WO2020156351A1 - 一种高视频带宽的射频功率放大器 - Google Patents

一种高视频带宽的射频功率放大器 Download PDF

Info

Publication number
WO2020156351A1
WO2020156351A1 PCT/CN2020/073368 CN2020073368W WO2020156351A1 WO 2020156351 A1 WO2020156351 A1 WO 2020156351A1 CN 2020073368 W CN2020073368 W CN 2020073368W WO 2020156351 A1 WO2020156351 A1 WO 2020156351A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
damping resistor
power amplifier
radio frequency
power device
Prior art date
Application number
PCT/CN2020/073368
Other languages
English (en)
French (fr)
Inventor
马强
张勇
Original Assignee
苏州远创达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州远创达科技有限公司 filed Critical 苏州远创达科技有限公司
Priority to JP2021545293A priority Critical patent/JP7312840B2/ja
Publication of WO2020156351A1 publication Critical patent/WO2020156351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/647Resistive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/552Indexing scheme relating to amplifiers the amplifier being made for video applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication technology, in particular to a radio frequency power amplifier with high video bandwidth.
  • the power amplifier has a vital influence on the overall performance of the communication system.
  • Advanced wireless communication systems require ever-increasing data speeds and bandwidths.
  • the signal bandwidth limits the unlimited amplification of RF power devices.
  • Signal bandwidth and video bandwidth are very important to meet the linearity requirements of wireless communication systems. Among them, the video bandwidth is the main factor limiting the performance improvement of the digital predistortion system.
  • the lead connected to the second capacitor 5' forms an inductance L v
  • L v and the matching parallel inductance L d +L s in the circuit together form an equivalent inductance. Since (L d +L s )>>L v , , The equivalent inductance is approximately equal to L v , so the video bandwidth Therefore, it is difficult to maximize the video bandwidth with the existing power device structure.
  • the purpose of the present invention is to provide a radio frequency power amplifier with high video bandwidth, which has a simple processing technology and maximizes the video bandwidth at the same time.
  • a radio frequency power amplifier with high video bandwidth including: power devices and heat sink;
  • the power device includes a carrier flange on which a transistor and a decoupling circuit module are attached, and the transistor and the decoupling circuit module are connected by leads;
  • the power device is welded and fixed above the heat sink
  • the decoupling circuit module includes at least a first capacitor, a second capacitor, and a damping resistor.
  • the damping resistor is connected to the first capacitor and the second capacitor.
  • the first capacitor, the second capacitor, and the damping resistor are composed of multiple layers.
  • the first capacitor and the inductance of the damping resistor form a video LC resonant circuit.
  • the second capacitor is connected in series with the damping resistor and the inductance formed by the lead to form an ultra-low frequency with the equivalent inductance L s in the circuit. Resonant circuit.
  • the capacitance value of the first capacitor is greater than 100 pF.
  • the capacitance value of the second capacitor is greater than 10 nF.
  • the damping resistance is between 0.1 ohm and 5 ohm.
  • a protective cover is further included, the protective cover covers the power device, the protective cover is fixed on the heat dissipation plate, and forms a closed cavity with the heat dissipation plate.
  • the additional decoupling circuit module is made of multilayer co-fired ceramic materials.
  • the decoupling circuit module includes a first capacitor and a second capacitor connected through a damping resistor.
  • the decoupling circuit module is set in the power Within the device, the power device and the decoupling circuit module can be simplified into an equivalent circuit as shown in Figure 3.
  • the second capacitor forms the decoupling capacitor in the LC decoupling circuit
  • the connecting lead forms the decoupling inductor in the LC decoupling circuit
  • the first capacitor circuit is directly connected to the damping resistor in series with the second capacitor, and there is no prior art Therefore, this structure is conducive to maximizing the video bandwidth.
  • the structure does not need to open grooves on the carrier flange, the processing technology is simple, and the cost is low.
  • Figure 1 is a top view of a radio frequency power amplifier with high video bandwidth in the prior art
  • FIG. 2 is an equivalent circuit diagram of a radio frequency power amplifier with high video bandwidth in the prior art of the present invention
  • FIG. 3 is an equivalent circuit diagram of an embodiment of the present invention.
  • Figure 4 is a top view of a radio frequency power amplifier according to an embodiment of the present invention.
  • Fig. 5 is a cross-sectional view of the radio frequency power amplifier shown in Fig. 4 along the A-A direction;
  • FIG. 6 is a schematic diagram of the structure of the decoupling circuit module of the present invention.
  • 1 power device
  • 2 input and output pins
  • 3 heat sink
  • 5 protective cover
  • 10 decoupling circuit module
  • 11 carrier flange
  • 12 lead
  • 13 die
  • 14 first capacitor
  • 22 second capacitor
  • 15 damping resistor
  • the RF power amplifier includes:
  • the power device 1 includes a carrier flange 11 on which a transistor and a decoupling circuit module 10 are attached.
  • the transistor is connected by a plurality of transistor dies 13, and the transistor and the decoupling circuit module 10 are connected through a lead 12.
  • the coupling circuit module 10 can be welded on the carrier flange 11 by a crystal face welding device. It can be set inside the power device 1.
  • the decoupling circuit module 10 includes a first capacitor 14, a second capacitor 22, and a damping resistor 15.
  • the damping resistor 15 is connected to the first capacitor 14 and the second capacitor 22.
  • the first capacitor 14, the second capacitor 22 and The damping resistor 15 is made by stacking multiple layers of co-fired ceramic materials, and is preferably made into a package.
  • the co-fired ceramic material may include multiple layers of high-temperature co-fired ceramic materials and/or multiple layers of low-temperature co-fired ceramic materials.
  • the upper multilayer (shown as 2 layers in the figure) is a first capacitor C d 14 composed of a material with a small dielectric constant
  • the lower multilayer is a second capacitor composed of a material with a large dielectric constant C v 22, of course, also includes a ground layer.
  • the damping resistor 15 can be arranged in the module or on the uppermost layer.
  • the first capacitor C d 14 is a radio frequency DC blocking capacitor.
  • the circuit formed by the power device 1 and the decoupling circuit module 10 can be simplified into an equivalent circuit as shown in FIG. 3, and different frequencies will cause three resonance circuits to appear in the equivalent circuit.
  • the first resonance circuit is that the output parasitic capacitance of the transistor and the inductance Ld formed by the lead 12 form a radio frequency resonance circuit.
  • the damping resistor can effectively smooth the impedance changes in the ultra-low frequency range ( ⁇ 50MHz), including amplitude and phase. Smooth amplitude and phase have lower memory effect. It plays an important role in improving the linearity of the power amplifier and the performance of the digital pre-realization system.
  • the third resonant circuit is that the first capacitor C d 14 and the inductance L (R d ) of the damping resistor form a video LC resonant circuit.
  • the first capacitor C d 14 is a video decoupling capacitor, which is determined by the video bandwidth formula It can be seen that the inductance of the damping resistor Rd is extremely small, so the video bandwidth has been theoretically expanded to a certain extent.
  • the first capacitance may be greater than 100 pF.
  • the second capacitance may be greater than 10 nF.
  • the damping resistance can be between 0.1 ohm and 5 ohm.
  • a protective cover 5 can also be provided outside the power device.
  • the protective cover 5 is fixed on the input and output pins 2 and is connected to the input and output pins 2. Form a closed cavity.
  • the protective cover 5 covers all the electronic components in the power device 1 and is used to protect the power device 1 from entering the power device 1 by sundries.
  • the assembly method is flexible and diverse. This embodiment is described in the traditional packaging form, such as ceramic, OMP, cavity plastic, etc., of course, it can also be applied to the power device PCB assembly form without a packaging structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种高视频带宽的射频功率放大器,包括:功率器件和散热板;所述功率器件包括载体法兰,所述载体法兰上贴装有晶体管和解耦电路模块,所述晶体管与解耦电路模块通过引线连接;所述功率器件焊接固定在散热板的上方;其中,所述解耦电路模块至少包括第一电容、第二电容和阻尼电阻,所述阻尼电阻连接第一电容和第二电容,所述第一电容、第二电容和阻尼电阻由多层共烧陶瓷材料堆叠制成,所述第一电容与阻尼电阻的电感形成视频LC谐振电路,所述第二电容串联阻尼电阻和引线形成的电感之后与电路中的串联等效电感Ls组成超低频谐振电路。加工工艺简单,体积小,同时实现视频带宽的最大化。

Description

一种高视频带宽的射频功率放大器 技术领域
本发明涉及无线通信技术领域,具体地涉及一种高视频带宽的射频功率放大器。
背景技术
功率放大器作为无线通信系统中射频前端重要的核心模块之一,其对通信系统的整体性能有着至关重要的影响。先进的无线通信系统需要日益升高的数据速度和带宽。信号带宽会限制RF射频功率器件无限制地放大。信号带宽和视频带宽(低频)对于满足无线通信系统的线性要求非常重要。其中,视频带宽是限制数字预失真系统性能提高的主要因素。
目前,为了提高RF射频功率器件的视频带宽,如图1所示,可以在功率器件内部结构中设置电子元件以在功率器件内部的电子元件之间形成解耦LC电路,等效电路图如图2所示。然而,现有的主流大功率射频功率放大器中,其功率器件一般采用陶瓷封装结构,该陶瓷封装结构内部空间有限且无法向外扩展,因而受空间和LC电路(大电容小电感)尺寸的约束,第二电容5’的厚度往往很厚,因此需要在载体法兰上开设凹槽,加工工艺繁琐,成本较高。此外,与第二电容5’连接的引线形成电感L v,L v与电路中的匹配并联电感L d+L s共同形成等效电感,由于(L d+L s)>>L v,因此,等效电感近似等于L v,因此视频带宽
Figure PCTCN2020073368-appb-000001
因此,现有的功率器件结构很难实现视频带宽的最大化。
发明内容
针对上述技术问题,本发明目的在于提供一种高视频带宽的射频功率放大器,加工工艺简单,同时实现视频带宽的最大化。
为了解决现有技术中的这些问题,本发明提供的技术方案是:
一种高视频带宽的射频功率放大器,包括:功率器件和散热板;
所述功率器件包括载体法兰,所述载体法兰上贴装有晶体管和解耦电路 模块,所述晶体管与解耦电路模块通过引线连接;
所述功率器件焊接固定在散热板的上方;
其中,所述解耦电路模块至少包括第一电容、第二电容和阻尼电阻,所述阻尼电阻连接第一电容和第二电容,所述第一电容、第二电容和阻尼电阻由多层共烧陶瓷材料堆叠制成,所述第一电容与阻尼电阻的电感形成视频LC谐振电路,所述第二电容串联阻尼电阻和引线形成的电感之后与电路中的串联等效电感L s组成超低频谐振电路。
优选的技术方案中,所述第一电容的电容值大于100pF。
优选的技术方案中,所述第二电容的电容值大于10nF。
优选的技术方案中,所述阻尼电阻在0.1欧姆与5欧姆之间。
优选的技术方案中,还包括保护盖,所述保护盖覆盖功率器件,所述保护盖固定在散热板上,并与散热板构成封闭腔体。
相对于现有技术中的方案,本发明的优点是:
为了提高功率器件的视频带宽,增设的解耦电路模块由多层共烧陶瓷材料堆叠制成,解耦电路模块包括第一电容和通过阻尼电阻连接的第二电容,解耦电路模块设置在功率器件内,功率器件和解耦电路模块可以简化为如图3所示的等效电路。其中,第二电容形成LC解耦电路中的解耦电容,连接引线形成LC解耦电路中的解耦电感,第一电容电路上直接连接与第二电容串联的阻尼电阻,不存在现有技术中的布线电感Lv,因此,该结构有利于实现视频带宽的最大化。
同时该结构不需要在载体法兰上开设凹槽,加工工艺简单,成本较低。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1是现有技术中高视频带宽的射频功率放大器的俯视图;
图2是本发明现有技术中高视频带宽的射频功率放大器的等效电路图;
图3是本发明实施例的等效电路图;
图4是本发明实施例射频功率放大器的俯视图;
图5是图4所示的射频功率放大器沿A-A方向的截面图;
图6为本发明解耦电路模块结构示意图。
附图标记:
100’:功率器件,1’:管芯,2’:输入输出管脚,3’:第一电容,5’:第二电容,6’:引线;
1:功率器件,2:输入输出管脚,3:散热板,5:保护盖,10:解耦电路模块,11:载体法兰,12:引线,13:管芯,14:第一电容,22:第二电容,15:阻尼电阻。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
如图3、图4、图5和图6所示,该射频功率放大器包括:
功率器件1和散热板3;如图4所示,功率器件1焊接固定在散热板3的上方。
功率器件1包括载体法兰11,载体法兰11上贴装有晶体管和解耦电路模块10,晶体管由多个晶体管管芯13连接,晶体管与解耦电路模块10通过引线12连接,晶体管和解耦电路模块10可以通过晶面焊接设备焊接在载体法兰11上。可以设置在功率器件1内部。
如图6所示,解耦电路模块10包括第一电容14、第二电容22和阻尼电阻15,阻尼电阻15连接第一电容14和第二电容22,第一电容14、第二电容22和阻尼电阻15都是由多层共烧陶瓷材料堆叠制成,最好制成一个封装体,共烧陶瓷材料可以包括多层高温共烧陶瓷材料和/或多层低温共烧陶瓷材料,本实施的具体实施方式为上面多层层(图中示出为2层)为介电常数小的材料组成的第一电容C d14,下面多层为介电常数较大的材料组成的第二电容C v22,当然其中还包括接地层,另外阻尼电阻15可以设置在模块中,也可以设置在最上层等等。
第一电容C d14为射频隔直电容。
如此,功率器件1和解耦电路模块10构成的电路可以简化为如图3所示的等效电路,不同的频率会使得该等效电路中出现三个谐振电路。
其中,第一个谐振电路为,晶体管的输出寄生电容与引线12形成的电感Ld组成射频谐振电路。
第二个谐振电路为,第二电容C v串联阻尼电阻R d和电感L d之后与电路中的串联等效电感L s组成超低频谐振电路,该谐振电路的公式为
Figure PCTCN2020073368-appb-000002
阻尼电阻可以有效地对超低频范围内(<50MHz)的阻抗变化起到平滑的作用,包括幅度和相位。平滑的幅度和相位具有更低的记忆效应。对于提高功率放大器的线性以及数字预真系统的性能有重要作用。
第三个谐振电路为,第一电容C d14与阻尼电阻的电感L(R d)组成视频LC谐振电路,第一电容C d14为视频解耦电容,由视频带宽的公式
Figure PCTCN2020073368-appb-000003
可知,阻尼电阻Rd的电感极小,因此视频带宽理论上得到了一定的拓展。
作为一个具体实施例,第一电容可以大于100pF。
第二电容可以大于10nF。
另外,阻尼电阻可以在0.1欧姆与5欧姆之间。
此外,为了保护功率器件1内部的电子元件,如图5所示,在功率器件外部还可以设置有保护盖5,该保护盖5固定在输入输出管脚2上,并与输入输出管脚2形成封闭腔体。该保护盖5覆盖功率器件1内的所有电子元器件,用于保护功率器件1防止杂物进入功率器件1。
组装方式灵活多样,本实施例以传统封装形式进行说明,比如陶瓷,OMP,空腔塑料等,当然也可以适用于无封装结构的功率器件PCB组装方式形式。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (5)

  1. 一种高视频带宽的射频功率放大器,其特征在于,包括:功率器件和散热板;
    所述功率器件包括载体法兰,所述载体法兰上贴装有晶体管和解耦电路模块,所述晶体管与解耦电路模块通过引线连接;
    所述功率器件焊接固定在散热板的上方;
    其中,所述解耦电路模块至少包括第一电容、第二电容和阻尼电阻,所述阻尼电阻连接第一电容和第二电容,所述第一电容、第二电容和阻尼电阻由多层共烧陶瓷材料堆叠制成,所述第一电容与阻尼电阻的电感形成视频LC谐振电路,所述第二电容串联阻尼电阻和引线形成的电感之后与电路中的串联等效电感L s组成超低频谐振电路。
  2. 根据权利要求1所述的高视频带宽的射频功率放大器,其特征在于,所述第一电容的电容值大于100pF。
  3. 根据权利要求1所述的高视频带宽的射频功率放大器,其特征在于,所述第二电容的电容值大于10nF。
  4. 根据权利要求1所述的高视频带宽的射频功率放大器,其特征在于,所述阻尼电阻在0.1欧姆与5欧姆之间。
  5. 根据权利要求1所述的高视频带宽的射频功率放大器,其特征在于,还包括保护盖,所述保护盖覆盖功率器件,所述保护盖固定在散热板上,并与散热板构成封闭腔体。
PCT/CN2020/073368 2019-01-31 2020-01-21 一种高视频带宽的射频功率放大器 WO2020156351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545293A JP7312840B2 (ja) 2019-01-31 2020-01-21 広いビデオ帯域幅のrfパワーアンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910097927.4 2019-01-31
CN201910097927.4A CN111510074B (zh) 2019-01-31 2019-01-31 一种高视频带宽的射频功率放大器

Publications (1)

Publication Number Publication Date
WO2020156351A1 true WO2020156351A1 (zh) 2020-08-06

Family

ID=71841205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073368 WO2020156351A1 (zh) 2019-01-31 2020-01-21 一种高视频带宽的射频功率放大器

Country Status (3)

Country Link
JP (1) JP7312840B2 (zh)
CN (1) CN111510074B (zh)
WO (1) WO2020156351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695332A (zh) * 2020-12-30 2022-07-01 上海华为技术有限公司 一种射频放大器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202977410U (zh) * 2012-11-19 2013-06-05 苏州远创达科技有限公司 一种半导体部件
US20150381121A1 (en) * 2014-06-27 2015-12-31 Jeffrey K. Jones Integrated passive device assemblies for rf amplifiers, and methods of manufacture thereof
CN106169913A (zh) * 2015-05-22 2016-11-30 飞思卡尔半导体公司 具有集成电流路径的射频放大器输出电路装置及其制造方法
CN107644852A (zh) * 2016-07-21 2018-01-30 安普林荷兰有限公司 用于rf功率放大器封装件的集成无源器件
CN107919351A (zh) * 2016-10-11 2018-04-17 苏州远创达科技有限公司 一种射频功放模块及其组装方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298364A (ja) 2002-04-03 2003-10-17 Hitachi Ltd 高周波電力増幅器
WO2010070390A1 (en) 2008-12-16 2010-06-24 Freescale Semiconductor, Inc. High power semiconductor device for wireless applictions and method of forming a high power semiconductor device
JP6112500B2 (ja) * 2012-09-25 2017-04-12 三菱電機株式会社 マイクロ波増幅器
WO2014073134A1 (ja) 2012-11-09 2014-05-15 パナソニック株式会社 半導体装置
CN204168250U (zh) * 2014-11-04 2015-02-18 四川九洲电器集团有限责任公司 一种ltcc功率放大模块
US10985119B2 (en) 2017-03-28 2021-04-20 Mitsubishi Electric Corporation Semiconductor device
CN207732726U (zh) * 2017-12-13 2018-08-14 上海航天电子有限公司 基于ltcc技术的小型化、低功耗低噪声放大模块
JP7258612B2 (ja) 2019-03-15 2023-04-17 株式会社東芝 高周波回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202977410U (zh) * 2012-11-19 2013-06-05 苏州远创达科技有限公司 一种半导体部件
US20150381121A1 (en) * 2014-06-27 2015-12-31 Jeffrey K. Jones Integrated passive device assemblies for rf amplifiers, and methods of manufacture thereof
CN106169913A (zh) * 2015-05-22 2016-11-30 飞思卡尔半导体公司 具有集成电流路径的射频放大器输出电路装置及其制造方法
CN107644852A (zh) * 2016-07-21 2018-01-30 安普林荷兰有限公司 用于rf功率放大器封装件的集成无源器件
CN107919351A (zh) * 2016-10-11 2018-04-17 苏州远创达科技有限公司 一种射频功放模块及其组装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695332A (zh) * 2020-12-30 2022-07-01 上海华为技术有限公司 一种射频放大器

Also Published As

Publication number Publication date
JP2022518866A (ja) 2022-03-16
CN111510074A (zh) 2020-08-07
JP7312840B2 (ja) 2023-07-21
CN111510074B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US20200219861A1 (en) Front end system having an acoustic wave resonator (awr) on an interposer substrate
US11283427B2 (en) Hybrid filters and packages therefor
WO2021212818A1 (zh) 一种宽带多赫蒂放大器
US7501915B2 (en) High frequency module
US9866181B2 (en) Power amplification circuit and transmitter
JP2000124358A (ja) 高周波集積回路
WO2019132941A1 (en) Hybrid filter having an acoustic wave resonator embedded in a cavity of a package substrate
CN104378074A (zh) 用于e类异相功率放大器的组合电路
WO2020156351A1 (zh) 一种高视频带宽的射频功率放大器
US11469190B2 (en) Parasitic-aware integrated substrate balanced filter and apparatus to achieve transmission zeros
US9941242B2 (en) Unpacked structure for power device of radio frequency power amplification module and assembly method therefor
US10886884B2 (en) Inductively coupled filter and wireless fidelity WiFi module
US11521943B2 (en) Method of forming a capacitive loop substrate assembly
CN114696747B (zh) 一种具有新型平衡网络的宽带多赫蒂功率放大器
US11018649B2 (en) Compensation of on-die inductive parasitics in ladder filters through negative mutual inductance between ground inductors
CN206194739U (zh) 一种射频功放模块
CN106159386A (zh) 一种新型耦合lc滤波移相器
CN107919351A (zh) 一种射频功放模块及其组装方法
CN115632049A (zh) 一种高视频带宽射频功率器件及其制作方法
US9257946B2 (en) Amplifier circuits
US11936348B2 (en) Impedance element with built-in odd-mode oscillation suppression
US20230126728A1 (en) Output matching circuit and power amplifier module
EP3142252B1 (en) Video bandwidth in rf amplifiers
WO2022088299A1 (zh) 一种片上集成rc电路的射频芯片
CN110752195A (zh) 射频功率芯片封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749288

Country of ref document: EP

Kind code of ref document: A1