 | 2011-08-18 | Kobe Steel Ltd | 加工性に優れた高強度冷延鋼板およびその製造方法 |
JP2012031462A (ja) | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2014092025A1 (ja) * | 2012-12-12 | 2014-06-19 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP2015175061A (ja) | 2014-03-18 | 2015-10-05 | 新日鐵住金株式会社 | 引張最大強度780MPaを有する衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法。 |
JP2017115238A (ja) * | 2015-12-22 | 2017-06-29 | ポスコPosco | 曲げ加工性に優れた高強度冷延鋼板及びその製造方法 |
WO2018073919A1 (ja) * | 2016-10-19 | 2018-04-26 | 新日鐵住金株式会社 | めっき鋼板、溶融亜鉛めっき鋼板の製造方法及び合金化溶融亜鉛めっき鋼板の製造方法 |
WO2018138898A1 (ja) * | 2017-01-30 | 2018-08-02 | 新日鐵住金株式会社 | 鋼板 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022004817A1 (ja) * | 2020-06-30 | 2022-01-06 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
WO2022004820A1 (ja) * | 2020-06-30 | 2022-01-06 | Jfeスチール株式会社 | 亜鉛めっき鋼板、部材及びそれらの製造方法 |
JP7031800B1 (ja) * | 2020-06-30 | 2022-03-08 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
JP7031801B1 (ja) * | 2020-06-30 | 2022-03-08 | Jfeスチール株式会社 | 亜鉛めっき鋼板、部材及びそれらの製造方法 |
US12091723B2 (en) | 2020-06-30 | 2024-09-17 | Jfe Steel Corporation | Galvanized steel sheet, member, and method for producing them |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020158063A1 (ja) | 2021-02-18 |
EP3901293A4 (en) | 2022-01-05 |
JP6795122B1 (ja) | 2020-12-02 |
KR102500089B1 (ko) | 2023-02-14 |
CN113348259A (zh) | 2021-09-03 |
CN113348259B (zh) | 2023-07-25 |
MX2021009065A (es) | 2021-08-18 |
US20220106662A1 (en) | 2022-04-07 |
US11643701B2 (en) | 2023-05-09 |
EP3901293B1 (en) | 2024-03-20 |
EP3901293A1 (en) | 2021-10-27 |
KR20210105419A (ko) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2762935C (en) | High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same | |
TWI399442B (zh) | 加工性優異之高強度熔融鍍鋅鋼板及其製造方法 | |
EP1264911A2 (en) | High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same | |
JP6795122B1 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
CN115715332B (zh) | 镀锌钢板、构件和它们的制造方法 | |
WO2010126161A1 (ja) | 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP7028379B1 (ja) | 鋼板、部材及びそれらの製造方法 | |
JP7031800B1 (ja) | 鋼板、部材及びそれらの製造方法 | |
JP7028381B1 (ja) | 亜鉛めっき鋼板、部材及びそれらの製造方法 | |
JP7056631B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2023162381A1 (ja) | 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 | |
WO2023162190A1 (ja) | 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020505521 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19913827 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217023392 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019913827 Country of ref document: EP Effective date: 20210719 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |