WO2020156501A1 - 喹啉衍生物的结晶 - Google Patents

喹啉衍生物的结晶 Download PDF

Info

Publication number
WO2020156501A1
WO2020156501A1 PCT/CN2020/074085 CN2020074085W WO2020156501A1 WO 2020156501 A1 WO2020156501 A1 WO 2020156501A1 CN 2020074085 W CN2020074085 W CN 2020074085W WO 2020156501 A1 WO2020156501 A1 WO 2020156501A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
formula
diffraction peaks
crystals
compound
Prior art date
Application number
PCT/CN2020/074085
Other languages
English (en)
French (fr)
Other versions
WO2020156501A8 (zh
Inventor
张喜全
王善春
耿文军
刘彦龙
张慧慧
刘飞
朱善良
李新路
赵锐
顾红梅
Original Assignee
正大天晴药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正大天晴药业集团股份有限公司 filed Critical 正大天晴药业集团股份有限公司
Priority to EP20749295.0A priority Critical patent/EP3919485A4/en
Priority to CN202080011103.1A priority patent/CN113348166A/zh
Priority to US17/427,611 priority patent/US20220098172A1/en
Publication of WO2020156501A1 publication Critical patent/WO2020156501A1/zh
Publication of WO2020156501A8 publication Critical patent/WO2020156501A8/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • This application belongs to the field of medical technology, and relates to the crystallization of quinoline derivatives, in particular to quinoline derivatives 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6 -Methoxyquinoline-7-yloxy)methyl)cyclopropylamine anhydride, solvate crystals, as well as preparation methods of the crystals, pharmaceutical compositions containing the crystals and in the field of medicine use.
  • Tyrosine kinases are a group of enzymes that catalyze the phosphorylation of protein tyrosine residues. They play an important role in intracellular signal transduction. They are involved in the regulation, signal transmission and development of normal cells, and are also related to tumor cells. Proliferation, differentiation, migration and apoptosis are closely related. Many receptor tyrosine kinases are related to the formation of tumors, and can be divided into epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), and vascular endothelial cell growth factor receptor according to the structure of their extracellular region. Body (VEGFR), Fibroblast Growth Factor Receptor (FGFR), etc.
  • EGFR epidermal growth factor receptor
  • PDGFR platelet-derived growth factor receptor
  • FGFR Fibroblast Growth Factor Receptor
  • WO2008112407 discloses the compound 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6-methoxyquinolin-7-yloxy in Example 24 )Methyl)cyclopropylamine and its preparation method, its structural formula is shown in formula I:
  • VEGFR1 vascular endothelial cell growth factor receptors
  • VEGFR2 vascular endothelial cell growth factor receptors
  • stem cell factor receptors vascular endothelial cell growth factor receptors
  • platelet-derived growth factor receptors vascular endothelial cell growth factor receptors
  • Solid drugs generally have multiple crystal forms, such as polymorphs, solvates (hydrates), salts, and co-crystals.
  • the change in the crystal form of the same drug usually results in different melting points, solubility, stability, biological activity, etc., which are important factors that affect the difficulty of drug preparation, storage stability, preparation difficulty, and bioavailability.
  • the compound has multiple crystal forms, due to the specific thermodynamic properties and stability of the specific crystal form drug, it is important to understand the crystal form of the compound used in each dosage form during the preparation process to ensure the production process Use the same form of medicine. Therefore, it is necessary to ensure that the compound is a single crystal form or a known mixture of some crystal forms.
  • WO2016179123 discloses the crystalline form 1 of the free base of the compound of formula I and a preparation method thereof.
  • CN201010245688.1 discloses the anhydrate and dihydrate crystals of quinoline derivative dihydrochloride and the preparation method thereof.
  • the application provides 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6-methoxyquinolin-7-yloxy)methyl Cyclopropylamine (compound of formula I) n-hexanol compound crystal (hereinafter referred to as D crystal).
  • D crystal n-hexanol compound crystal
  • Cu-K ⁇ radiation is used.
  • the 2 ⁇ degrees are about 7.28, 9.49, 10.07, 12.69, 14.97, 18.72, 19.26, 22.25, 22.58, 24.02. .
  • D-type crystals have diffraction peaks at 2 ⁇ degrees of 7.28, 9.49, 10.07, 12.69, 14.97, 18.72, 19.26, 22.25, 22.58, 24.02 ⁇ 0.2°.
  • the D-type crystal has diffraction peaks at approximately 7.28, 9.49, 10.07, 12.37, 12.69, 14.97, 15.66, 16.29, 17.25, 18.24, 18.72, 19.26, 21.15, 22.25, 22.58, 24.02 in 2 ⁇ degrees.
  • type D crystals have diffraction peaks at the 2 ⁇ degrees of 7.28, 9.49, 10.07, 12.37, 12.69, 14.97, 15.66, 16.29, 17.25, 18.24, 18.72, 19.26, 21.15, 22.25, 22.58, 24.02 ⁇ 0.2°.
  • the degree of the D crystal at 2 ⁇ degrees is about 7.28, 9.49, 10.07, 11.01, 12.37, 12.69, 14.97, 15.66, 16.29, 17.25, 18.24, 18.72, 19.26, 20.09, 20.77, 21.15, 22.25, 22.58 , 23.59, 24.02, 24.88, 25.82, 26.29, 26.78, 27.48, 27.72, 28.71, 29.37, 29.85, 30.39, 30.67, 30.99, 31.37, 32.54, 32.92, 33.36, 34.05, 34.57, 35.47, 36.99, 37.37, 37.62 Diffraction peaks.
  • the degree of 2 ⁇ of the D-type crystal is 7.28, 9.49, 10.07, 11.01, 12.37, 12.69, 14.97, 15.66, 16.29, 17.25, 18.24, 18.72, 19.26, 20.09, 20.77, 21.15, 22.25, 22.58, 23.59, 24.02 , 24.88, 25.82, 26.29, 26.78, 27.48, 27.72, 28.71, 29.37, 29.85, 30.39, 30.67, 30.99, 31.37, 32.54, 32.92, 33.36, 34.05, 34.57, 35.47, 36.99, 37.37, 37.62 ⁇ 0.2° with diffraction peak.
  • the content of n-hexanol in the D-type crystal is 5.0-21.0 wt%. In some specific embodiments, the content of n-hexanol in the D-type crystal is 9.0 to 12.0 wt%. In some specific embodiments, the content of n-hexanol in the D-type crystal is 10.0-11.5 wt%. In some specific embodiments, crystals of the semi-n-hexanolate of the compound of formula I are provided.
  • thermogravimetric-derivative thermogravimetric analysis (TG-DTG) pattern of the type D crystal is shown in Figure 3, and the weight loss is 10.34wt%.
  • this application provides 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6-methoxyquinolin-7-yloxy)
  • the crystal of methyl)cyclopropylamine (compound of formula I) (hereinafter referred to as type E crystal for short), in which Cu-K ⁇ radiation is used, the type E crystal is in the X-ray powder diffraction (XRD) pattern, the degree of 2 ⁇ is about 3.27, There are diffraction peaks at 6.56, 8.84, 9.95, 10.52, 13.10, 13.15, 15.58, 16.68, 17.84, 18.66. For example, E-type crystals have diffraction peaks at 2 ⁇ degrees of 3.27, 6.56, 8.84, 9.95, 10.52, 13.10, 13.15, 15.58, 16.68, 17.84, 18.66 ⁇ 0.2°.
  • the number of angles of the E-type crystal in 2 ⁇ is about 3.27, 6.56, 8.20, 8.84, 9.95, 10.52, 13.10, 13.15, 15.58, 16.68, 17.84, 18.66, 19.96, 20.19, 22.68, 23.12, 24.82, 25.37
  • the E-type crystal has the following 2 ⁇ angles of 3.27, 6.56, 8.20, 8.84, 9.95, 10.52, 13.10, 13.15, 15.58, 16.68, 17.84, 18.66, 19.96, 20.19, 22.68, 23.12, 24.82, 25.37, 27.22
  • the number of angles of the E-type crystal in 2 ⁇ is about 3.27, 6.56, 7.20, 8.20, 8.84, 9.95, 10.52, 13.10, 13.15, 14.47, 15.58, 16.68, 17.84, 18.66, 19.96, 20.19, 20.94, There are diffraction peaks at 21.96, 22.68, 23.12, 24.82, 25.37, 27.22, 29.22, 31.39, 31.59, 33.93, 35.02.
  • the number of angles of the E-type crystal in 2 ⁇ is 3.27, 6.56, 7.20, 8.20, 8.84, 9.95, 10.52, 13.10, 13.15, 14.47, 15.58, 16.68, 17.84, 18.66, 19.96, 20.19, 20.94, 21.96, 22.68, There are diffraction peaks at 23.12, 24.82, 25.37, 27.22, 29.22, 31.39, 31.59, 33.93, 35.02 ⁇ 0.2°.
  • this application provides 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6-methoxyquinolin-7-yloxy) (Methyl)cyclopropylamine (compound of formula I) 1,4-dioxane compound crystals (hereinafter referred to as F-type crystals), in which Cu-K ⁇ radiation is used, the F-type crystals are subjected to X-ray powder diffraction (XRD) In the spectrum, there are diffraction peaks at approximately 7.23, 9.48, 10.41, 13.34, 14.79, 18.03, 19.89, 22.45, 23.50 in 2 ⁇ degrees. For example, the F-type crystal has diffraction peaks at 2 ⁇ degrees of 7.23, 9.48, 10.41, 13.34, 14.79, 18.03, 19.89, 22.45, 23.50 ⁇ 0.2°.
  • XRD X-ray powder diffraction
  • the number of angles of the F-type crystal in 2 ⁇ is about 7.23, 9.48, 10.41, 11.04, 12.28, 13.34, 14.79, 15.00, 15.48, 16.17, 16.96, 17.49, 18.03, 19.58, 19.89, 21.34, 22.45, 23.50 , 24.71, 25.04, 26.77, 30.18 have diffraction peaks.
  • the number of angles in 2 ⁇ of the F-type crystal is 7.23, 9.48, 10.41, 11.04, 12.28, 13.34, 14.79, 15.00, 15.48, 16.17, 16.96, 17.49, 18.03, 19.58, 19.89, 21.34, 22.45, 23.50, 24.71, There are diffraction peaks at 25.04, 26.77, 30.18 ⁇ 0.2°.
  • the number of angles of the F-type crystal in 2 ⁇ is about 7.23, 9.48, 10.41, 11.04, 12.28, 13.34, 14.79, 15.00, 15.48, 16.17, 16.96, 17.49, 18.03, 19.16, 19.58, 19.89, 21.34, 22.45, 22.78, 23.50, 23.82, 23.99, 24.71, 25.04, 25.27, 25.63, 26.44, 26.77, 27.97, 28.69, 29.32, 30.18, 30.75, 31.26, 32.58, 33.03, 33.85, 34.26, 34.68, 36.31, 70, 36.97, 37.97 There are diffraction peaks at 38.14 and 38.73.
  • the number of angles of the F-type crystal in 2 ⁇ is 7.23, 9.48, 10.41, 11.04, 12.28, 13.34, 14.79, 15.00, 15.48, 16.17, 16.96, 17.49, 18.03, 19.16, 19.58, 19.89, 21.34, 22.45, 22.78, 23.50, 23.82, 23.99, 24.71, 25.04, 25.27, 25.63, 26.44, 26.77, 27.97, 28.69, 29.32, 30.18, 30.75, 31.26, 32.58, 33.03, 33.85, 34.26, 34.68, 36.31, 36.97, 37.70, 38.14, 38.14, 38.14, 38. There is a diffraction peak at 0.2°.
  • the content of dioxane in the F-type crystal is 5.0 to 18.0 wt%. In some specific embodiments, the content of dioxane in the F-type crystal is 7.0 to 12.0 wt%. In some specific embodiments, the content of dioxane in the F-type crystal is 8.0 to 10.0 wt%.
  • crystals of the hemodioxane compound of formula I are provided.
  • thermogravimetric-derivative thermogravimetric analysis (TG-DTG) pattern of the F-type crystal is shown in FIG. 9, and the weight loss is 9.18 wt%.
  • this application provides 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6-methoxyquinolin-7-yloxy)
  • the crystal of methyl)cyclopropylamine (compound of formula I) acetonate hereinafter referred to as type G crystal).
  • type G crystal Cu-K ⁇ radiation is used.
  • the 2 ⁇ degrees are about 7.21, 8.94, 9.58, 10.81, 14.65, 15.18, 16.82, 17.54, 18.16, 19.93, 20.60, 22.16 , 24.17, 24.91, 27.54, 27.59 have diffraction peaks.
  • the G-type crystal has diffraction peaks at 2 ⁇ degrees of 7.21, 8.94, 9.58, 10.81, 14.65, 15.18, 16.82, 17.54, 18.16, 19.93, 20.60, 22.16, 24.17, 24.91, 27.54, 27.59 ⁇ 0.2°.
  • the number of angles of the G-type crystal in 2 ⁇ is about 7.21, 8.94, 9.58, 10.81, 13.07, 14.65, 15.18, 16.82, 17.54, 18.16, 18.88, 19.93, 20.60, 21.02, 22.16, 24.17, 24.91, 25.81 , 27.54, 27.59, 29.16, 29.75 have diffraction peaks.
  • the number of angles of the G-type crystal in 2 ⁇ is 7.21, 8.94, 9.58, 10.81, 13.07, 14.65, 15.18, 16.82, 17.54, 18.16, 18.88, 19.93, 20.60, 21.02, 22.16, 24.17, 24.91, 25.81, 27.54, There are diffraction peaks at 27.59, 29.16, 29.75 ⁇ 0.2°.
  • the number of angles of the G-type crystal in 2 ⁇ is about 7.21, 8.94, 9.58, 10.40, 10.81, 12.69, 13.07, 14.65, 15.18, 15.42, 16.82, 17.54, 18.16, 18.88, 19.35, 19.93, 20.60, There are diffraction peaks at 21.02, 21.70, 22.16, 24.17, 24.91, 25.81, 27.54, 27.59, 28.10, 29.16, 29.75, 30.37, 30.93, 31.68, 32.51, 33.18, 33.82, 35.83, 36.40, 37.39, 38.42, 39.49.
  • the number of angles in 2 ⁇ of the G-type crystal is 7.21, 8.94, 9.58, 10.40, 10.81, 12.69, 13.07, 14.65, 15.18, 15.42, 16.82, 17.54, 18.16, 18.88, 19.35, 19.93, 20.60, 21.02, 21.70,
  • the acetone content in the type G crystal is 2.0-13.0 wt%. In some specific embodiments, the acetone content in the type G crystal is 3.0-6.0 wt%. In some specific embodiments, the acetone content in the type G crystal is 4.0-5.0 wt%.
  • the crystallization of the compound of formula I monoacetate is provided.
  • the present application provides a crystal of the acetonate of the compound of formula I containing 1/3 mole of acetone.
  • the typical XRD pattern of the G-type crystal is shown in FIG. 10, which has the following characteristics as described in Table 4:
  • thermogravimetric-derivative thermogravimetric analysis (TG-DTG) pattern of the G-type crystal is shown in FIG. 12, and the weight loss is 4.68 wt%.
  • this application provides 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6-methoxyquinolin-7-yloxy)
  • H-type crystal The crystal of methyl)cyclopropylamine (compound of formula I) ethyl acetate (hereinafter referred to as H-type crystal).
  • Cu-K ⁇ radiation is used.
  • XRD X-ray powder diffraction
  • the 2 ⁇ degrees are about 7.48, 9.71, 10.70, 12.52, 13.30, 13.51, 15.08, 15.65, 17.08, 18.47, 20.15, 21.63
  • H-type crystals have diffraction peaks at 2 ⁇ degrees of 7.48, 9.71, 10.70, 12.52, 13.30, 13.51, 15.08, 15.65, 17.08, 18.47, 20.15, 21.63, 22.77, 23.84 ⁇ 0.2°.
  • the number of angles of the H-type crystal in 2 ⁇ is about 7.48, 9.71, 9.98, 10.70, 12.52, 13.30, 13.51, 15.08, 15.65, 17.08, 17.75, 18.47, 19.57, 20.15, 21.63, 22.77, 23.31, 23.84 , 24.85, 25.26, 25.79, 26.19, 26.93, 29.11, 29.65, 30.36 have diffraction peaks.
  • the number of angles of the H-type crystal in 2 ⁇ is about 7.48, 9.71, 9.98, 10.70, 12.52, 13.30, 13.51, 15.08, 15.65, 17.08, 17.75, 18.47, 19.57, 20.15, 21.63, 22.77, 23.31, 23.84, 24.85 , 25.26, 25.79, 26.19, 26.93, 29.11, 29.65, 30.36 ⁇ 0.2°, there are diffraction peaks
  • the H-type crystal has a 2 ⁇ angle of about 7.48, 9.71, 9.98, 10.70, 12.52, 13.30, 13.51, 15.08, 15.65, 16.70, 17.08, 17.75, 18.47, 19.56, 19.57, 20.15, 21.63 , 22.77, 23.31, 23.64, 23.84, 24.13, 24.85, 25.26, 25.79, 26.19, 26.93, 27.84, 28.08, 29.11, 29.65, 30.36, 31.02, 32.97, 33.35, 33.38, 34.48, 36.30, 36.64, 37.93, 38.97 There are diffraction peaks.
  • the H-type crystal has a 2 ⁇ angle of about 7.48, 9.71, 9.98, 10.70, 12.52, 13.30, 13.51, 15.08, 15.65, 16.70, 17.08, 17.75, 18.47, 19.56, 19.57, 20.15, 21.63, 22.77, 23.31, 23.64, 23.84, 24.13, 24.85, 25.26, 25.79, 26.19, 26.93, 27.84, 28.08, 29.11, 29.65, 30.36, 31.02, 32.97, 33.35, 33.38, 34.48, 36.30, 36.64, 37.93, 38.97°, 39.74 ⁇ 0.2° There are diffraction peaks.
  • the ethyl acetate content in the H-type crystal is 5.0 to 18.0 wt%. In some specific embodiments, the ethyl acetate content in the H-type crystal is 7.0 to 12.0 wt%. In some specific embodiments, the ethyl acetate content in the H-type crystal is 9.0 to 10.0 wt%.
  • the crystallization of the monoethyl hydrate of the compound of formula I is provided. In some specific embodiments, crystals of the hemiacetate hydrate of the compound of formula I are provided.
  • the typical XRD pattern of the H-type crystal is shown in FIG. 13, which has the following characteristics shown in Table 5:
  • thermogravimetric-derivative thermogravimetric analysis (TG-DTG) profile of the H-type crystal is shown in FIG. 15, and the weight loss is 9.24 wt%.
  • this application provides 1-((4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-6-methoxyquinolin-7-yloxy)
  • J crystal tetrahydrofuran compound
  • Cu-K ⁇ radiation is used.
  • the 2 ⁇ degrees are about 7.27, 9.75, 10.15, 10.44, 12.38, 14.60, 15.16, 15.50, 18.01, 18.37, 19.60, 21.99
  • XRD X-ray powder diffraction
  • J-type crystals have diffraction peaks at 2 ⁇ degrees of 7.27, 9.75, 10.15, 10.44, 12.38, 14.60, 15.16, 15.50, 18.01, 18.37, 19.60, 21.99, 24.20, 29.49 ⁇ 0.2°.
  • the number of angles of the J-type crystal in 2 ⁇ is about 7.27, 9.75, 12.38, 14.60, 15.16, 15.50, 18.01, 18.37, 19.60, 21.68, 21.99, 22.56, 22.82, 24.20, 24.95, 25.44, 27.04, 27.67 , 28.67, 29.15, 29.49, 37.82 have diffraction peaks.
  • the number of angles of the J-type crystal in 2 ⁇ is 7.27, 9.75, 12.38, 14.60, 15.16, 15.50, 18.01, 18.37, 19.60, 21.68, 21.99, 22.56, 22.82, 24.20, 24.95, 25.44, 27.04, 27.67, 28.67, There are diffraction peaks at 29.15, 29.49, 37.82 ⁇ 0.2°.
  • the J-type crystal has a 2 ⁇ angle of about 7.27, 9.75, 10.15, 10.44, 12.38, 14.60, 15.16, 15.50, 16.68, 17.39, 18.01, 18.37, 19.43, 19.60, 20.14, 20.52, 20.95 , 21.41, 21.68, 21.99, 22.56, 22.82, 23.30, 24.06, 24.20, 24.95, 25.44, 25.73, 27.04, 27.67, 28.53, 28.67, 29.15, 29.49, 30.10, 30.32, 30.66, 32.10, 32.40, 33.86, 34.95, 36.95 , 36.44, 37.02, 37.82 have diffraction peaks.
  • the J-type crystal has a number of 2 ⁇ angles of 7.27, 9.75, 10.15, 10.44, 12.38, 14.60, 15.16, 15.50, 16.68, 17.39, 18.01, 18.37, 19.43, 19.60, 20.14, 20.52, 20.95, 21.41, 21.68 , 21.99, 22.56, 22.82, 23.30, 24.06, 24.20, 24.95, 25.44, 25.73, 27.04, 27.67, 28.53, 28.67, 29.15, 29.49, 30.10, 30.32, 30.66, 32.10, 32.40, 33.86, 34.95, 36.22, 36.44, 36.22, 36.44 , 37.82 ⁇ 0.2°, there is a diffraction peak.
  • the content of tetrahydrofuran in the J-type crystal is 10.0-18.0 wt%. In some specific embodiments, the content of tetrahydrofuran in the J-type crystal is 12.0-17.0 wt%. In some specific embodiments, the content of tetrahydrofuran in the J-type crystal is 13.0-16.0 wt%. In some specific embodiments, the crystallization of the compound of formula I-tetrahydrofuran compound is provided.
  • thermogravimetric-derivative thermogravimetric analysis (TG-DTG) pattern of the J-type crystal is shown in FIG. 18, and the weight loss is 13.22 wt%.
  • this application provides a method for preparing the above-mentioned D-type crystal, E-type crystal, F-type crystal, G-type crystal, H-type crystal, and J-type crystal.
  • a method for preparing the D crystal of the compound of formula I comprises mixing the compound of formula I with n-hexanol at 25° C., and performing suspension crystallization to obtain the D crystal.
  • a method for preparing the E-type crystal of the compound of formula I comprises mixing the compound of the formula I with p-xylene and performing cooling crystallization to obtain the E-type crystal.
  • a method for preparing the E-type crystal of the compound of formula I comprises mixing the compound of the formula I with p-xylene at 25° C. and performing suspension crystallization to obtain the E-type crystal.
  • a method for preparing E-type crystals of the compound of formula I comprises mixing the compound of formula I with p-xylene at 50° C. and performing suspension crystallization to obtain E-type crystals.
  • a method for preparing the F crystal of the compound of formula I comprises mixing the compound of formula I with dioxane and performing suspension crystallization to obtain the F crystal.
  • a method for preparing the F crystal of the compound of formula I comprises mixing the compound of formula I with dioxane at 25° C. for suspension crystallization to obtain the F crystal. In some embodiments, a method for preparing the F crystal of the compound of formula I is provided, which comprises mixing the compound of formula I with dioxane at 50° C. for suspension crystallization to obtain the F crystal.
  • a method for preparing the G-type crystal of the compound of formula I comprises volatile and crystallizing the compound of the formula I in acetone to obtain the G-type crystal.
  • a method for preparing the G-type crystal of the compound of formula I which comprises mixing the compound of the formula I with an acetone solvent at 25° C. for suspension crystallization to obtain the G-type crystal.
  • a method for preparing the G-type crystal of the compound of formula I which comprises mixing the compound of the formula I with an acetone solvent at 50° C. for suspension crystallization to obtain the G-type crystal.
  • a method for preparing the H-type crystal of the compound of formula I includes mixing the compound of the formula I with ethyl acetate and performing suspension crystallization to obtain the H-type crystal.
  • a method for preparing the J-type crystal of the compound of formula I includes mixing the compound of the formula I with tetrahydrofuran and performing suspension crystallization to obtain the J-type crystal.
  • the specific steps of the suspension crystallization described in this application are as follows: take an appropriate amount of the compound of formula I and stir in a solvent at a certain temperature for 24 hours. In some embodiments, stirring is equilibrated at 25°C. In some embodiments, stirring is equilibrated at 50°C. The solutions were then centrifuged separately and the solids were dried at 45-50°C.
  • the specific steps of the cooling crystallization described in this application are: take an appropriate amount of the compound of formula I, mix it with a solvent, and heat it with stirring until it is completely dissolved. In some embodiments, it is heated to 60°C for complete dissolution, and then the solution is heated at 15°C. After cooling and crystallization, the obtained crystals are collected by filtration and dried. If necessary, filter the undissolved compound of formula I to obtain a clear solution.
  • the specific steps of the volatile crystallization described in this application are: take an appropriate amount of the compound of formula I, mix it with a solvent, and heat it with stirring until it is completely dissolved. In some embodiments, heat to 60°C, and then transfer the clear liquid to a sample bottle In, slowly volatilize the crystals at room temperature, collect the obtained crystals and dry. If necessary, filter the undissolved compound of formula I to obtain a clear solution.
  • activated carbon can be added, filtered, and the resulting solution crystallized; during crystallization, the precipitation of crystals can be promoted by conventional methods such as stirring, adding seed crystals or standing for crystallization.
  • an organic solvent for example, petroleum ether, isopropyl ether, methyl tert-butyl ether, n-heptane or n-hexane.
  • the present application provides a crystal composition of the above-mentioned D-type crystal, E-type crystal, F-type crystal, G-type crystal, H-type crystal, or J-type crystal.
  • the crystalline composition of type D crystals means that the type D crystals in the composition account for more than 50% of the weight of the composition, preferably more than 70%, more preferably more than 90%, most preferably more than 95%, in the composition It may contain small amounts of other crystalline or amorphous compounds of the formula I compound.
  • the crystalline composition of E-type crystals means that the E-type crystals in the composition account for more than 50% of the weight of the composition, preferably more than 70%, more preferably more than 90%, most preferably more than 95%. Contain a small amount of other crystalline or amorphous compounds of formula I.
  • the crystalline composition of F-type crystals means that the F-type crystals in the composition account for more than 50% of the weight of the composition, preferably more than 70%, more preferably more than 90%, and most preferably more than 95%. Contain a small amount of other crystalline or amorphous compounds of formula I.
  • the crystalline composition of G-type crystals means that the G-type crystals in the composition account for more than 50% of the weight of the composition, preferably more than 70%, more preferably more than 90%, most preferably more than 95%. Contain a small amount of other crystalline or amorphous compounds of formula I.
  • the crystalline composition of H-type crystals means that the H-type crystals in the composition account for more than 50% of the weight of the composition, preferably more than 70%, more preferably more than 90%, and most preferably more than 95%. Contain a small amount of other crystalline or amorphous compounds of formula I.
  • the crystalline composition of J-type crystals means that the J-type crystals in the composition account for more than 50% by weight of the composition, preferably more than 70%, more preferably more than 90%, most preferably more than 95%. Contain a small amount of other crystalline or amorphous compounds of formula I.
  • the crystalline composition of crystals or H-type crystals and J-type crystals or J-type crystals is collectively referred to as the "active material of the present application" hereinafter.
  • the active substance of this application can be administered by any route suitable for the disease to be treated, including oral, topical (such as oral, sublingual, etc.), parenteral (such as subcutaneous, intramuscular, intravenous, spinal cord, intradermal, intrathecal, etc.) ), rectal and vaginal routes.
  • topical such as oral, sublingual, etc.
  • parenteral such as subcutaneous, intramuscular, intravenous, spinal cord, intradermal, intrathecal, etc.
  • rectal and vaginal routes are preferred mode of administration.
  • the active substance of the present application can be administered in the form of a pure substance, it is usually administered in the form of a pharmaceutical composition.
  • the pharmaceutical composition of the active substance of the present application also contains one or more pharmaceutical excipients, and if necessary, may also contain other therapeutic active ingredients. It can also be administered in combination with chemotherapy, radiotherapy, and surgery.
  • compositions suitable for oral administration include tablets, capsules, powders, granules, dripping pills, pastes, powders, tinctures, etc., preferably tablets and capsules.
  • the tablets can be ordinary tablets, dispersible tablets, effervescent tablets, sustained-release tablets, controlled-release tablets or enteric-coated tablets, and capsules can be ordinary capsules, sustained-release capsules, controlled-release capsules or enteric-coated capsules.
  • the pharmaceutical composition of the present application can be prepared by conventional methods using conventional pharmaceutical excipients known in the art.
  • Conventional pharmaceutical excipients include fillers, absorbents, wetting agents, binders, disintegrants, lubricants and the like.
  • Fillers include starch, lactose, mannitol, microcrystalline cellulose, etc.; absorbents include calcium sulfate, calcium hydrogen phosphate, calcium carbonate, magnesium oxide, etc.; wetting agents include water, ethanol, etc.; binders include hypromellose Disintegrants include croscarmellose sodium, crospovidone, surfactants, low-substituted hydroxypropyl cellulose, etc.; lubricants include stearic acid Magnesium, talc, polyethylene glycol, magnesium lauryl sulfate, micronized silica gel, talc, etc. Pharmaceutical excipients also include coloring agents, sweeteners, etc.
  • a unit preparation for oral administration may conveniently contain, for example, 1 mg to 100 mg of active substance, preferably 3 mg to 30 mg of active substance.
  • the active substance of the application and its pharmaceutical composition have the activity of inhibiting receptor tyrosine kinase, and can be used for the treatment of tumors, such as liver cancer, kidney cancer, colon cancer, gastrointestinal stromal tumor, soft tissue sarcoma, gastric cancer, and medullary thyroid cancer , Esophageal squamous cell carcinoma, small cell lung cancer, non-small cell lung cancer, endometrial cancer, ovarian cancer, cervical cancer, fallopian tube cancer, etc.
  • tumors such as liver cancer, kidney cancer, colon cancer, gastrointestinal stromal tumor, soft tissue sarcoma, gastric cancer, and medullary thyroid cancer , Esophageal squamous cell carcinoma, small cell lung cancer, non-small cell lung cancer, endometrial cancer, ovarian cancer, cervical cancer, fallopian tube cancer, etc.
  • this application provides the D-type crystal, E-type crystal, F-type crystal, G-type crystal, H-type crystal, J-type crystal of the above formula I compound, or its crystal composition or its pharmaceutical composition for preparing Used in drugs for the treatment of tumors.
  • the present application provides a method for treating tumors, which comprises administering to a subject in need a therapeutically effective amount of the D-type crystal, E-type crystal, F-type crystal, G-type crystal, and H-type compound of the above formula I compound.
  • the present application provides a D-type crystal, E-type crystal, F-type crystal, G-type crystal, H-type crystal, or J-type crystal of the above-mentioned compound of formula I for treating tumors in a subject in need. , Or its crystalline composition or its pharmaceutical composition.
  • the subject is a mammal, such as a human.
  • the diffraction pattern obtained from a crystalline compound is often characteristic for a specific crystal, and the relative intensity of the band may be affected by crystallization conditions, particle size, and other factors. The effect of the dominant orientation produced by the difference in measurement conditions varies. Therefore, the relative intensity of the diffraction peaks is not characteristic of the target crystal. When judging whether it is the same as the known crystal, more attention should be paid to the relative position of the peaks rather than their relative intensity. In addition, for any given crystal, there may be a slight error in the position of the peak, which is also well known in the field of crystallography.
  • the peak position can move, and the measurement error of the 2 ⁇ value is usually ⁇ 0.2°. Therefore, this error should be taken into consideration when determining each crystal structure.
  • the peak position is usually expressed by 2 ⁇ angle or crystal plane distance d.
  • d ⁇ /2sin ⁇
  • represents the wavelength of the incident X-ray
  • is Diffraction angle.
  • DSC Differential scanning calorimetry
  • mammals include humans and domestic animals such as laboratory mammals and domestic pets (eg cats, dogs, pigs, sheep, cattle, sheep, goats, horses, rabbits), and non-domestic mammals such as wild mammals.
  • composition refers to a preparation of a compound of the present application and a medium generally accepted in the art for delivering a biologically active compound to a mammal such as a human.
  • the medium includes all pharmaceutically acceptable carriers for its use.
  • the pharmaceutical composition facilitates the administration of the compound to the organism.
  • terapéuticaally effective amount refers to a sufficient amount of a non-toxic drug or agent that can achieve the desired effect.
  • the determination of the effective amount varies from person to person, depending on the age and general condition of the recipient, and also on the specific active substance. The appropriate effective amount in a case can be determined by those skilled in the art according to routine experiments.
  • pharmaceutically acceptable carriers refer to those carriers that are administered together with the active ingredient, have no obvious stimulating effect on the organism, and do not impair the biological activity and performance of the active compound.
  • pharmaceutically acceptable carriers refer to those carriers that are administered together with the active ingredient, have no obvious stimulating effect on the organism, and do not impair the biological activity and performance of the active compound.
  • Remington The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams & Wilkins (2005), and the content of this document is incorporated herein by reference.
  • the crystals prepared in this application have the advantages of high purity, high crystallinity, good stability, low moisture absorption, good fluidity, etc., and their bioavailability, stability and solubility are improved at the same time, and the characteristics of rapid dissolution make It is more suitable for pharmacy; this application also provides its preparation method, which has high yield and mild crystallization conditions, is suitable for industrial production, and can better meet the needs of the pharmaceutical industry.
  • Figure 1 shows the XRD pattern of the D crystal.
  • Figure 2 shows the DSC spectrum of the D crystal.
  • Figure 3 shows the TG-DTG pattern of the D crystal.
  • Figure 4 shows the XRD pattern of the E-type crystal.
  • Figure 5 shows the DSC spectrum of the E-type crystal.
  • Figure 6 shows the TG-DTG pattern of the E-type crystal.
  • Figure 7 shows the XRD pattern of the F-type crystal.
  • Figure 8 shows the DSC spectrum of the F-type crystal.
  • Figure 9 shows the TG-DTG pattern of the F type crystal.
  • Figure 10 shows the XRD pattern of the G type crystal.
  • Figure 11 shows the DSC spectrum of the G type crystal.
  • Figure 12 shows a pattern of G-type crystal TG-DTG.
  • Figure 13 shows the XRD pattern of the H-type crystal.
  • Figure 14 shows the DSC spectrum of the H-type crystal.
  • Figure 15 shows the TG-DTG pattern of the H-type crystal.
  • Figure 16 shows the XRD pattern of the J-type crystal.
  • Figure 17 shows the DSC spectrum of the J-type crystal.
  • Figure 18 shows the TG-DTG pattern of the J-type crystal.
  • X-ray powder diffraction spectroscopy was measured under the following conditions, scanning range 2-Theta: 2-35°; step length: 0.02; time: 0.2 seconds; rotation speed: 30n/min; target tube: Cu; voltage: 30KV ; Current: 10mA.
  • DSC Differential scanning calorimetry
  • TGA Thermogravimetric analysis
  • thermogravimetric (DTG) curve is the first differential curve of the TG curve with respect to temperature. Under the condition of constant heating, the relationship between the rate of change in weight loss of the sample and the temperature is measured.
  • the moisture determination method is Karl Fischer moisture determination method.
  • Example 1 Take an appropriate amount of solid samples obtained in Example 1, Example 2.1, Example 3, Example 4.1, Example 5, and Example 6, and dissolve them in a 4 mL sample bottle, and add 2 mL of methanol, ethanol, acetone, acetonitrile, and tetrahydrofuran. , Ethyl acetate, dioxane or water, dissolve it by ultrasound and become supersaturated. Stir at 20°C for 24 hours, and dry the centrifuged solid at 45°C for 2 hours. Test its X-ray powder diffraction ( XRD) pattern.
  • XRD X-ray powder diffraction
  • the crystals can show the following results: they are relatively stable, and no crystal form transformation occurs.
  • the D crystals, E crystals, F crystals, G crystals, H crystals, and J The type crystal is at high temperature (60°C, open), high humidity (room temperature/relative humidity 92.5%, open) and light (total illuminance 1.2 ⁇ 10 6 Lux ⁇ hr/near ultraviolet 200w ⁇ hr/m 2 , open) Stability under conditions.
  • Example 1 Weigh 5 mg of the solid samples obtained in Example 1, Example 2.1, Example 3, Example 4.1, Example 5, and Example 6, and place them on the bottom of a glass sample bottle and spread them into a thin layer.
  • the sample placed under high temperature and high humidity conditions is sealed with aluminum foil paper, and small holes are tied in the aluminum foil paper to ensure that the sample can fully contact the ambient air. Under strong light conditions, the sample is not sealed with aluminum foil and placed open. Samples placed under different conditions were sampled on the 5th and 10th day for X-ray powder diffraction spectroscopy, and the test results were compared with the initial test results on day 0.
  • Example 1 Take appropriate amounts of solid samples obtained in Example 1, Example 2.1, Example 3, Example 4.1, Example 5, and Example 6, and perform dynamic moisture adsorption analysis (DVS) on them respectively, using DVS Intrinsic dynamic water vapor adsorption instrument Determination.
  • the test temperature is 25°C
  • the relative humidity range is 0-95%
  • the step size is 10%.
  • Investigate the change of the sample's moisture-induced weight gain percentage with the relative humidity detect its X-ray powder diffraction (XRD) patterns, and compare the XRD patterns of the samples before and after the DVS test.
  • XRD X-ray powder diffraction
  • Angle of Repose The angle between the collective free surface of the powder pile in a static state and the horizontal plane. Using a powder flow tester, take an appropriate amount of solid samples obtained in Example 1, Example 2.1, Example 3, Example 4.1, Example 5, and Example 6, and the powder falls freely on a sample pan with a diameter of 25 cm A pile is formed, and then the height of the pile is measured to calculate the angle of repose of the powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本申请涉及医药领域,涉及喹啉衍生物的结晶,具体涉及喹啉衍生物无水物、溶剂合物的结晶,以及所述结晶的制备方法、含所述结晶的药物组合物和在医药领域的用途。本申请还提供其制备方法,收率高,结晶条件温和,适合工业化生产,能够更好地满足制药业需求。

Description

喹啉衍生物的结晶
相关申请的交叉引用
本申请要求于2019年01月31日向中国国家知识产权局提交的第201910095975.X号中国专利申请的优先权和权益,所述申请公开的内容通过引用整体并入本文中。
技术领域
本申请属于医药技术领域,涉及喹啉衍生物的结晶,具体涉及喹啉衍生物1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺的无水物、溶剂合物的结晶,以及所述结晶的制备方法、含所述结晶的药物组合物和在医药领域的用途。
背景技术
酪氨酸激酶是一组催化蛋白质酪氨酸残基磷酸化的酶,在细胞内的信号转导中起着重要的作用,它参与正常细胞的调节、信号传递和发育,也与肿瘤细胞的增殖、分化、迁移和凋亡密切相关。许多受体酪氨酸激酶都与肿瘤的形成相关,根据其细胞外区域结构的不同可分为表皮生长因子受体(EGFR)、血小板衍化生长因子受体(PDGFR)、血管内皮细胞生长因子受体(VEGFR)、成纤维细胞生长因子受体(FGFR)等等。
WO2008112407在实施例24中公开了化合物1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺及其制备方法,它的结构式如式I所示:
Figure PCTCN2020074085-appb-000001
它是一个多靶点的受体酪氨酸激酶抑制剂,能抑制血管内皮细胞生长因子受体(VEGFR1、VEGFR2/KDR和VEGFR3)、干细胞因子受体、血小板源生长因子受体等激酶活性,抑制VEGFR2介导的下游信号转导,从而抑制肿瘤新生血管生成。
固体药物一般都存在多种晶体形态,比如多晶型、溶剂合物(水合物)、盐和共晶等。而同一种药物的晶型变化通常导致化合物具有不同的熔点、溶解度、稳定性、生物活性等,这些均是影响药物制备的难易、储存稳定性、制剂难易和生物利用度等的重要因素。当化合物存在多种晶体形态时,由于特定晶型药物具有特异性的热力学性质和稳定性,因此在制备的过程中,了解在各个剂型中应用的化合物的晶型是重要的,以保证生产过程应用相同形态的药物。因此,保证化合物是单一的晶型或是一些晶型的已知混和物是必要的。
WO2016179123中公开了式I化合物游离碱的晶型1及其制备方法。CN201010245688.1中公开了喹啉衍生物二盐酸盐的无水物和二水物的结晶及其制备方法。
药用化合物的新的多种晶体形态的发现提供了改善药物物理特性的机会,即扩展了物质的全部性质,从而可以更好地指导化合物及其制剂的研究,因此本申请提供的喹啉衍生物结晶及含所述结晶的药物组合物在药物的制造及其它应用中有商业价值。
发明内容
一方面,本申请提供了1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺(式I化合物)正己醇合物的结晶(以下简称为D型结晶)。其中使用Cu-Kα辐射,D型结晶在X-射线粉末衍射(XRD)图谱中,在2θ度数约为7.28、9.49、10.07、12.69、14.97、18.72、19.26、22.25、22.58、24.02 处有衍射峰。例如,D型结晶在2θ度数为7.28、9.49、10.07、12.69、14.97、18.72、19.26、22.25、22.58、24.02±0.2°处有衍射峰。
进一步典型地,所述D型结晶在2θ度数约为7.28、9.49、10.07、12.37、12.69、14.97、15.66、16.29、17.25、18.24、18.72、19.26、21.15、22.25、22.58、24.02处有衍射峰。例如,D型结晶在2θ度数为7.28、9.49、10.07、12.37、12.69、14.97、15.66、16.29、17.25、18.24、18.72、19.26、21.15、22.25、22.58、24.02±0.2°处有衍射峰。
再进一步典型地,所述D型结晶在2θ度数约为7.28、9.49、10.07、11.01、12.37、12.69、14.97、15.66、16.29、17.25、18.24、18.72、19.26、20.09、20.77、21.15、22.25、22.58、23.59、24.02、24.88、25.82、26.29、26.78、27.48、27.72、28.71、29.37、29.85、30.39、30.67、30.99、31.37、32.54、32.92、33.36、34.05、34.57、35.47、36.99、37.37、37.62处有衍射峰。例如,所述D型结晶在2θ度数为7.28、9.49、10.07、11.01、12.37、12.69、14.97、15.66、16.29、17.25、18.24、18.72、19.26、20.09、20.77、21.15、22.25、22.58、23.59、24.02、24.88、25.82、26.29、26.78、27.48、27.72、28.71、29.37、29.85、30.39、30.67、30.99、31.37、32.54、32.92、33.36、34.05、34.57、35.47、36.99、37.37、37.62±0.2°处有衍射峰。
在一些实施方案中,在所述D型结晶中正己醇含量为5.0~21.0wt%。在一些具体的实施方案中,在所述D型结晶中正己醇含量为9.0~12.0wt%。在一些具体的实施方案中,在所述D型结晶中正己醇含量为10.0~11.5wt%。在一些具体的实施方案中,提供了式I化合物的半正己醇合物的结晶。
在一个具体的实施方案中,使用Cu-Kα辐射,D型结晶的典型的XRD的图谱如附图1所示,其具有表1中所述的如下特征:
[表1]
序号 2θ(°) 相对强度(%)
1 7.28 5.1
2 9.49 20.1
3 10.07 10.3
4 11.01 0.8
5 12.37 4.4
6 12.69 11.5
7 13.44 0.5
8 14.97 45.1
9 15.66 17.7
10 16.29 7.4
11 17.25 5.9
12 18.24 12.6
13 18.72 100.0
14 19.26 42.1
15 20.09 2.8
16 20.77 1.8
17 21.15 14.8
18 22.25 73.3
19 22.58 84.8
20 23.59 2.4
21 24.02 59.4
22 24.88 2.3
23 25.82 6.8
24 26.29 0.9
25 26.78 6.2
26 27.48 2.0
27 27.72 1.5
28 28.71 1.9
29 29.37 5.3
30 29.85 5.1
31 30.39 7.9
32 30.67 4.4
33 30.99 2.1
34 31.37 2.6
35 32.54 0.9
36 32.92 3.0
37 33.36 4.5
38 34.05 1.4
39 34.57 0.7
40 35.47 1.4
41 36.99 2.0
42 37.37 2.8
43 37.62 2.3
在一个特定的实施方案中,D型结晶的热重-微商热重分析(TG-DTG)图谱如附图3所示,重量损失为10.34wt%。
第二方面,本申请提供了1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺(式I化合物)的结晶(以下简称为E型结晶),其中使用Cu-Kα辐射,E型结晶在X-射线粉末衍射(XRD)图谱中,在2θ度数约为3.27、6.56、8.84、9.95、10.52、13.10、13.15、15.58、16.68、17.84、18.66处有衍射峰。例如,E型结晶在2θ度数为3.27、6.56、8.84、9.95、10.52、13.10、13.15、15.58、16.68、17.84、18.66±0.2°处有衍射峰。
进一步典型地,所述E型结晶在2θ角度数约为3.27、6.56、8.20、8.84、9.95、10.52、13.10、13.15、15.58、16.68、17.84、18.66、19.96、20.19、22.68、23.12、24.82、25.37、27.22处有衍射峰。例如,所述E型结晶在以下2θ角度数为3.27、6.56、8.20、8.84、9.95、10.52、13.10、13.15、15.58、16.68、17.84、18.66、19.96、20.19、22.68、23.12、24.82、25.37、27.22±0.2°处有衍射峰。
再进一步典型地,所述E型结晶在2θ角度数约为3.27、6.56、7.20、8.20、8.84、9.95、10.52、13.10、13.15、14.47、15.58、16.68、17.84、18.66、19.96、20.19、20.94、21.96、22.68、23.12、24.82、25.37、27.22、29.22、31.39、31.59、33.93、35.02处有衍射峰。例如,所述E型结晶在2θ角度数为3.27、6.56、7.20、8.20、8.84、9.95、10.52、13.10、13.15、14.47、15.58、16.68、17.84、18.66、19.96、20.19、20.94、21.96、22.68、23.12、24.82、25.37、27.22、29.22、31.39、31.59、33.93、35.02±0.2°处有衍射峰。
在一个具体的实施方案中,使用Cu-Kα辐射,E型结晶的典型的XRD的图谱如附图4所示,其具有表2中所述的如下特征:
[表2]
序号 2θ(°) 相对强度(%)
1 3.27 92.7
2 6.56 55.5
3 7.20 2.9
4 8.20 15.0
5 8.84 88.3
6 9.95 100.0
7 10.52 78.5
8 13.10 29.3
9 13.15 28.4
10 14.47 2.4
11 15.58 30.7
12 16.68 58.1
13 17.84 60.1
14 18.66 65.5
15 19.96 13.2
16 20.19 13.5
17 20.94 25.1
18 21.96 9.0
19 22.68 61.0
20 23.12 60.9
21 24.82 31.4
22 25.37 42.5
23 27.22 32.2
24 29.22 7.3
25 31.39 2.3
26 31.59 4.8
27 33.93 2.4
28 35.02 3.2
第三方面,本申请提供了1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺(式I化合物)1,4-二氧六环合物的结晶(以下简称为F型结晶),其中使用Cu-Kα辐射,F型结晶在X-射线粉末衍射(XRD)图谱中,在2θ度数约为7.23、9.48、10.41、13.34、14.79、18.03、19.89、22.45、23.50处有衍射峰。例如,所述F型结晶在2θ度数为7.23、9.48、10.41、13.34、14.79、18.03、19.89、22.45、23.50±0.2°处有衍射峰。
进一步典型地,所述F型结晶在2θ角度数约为7.23、9.48、10.41、11.04、12.28、13.34、14.79、15.00、15.48、16.17、16.96、17.49、18.03、19.58、19.89、21.34、22.45、23.50、24.71、25.04、26.77、30.18处有衍射峰。例如,所述F型结晶在2θ角度数为7.23、9.48、10.41、11.04、12.28、13.34、14.79、15.00、15.48、16.17、16.96、17.49、18.03、19.58、19.89、21.34、22.45、23.50、24.71、25.04、26.77、30.18±0.2°处有衍射峰。
再进一步典型地,所述F型结晶在2θ角度数约为7.23、9.48、10.41、11.04、12.28、13.34、14.79、15.00、15.48、16.17、16.96、17.49、18.03、19.16、19.58、19.89、21.34、22.45、22.78、23.50、23.82、23.99、24.71、25.04、25.27、25.63、26.44、26.77、27.97、28.69、29.32、30.18、30.75、31.26、32.58、33.03、33.85、34.26、34.68、36.31、36.97、37.70、38.14、38.73处有衍射峰。例如,所述F型结晶在2θ角度数为7.23、9.48、10.41、11.04、12.28、13.34、14.79、15.00、15.48、16.17、16.96、17.49、18.03、19.16、19.58、19.89、21.34、22.45、22.78、23.50、23.82、23.99、24.71、25.04、25.27、25.63、26.44、26.77、27.97、28.69、29.32、30.18、30.75、31.26、32.58、33.03、33.85、34.26、34.68、36.31、36.97、37.70、38.14、38.73±0.2°处有衍射峰。
在一些实施方案中,在所述F型结晶中二氧六环含量为5.0~18.0wt%。在一些具体的实施方案中,在所述F型结晶中二氧六环含量为7.0~12.0wt%。在一些具体的实施方案中,在所述F型结晶中二氧六环含量为8.0~10.0wt%。
在一些具体的实施方案中,提供了式I化合物半二氧六环合物的结晶。
在一个具体的实施方案中,使用Cu-Kα辐射,F型结晶的典型的XRD的图谱如附图7所示,其具有表3中所述的如下特征:
[表3]
序号 2θ(°) 相对强度(%)
1 7.23 9.7
2 9.48 10.4
3 10.41 8.0
4 11.04 1.1
5 12.28 5.3
6 13.34 26.5
7 14.79 33.0
8 15.00 12.5
9 15.48 9.1
10 16.17 3.7
11 16.96 15.1
12 17.49 3.0
13 18.03 100.0
14 19.16 3.6
15 19.58 9.6
16 19.89 36.8
17 21.34 7.1
18 22.45 41.8
19 22.78 6.0
20 23.50 73.3
21 23.82 7.4
22 23.99 4.1
23 24.71 15.9
24 25.04 8.3
25 25.27 4.6
26 25.63 2.8
27 26.44 1.6
28 26.77 8.1
29 27.97 1.2
30 28.69 3.4
31 29.32 0.8
32 30.18 7.9
33 30.75 3.0
34 31.26 1.0
35 32.58 1.0
36 33.03 3.1
37 33.85 2.4
38 34.26 2.3
39 34.68 2.5
40 36.31 1.5
41 36.97 0.7
42 37.70 2.5
43 38.14 1.8
44 38.73 1.1
在一个特定的实施方案中,F型结晶的热重-微商热重分析(TG-DTG)图谱如附图9所示,重量损失为9.18wt%。
第四方面,本申请提供了1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺(式I化合物)丙酮合物的结晶(以下简称为G型结晶)。其中使用Cu-Kα辐射,G型结晶在X-射线粉末衍射(XRD)图谱中,在2θ度数约为7.21、8.94、9.58、10.81、14.65、15.18、16.82、17.54、18.16、19.93、20.60、22.16、24.17、24.91、27.54、27.59处有衍射峰。例如,所述G型结晶在2θ度数为7.21、8.94、9.58、10.81、14.65、15.18、16.82、17.54、18.16、19.93、20.60、22.16、24.17、24.91、27.54、27.59±0.2°处有衍射峰。
进一步典型地,所述G型结晶在2θ角度数约为7.21、8.94、9.58、10.81、13.07、14.65、15.18、16.82、17.54、18.16、18.88、19.93、20.60、21.02、22.16、24.17、24.91、25.81、27.54、27.59、29.16、29.75处有衍射峰。例如,所述G型结晶在2θ角度数为7.21、8.94、9.58、10.81、13.07、14.65、15.18、16.82、17.54、18.16、18.88、19.93、20.60、21.02、22.16、24.17、24.91、25.81、27.54、27.59、29.16、29.75±0.2°处有衍射峰。
再进一步典型地,所述G型结晶在2θ角度数约为7.21、8.94、9.58、10.40、10.81、12.69、13.07、14.65、15.18、15.42、16.82、17.54、18.16、18.88、19.35、19.93、20.60、21.02、21.70、22.16、24.17、24.91、25.81、27.54、27.59、28.10、29.16、29.75、30.37、30.93、31.68、32.51、33.18、33.82、35.83、36.40、37.39、38.42、39.49处有衍射峰。例如,所述G型结晶在2θ角度数为7.21、8.94、9.58、10.40、10.81、12.69、13.07、14.65、15.18、15.42、16.82、17.54、18.16、18.88、19.35、19.93、20.60、21.02、21.70、22.16、24.17、24.91、25.81、27.54、27.59、28.10、29.16、29.75、30.37、30.93、31.68、32.51、33.18、33.82、35.83、36.40、37.39、38.42、39.49±0.2°处有衍射峰。
在一些实施方案中,在所述G型结晶中丙酮含量为2.0~13.0wt%。在一些具体的实施方案中,在所述G型结晶中丙酮含量为3.0~6.0wt%。在一些具体的实施方案中,在所述G型结晶中丙酮含量为4.0~5.0wt%。
在一些具体的实施方案中,提供了式I化合物一丙酮合物的结晶。在一个具体的实施方案中,本申请提供了含1/3摩尔丙酮的式I化合物丙酮合物的结晶。
在一个具体的实施方案中,使用Cu-Kα辐射,G型结晶的典型的XRD的图谱如附图10所示,其具有表4中所述的如下特征:
[表4]
序号 2θ(°) 相对强度(%)
1 7.21 4.9
2 8.94 7.5
3 9.58 12.6
4 10.40 1.6
5 10.81 13.0
6 12.69 0.9
7 13.07 3.4
8 14.65 15.3
9 15.18 24.9
10 15.42 4.5
11 16.82 26.5
12 17.54 33.7
13 18.16 100.0
14 18.88 8.0
15 19.35 17.3
16 19.93 3.7
17 20.60 18.0
18 21.02 4.3
19 21.70 5.1
20 22.16 85.9
21 24.17 48.7
22 24.91 20.3
23 25.81 2.3
24 27.54 26.8
25 27.59 24.9
26 28.10 2.8
27 29.16 12.4
28 29.75 10.6
29 30.37 5.3
30 30.93 0.8
31 31.68 1.6
32 32.51 1.0
33 33.18 2.7
34 33.82 1.9
35 35.83 0.7
36 36.40 1.3
37 37.39 1.3
38 38.42 1.9
39 39.49 0.7
在一个特定的实施方案中,G型结晶的热重-微商热重分析(TG-DTG)图谱如附图12所示,重量损失为4.68wt%。
第五方面,本申请提供了1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺(式I化合物)乙酸乙酯合物的结晶(以下简称为H型结晶)。其中使用Cu-Kα辐射,H型结晶在X-射线粉末衍射(XRD)图谱中,在2θ度数约为7.48、9.71、10.70、12.52、13.30、13.51、15.08、15.65、17.08、18.47、20.15、21.63、22.77、23.84处有衍射峰。例如,H型结晶在2θ度数为7.48、9.71、10.70、12.52、13.30、13.51、15.08、15.65、17.08、18.47、20.15、21.63、22.77、23.84±0.2°处有衍射峰。
进一步典型地,所述H型结晶在2θ角度数约为7.48、9.71、9.98、10.70、12.52、13.30、13.51、15.08、15.65、17.08、17.75、18.47、19.57、20.15、21.63、22.77、23.31、23.84、24.85、25.26、25.79、26.19、26.93、29.11、29.65、30.36处有衍射峰。例如,所述H型结晶在2θ角度数约为7.48、9.71、9.98、10.70、12.52、13.30、13.51、15.08、15.65、17.08、17.75、18.47、19.57、20.15、21.63、22.77、23.31、23.84、24.85、25.26、25.79、26.19、26.93、29.11、29.65、30.36±0.2°处有衍射峰
再进一步典型地,所述H型结晶在2θ角度数约为处7.48、9.71、9.98、10.70、12.52、13.30、13.51、15.08、15.65、16.70、17.08、17.75、18.47、19.56、19.57、20.15、21.63、22.77、23.31、23.64、23.84、24.13、24.85、25.26、25.79、26.19、26.93、27.84、28.08、29.11、29.65、30.36、31.02、32.97、33.35、33.38、34.48、36.30、36.64、37.93、38.97、39.74有衍射峰。例如,所述H型结晶在2θ角度数约为处7.48、9.71、9.98、10.70、12.52、13.30、13.51、15.08、15.65、16.70、17.08、17.75、18.47、19.56、19.57、20.15、21.63、22.77、23.31、23.64、23.84、24.13、24.85、25.26、25.79、26.19、26.93、27.84、28.08、29.11、29.65、30.36、31.02、32.97、33.35、33.38、34.48、36.30、36.64、37.93、38.97、39.74±0.2°有衍射峰。
在一些实施方案中,在所述H型结晶中乙酸乙酯含量为5.0~18.0wt%。在一些具体的实施方案中,在所述H型结晶中乙酸乙酯含量为7.0~12.0wt%。在一些具体的实施方案中,在所述H型结晶中乙酸乙酯含量为9.0~10.0wt%。
在一些具体的实施方案中,提供了式I化合物一乙酸乙酯合物的结晶。在一些具体的实施方案中,提供了式I化合物半乙酸乙酯合物的结晶。
在一个具体的实施方案中,使用Cu-Kα辐射,H型结晶的典型的XRD的图谱如附图13所示,其具有表5中所示的如下特征:
[表5]
序号 2θ(°) 相对强度(%)
1 7.48 28.2
2 9.71 9.4
3 9.98 3.1
4 10.70 12.8
5 12.52 7.1
6 13.30 34.4
7 13.51 36.7
8 15.08 74.7
9 15.65 25.9
10 16.70 7.0
11 17.08 21.3
12 17.75 11.1
13 18.47 100.0
14 19.56 16.7
15 19.57 16.6
16 20.15 79.3
17 21.63 16.5
18 22.77 81.9
19 23.31 24.7
20 23.64 46.7
21 23.84 70.7
22 24.13 9.6
23 24.85 24.4
24 25.26 13.3
25 25.79 6.2
26 26.19 5.1
27 26.93 17.3
28 27.84 2.7
29 28.08 1.2
30 29.11 5.7
31 29.65 1.3
32 30.36 16.4
33 31.02 3.8
34 32.97 5.1
35 33.35 5.5
36 33.38 5.1
37 34.48 4.1
38 36.30 1.9
39 36.64 0.9
40 37.93 5.9
41 38.97 4.1
42 39.74 1.6
在一个特定的实施方案中,H型结晶的热重-微商热重分析(TG-DTG)图谱如附图15所示,重量损失为9.24wt%。
第六方面,本申请提供了1-((4-(4-氟-2-甲基-1H-吲哚-5-基氧基)-6-甲氧基喹啉-7-基氧基)甲基)环丙胺(式I化合物)四氢呋喃合物的结晶(以下简称为J型结晶)。其中使用Cu-Kα辐射,J型结晶在X-射线粉末衍射(XRD)图谱中,在2θ度数约为7.27、9.75、10.15、10.44、12.38、14.60、15.16、15.50、18.01、18.37、19.60、21.99、24.20、29.49处有衍射峰。例如,J型结晶在2θ度数为7.27、9.75、10.15、10.44、12.38、14.60、15.16、15.50、18.01、18.37、19.60、21.99、24.20、29.49±0.2°处有衍射峰。
进一步典型地,所述J型结晶在2θ角度数约为7.27、9.75、12.38、14.60、15.16、15.50、18.01、18.37、19.60、21.68、21.99、22.56、22.82、24.20、24.95、25.44、27.04、27.67、28.67、29.15、29.49、37.82处有衍射峰。例如,所述J型结晶在2θ角度数为7.27、9.75、12.38、14.60、15.16、15.50、18.01、18.37、19.60、21.68、21.99、22.56、22.82、24.20、24.95、25.44、27.04、27.67、28.67、29.15、29.49、37.82±0.2°处有衍射峰。
再进一步典型地,所述J型结晶在2θ角度数约为处7.27、9.75、10.15、10.44、12.38、14.60、15.16、15.50、16.68、17.39、18.01、18.37、19.43、19.60、20.14、20.52、20.95、21.41、21.68、21.99、22.56、22.82、23.30、24.06、24.20、24.95、25.44、25.73、27.04、27.67、28.53、28.67、29.15、29.49、30.10、30.32、30.66、32.10、32.40、33.86、34.95、36.22、36.44、37.02、37.82有衍射峰。例如,所述J型结晶在2θ角度数为处7.27、9.75、10.15、10.44、12.38、14.60、15.16、15.50、16.68、17.39、18.01、18.37、19.43、19.60、20.14、20.52、20.95、21.41、21.68、21.99、22.56、22.82、23.30、24.06、24.20、24.95、25.44、25.73、27.04、27.67、28.53、28.67、29.15、29.49、30.10、30.32、30.66、32.10、32.40、33.86、34.95、36.22、36.44、37.02、37.82±0.2°有衍射峰。
在一些实施方案中,在所述J型结晶中四氢呋喃含量为10.0~18.0wt%。在一些具体的实施方案中,在所述J型结晶中四氢呋喃含量为12.0~17.0wt%。在一些具体的实施方案中,在所述J型结晶中四氢呋喃含量为13.0~16.0wt%。在一些具体的实施方案中,提供了式I化合物一四氢呋喃合物的结晶。
在一个具体的实施方案中,使用Cu-Kα辐射,J型结晶的典型的XRD的图谱如附图16所示,其具有表6中所述的如下特征:
[表6]
序号 2θ(°) 相对强度(%)
1 7.27 10.6
2 9.75 24.2
3 10.15 2.4
4 10.44 1.0
5 12.38 17.5
6 14.60 24.7
7 15.16 13.4
8 15.50 23.0
9 16.68 1.5
10 17.39 1.9
11 18.01 16.9
12 18.37 27.6
13 19.43 20.9
14 19.60 53.5
15 20.14 0.4
16 20.52 0.4
17 20.95 1.1
18 21.41 4.4
19 21.68 15.1
20 21.99 100.0
21 22.56 7.9
22 22.82 4.4
23 23.30 0.2
24 24.06 6.0
25 24.20 20.1
26 24.95 5.2
27 25.44 3.2
28 25.73 0.6
29 26.25 0.2
30 27.04 4.1
31 27.67 1.1
32 28.53 2.0
33 28.67 4.5
34 29.15 2.5
35 29.49 17.3
36 30.10 1.7
37 30.32 1.9
38 30.66 2.8
39 32.10 1.4
40 32.40 3.5
41 33.51 0.5
42 33.57 0.4
43 33.86 0.6
44 34.95 1.6
45 35.81 0.2
46 36.22 1.7
47 36.44 4.1
48 37.02 1.4
49 37.82 6.4
50 38.42 0.4
51 39.26 0.3
在一个特定的实施方案中,J型结晶的热重-微商热重分析(TG-DTG)图谱如附图18所示,重量损失为13.22wt%。
另一方面,本申请提供了上述D型结晶、E型结晶、F型结晶、G型结晶、H型结晶、J型结晶的制备方法。
在一些实施方案中,提供了一种式I化合物的D型结晶的制备方法,包括将式I化合物在25℃与正己醇混合,进行混悬结晶,得到D型结晶。
在一些实施方案中,提供了一种式I化合物的E型结晶的制备方法,包括将式I化合物与对二甲苯混合,进行冷却结晶,得到E型结晶。
在一些实施方案中,还提供了一种式I化合物的E型结晶的制备方法,包括将式I化合物在25℃与对二甲苯混合,进行混悬结晶,得到E型结晶。在一些实施方案中,提供了一种式I化合物的E型结晶的制备方法,包括将式I化合物在50℃与对二甲苯混合,进行混悬结晶,得到E型结晶。
在一些实施方案中,提供了一种式I化合物的F型结晶的制备方法,包括将式I化合物与二氧六环混合,进行混悬结晶,得到F型结晶。
在一些实施方案中,提供了一种式I化合物的F型结晶的制备方法,包括将式I化合物在25℃与二氧六环混合,进行混悬结晶,得到F型结晶。在一些实施方案中,提供了一种式I化合物的F型结晶的制备方法,包括将式I化合物在50℃与二氧六环混合,进行混悬结晶,得到F型结晶。
在一些实施方案中,提供了一种式I化合物的G型结晶的制备方法,包括将式I化合物在丙酮中挥发结晶,得到G型结晶。
在一些实施方案中,还提供了一种式I化合物的G型结晶的制备方法,包括将式I化合物在25℃与丙酮溶剂混合,进行混悬结晶,得到G型结晶。在一些实施方案中,提供了一种式I化合物的G型结晶的制备方法,包括将式I化合物在50℃与丙酮溶剂混合,进行混悬结晶,得到G型结晶。
在一些实施方案中,提供了一种式I化合物的H型结晶的制备方法,包括将式I化合物与乙酸乙酯混合,进行混悬结晶,得到H型结晶。
在一些实施方案中,提供了一种式I化合物的J型结晶的制备方法,包括将式I化合物与四氢呋喃混合,进行混悬结晶,得到J型结晶。
本申请所述的混悬结晶,具体步骤为:取适量式I化合物,一定温度下在溶剂中搅拌平衡24h。在一些实施方案中,在25℃下搅拌平衡。在一些实施方案中,在50℃下搅拌平衡。然后分别离心溶液,固体在45-50℃中干燥。
本申请所述的冷却结晶,具体步骤为:取适量式I化合物,与溶剂混合,边搅拌边加热至完全溶解,在一些实施方案中,加热到60℃完全溶解,然后将溶液在15℃下冷却析晶,之后过滤收集所得晶体、干燥。视需要,对未溶清式I化合物过滤后得到澄清的溶液。
本申请所述的挥发结晶,具体步骤为:取适量式I化合物,与溶剂混合,边搅拌边加热至直到完全溶解,在一些实施方案中,加热至60℃,然后将澄清液转移到样品瓶中,在室温下缓慢挥发结晶,收集所得晶体、干燥。视需要,对未溶清式I化合物过滤后得到澄清的溶液。
视需要可加入活性炭,过滤,所得溶液析晶;析晶时,可通过搅拌、加入晶种或者静置析晶等常规的方法促进晶体的析出。在分离晶体时可进一步用有机溶剂(例如石油醚、异丙醚、甲基叔丁基醚、正庚烷或正己烷)洗涤。
再一方面,本申请提供了上述D型结晶、E型结晶、F型结晶、G型结晶、H型结晶、或J型结晶的结晶组合物。其中D型结晶的结晶组合物是指,组合物中D型结晶占组合物重量的50%以上,优选在70%以上,更优选在90%以上,最优选在95%以上,该组合物中可含有少量式I化合物的其它结晶或无定型物。
E型结晶的结晶组合物是指,组合物中E型结晶占组合物重量的50%以上,优选在70%以上,更优选在90%以上,最优选在95%以上,该组合物中可含有少量式I化合物的其它结晶或无定型物。
F型结晶的结晶组合物是指,组合物中F型结晶占组合物重量的50%以上,优选在70%以上,更优选在90%以上,最优选在95%以上,该组合物中可含有少量式I化合物的其它结晶或无定型物。
G型结晶的结晶组合物是指,组合物中G型结晶占组合物重量的50%以上,优选在70%以上,更优选在90%以上,最优选在95%以上,该组合物中可含有少量式I化合物的其它结晶或无定型物。
H型结晶的结晶组合物是指,组合物中H型结晶占组合物重量的50%以上,优选在70%以上,更优选在90%以上,最优选在95%以上,该组合物中可含有少量式I化合物的其它结晶或无定型物。
J型结晶的结晶组合物是指,组合物中J型结晶占组合物重量的50%以上,优选在70%以上,更优选在90%以上,最优选在95%以上,该组合物中可含有少量式I化合物的其它结晶或无定型物。
本申请所述的D型结晶或D型结晶的结晶组合物、E型结晶或E型结晶的结晶组合物、F型结晶或F型结晶的结晶组合、G型结晶或G型结晶、H型结晶或H型结晶以及J型结晶或J型结晶的结晶组合物,在下文中总称为“本申请活性物质”。
本申请活性物质可以通过任何适合所治疗疾病的途径给药,包括通过口服、局部(如口腔、舌下等)、非胃肠(如皮下、肌肉、静脉内、脊髓、皮内、鞘内等)、直肠、阴道等途径给药。优选的给药方式是口服给药。
虽然本申请活性物质能够以纯物质的形式给药,但通常以药物组合物的形式给药。本申请活性物质的药物组合物还包含一种或多种药用辅料,视需要,还可包含其它治疗活性成分。也可以与化学治疗、放射治疗、外科手术这些疗法联合给药。
适合口服的药物组合物包括片剂、胶囊剂、粉剂、颗粒剂、滴丸、糊剂、散剂、酊剂等,优选片剂和胶囊剂。其中片剂可以是普通片剂、分散片、泡腾片、缓释片、控释片或肠溶片,胶囊剂可以是普通胶囊、缓释胶囊、控释胶囊或肠溶胶囊。
本申请药物组合物可使用本领域公知的常规药用辅料通过常规方法制得。常规的药用辅料包括填充剂、吸收剂、润湿剂、粘合剂、崩解剂、润滑剂等。填充剂包括淀粉、乳糖、甘露醇、微晶纤维素等;吸收剂包括硫酸钙、磷酸氢钙、碳酸钙、氧化镁等;润湿剂包括水、乙醇等;粘合剂包括羟丙甲纤维素、聚维酮、微晶纤维素等;崩解剂包括交联羧甲基纤维素钠、交联聚维酮、表面活性剂、低取代羟丙基纤维素等;润滑剂包括硬脂酸镁、滑石粉、聚乙二醇、十二烷基硫酸镁、微粉硅胶、滑石粉等。药用辅料还包括着色剂、甜味剂等。
用于口服的片剂和胶囊剂的单位制剂中本申请活性物质的用量必需根据患者的治疗情况和具体给药途径改变。例如,供口服给药的单位制剂可方便的含有例如1mg~100mg的活性物质,优选包含3mg~30mg的活性物质。
本申请活性物质及其药物组合物具有抑制受体酪氨酸激酶的活性,可用于治疗肿瘤,如肝癌、肾癌、结肠癌、胃肠道间质瘤、软组织肉瘤、胃癌、甲状腺髓样癌、食管鳞状细胞癌、小细胞肺癌、非小细胞肺癌、子宫内膜癌、卵巢癌、宫颈癌、输卵管癌等。
另一方面,本申请提供了上述式I化合物的D型结晶、E型结晶、F型结晶、G型结晶、H型结晶、J型结晶,或其结晶组合物或其药物组合物在制备用于治疗肿瘤的药物中的用途。
另一方面,本申请提供了治疗肿瘤的方法,其包括向有需要的受试者给予治疗有效量的上述式I化合物的D型结晶、E型结晶、F型结晶、G型结晶、H型结晶、或J型结晶,或其结晶组合物或其药物组合物。
另一方面,本申请提供了用于治疗有需要的受试者中的肿瘤的上述式I化合物的D型结晶、E型结晶、F型结晶、G型结晶、H型结晶、或J型结晶,或其结晶组合物或其药物组合物。
在本申请的一些实施方案中,所述受试者为哺乳动物,例如人。
需要说明的是,在X-射线衍射光谱(XRD)中,由结晶化合物得到的衍射谱图对于特定的晶体往往是特征性的,其中谱带的相对强度可能会因为结晶条件、粒径和其它测定条件的差异而产生的优势取向效果而变化。因此,衍射峰的相对强度对所针对的晶体并非是特征性的,判断是否与已知的晶体相同时,更应该注意的是峰的相对位置而不是它们的相对强度。此外,对任何给定的晶体而言,峰的位置可能存在轻微误差,这在结晶学领域中也是公知的。例如,由于分析样品时温度的变化、样品移动或仪器的标定等,峰的位置可以移动,2θ值的测定误差通常为±0.2°。因此,在确定每种晶体结构时,应该将此误差考虑在内。在XRD图谱中通常用2θ角或晶面距d表示峰位置,两者之间具有简单的换算关系:d=λ/2sinθ,其中d代表晶面距,λ代表入射X射线的波长,θ为衍射角。
示差扫描量热法(DSC)测定当结晶由于其晶体结构发生变化或晶体熔融而吸收或释放热时的转变温度。对于同种化合物的同种晶型,在连续的分析中,热转变温度和熔点误差典型的在约5℃之内,通常在约3℃之内,当我们说一个化合物具有一给定的DSC峰或熔点时,这是指该DSC峰或熔点±5℃。DSC提供了一种辨别不同晶型的辅助方法。不同的结晶形态可根据其不同的转变温度特征而加以识别。需要指出的是对于混合物而言,其DSC峰或熔点可能会在更大的范围内变动。此外,由于在物质熔化的过程中伴有分解,因此熔化温度与升温速率密切相关。
“哺乳动物”包括人和家畜如实验室哺乳动物与家庭宠物(例如猫、狗、猪、羊、牛、绵羊、山羊、马、家兔),及非驯养哺乳动物,如野生哺乳动物等。
术语“药物组合物”是指本申请化合物与本领域中通常接受的用于传递生物活性化合物至哺乳动物例如人的介质的制剂。所述介质包括所有供其使用的药物可接受的载体。药物组合物有利于化合物向生物体的给药。
术语“治疗有效量”是指无毒的但能达到预期效果的药物或药剂的足够用量。有效量的确定因人而异,取决于受体的年龄和一般情况,也取决于具体的活性物质,个案中合适的有效量可以由本领域技术人员根据常规试验确定。
本申请中,“药学上可接受的载体”是指与活性成份一同给药的、对有机体无明显刺激作用,而且不会损害该活性化合物的生物活性及性能的那些载体。关于载体的其它信息,可以参考Remington:The Science and Practice of Pharmacy,21st Ed.,Lippincott,Williams&Wilkins(2005),该文献的内容通过引用的方式并入本文。
在本文中,除非另有说明,否则术语“包含、包括和含有(comprise、comprises和comprising)”或等同物为开放式表述,意味着除所列出的要素、组分和步骤外,还可涵盖其它未指明的要素、组分和步骤。
为了描述和公开的目的,以引用的方式将所有的专利、专利申请和其它已确定的出版物在此明确地并入本文。这些出版物仅因为它们的公开早于本申请的申请日而提供。所有关于这些文件的日期的声明或这些文件的内容的表述是基于申请者可得的信息,并且不构成任何关于这些文件的日期或这些文件的内容的正确性的承认。而且,在任何国家,在本中对这些出版物的任何引用并不构成关于该出版物成为本领域的公知常识的一部分的认可。
本申请制备得到的结晶,具有纯度高、结晶度高、稳定性好、吸湿度小、流动性好等优点,以及其生物利用度的提高、稳定性和溶解度的同时改善、快速溶出等特性使其更适用于制药;本申请还提供其制备方法,收率高,结晶条件温和,适合工业化生产,能够更好地满足制药业需求。
附图说明
图1示出了D型结晶的XRD图谱。
图2示出了D型结晶的DSC图谱。
图3示出了D型结晶的TG-DTG图谱。
图4示出了E型结晶的XRD图谱。
图5示出了E型结晶的DSC图谱。
图6示出了E型结晶的TG-DTG图谱。
图7示出了F型结晶的XRD图谱。
图8示出了F型结晶的DSC图谱。
图9示出了F型结晶的TG-DTG图谱。
图10示出了G型结晶的XRD图谱。
图11示出了G型结晶的DSC图谱。
图12示出了G型结晶TG-DTG图谱。
图13示出了H型结晶的XRD图谱。
图14示出了H型结晶的DSC图谱。
图15示出了H型结晶TG-DTG图谱。
图16示出了J型结晶的XRD图谱。
图17示出了J型结晶的DSC图谱。
图18示出了J型结晶TG-DTG图谱。
具体实施方式
下面的具体实施例的目的是使本领域的技术人员能更清楚地理解和实施本申请。它们不应该被认为是对本申请范围的限制,而只是本申请的示例性说明和典型代表。
以具体的实施例说明本申请的技术方案,但本申请的保护范围不限于下述的实施例范围。所采用的试剂均为市售产品。
采集数据所用的仪器及方法:
X-射线粉末衍射光谱(XRD)在下述条件下测定,扫描范围2-Theta:2-35°;步长:0.02;时间:0.2秒;转速:30n/min;靶管:Cu;电压:30KV;电流:10mA。
示差扫描量热法(DSC)在下述条件下测定,温度范围:40-300℃;扫描速率:10℃/min。
热重分析(TGA)在下述条件下测定,温度范围:30-300℃;扫描速率:10℃/min。
微商热重(DTG)曲线是TG曲线对温度的一次微分曲线。在等速升温条件下,测定试样失重变化率与温度的关系。
水分测定方法为卡尔费休水分测定法。
本申请中式I化合物可参考WO2008112407实施例24进行制备。
实施例1式I化合物的D型晶型的制备
取式I化合物过量,在25℃的条件下进行混悬结晶,与2mL正己醇溶剂,搅拌平衡24h,离心溶液,固体部分在50℃中干燥10min,得到D型结晶,随后使用Cu-Kα辐射,得到其X射线粉末衍射(XRD)图谱如附图1所示,示差扫描量热法(DSC)图谱如附图2所示,热重-微商热重分析(TG-DTG)图谱如附图3所示。该晶型在113.4℃脱溶剂失重,失重约10.34wt%,脱水后熔点Tonset=219.28℃,熔融前未发生转晶,约251.14℃开始分解。
实施例2式I化合物的E型晶型的制备
实施例2.1式I化合物的E型晶型的制备
取式I化合物适量,溶解在5~10mL对二甲苯溶剂中,边搅拌边加热至60℃,直到完全溶解;如未溶清,则过滤后得到澄清的溶液。然后将溶液在15℃下冷却结晶,之后过滤收集所得晶体、干燥,得到E型结晶,随后使用Cu-Kα辐射,得到其X射线粉末衍射(XRD)图谱如附图4所示,示差扫描量热法(DSC)图谱如附图5所示,热重-微商热重分析(TG-DTG)图谱如附图6所示。该晶型的熔点Tonset=228.02℃。
实施例2.2式I化合物的E型晶型的制备
取式I化合物适量,在25℃的条件下进行混悬结晶,与2mL对二甲苯溶剂,搅拌平衡24h,离心溶液,固体部分在50℃中干燥10min,得到E型结晶。
实施例3式I化合物的F型晶型的制备
取式I化合物适量,在25℃的条件下进行混悬结晶,与2mL二氧六环溶剂,搅拌平衡24h,离心溶液,固体部分在50℃中干燥10min,得到F型结晶,随后使用Cu-Kα辐射,得到其X射线粉末衍射(XRD)图谱如附图7所示,示差扫描量热法(DSC)图谱如附图8所示,热重-微商热重分析(TG-DTG)图谱如附图9所示。该晶型在114.5℃脱溶剂失重,失重约9.18wt%,脱溶剂后熔点Tonset=219.88℃。
实施例4式I化合物G型晶型的制备
实施例4.1式I化合物G型晶型的制备
取式I化合物适量,在25℃的条件下进行混悬结晶,与2mL丙酮溶剂,搅拌平衡24h,离心溶液,固体部分在50℃中干燥10min,得到G型结晶,随后使用Cu-Kα辐射,得到其X射线粉末衍射(XRD)图谱如附图10所示,示差扫描量热法(DSC)图谱如附图11所示,热重-微商热重分析(TG-DTG)图谱如附图12所示。该晶型在87.0℃脱溶剂失重,失重约4.68wt%,脱溶剂后熔点Tonset=218.80℃。
实施例4.2式I化合物G型晶型的制备
取式I化合物适量,溶解在丙酮溶剂中,一边搅拌一边加热至45℃,直到完全溶解;如未溶清,则过滤后得到澄清的溶液。将澄清液转移到样品瓶中,在室温下缓慢挥发结晶,收集所得晶体、干燥,得到G型结晶。
实施例5式I化合物H型晶型的制备
取式I化合物适量,溶解在乙酸乙酯溶剂中,混悬24小时后离心,将固体在45℃下干燥2小时,得到H型结晶,随后使用Cu-Kα辐射,得到其X射线粉末衍射(XRD)图谱如附图13所示,示差扫描量热法(DSC)图谱如附图14所示,热重-微商热重分析(TG-DTG)图谱如附图15所示。该晶型在109.3℃脱溶剂失重,失重约9.24wt%。该晶型熔点Tonset=218.27℃。
实施例6式I化合物J型晶型的制备
取式I化合物适量,溶解在四氢呋喃溶剂中,混悬24小时后离心,将固体在45℃下干燥2小时,得到J型结晶,随后使用Cu-Kα辐射,得到其X射线粉末衍射(XRD)图谱如附图16所示,示差扫描量热法(DSC)图谱如附图17所示,热重-微商热重分析(TG-DTG)图谱如附图18所示。该晶型在70.6℃脱溶剂失重,失重约13.22wt%。该晶型熔点Tonset=219.24℃。
实施例7溶液稳定性的测试
取实施例1、实施例2.1、实施例3、实施例4.1、实施例5、实施例6得到的固体样品适量,在4mL样品瓶中进行溶解,分别加入2mL甲醇、乙醇、丙酮、乙腈、四氢呋喃、乙酸乙酯、二氧六环或水,超声使其溶解并呈过饱和态,于20℃下搅拌24小时,离心后的固体于45℃条件下干燥2小时,测试其X射线粉末衍射(XRD)图谱。
在上述测试中,所述晶体可以表现出如下结果:较为稳定,没有发生晶型转变。
实施例8固体稳定性的测试
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),分别考察式I化合物的D型结晶、E型结晶、F型结晶、G型结晶、H型结晶、和J型结晶在高温(60℃,敞口)、高湿(室温/相对湿度92.5%,敞口)及光照(总照度1.2×10 6Lux·hr/近紫外200w·hr/m 2,敞口)条件下的稳定性。
称取5mg实施例1、实施例2.1、实施例3、实施例4.1、实施例5、实施例6得到的固体样品,置于玻璃样品瓶的底部,摊成薄薄一层。高温及高湿条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎小孔,保证样品能与环境空气充分接触。强光照条件下样品不用铝箔纸密封并敞口放置。不同条件下放置的样品于第5天、第10天取样检测其X-射线粉末衍射光谱,检测结果与0天的初始检测结果进行比较。
实施例9吸湿性的测试
取实施例1、实施例2.1、实施例3、实施例4.1、实施例5、实施例6得到的固体样品适量,分别对其进行动态水分吸附分析(DVS),采用DVS Intrinsic动态水蒸汽吸附仪测定。测试温度为25℃,相对湿度范围是0-95%,步长为10%。考察样品引湿增重百分比随相对湿度的变化,检测其X射线粉末衍射(XRD)图谱,并比较DVS测试前后样品的XRD图谱。
实施例10粉末流动性的测试
休止角:静止状态的粉体堆集体自由表面与水平面之间的夹角。使用粉末流动性测定仪,取实施例1、实施例2.1、实施例3、实施例4.1、实施例5、实施例6得到的固体样品适量,粉体自由落下,在直径为25cm的样品盘上形成堆集体,然后测定堆集体的高度,计算粉末休止角。

Claims (15)

  1. 式I所示化合物的正己醇合物的结晶,
    Figure PCTCN2020074085-appb-100001
    其特征在于,使用Cu-Kα辐射,所述结晶的X-射线粉末衍射在2θ度数约为7.28、9.49、10.07、12.69、14.97、18.72、19.26、22.25、22.58、24.02处有衍射峰;典型地,在2θ度数约为7.28、9.49、10.07、12.37、12.69、14.97、15.66、16.29、17.25、18.24、18.72、19.26、21.15、22.25、22.58、24.02处有衍射峰;更典型地,在2θ度数约为7.28、9.49、10.07、11.01、12.37、12.69、14.97、15.66、16.29、17.25、18.24、18.72、19.26、20.09、20.77、21.15、22.25、22.58、23.59、24.02、24.88、25.82、26.29、26.78、27.48、27.72、28.71、29.37、29.85、30.39、30.67、30.99、31.37、32.54、32.92、33.36、34.05、34.57、35.47、36.99、37.37、37.62处有衍射峰。
  2. 式I所示化合物的结晶,其特征在于,使用Cu-Kα辐射,所述结晶的X-射线粉末衍射在2θ度数约为3.27、6.56、8.84、9.95、10.52、13.10、13.15、15.58、16.68、17.84、18.66处有衍射峰;典型地,在2θ角度数约为3.27、6.56、8.20、8.84、9.95、10.52、13.10、13.15、15.58、16.68、17.84、18.66、19.96、20.19、22.68、23.12、24.82、25.37、27.22处有衍射峰;更典型地,在2θ角度数约为3.27、6.56、7.20、8.20、8.84、9.95、10.52、13.10、13.15、14.47、15.58、16.68、17.84、18.66、19.96、20.19、20.94、21.96、22.68、23.12、24.82、25.37、27.22、29.22、31.39、31.59、33.93、35.02处有衍射峰。
  3. 式I所示化合物的二氧六环合物的结晶,其特征在于,使用Cu-Kα辐射,所述结晶的X-射线粉末衍射在2θ度数约为7.23、9.48、10.41、13.34、14.79、18.03、19.89、22.45、23.50处有衍射峰;典型地,在2θ角度数约为7.23、9.48、10.41、11.04、12.28、13.34、14.79、15.00、15.48、16.17、16.96、17.49、18.03、19.58、19.89、21.34、22.45、23.50、24.71、25.04、26.77、30.18处有衍射峰;更典型地,在2θ角度数约为7.23、9.48、10.41、11.04、12.28、13.34、14.79、15.00、15.48、16.17、16.96、17.49、18.03、19.16、19.58、19.89、21.34、22.45、22.78、23.50、23.82、23.99、24.71、25.04、25.27、25.63、26.44、26.77、27.97、28.69、29.32、30.18、30.75、31.26、32.58、33.03、33.85、34.26、34.68、36.31、36.97、37.70、38.14、38.73处有衍射峰。
  4. 式I所示化合物的丙酮合物的结晶,其特征在于,使用Cu-Kα辐射,所述结晶的X-射线粉末衍射在2θ度数约为7.21、8.94、9.58、10.81、14.65、15.18、16.82、17.54、18.16、19.93、20.60、22.16、24.17、24.91、27.54、27.59处有衍射峰;典型地,在2θ角度数约为7.21、8.94、9.58、10.81、13.07、14.65、15.18、16.82、17.54、18.16、18.88、19.93、20.60、21.02、22.16、24.17、24.91、25.81、27.54、27.59、29.16、29.75处有衍射峰;更典型地,在2θ角度数约为7.21、8.94、9.58、10.40、10.81、12.69、13.07、14.65、15.18、15.42、16.82、17.54、18.16、18.88、19.35、19.93、20.60、21.02、21.70、22.16、24.17、24.91、25.81、27.54、27.59、28.10、29.16、29.75、30.37、30.93、31.68、32.51、33.18、33.82、35.83、36.40、37.39、38.42、39.49处有衍射峰。
  5. 式I所示化合物的乙酸乙酯合物的结晶,其特征在于,使用Cu-Kα辐射,所述结晶在X-射线粉末衍射在2θ度数约为7.48、9.71、10.70、12.52、13.30、13.51、15.08、15.65、17.08、18.47、20.15、21.63、22.77、23.84处有衍射峰;典型地,在2θ角度数约为7.48、9.71、9.98、10.70、12.52、13.30、13.51、15.08、15.65、17.08、17.75、18.47、19.57、20.15、21.63、22.77、23.31、23.84、24.85、25.26、25.79、26.19、26.93、29.11、 29.65、30.36处有衍射峰;更典型地,在2θ角度数约为处7.48、9.71、9.98、10.70、12.52、13.30、13.51、15.08、15.65、16.70、17.08、17.75、18.47、19.56、19.57、20.15、21.63、22.77、23.31、23.64、23.84、24.13、24.85、25.26、25.79、26.19、26.93、27.84、28.08、29.11、29.65、30.36、31.02、32.97、33.35、33.38、34.48、36.30、36.64、37.93、38.97、39.74有衍射峰。
  6. 式I所示化合物的四氢呋喃合物的结晶,其特征在于,使用Cu-Kα辐射,所述结晶在X-射线粉末衍射在2θ度数约为7.27、9.75、10.15、10.44、12.38、14.60、15.16、15.50、18.01、18.37、19.60、21.99、24.20、29.49处有衍射峰;典型地,在2θ角度数约为7.27、9.75、12.38、14.60、15.16、15.50、18.01、18.37、19.60、21.68、21.99、22.56、22.82、24.20、24.95、25.44、27.04、27.67、28.67、29.15、29.49、37.82处有衍射峰;更典型地,在2θ角度数约为处7.27、9.75、10.15、10.44、12.38、14.60、15.16、15.50、16.68、17.39、18.01、18.37、19.43、19.60、20.14、20.52、20.95、21.41、21.68、21.99、22.56、22.82、23.30、24.06、24.20、24.95、25.44、25.73、27.04、27.67、28.53、28.67、29.15、29.49、30.10、30.32、30.66、32.10、32.40、33.86、34.95、36.22、36.44、37.02、37.82有衍射峰。
  7. 一种结晶组合物,其中根据权利要求1-6中任一项所述的结晶占所述结晶组合物重量的50%以上,优选70%以上,更优选90%以上,最优选95%以上。
  8. 一种药物组合物,所述药物组合物含有根据权利要求1-6中任一项所述的结晶或权利要求7所述的结晶组合物,以及一种或多种药学上可接受的载体。
  9. 根据权利要求1-6中任一项所述的结晶、根据权利要求7所述的结晶组合物或根据权利要求8所述的药物组合物在制备治疗肿瘤的药物中的应用;优选地,所述肿瘤选自于由以下所组成的组:肝癌、肾癌、结肠癌、胃肠道间质瘤、软组织肉瘤、胃癌、甲状腺髓样癌、食管鳞状细胞癌、小细胞肺癌、非小细胞肺癌、子宫内膜癌、卵巢癌、宫颈癌和输卵管癌。
  10. 一种根据权利要求1所述的结晶的制备方法,包括将式I所示化合物与正己醇混合,进行混悬结晶,得到所述结晶。
  11. 一种根据权利要求2所述的结晶的制备方法,包括将式I所示化合物与对二甲苯混合,进行冷却结晶,得到所述结晶。
  12. 一种根据权利要求3所述的结晶的制备方法,包括将式I所示化合物与二氧六环混合,进行混悬结晶,得到所述结晶。
  13. 一种根据权利要求4所述的结晶的制备方法,包括将式I所示化合物在丙酮中挥发结晶,得到所述结晶。
  14. 一种根据权利要求5所述的结晶的制备方法,包括将式I所示化合物与乙酸乙酯混合,进行混悬结晶,得到所述结晶。
  15. 一种根据权利要求6所述的结晶的制备方法,包括将式I所示化合物与四氢呋喃混合,进行混悬结晶,得到所述结晶。
PCT/CN2020/074085 2019-01-31 2020-01-31 喹啉衍生物的结晶 WO2020156501A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20749295.0A EP3919485A4 (en) 2019-01-31 2020-01-31 CRYSTALS OF QUINOLINE DERIVATIVES
CN202080011103.1A CN113348166A (zh) 2019-01-31 2020-01-31 喹啉衍生物的结晶
US17/427,611 US20220098172A1 (en) 2019-01-31 2020-07-31 Crystals of quinolone derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910095975.XA CN109748904A (zh) 2019-01-31 2019-01-31 喹啉衍生物的结晶
CN201910095975.X 2019-01-31

Publications (2)

Publication Number Publication Date
WO2020156501A1 true WO2020156501A1 (zh) 2020-08-06
WO2020156501A8 WO2020156501A8 (zh) 2021-08-12

Family

ID=66407264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074085 WO2020156501A1 (zh) 2019-01-31 2020-01-31 喹啉衍生物的结晶

Country Status (4)

Country Link
US (1) US20220098172A1 (zh)
EP (1) EP3919485A4 (zh)
CN (2) CN109748904A (zh)
WO (1) WO2020156501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854396A4 (en) * 2018-09-18 2022-06-29 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Quinoline derivative used for treating small cell lung cancer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109748904A (zh) * 2019-01-31 2019-05-14 正大天晴药业集团股份有限公司 喹啉衍生物的结晶
CN112294813A (zh) * 2019-07-30 2021-02-02 正大天晴药业集团股份有限公司 喹啉衍生物在治疗脊索瘤中的用途

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008112407A1 (en) 2007-03-14 2008-09-18 Advenchen Laboratories, Llc Spiro substituted compounds as angiogenesis inhibitors
CN102344438A (zh) * 2010-08-01 2012-02-08 江苏正大天晴药业股份有限公司 喹啉衍生物的结晶及其制备方法
CN103664890A (zh) * 2010-08-01 2014-03-26 正大天晴药业集团股份有限公司 喹啉衍生物的结晶及制备方法
CN105213394A (zh) * 2014-06-06 2016-01-06 正大天晴药业集团股份有限公司 具有抗肿瘤活性的喹啉衍生物
CN105311030A (zh) * 2014-06-06 2016-02-10 正大天晴药业集团股份有限公司 用于抗肿瘤的螺取代化合物
CN105311029A (zh) * 2014-06-06 2016-02-10 正大天晴药业集团股份有限公司 抗肿瘤活性的喹啉衍生物
WO2016179123A1 (en) 2015-05-04 2016-11-10 Advenchen Pharmaceuticals, LLC Process for preparing an anti-cancer agent, 1-((4-(4-fluoro-2-methyl-1h-indol-5-yloxy)-6-methoxyquinolin-7-yloxy)methyl) cyclopropanamine, its crystalline form and its salts
CN109748904A (zh) * 2019-01-31 2019-05-14 正大天晴药业集团股份有限公司 喹啉衍生物的结晶
WO2019154273A1 (zh) * 2018-02-11 2019-08-15 正大天晴药业集团股份有限公司 喹啉衍生物的结晶
CN110339195A (zh) * 2018-04-02 2019-10-18 正大天晴药业集团股份有限公司 用于治疗胆管癌的喹啉衍生物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008112407A1 (en) 2007-03-14 2008-09-18 Advenchen Laboratories, Llc Spiro substituted compounds as angiogenesis inhibitors
CN102344438A (zh) * 2010-08-01 2012-02-08 江苏正大天晴药业股份有限公司 喹啉衍生物的结晶及其制备方法
CN103664890A (zh) * 2010-08-01 2014-03-26 正大天晴药业集团股份有限公司 喹啉衍生物的结晶及制备方法
CN103664892A (zh) * 2010-08-01 2014-03-26 正大天晴药业集团股份有限公司 喹啉衍生物的结晶
CN105213394A (zh) * 2014-06-06 2016-01-06 正大天晴药业集团股份有限公司 具有抗肿瘤活性的喹啉衍生物
CN105311030A (zh) * 2014-06-06 2016-02-10 正大天晴药业集团股份有限公司 用于抗肿瘤的螺取代化合物
CN105311029A (zh) * 2014-06-06 2016-02-10 正大天晴药业集团股份有限公司 抗肿瘤活性的喹啉衍生物
WO2016179123A1 (en) 2015-05-04 2016-11-10 Advenchen Pharmaceuticals, LLC Process for preparing an anti-cancer agent, 1-((4-(4-fluoro-2-methyl-1h-indol-5-yloxy)-6-methoxyquinolin-7-yloxy)methyl) cyclopropanamine, its crystalline form and its salts
CN107771078A (zh) * 2015-05-04 2018-03-06 爱德程医药有限公司 用于制备抗癌剂1‑((4‑(4‑氟‑2‑甲基‑1h‑吲哚‑5‑基氧基)‑6‑甲氧基喹啉‑7‑基氧基)甲基)环丙胺、其结晶形式和其盐的方法
WO2019154273A1 (zh) * 2018-02-11 2019-08-15 正大天晴药业集团股份有限公司 喹啉衍生物的结晶
CN110339195A (zh) * 2018-04-02 2019-10-18 正大天晴药业集团股份有限公司 用于治疗胆管癌的喹啉衍生物
CN109748904A (zh) * 2019-01-31 2019-05-14 正大天晴药业集团股份有限公司 喹啉衍生物的结晶

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chinese Pharmacopoeia", vol. IV, 2015, article "Guidelines for the Stability Test of APIs and Preparations"
"Lippincott", 2005, WILLIAMS & WILKINS, article "The Science and Practice of Pharmacy"
See also references of EP3919485A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854396A4 (en) * 2018-09-18 2022-06-29 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Quinoline derivative used for treating small cell lung cancer

Also Published As

Publication number Publication date
US20220098172A1 (en) 2022-03-31
WO2020156501A8 (zh) 2021-08-12
CN109748904A (zh) 2019-05-14
CN113348166A (zh) 2021-09-03
EP3919485A1 (en) 2021-12-08
EP3919485A4 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2020156501A1 (zh) 喹啉衍生物的结晶
JP2013522232A (ja) N−[3−フルオロ−4−({6−(メチロキシ)−7−[(3−モルホリン−4−イルプロピル)オキシ]−キノリン−4−イル}オキシ)フェニル]−n’−(4−フルオロフェニル)シクロプロパン−1,1−ジカルボサミドの水和結晶性形状
CN107955019A (zh) 一种egfr抑制剂的盐型、晶型及其制备方法
JP2022068350A (ja) N-(4-((3-(2-アミノ-4-ピリミジニル)-2-ピリジニル)オキシ)フェニル)-4-(4-メチル-2-チエニル)-1-フタラジンアミンの薬学的に許容される塩の結晶形態及びその使用
US9884856B2 (en) Crystal form of Dabrafenib mesylate and preparation method thereof
BR112020026052A2 (pt) forma de cristal do composto para a inibição da atividade de cdk4/6 e seu uso
EP3269710B1 (en) Nintedanib diethanesulfonate salt crystal and preparation method and use thereof
TW201920160A (zh) 2-(5-(4-(2-嗎啉乙氧基)苯基)吡啶-2-基)-n-芐乙醯胺之固態形式
US11731955B2 (en) Crystal habit of quinoline derivative and preparation method for crystalline powder thereof
WO2023174400A1 (zh) 一种取代的氨基六元氮杂环类化合物的盐及其晶型、制备方法和应用
WO2019154273A1 (zh) 喹啉衍生物的结晶
WO2018149309A1 (zh) 4-苯基噻唑衍生物的晶型及其制备方法
JP2023543055A (ja) テガビビントの結晶形態、調製方法、及びその使用
WO2021147996A1 (zh) 一种芳胺基嘌呤衍生物的盐及其制备方法和应用
WO2018099451A1 (zh) 化合物的晶型
TW201829398A (zh) 酪胺酸蛋白激酶調節劑、晶型及其用途
WO2021143819A1 (zh) 多环类间变性淋巴瘤激酶抑制剂的晶型
AU2015392050B2 (en) Fumarate of pyridylamine compound and crystals thereof
WO2023061437A1 (zh) 抗肿瘤药物的盐及其晶型
US20240239796A1 (en) Crystalline polymorphs of epidermal growth factor receptor inhibitor, and compositions and methods thereof
WO2021238835A1 (zh) (2e)-n-[4-[(3-氯-4-氟苯基)氨基]-7-甲氧基-6-喹唑啉基]-4-(1-哌啶基)-2-丁烯酰胺的晶型及其制备方法
WO2024179558A1 (zh) Pirtobrutinib的晶型及其制备方法和用途
WO2022247772A1 (zh) 一种含氧杂环化合物的晶型、其制备方法及应用
WO2024141040A1 (zh) 作为axl抑制剂的药物组合物
WO2019233328A1 (zh) 4-苯基噻唑衍生物的晶型及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020749295

Country of ref document: EP

Effective date: 20210831