WO2020156337A1 - 超临界水一体机与有机废液处理方法 - Google Patents

超临界水一体机与有机废液处理方法 Download PDF

Info

Publication number
WO2020156337A1
WO2020156337A1 PCT/CN2020/073315 CN2020073315W WO2020156337A1 WO 2020156337 A1 WO2020156337 A1 WO 2020156337A1 CN 2020073315 W CN2020073315 W CN 2020073315W WO 2020156337 A1 WO2020156337 A1 WO 2020156337A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
temperature
evaporation
pool
reactor shell
Prior art date
Application number
PCT/CN2020/073315
Other languages
English (en)
French (fr)
Inventor
张振涛
陈艳
刘刈
彭琳
龙泊康
张羽
任韧
孙润杰
李睿之
李振毅
张立军
张兴旺
骆永志
聂鹏
张卫亭
张建国
王海云
邱文苹
Original Assignee
中国原子能科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910108888.3A external-priority patent/CN109851129B/zh
Priority claimed from CN201910108900.0A external-priority patent/CN109851031B/zh
Priority claimed from CN201910108875.6A external-priority patent/CN109851128B/zh
Priority claimed from CN201910108889.8A external-priority patent/CN109851130B/zh
Priority claimed from CN201910108899.1A external-priority patent/CN109851131B/zh
Application filed by 中国原子能科学研究院 filed Critical 中国原子能科学研究院
Priority to EP20747667.2A priority Critical patent/EP3919448A4/en
Publication of WO2020156337A1 publication Critical patent/WO2020156337A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0012Vertical tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/08Processing by evaporation; by distillation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • C02F11/086Wet air oxidation in the supercritical state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure

Definitions

  • the present disclosure relates to the field of waste liquid treatment, in particular to a supercritical water oxidation system and a waste liquid treatment method.
  • Supercritical water oxidation is a new type of wet oxidation technology.
  • the organic matter is oxidized and decomposed into carbon dioxide, water and inorganic salts, etc., thereby completing the treatment of organic waste liquid.
  • supercritical water refers to water in a special state with a temperature exceeding 374°C and a pressure exceeding 22Mpa.
  • the organic waste and oxygen are completely miscible in the supercritical water system.
  • the temperature of the supercritical water exceeds 550°C, the solubility of inorganic salts in it is zero. Using this property of supercritical water, organic matter can be converted into carbon dioxide, water and inorganic salts.
  • the radioactive organic waste liquid is oxidized by supercritical water and converted into radioactive waste water.
  • the volume of the radioactive waste water is 10 times the volume of the original organic waste liquid. After the supercritical water is oxidized, the volume of the organic waste liquid increases without reducing the volume, which cannot be applied in engineering;
  • the inorganic salt contained in the reaction product is prone to crystal growth in the reactor, and then deposits, sticks, and blocks the pipeline;
  • the treatment process is generally to directly mix the oxidant and the waste in the reactor, and then react after reaching a certain temperature and pressure, which leads to a long reaction time of the waste in the supercritical water oxidation reactor and affects the treatment efficiency;
  • the process of separating carbon dioxide, water and inorganic salt is complicated and requires a lot of equipment. For example, it generally needs to go through cooling equipment, gas-liquid separation equipment, liquid cooling equipment, gas cooling equipment, etc., which not only has a long processing flow, many equipment, but also high cost.
  • embodiments of the present disclosure provide a supercritical water oxidation system and a waste liquid treatment method.
  • the supercritical water oxidation device includes a reactor and a self-separating outer barrel, and the reactor is arranged inside the self-separating outer barrel.
  • the reactor includes a reactor shell, and the reactor shell is provided with an oxidant feed port, an organic matter feed port, and a feed port.
  • the self-separating outer barrel is provided with an evaporation pool, a condensation pool and a condensation tube, the evaporation pool is in communication with the discharge port, and a back pressure valve is provided between the evaporation pool and the discharge port,
  • the condensation pool is arranged above the evaporation pool, and the condensation tube is arranged above the condensation pool, so that when the gas evaporated in the evaporation pool is liquefied at the condensation tube, the resultant The liquid can fall back into the condensation pool.
  • the oxidant feeding device is communicated with the oxidant feeding port.
  • the organic material feeding device is communicated with the organic material inlet.
  • a cooling pipe is provided in the evaporation pool.
  • a slag discharge port is provided in the evaporation tank.
  • a drain port is provided in the condensation tank.
  • an exhaust port is provided on the top of the self-separating outer tub.
  • the self-separating outer barrel is provided with a cooling inner barrel
  • the condenser tube is arranged inside the cooling inner barrel
  • the condensation pool is formed at the bottom of the cooling inner barrel
  • the barrel of the cooling inner barrel A number of holes are provided on the wall.
  • the evaporation tank is in communication with the reactor through a reactor outlet pipe, a sleeve is provided in the evaporation pond, the reactor outlet pipe is connected to the sleeve, and the sleeve is With small holes.
  • the oxidant supply device includes an oxygen cylinder group, an oxygen pressurizing pump, a high-pressure oxygen cylinder, and a one-way valve.
  • the organic material supply device includes a first water tank, a second water tank, a peristaltic pump, a high-pressure pump, and a one-way valve, wherein the high-pressure pump is connected to the first water tank and the peristaltic pump, respectively The peristaltic pump is connected to the second water tank.
  • the supercritical water oxidation system further includes a monitoring system, and the monitoring system includes at least one of the following: disposed on the reactor shell, in the evaporation tank, and/or in the condensing tank Temperature sensor; pressure sensor arranged in the reactor shell; pH online monitor arranged at the slag discharge port; volatile organic compound online monitor arranged at the exhaust port; and/or installed at the The chemical oxygen demand online monitor of the drainage outlet.
  • the supercritical water oxidation system further includes a control system for controlling at least one of the following in response to user input or in response to the monitoring result of the monitoring system: the pressure of the oxide supply and/or Flow rate; pressure and/or flow rate of the organic material supply; temperature of the reactor and/or the evaporation tank; and/or the state of the back pressure valve.
  • the reactor further includes a stirrer, including a rotating shaft, which passes through the reactor shell.
  • the rotating shaft passes through the discharge port.
  • the agitator is configured with an ammeter and/or a voltmeter.
  • the reactor further includes a heating device for increasing the temperature in the reactor shell.
  • the heating device includes at least one set of heating jackets arranged outside the reactor shell.
  • the reactor further includes a cooling device, and the cooling device includes at least one set of cooling jackets arranged outside the reactor shell.
  • the reactor shell includes a first area close to the oxidant inlet and a second area close to the outlet, the heating device is arranged outside the first area, and the cooling device is arranged The outside of the second area.
  • the reactor shell includes a first end wall, a side wall, and a second end wall opposite to the first end wall, the oxidant feed port is provided on the first end wall, and The organic material inlet is arranged on the side wall, and the outlet is arranged on the second end wall.
  • the reactor further includes an inner liner arranged on the second end wall and extending in the direction of the first end wall, and the discharge port is arranged inside the inner liner, wherein, the distance between the organic material inlet and the first end wall is greater than the distance between the organic material inlet and the second end wall.
  • the inner liner is processed by aluminizing, shot peening and spraying thermal barrier coating, and the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged.
  • Another aspect of the present disclosure provides an organic wastewater treatment method for treating organic wastewater through the above-mentioned supercritical water oxidation reaction system.
  • the method includes heating the reactor and heating the reactor shell.
  • the first solution is fed into the reactor shell through the organic material feed port, and the oxidant is fed into the reactor shell through the oxidant feed port until the reaction
  • the temperature in the reactor shell reaches the second temperature, wherein the second temperature is not less than 600°C.
  • the back pressure valve When the pressure in the reactor shell reaches a predetermined pressure, the back pressure valve is opened to pass the organic wastewater through the
  • the organic material feed port is input into the reactor shell, wherein the organic waste water is oxidized in a supercritical water environment, and discharged from the discharge port, enters the evaporation tank, and realizes the removal of harmful substances through self-evaporation Separation.
  • the second temperature is between 650°C and 800°C.
  • the first solution includes a sucrose solution.
  • the oxidant includes oxygen
  • the reactor further includes a stirrer, and the stirrer is configured with an ammeter and a voltmeter for detecting the current and voltage of the stirrer, respectively, and the method further includes When the current and/or voltage reach a predetermined value, the feed rate of at least one of the oxidant feed port and the organic feed port is reduced.
  • the reactor further includes a heating device and a cooling device
  • the reactor shell includes a first area close to the oxidant inlet and a second area close to the outlet.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not low At 120°C.
  • the temperature of the discharge from the discharge port is between 150°C and 300°C.
  • the supercritical water oxidation system further includes a monitoring system
  • the method further includes controlling at least one of the following in response to a user input or in response to a monitoring result of the monitoring system: And/or flow rate; the pressure and/or flow rate of the organic material supply; the temperature of the reactor and/or the evaporation tank; and/or the state of the back pressure valve.
  • a supercritical water oxidation device including a reactor, the reactor including a reactor shell, a heating device, and a stirrer.
  • the reactor shell is provided with an oxidant feed port, an organic material feed port and a feed port.
  • the heating device is used to increase the temperature in the reactor shell.
  • the agitator includes a rotating shaft, and the rotating shaft passes through the reactor shell.
  • the rotating shaft passes through the discharge port.
  • the agitator is configured with an ammeter and/or a voltmeter.
  • the reactor further includes a cooling device including at least one set of cooling jackets arranged outside the reactor shell, wherein the heating device includes a cooling device arranged on the reactor shell. At least one set of heating jackets outside the body, the reactor shell includes a first area close to the oxidant inlet and a second area close to the outlet, and the heating device is arranged in the first area The cooling device is arranged outside the second area.
  • the reactor shell includes a first end wall, a side wall, and a second end wall opposite to the first end wall, the oxidant feed port is provided on the first end wall, and The organic material inlet is arranged on the side wall, and the outlet is arranged on the second end wall.
  • the reactor further includes an inner liner arranged on the second end wall and extending in the direction of the first end wall, and the discharge port is arranged inside the inner liner, wherein, the distance between the organic material inlet and the first end wall is greater than the distance between the organic material inlet and the second end wall.
  • the inner liner is processed by aluminizing, shot peening and spraying thermal barrier coating, and the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged.
  • the supercritical water oxidation device further includes a self-separating outer barrel in which an evaporation pool, a condensation pool, and a condenser tube are arranged, and the reactor is arranged in the self-separating outer barrel internal.
  • the evaporation tank is connected to the discharge port, and a back pressure valve is provided between the evaporation tank and the discharge port.
  • the condensation pool is arranged above the evaporation pool, and the condensation tube is arranged above the condensation pool, so that the gas evaporated in the evaporation pool is liquefied at the condensation tube. In this case, the liquid obtained by liquefaction can fall back into the condensation pool.
  • a cooling pipe is provided in the evaporation pool.
  • a slag discharge port is provided in the evaporation tank.
  • a drain port is provided in the condensation tank.
  • an exhaust port is provided on the top of the self-separating outer tub.
  • the self-separating outer barrel is provided with a cooling inner barrel
  • the condenser tube is arranged inside the cooling inner barrel
  • the condensation pool is formed at the bottom of the cooling inner barrel
  • the barrel of the cooling inner barrel A number of holes are provided on the wall.
  • the evaporation tank is in communication with the reactor through a reactor outlet pipe, a sleeve is provided in the evaporation pond, the reactor outlet pipe is connected to the sleeve, and the sleeve is With small holes.
  • temperature sensors are provided in the evaporation pool, in the condensation pool, and on the reactor shell.
  • a pressure sensor is provided in the reactor shell.
  • the slag discharge port is provided with an online pH monitor.
  • an online volatile organic compound monitor is provided at the exhaust port.
  • the water outlet is provided with an online chemical oxygen demand monitor.
  • Another aspect of the present disclosure provides an organic wastewater treatment method, which is treated by the above-mentioned supercritical water oxidation device, and the discharge port of the supercritical water oxidation reactor is provided with a back pressure valve, so
  • the method includes heating the reactor, starting the agitator when the temperature in the reactor shell reaches a first temperature, and inputting the first solution into the reactor shell through the organic material feed port ,
  • the oxidant is fed into the reactor shell through the oxidant feed port until the temperature in the reactor shell reaches the second temperature, wherein the second temperature is not less than 600°C, and the reactor shell
  • the back pressure valve is opened, and the organic waste water is input into the reactor shell through the organic material feed port, wherein the organic waste water is oxidized in a supercritical water environment, And discharged from the discharge port.
  • the second temperature is between 650°C and 800°C.
  • the first solution includes a sucrose solution.
  • the oxidant includes oxygen
  • the agitator is equipped with an ammeter and a voltmeter for detecting the current and voltage of the agitator, and the method further includes when the current and/or voltage of the agitator reaches a predetermined value , Reduce the feed rate of at least one of the oxidant feed port and the organic feed port.
  • the supercritical water oxidation reactor further includes a cooling device
  • the reactor shell includes a first region close to the oxidant feed port and a second region close to the discharge port.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not Below 120°C.
  • the temperature of the discharge from the discharge port is between 150°C and 300°C.
  • the supercritical water oxidation device further includes a self-separating outer barrel in which an evaporation pool, a condensation pool, and a condenser tube are arranged, and the reactor is arranged in the self-separating outer barrel
  • the evaporation tank is connected to the discharge port, a back pressure valve is provided between the evaporation tank and the discharge port, the condensing tank is arranged above the evaporation tank, so The condensing tube is arranged above the condensing pool, and when the gas evaporated in the evaporation pool is liquefied at the condensing tube, the liquid can fall back into the condensing pool
  • the supercritical water oxidation device also
  • a monitoring system is included, and the method further includes controlling at least one of the following: pressure and/or flow rate of an oxide supply; pressure and/or flow rate of an organic material supply in response to a user input or in response to a monitoring result of the monitoring system ;
  • a supercritical water oxidation system including a reactor, a separator, an oxidant supply device, and an organic material supply device.
  • the reactor includes a reactor shell, and the reactor shell is provided with an oxidant feed port, an organic material feed port and a feed port.
  • the separator includes an evaporation pool, a condensation pool, and a condensation tube.
  • the condensation pool is arranged above the evaporation pool, and the condensation tube is arranged above the condensation pool so that the gas evaporated in the evaporation pool is In the case of liquefaction at the condenser tube, the liquid obtained by liquefaction can fall back into the condensing pool, the evaporation pool is in communication with the discharge port, and a backing is provided between the evaporation pool and the discharge port. Pressure valve.
  • the oxidant feeding device is connected with the oxidant feeding port.
  • the organic material feeding device is connected with the organic material feeding port.
  • the supercritical water oxidation system further includes a water supply device, which is in communication with the oxidant feed port.
  • the supercritical water oxidation system further includes a water chiller for supplying water to the condenser tube.
  • the supercritical water oxidation system further includes a protective device, and the protective device includes a reactor protective jacket.
  • a cooling pipe is provided in the evaporation pool.
  • a slag discharge port is provided in the evaporation tank.
  • a drain port is provided in the condensation tank.
  • an exhaust port is provided on the top of the separator.
  • the supercritical water oxidation system further includes a gas filter device, which is in communication with the exhaust port.
  • the separator is provided with a cooling inner barrel, the condenser tube is arranged inside the cooling inner barrel, and the condensing pool is formed at the bottom of the cooling inner barrel and on the barrel wall of the cooling inner barrel.
  • the evaporation tank is in communication with the reactor through a reactor outlet pipe, a sleeve is provided in the evaporation pond, the reactor outlet pipe is connected to the sleeve, and the sleeve is With small holes.
  • the oxidant supply device includes a liquid oxygen dewar, a liquid oxygen pump, a one-way valve, a liquid oxygen bath vaporizer, and a high-pressure oxygen cylinder group.
  • the organic material supply device includes a liquid tank, a high-pressure pump, and a one-way valve.
  • the water supply device includes a first water tank, a second water tank, a peristaltic pump, a high-pressure pump, and a one-way valve, wherein the high-pressure pump is in communication with the first water tank and the peristaltic pump, and the peristaltic pump is connected to The second water tank communicates with each other.
  • the supercritical water oxidation system further includes a monitoring system, and the monitoring system includes at least one of the following: temperature sensors arranged on the reactor shell, in the evaporation pool, and in the condensation pool; The pressure sensor in the reactor shell; the pH online monitor provided at the slag discharge port; the volatile organic compound online monitor provided at the exhaust port; and/or the chemical demand at the drain port Online oxygen monitor.
  • the supercritical water oxidation system further includes a control system for controlling at least one of the following in response to user input or in response to the monitoring result of the monitoring system: the pressure of the oxide supply and/or Flow rate; pressure and/or flow rate of the organic material supply; temperature of the reactor and/or evaporation pool; and/or the state of the back pressure valve.
  • the reactor further includes a turn-back tube disposed inside the reactor shell, and the turn-back tube includes an inner tube with two ends open and an outer tube with one end open, and the outer tube is sleeved on Outside of the inner tube, the inner tube is in communication with the organic material feed port, and the turn-back tube is arranged at the central axis of the reactor.
  • the reactor further includes a stirrer, including a rotating shaft, which passes through the reactor shell.
  • the rotating shaft passes through the discharge port.
  • the agitator is configured with an ammeter and/or a voltmeter.
  • the reactor further includes a heating device, and the heating device includes at least one set of heating jackets arranged outside the reactor shell.
  • the reactor further includes a cooling device, and the cooling device includes at least one set of cooling jackets arranged outside the reactor shell.
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet, and the heating device is arranged outside the first area, The cooling device is arranged outside the second area.
  • the reactor shell includes a first end wall, a side wall, and a second end wall opposite to the first end wall.
  • the organic material feed port is provided on the first end wall.
  • the oxidant feed port is provided on the side wall, and the discharge port is provided on the second end wall.
  • the reactor further includes an inner liner arranged on the second end wall and extending in the direction of the first end wall, and the turn-back tube is at least partially arranged on the inner liner.
  • the discharge port is arranged inside the lining, wherein the distance between the oxidant feed port and the first end wall is greater than the distance between the oxidant feed port and the second end wall.
  • the inner liner is processed by aluminizing, shot peening and spraying thermal barrier coating, and the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged.
  • the reactor further includes a metal wire mesh arranged between the inner liner and the side wall.
  • Another aspect of the present disclosure provides a waste liquid treatment method for treating the waste liquid through the above-mentioned supercritical water oxidation system, the method comprising heating the reactor, in the reactor shell When the temperature reaches the first temperature, the first solution, oxidant and water are fed into the reactor shell through the oxidant feed port until the temperature in the reactor shell reaches the second temperature, wherein 2.
  • the temperature is not less than 600°C
  • the pressure in the reactor shell reaches a predetermined pressure
  • the back pressure valve is opened, and the waste liquid is input into the reactor shell through the organic material inlet, and the It is oxidized in the critical water environment and discharged from the discharge port, enters the evaporation pool of the separator, and realizes the separation of harmful substances through self-evaporation.
  • the second temperature is between 650°C and 800°C.
  • the first solution includes a sucrose solution.
  • the oxidant includes liquid oxygen.
  • the reactor further includes a stirrer, and the stirrer is configured with an ammeter and a voltmeter for detecting the current and voltage of the stirrer, respectively, and the method further includes When the current and/or voltage reach a predetermined value, the feed rate of at least one of the oxidant feed port and the organic feed port is reduced.
  • the reactor further includes a heating device and a cooling device
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not low At 120°C.
  • the temperature of the discharge from the discharge port is between 150°C and 300°C.
  • the supercritical water oxidation system further includes a monitoring system
  • the method further includes controlling at least one of the following in response to a user input or in response to a monitoring result of the monitoring system: And/or flow rate; the pressure and/or flow rate of the organic material supply; the temperature of the reactor and/or the evaporation tank; and/or the state of the back pressure valve.
  • a reactor for supercritical water oxidation including a reactor shell, the reactor shell is provided with an oxidant feed port, an organic matter feed port, and a feed port; heating A device for raising the temperature in the reactor shell; a turn-back tube arranged in the reactor shell, the turn-back tube includes an inner tube with two ends open and an outer tube with one end open, and the outer tube is sleeved On the outside of the inner tube, the inner tube is in communication with the organic material inlet.
  • the reactor further includes a stirrer, and the stirrer includes a rotating shaft that passes through the reactor shell.
  • the rotating shaft passes through the discharge port.
  • the agitator is configured with an ammeter and/or a voltmeter.
  • the reactor further includes at least one temperature sensor for obtaining the temperature of at least one location of the supercritical water oxidation reactor.
  • the reactor further includes at least one pressure sensor for obtaining the pressure of at least one location of the supercritical water oxidation reactor.
  • the reactor shell includes a first end wall, a side wall, and a second end wall opposite to the first end wall.
  • the organic material feed port is provided on the first end wall.
  • the oxidant feed port is provided on the side wall, and the discharge port is provided on the second end wall.
  • the reactor further includes an inner liner arranged on the second end wall and extending in the direction of the first end wall, and the turn-back tube is at least partially arranged on the inner liner.
  • the discharge port is arranged inside the lining, wherein the distance between the oxidant feed port and the first end wall is greater than the distance between the oxidant feed port and the second end wall.
  • the inner liner is processed by aluminizing, shot peening and spraying thermal barrier coating, and the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged.
  • the supercritical water oxidation reactor further includes a metal wire mesh arranged between the inner liner and the side wall.
  • the turn-back tube is arranged at the central axis of the reactor.
  • the reactor further includes a cooling device.
  • the cooling device includes at least one set of cooling jackets arranged outside the reactor shell
  • the heating device includes at least one set of heating jackets arranged outside the reactor shell.
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet, and the heating device is arranged outside the first area, The cooling device is arranged outside the second area.
  • Another aspect of the present disclosure provides a waste liquid treatment method, the waste liquid is processed by the reactor described above, a back pressure valve is provided at the discharge port of the reactor, and the method includes reacting When the temperature in the reactor shell reaches the first temperature, the first solution is fed into the reactor shell through the organic material inlet, and the oxidant and water are fed into the reactor shell through the oxidant inlet.
  • the back pressure valve is opened to pass the waste liquid through the organic matter
  • the feed port is fed into the reactor shell, wherein the waste liquid reaches the opening of the outer tube after passing through the inner tube and the outer tube of the turn-back tube in sequence, and is oxidized in a supercritical water environment, And discharged from the discharge port.
  • the second temperature is not less than 600°C.
  • the second temperature is between 650°C and 800°C.
  • the first solution includes a sucrose solution.
  • the oxidant includes liquid oxygen.
  • the reactor further includes a stirrer, and the stirrer is configured with an ammeter and a voltmeter for detecting the current and voltage of the stirrer, respectively, and the method further includes When the current and/or voltage reach a predetermined value, the feed rate of at least one of the organic material feed port and the oxidant feed port is reduced.
  • the supercritical water oxidation reactor further includes a cooling device
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not Below 120°C, wherein the temperature of the discharge from the discharge port is between 150°C and 300°C.
  • a separation device for separating a multi-phase mixture, including an evaporation tank for receiving the above-mentioned multi-phase mixture, wherein a first cooling coil and a slag discharge port are provided in the above-mentioned evaporation tank
  • the first cooling coil is used to stabilize the temperature of the solution in the evaporation tank within the target temperature range after the multi-phase mixture flows into the evaporation tank, and the slag discharge port is used to discharge the multi-phase mixture Solid matter
  • the cooling inner barrel includes a second cooling coil and a condensation pool.
  • the second cooling coil is used to cool the vapor evaporated in the evaporation pool, and the condensation pool is used to receive the second cooling coil to cool the vapor.
  • the condensation pool is provided with a drain for discharging the liquid substance; wherein the evaporation pool and the cooling inner barrel are enclosed in a shell, and the evaporation pool is arranged below the cooling inner barrel.
  • a plurality of holes are provided on the barrel wall of the cooling inner barrel for the vapor evaporated in the evaporation pool to enter the cooling inner barrel.
  • a sleeve for receiving the polymorphic phase mixture is provided in the evaporation tank, and a plurality of small holes are distributed on the pipe wall of the sleeve, and the polymorphic phase mixture is dispersed and discharged through the plurality of small holes. Into the above evaporation pool.
  • the separation device for separating the polymorphic phase mixture further includes a back pressure valve, wherein one end of the back pressure valve is connected to the sleeve through a pipe, and the other end of the back pressure valve is used to communicate with the super The discharge port of the critical water oxidation reactor is connected.
  • an exhaust port is provided on the top of the casing for discharging gaseous substances in the multi-phase mixture.
  • an online volatile organic compound monitor is provided at the above-mentioned exhaust port.
  • the evaporation tank and/or the cooling inner barrel is equipped with a thermometer for monitoring the temperature of the solution in the evaporation pond and/or the temperature in the cooling inner barrel.
  • the volume of the evaporation tank is 2 to 3 times the processing flow rate of the multi-phase mixture.
  • the evaporation tank is equipped with a liquid level gauge, and/or the evaporation tank is equipped with a pH meter for monitoring the pH value of the solution in the evaporation tank.
  • the above-mentioned separation device is equipped with an online chemical oxygen demand monitor.
  • the supercritical water oxidation system and method of the present disclosure can achieve maximum volume reduction instead of transforming into more radioactive organic wastewater, use the temperature after the reaction to achieve self-evaporation, improve system efficiency, save equipment volume and energy, and be suitable for industry application.
  • the supercritical water oxidation system and method of the present disclosure can effectively prevent the inorganic salt in the product from crystal growth in the reactor through the disturbance of the stirrer, thereby depositing, bonding, blocking the pipeline, and improving the service life of the equipment.
  • a supercritical water oxidation system including: a supercritical water oxidation device, including a reactor and a self-separating outer barrel; the reactor is arranged inside the self-separating outer barrel, and
  • the reactor includes a reactor shell, the reactor shell is provided with an oxidant feed port, an organic material feed port and a feed port; the self-separating outer barrel is provided with an evaporation pool, a condensation pool and a condenser tube, so
  • the evaporation tank is in communication with the discharge port, a back pressure valve is provided between the evaporation tank and the discharge port, the condensation tank is arranged above the evaporation tank, and the condensation tube is arranged at Above the condensing tank, when the gas evaporated in the evaporation tank is liquefied at the condensing pipe, the liquid obtained by liquefaction can fall back into the condensing tank; an oxidant supply device, and the oxidant The feed port is connected; and the organic material supply device is connected to the organic material
  • the treatment process of the supercritical water oxidation reactor is generally to directly mix the oxidant and the waste in the reactor, and then the oxidant and the waste can react after reaching a certain temperature and pressure.
  • the molecular space structure is stable, and it is difficult to oxidize in a short time.
  • the waste input from the outside will also reduce the temperature of the reaction zone, resulting in a long reaction time of the waste in the supercritical water oxidation reactor and reducing the reaction efficiency.
  • a turn-back tube is provided in the reactor shell. When the temperature in the reactor shell reaches a certain temperature, the organic matter can be fully preheated, heated, and even pyrolyzed during the process of flowing in the turn-back tube. , Thereby improving reaction efficiency.
  • a separation device is used to process the multi-phase mixture, so that the solid matter in the multi-phase mixture is evaporated and concentrated at the bottom of the evaporation tank, for example, separated in the form of inorganic salt residue; so that the liquid in the multi-phase mixture
  • the substance evaporates in the evaporation tank and is cooled by the cooling inner barrel, and can be discharged from the drain of the condensing pool; so that the gaseous substance in the multi-phase mixture can be directly discharged from the top of the separation equipment.
  • the separation of the multi-phase mixture can be realized at the same time, the processing flow is not only short, but also the one-time investment of the equipment and the equipment operating cost are effectively reduced, and the maximum volume reduction of the multi-phase mixture is realized.
  • the supercritical water oxidation system of the present disclosure can integrate multiple devices together to form an integrated system, which makes the system compact and convenient to use.
  • Fig. 1 schematically shows a schematic diagram of a supercritical water oxidation system according to an embodiment of the present disclosure
  • Fig. 2 schematically shows a schematic diagram of a supercritical water oxidation system according to another embodiment of the present disclosure
  • Fig. 3 schematically shows a schematic diagram of a reactor according to another embodiment of the present disclosure
  • Fig. 4 schematically shows a schematic diagram of a sleeve according to an embodiment of the present disclosure
  • Fig. 5 schematically shows a schematic diagram of a cooling inner tub according to an embodiment of the present disclosure
  • Fig. 6 schematically shows a flowchart of an organic wastewater treatment method according to an embodiment of the present disclosure
  • Fig. 7 schematically shows a schematic diagram of a supercritical water oxidation device according to an embodiment of the present disclosure
  • Fig. 8 schematically shows a schematic diagram of a supercritical water oxidation device according to another embodiment of the present disclosure
  • Fig. 9 schematically shows a schematic diagram of a supercritical water oxidation device according to another embodiment of the present disclosure.
  • Fig. 10 schematically shows a schematic diagram of a sleeve according to an embodiment of the present disclosure
  • Fig. 11 schematically shows a schematic diagram of a cooling inner tub according to an embodiment of the present disclosure
  • Fig. 12 schematically shows a flowchart of an organic wastewater treatment method according to an embodiment of the present disclosure
  • Figure 13A schematically shows a schematic diagram of a supercritical water oxidation system according to an embodiment of the present disclosure
  • Figure 13B schematically shows a schematic diagram of a separator according to an embodiment of the present disclosure
  • Fig. 14 schematically shows a structural diagram of a reactor according to an embodiment of the present disclosure
  • Fig. 15 schematically shows a schematic diagram of a supercritical water oxidation system according to another embodiment of the present disclosure
  • Figure 16 schematically shows a schematic diagram of a sleeve according to an embodiment of the present disclosure
  • Fig. 17 schematically shows a schematic diagram of a cooling inner tub according to an embodiment of the present disclosure
  • FIG. 18 schematically shows a flowchart of a waste liquid treatment method according to an embodiment of the present disclosure
  • FIG. 19 schematically shows a schematic diagram of a reactor for supercritical water oxidation according to an embodiment of the present disclosure
  • FIG. 20 schematically shows a schematic diagram of a reactor for supercritical water oxidation according to another embodiment of the present disclosure
  • Fig. 21 schematically shows a schematic diagram of a cooling device according to another embodiment of the present disclosure.
  • Figure 22 schematically shows a flowchart of a waste liquid treatment method according to an embodiment of the present disclosure
  • FIG. 23 schematically shows a schematic diagram of a separation device for separating a multi-phase mixture according to an embodiment of the present disclosure
  • Fig. 24 schematically shows a schematic diagram of a cooling inner tub according to an embodiment of the present disclosure
  • Figure 25 schematically shows a schematic diagram of a sleeve according to an embodiment of the present disclosure.
  • FIG. 26 schematically shows a schematic diagram of a separation device for separating a multi-phase mixture according to another embodiment of the present disclosure.
  • At least one of the “systems” shall include, but is not limited to, systems having A alone, B alone, C alone, A and B, A and C, B and C, and/or systems having A, B, C, etc. ).
  • At least one of the “systems” shall include, but is not limited to, systems having A alone, B alone, C alone, A and B, A and C, B and C, and/or systems having A, B, C, etc. ).
  • the present disclosure in order to reduce the volume and harm of radioactive waste liquid of nuclear power plants and other nuclear facilities, provides a supercritical water oxidation system and method, which can convert organic wastewater into inorganic waste water through supercritical water oxidation. It uses the residual temperature of the reaction to self-evaporate to recover the radioactive metal elements in the organic matter, thus achieving the purpose of minimizing waste.
  • the supercritical water oxidation system and method according to the embodiments of the present disclosure have a processing capacity of 1-10 kg/h and a volume reduction ratio of 30-100 times.
  • the effluent is distilled water and can be reused for purification.
  • the gas can be discharged directly.
  • Fig. 1 schematically shows a schematic diagram of a supercritical water oxidation system according to an embodiment of the present disclosure.
  • the supercritical water oxidation system includes a supercritical water oxidation device, an oxidant supply device 150 and an organic matter supply device 140.
  • the supercritical water oxidation device includes a reactor 110 and a self-separating outer barrel 120.
  • the reactor 110 is arranged inside the self-separating outer barrel 120.
  • the reactor 110 includes a reactor shell, and the reactor shell is provided with an oxidant feed port 111, an organic matter feed port 112 and a feed port 113.
  • the self-separating outer barrel 120 is provided with an evaporation tank 121, a condensation tank 122, and a condensation tube 123.
  • the evaporation tank 121 is in communication with the discharge port 113, and the evaporation tank 121 is connected to the discharge port 113.
  • a back pressure valve 130 is provided in between, the condensation pool 122 is arranged above the evaporation pool 121, and the condensation pipe 123 is arranged above the condensation pool 122 so that the gas evaporated in the evaporation pool 121 In the case of liquefaction at the condenser tube 123, the liquid obtained by the liquefaction can fall back into the condenser 122.
  • the oxidant feeding device 150 is in communication with the oxidant feeding port 111.
  • the organic material feeding device 140 is in communication with the organic material feeding port 112.
  • Fig. 2 schematically shows a schematic diagram of a supercritical water oxidation system according to another embodiment of the present disclosure.
  • the oxidant may be, for example, liquid oxygen, oxygen, hydrogen peroxide, etc., and the embodiment of the present disclosure may use oxygen as the oxidant.
  • the oxidant supply device 270 for supplying oxygen may include, for example, an oxygen cylinder group, an oxygen pressurizing pump, a high-pressure oxygen cylinder, and a one-way valve.
  • the organic material supply device 260 may include, for example, a first water tank, a second water tank, a peristaltic pump, a high-pressure pump, and a one-way valve, wherein the high-pressure pump is respectively connected to the first water tank and the peristaltic pump, so The peristaltic pump is communicated with the second water tank.
  • the first water tank can be used to store organic wastewater
  • the second water tank can be used to store sucrose solution.
  • an evaporation tank 221, a condensation tank 222 and a condensation tube 223 are provided in the self-separating outer barrel 220, and the reactor 210 is provided inside the self-separating outer barrel 220.
  • the reactor 210 includes an oxidant feed port 211, an organic material feed port 212, a feed port 213, a stirring device 224, a heating device 216, a cooling device 215, etc. Please refer to the embodiment described in FIG. 3, which will not be expanded here for now description.
  • the supercritical water oxidation device is an integrated device, with a small number of equipment, concentrated functions, and high processing capacity. Since the reactor 210 is a high-temperature and high-pressure equipment, the self-separating outer barrel 220 arranged outside the reactor 210 can also protect the outside world effect.
  • the evaporation tank 221 is connected to the discharge port 213, and a back pressure valve 230 is provided between the evaporation tank 221 and the discharge port 213.
  • the condensation pool 222 is arranged above the evaporation pool 221, and the condensation pipe 223 is arranged above the condensation pool 222, so that the gas evaporated in the evaporation pool 221 is When the condenser tube 223 is liquefied, the liquid obtained by liquefaction can fall back into the condenser 222.
  • the pressure gradually returns to normal pressure, and the effluent also returns from a supercritical state to a gas-liquid-solid three-state.
  • the effluent of the reactor 210 is a high-temperature and high-pressure fluid, for example, the temperature of the effluent itself is 150-300°C and the pressure is 25MPa.
  • a cooling pipe 224 can be provided in the evaporation tank 221 to make the The object can always be in a boiling state. That is, the cooling pipe 224 stabilizes the temperature of the liquid in the evaporation pool 221 within the target temperature range, for example, it may be about 100° C., so that the liquid can boil stably in the evaporation pool 221.
  • a slag discharge port 225 may be further provided in the evaporation tank 221 for discharging the non-volatile salt residue in the evaporation tank 221.
  • the slag outlet 225 can be provided with an online pH monitor. Under normal working conditions, due to the production of carbon dioxide, the pH value of the slag outlet discharge is about 2. If there is a significant increase, the organic material supply can be reduced.
  • the feed flow rate of the device may increase the temperature or pressure of the reactor 210.
  • a drainage port 226 is provided in the condensation tank 222 for draining water in the condensation tank 222.
  • the drainage device can include multiple radiant pipes and a ring pipe to improve drainage efficiency.
  • the discharged water is distilled water, and the concentration of harmful substances is less than one hundred thousandths.
  • a chemical oxygen demand (COD) online monitor can be installed at the drain 226 to monitor the water quality. If the COD content increases, the feed flow rate of the organic material supply device can be reduced or the temperature or pressure of the reactor 210 can be increased to make the reaction More fully.
  • the top of the self-separating outer barrel 220 is provided with an exhaust port 227 for exhausting purified gas such as carbon dioxide.
  • a gas filtering device may be provided at the exhaust port 227, for example, may include an activated carbon filter column and a high efficiency filter to ensure that the exhaust gas meets the emission standard.
  • an online volatile organic compound (VOC) monitor can be provided at the exhaust port 227 to monitor the gas. If the VOC content increases, the feed flow rate of the organic feed device can be reduced or the reaction can be increased. The temperature or pressure of the device 210 makes the reaction more complete.
  • VOC organic volatile organic compound
  • the supercritical water oxidation device further includes a water chiller for supplying water to the condensing pipe 223, and can also supply water to the cooling device 215 in the reactor 210.
  • the supercritical water oxidation reactor converts organic matter into carbon dioxide, water and inorganic salts, it generally needs to be processed by multiple equipment such as cooling equipment, gas-liquid separation equipment, liquid cooling equipment, and gas cooling equipment. Separation of carbon dioxide, water and inorganic salts.
  • This processing method not only has a long processing flow, a lot of equipment, but also a high cost.
  • a self-separating outer barrel is used to process the high-temperature (120-300°C) effluent, so that the salt residue is evaporated and concentrated at the bottom of the evaporation tank, and the water evaporates in the evaporation tank.
  • the clean gas can be discharged directly from the top of the separation equipment.
  • the separation equipment of the present disclosure can realize the separation of the mixture at the same time, not only has a short processing flow, but also effectively reduces one-time equipment investment and equipment operating costs, and realizes the largest reduction in the volume of radioactive waste.
  • Radioactive cesium and strontium Take radioactive cesium and strontium as examples. After the radioactive cesium is evaporated in the evaporation tank, the decontamination factor can reach 10 5 , and the cesium in the water vapor is less than one hundred thousandth of the concentration of cesium in the evaporation tank water. It can reach 10 9 , so the steam can be deeply purified.
  • the supercritical water oxidation system further includes a monitoring system, which includes at least one of the following: set on the reactor shell, in the evaporation tank, and in the condensation tank A sensor; a pressure sensor arranged in the reactor shell; a pH online monitor arranged at the slag discharge port; an online volatile organic compound monitor arranged at the exhaust port; and/or arranged at the On-line monitor of chemical oxygen demand at the drain.
  • a monitoring system which includes at least one of the following: set on the reactor shell, in the evaporation tank, and in the condensation tank A sensor; a pressure sensor arranged in the reactor shell; a pH online monitor arranged at the slag discharge port; an online volatile organic compound monitor arranged at the exhaust port; and/or arranged at the On-line monitor of chemical oxygen demand at the drain.
  • the supercritical water oxidation system also includes a control system for controlling at least one of the following in response to user input or in response to the monitoring result of the monitoring system: the pressure and/or flow rate of the oxide supply; Pressure and/or flow; the temperature of the reactor and/or evaporation pool; and/or the state of the back pressure valve 230.
  • FIG. 3 schematically shows a schematic diagram of a reactor 300 according to another embodiment of the present disclosure.
  • the reactor 300 includes a reactor shell 310, the reactor shell 310 is provided with an oxidant feed port 311, an organic material feed port 312 and a feed port 313.
  • the embodiment of the present disclosure does not limit the shape, material, and size of the reactor shell 310.
  • the reactor shell 310 may be cylindrical, the material may be INCONEL625, the inner diameter of the reactor shell 310 may be 80-219mm, for example, it may be 168mm, the thickness may be, for example, about 25mm, and the length may be 1000-6000mm, for example It can be 3000mm.
  • the reactor 300 may further include a stirrer 330, and the stirrer 330 includes a rotating shaft 331 passing through the reactor shell 310.
  • the reactor 300 can be installed obliquely, with a slope of 10%, and the discharge port 313 at the bottom end.
  • the agitator 330 is used to agitate the materials in the reactor 300.
  • the supercritical water reaction product is generally ultrafine particles, and there is no condition for crystal growth. As long as there is disturbance, the particles will not deposit or stick, which effectively prevents the ultrafine inorganic salt from forming crystals and blocking the discharge port 313.
  • the agitator 330 may include an inner magnetic rotor 332 and an outer magnetic rotor 333.
  • the inner magnetic rotor 332 drives the rotating shaft 331 and the stirrer to rotate.
  • the agitator 330 can maintain a rotation speed of 800 rpm for stirring, so that the supercritical water reaction product particles remain suspended without depositing.
  • the rotating shaft 331 passes through the discharge port 313.
  • the discharge port 313 is L-shaped, and the rotating shaft 331 passes through the reactor shell 310 and partially penetrates the discharge port 313 to extend into the reactor shell 310, and stir near the discharge port 313. , Prevent the discharge port 313 from being blocked.
  • the agitator 330 is equipped with an ammeter and/or a voltmeter for monitoring the current and voltage of the agitator.
  • an ammeter and/or a voltmeter for monitoring the current and voltage of the agitator.
  • the reactor 300 further includes a heating device 320, which is used to increase the temperature of the reactor shell 310, thereby heating the chamber formed in the reactor shell 310.
  • a heating device 320 which is used to increase the temperature of the reactor shell 310, thereby heating the chamber formed in the reactor shell 310.
  • the embodiment of the present disclosure does not limit the type of the heating device 320.
  • the heating device 320 may be one or more sets of heating jackets.
  • the heating jacket may be set outside the reactor shell 310 to transfer heat to the inside of the reactor shell 310 by means of heat conduction.
  • the reactor 300 further includes a cooling device 340, which is used to cool the reactor 300 after starting the reaction, so as to prevent the temperature of the reactor 300 from being too high, shortening the service life of the equipment and even causing danger.
  • the cooling device 340 may, for example, include at least one set of cooling jackets arranged outside the reactor shell 310.
  • the cooling jacket can include two parts, the two parts can be fixed by fixing holes and bolts, and each part can be filled with cooling water.
  • the cooling device in the embodiment of the present disclosure may include one or more sets of cooling jackets. When the equipment is running, the temperature of the reactor can be controlled by adjusting the number of cooling jackets in use.
  • the heating device of the embodiment of the present disclosure may include one or more sets of heating jackets. When the equipment is running, the temperature of the reactor can be controlled by adjusting the number of heating jackets in use.
  • the reactor shell 310 includes a first area 10 close to the oxidant feed port 311 and a second area 20 close to the discharge port 313, and the heating device 320 is disposed in the Outside the first area 10, the cooling device 340 is arranged outside the second area 20.
  • the supercritical water oxidation is completed in the first zone 10, and the product is cooled by the cooling device 340 when it flows to the discharge port 313 through the second zone 20, and the temperature when it reaches the discharge port is about 150 ⁇ 300°C.
  • the reactor housing 310 includes a first end wall 314, a side wall 315, and a second end wall 316 opposite to the first end wall 314.
  • the oxidant feed port 311 is provided in the With respect to the first end wall 314, the organic material inlet 312 is provided on the side wall 315, and the outlet 313 is provided on the second end wall 316.
  • the discharge port 313 may also be provided on the side wall 315.
  • the reactor 300 further includes an inner liner 350, which is arranged on the second end wall 316 and extends in the direction of the first end wall 314, and the discharge port 313 is arranged on the inner liner.
  • the distance between the organic material inlet 312 and the first end wall 314 is greater than the distance between the organic material inlet 312 and the second end wall 316. That is, the organic material feed port 312 is closer to the second end wall 316.
  • the material of the inner liner 350 may be, for example, a high-temperature alloy material GH4169, the inner diameter may be 40-133mm, for example, 108mm, and the length may be 1000-6000mm, for example, 3500mm.
  • the lining 350 is processed by aluminizing, shot peening, and spraying thermal barrier coating.
  • the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged. It is equivalent to forming an anticorrosive coating on the inner lining, and under the high temperature of supercritical water, a dense gel layer is formed on the inner lining to prevent the contact and corrosion of the supercritical water and the metal of the inner lining.
  • the key condition for forming a dense gel layer is that there is a dense layer of special metal atoms between the metal and the gel layer.
  • this special metal atom is connected to the bulk metal through a metal bond.
  • it is connected to the gel layer in the form of a chemical bond.
  • the embodiment of the present disclosure adopts nickel-based metal, first the metal body is aluminized, then the metal surface is forged with shot peening to form a dense metal aluminum atomic layer, and then the thermal barrier coating is sprayed , By alternately spraying 6-8 layers of metal aluminum and aluminum oxide ceramic layers, a thermal barrier coating is formed on the metal surface with a thickness of about 2 to 3mm. After the thermal barrier coating encounters supercritical water, this thermal barrier coating will transform into a dense gel layer. The gel layer can prevent the supercritical water from contacting and corroding the metal lining.
  • the reaction center temperature is 700°C-800°C
  • the surface temperature of the thermal barrier coating is maintained at 650°C-750°C
  • the body temperature of the lining machine is maintained at 550°C-650°C.
  • the reactor 300 may further include at least one temperature sensor for obtaining the temperature of at least one location of the supercritical water oxidation reactor.
  • the two ends and the middle of the lining 350 can be equipped with temperature probes, and the temperature probe can be provided between the heating device 220 and the reactor shell 310.
  • the reactor 300 further includes at least one pressure sensor for obtaining the pressure of at least one position of the reactor.
  • at least one pressure sensor for obtaining the pressure of at least one position of the reactor.
  • both ends of the reactor 300 may be equipped with pressure gauges for detecting the pressure inside the reactor 300.
  • FIG. 4 schematically shows a schematic diagram of a sleeve 410 according to an embodiment of the present disclosure.
  • the evaporation tank 400 is connected to the reactor through the reactor outlet pipe (240 shown in FIG. 2).
  • the evaporation tank 400 is provided with a sleeve 410, and the reactor outlet pipe is connected to the reactor. Inside the sleeve 410, small holes are provided on the sleeve 410. The material discharged from the reactor is dispersed and discharged into the evaporation tank 400 through a plurality of small holes.
  • the size and shape of the sleeve 410 are not limited.
  • the diameter of the sleeve 410 may be 42-50 mm
  • the wall thickness may be 4-6 mm
  • the shape may be a straight tube or a spiral tube.
  • the size of the small hole can be, for example, 2 to 3 mm in diameter, and its function is mainly to dissolve and disperse the high-speed fluid through the small hole on the outlet pipe and slowly release the pressure.
  • the self-separating outer barrel 220 is provided with a cooling inner barrel 250
  • the condenser tube 223 is provided inside the cooling inner barrel 250
  • the condensation pool 222 is formed at the bottom of the cooling inner barrel 250
  • a plurality of holes 251 are provided on the barrel wall of the cooling inner barrel 250.
  • FIG. 5 schematically shows a schematic diagram of a cooling inner tub 510 according to an embodiment of the present disclosure.
  • a plurality of holes 513 are provided on the barrel wall of the cooling inner barrel 510 for the vapor evaporated in the evaporation pool to enter the cooling inner barrel 510.
  • cooling water for example, charged from the inlet 5111 and discharged from the outlet 5112
  • the condenser tube 511 can be filled into the condenser tube 511 in the cooling inner tub 510, so that the temperature in the cooling inner tub 510 is lower than the temperature in the evaporation pool.
  • the temperature of the steam can be reduced after the condenser tube 511 is filled with water.
  • water vapor, oxygen, and carbon dioxide evaporated in the evaporation tank can enter the cooling inner barrel 510 from a plurality of holes 513 provided on the barrel wall, in an upward flow direction as shown by an arrow in FIG. 5. After the steam meets the cold air, it condenses to form water droplets and falls into the condensing pool 512, and then is discharged from the drain 514. The oxygen and carbon dioxide can be exhausted from the exhaust port 515 at the top.
  • the volume of the condensing tank 512 is not limited.
  • the volume of the condensing pool 512 can be 50L to 500L, and the condensing pool 512 can be connected to an external annular pipe through multiple radiant pipes, and the water conduction capacity can be 800kg/h to 8000kg/h.
  • the condenser tube 511 may be a horizontally wound spiral cooling tube, and the size is not limited.
  • a plurality of holes 513 are left on the wall of the barrel for gas to pass through.
  • the cooling of the inner barrel 510 can make the water vapor above 100°C condense into water at 60°C to 90°C, and the condensing capacity can be 200kg/h ⁇ 2000kg/h.
  • the volume of the cooling coil area is not limited.
  • the volume can be 1000L, and the condensed water can be returned to the supercritical water oxidation reactor for reuse, or it can be used for other purposes or directly discharged.
  • Fig. 6 schematically shows a flowchart of an organic wastewater treatment method according to an embodiment of the present disclosure.
  • the method includes operations S610 to S640.
  • the organic waste water is input into the reactor shell through the organic material feed port, is oxidized in the supercritical water environment, and is discharged from the feed port, enters the evaporation tank, and realizes the separation of harmful substances through self-evaporation.
  • the reactor can be filled with water first, and the reactor can be preheated with an electric heating jacket so that the temperature in the reactor shell reaches the first temperature, for example, 300°C.
  • the first solution may be, for example, a sucrose solution.
  • the concentration of sucrose is gradually increased, and the sucrose solution is fed into the reactor through the oxide inlet and the oxidant is fed into the reactor at the same time.
  • the oxidant may be oxygen, for example. Under the condition of 300°C, the oxidant reacts with sucrose to generate heat, and the temperature of the reactor is continued to be heated to the second temperature.
  • sucrose solution used in the embodiments of the present disclosure can effectively increase the temperature of the supercritical water reaction chamber.
  • sucrose aqueous solution is a non-flammable and explosive material, and the combustion heat of concentrated sucrose aqueous solution is higher than that of propanol, which can increase the temperature of the supercritical water reaction zone to a certain temperature range of 550°C-800°C.
  • the reactor can withstand a higher temperature due to the aluminized, shot peened, and sprayed thermal barrier coating lining provided by the embodiments of the present disclosure, and the life of the reactor can be extended by 5 -10 years.
  • the second temperature is not less than 600°C.
  • the second temperature is between 650°C and 800°C.
  • the temperature range is higher, and the reaction speed is effectively improved.
  • the reaction time is 10 times lower than that of traditional supercritical water, which greatly reduces the volume of equipment with the same processing capacity.
  • the organic material feeding device when the reaction conditions are reached, for example, the supercritical water oxidation temperature is maintained at 650°C to 750°C, and the pressure is maintained at 20-25Mpa, the organic material feeding device is activated. Under normal working conditions, the temperature of the part of the reactor lining near the oxidant feed inlet is 650°C ⁇ 800°C, and the temperature of the corresponding reactor shell part does not exceed 600°C.
  • the supercritical water oxidation reactor further includes a cooling device
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not Below 120°C.
  • the temperature of the first zone can be controlled between 650°C and 800°C.
  • concentration of organic matter is high, more heat of oxidation is released.
  • the reactor needs to be cooled by a cooling device to keep the temperature of the first zone within 800°C.
  • the temperature of the reaction product is reduced to 120°C to 300°C under the cooling action of the cooling device and the fluid between the lining and the shell.
  • the temperature of the discharge at the discharge port can be between 150°C To 300°C.
  • the temperature of the outlet of the embodiment of the present disclosure is higher, for example, it can reach 300°C, which reduces the cooling burden of the supercritical water reactor and makes the equipment The volume can be reduced while the efficiency can be improved.
  • the reactor further includes a stirrer, and the stirrer is configured with an ammeter and a voltmeter for detecting the current and voltage of the stirrer, respectively, and the method further includes When the current and/or voltage reach a predetermined value, the feed rate of at least one of the organic material feed port and the oxidant feed port is reduced.
  • the supercritical water oxidation system further includes a monitoring system
  • the method further includes controlling at least one of the following in response to a user input or in response to a monitoring result of the monitoring system: And/or flow rate; the pressure and/or flow rate of the organic material supply; the temperature of the reactor and/or the evaporation tank; and/or the state of the back pressure valve. Please refer to the description of the device above, which will not be repeated here.
  • the present disclosure in order to reduce the volume and harm of the radioactive waste liquid of nuclear power plants and other nuclear facilities, provides a supercritical water oxidation device and method.
  • the supercritical water oxidation device and method provided by the present disclosure Organic wastewater can be converted into inorganic substances by supercritical water oxidation, and the residual temperature of the reaction can be used for self-evaporation to recover the radioactive metal elements in the organic substances, thus achieving the purpose of minimizing waste.
  • the supercritical water oxidation system and method according to the embodiments of the present disclosure have a processing capacity of 1-10 kg/h and a volume reduction ratio of 30-100 times.
  • the effluent is distilled water and can be reused for purification.
  • the gas can be discharged directly.
  • Fig. 7 schematically shows a schematic diagram of a supercritical water oxidation device according to an embodiment of the present disclosure.
  • the supercritical water oxidation device includes a reactor 700 that includes a reactor shell 710, a heating device 720 and a stirrer 730.
  • the reactor shell 710 is provided with an oxidant feed port 711, an organic material feed port 712, and a feed port 713.
  • the heating device 720 is used to increase the temperature in the reactor shell 710.
  • the agitator 730 includes a rotating shaft that passes through the reactor shell.
  • the embodiment of the present disclosure does not limit the shape, material, and size of the reactor shell 710.
  • the reactor shell 710 may be cylindrical, the material may be INCONEL625, the inner diameter of the reactor shell 710 may be 80-219mm, for example, it may be 168mm, the thickness may be, for example, about 25mm, and the length may be 1000-6000mm, for example It can be 3000mm.
  • the heating device 720 is used to increase the temperature of the reactor shell 710, thereby heating the chamber formed in the reactor shell 710.
  • the embodiment of the present disclosure does not limit the type of the heating device 720.
  • the heating device 720 may be one or more sets of heating jackets.
  • the heating jacket may be set outside the reactor shell 710 to transfer heat to the inside of the reactor shell 710 by means of heat conduction.
  • FIG. 8 schematically shows a schematic diagram of a supercritical water oxidation device 800 according to another embodiment of the present disclosure.
  • the reactor housing 810, the heating device 820, and the agitator 830 shown in FIG. 8 can refer to the reactor housing 710, the heating device 720, and the agitator 730 shown in FIG. 7.
  • the agitator 830 may include, for example, a rotating shaft 831, which passes through the reactor housing 810.
  • the reactor 800 can be installed obliquely with a slope of 10%, the discharge port 813 is at the bottom end, and the agitator 830 is used to agitate the contents of the reactor 800.
  • the supercritical water reaction product is generally ultrafine particles, and there is no condition for crystal growth. As long as there is disturbance, the particles will not deposit or stick, which effectively prevents the ultrafine inorganic salt from forming crystals and blocking the discharge port 813.
  • the agitator 830 may include an inner magnetic rotor 832 and an outer magnetic rotor 833.
  • the inner magnetic rotor 832 drives the rotating shaft 831 and the stirrer to rotate under the driving of the outer magnetic rotor 833.
  • the agitator 830 can maintain a rotation speed of 800 rpm for stirring, so that the supercritical water reaction product particles remain suspended without being deposited.
  • the rotating shaft 831 passes through the discharge port 813.
  • the discharge port 813 is L-shaped, and the rotating shaft 831 passes through the reactor shell 810 and partially penetrates the discharge port 213 to extend into the reactor shell 810, and stir near the discharge port 813. , To prevent the discharge port 813 from being blocked.
  • the stirrer 830 is equipped with an ammeter and/or voltage meter for monitoring the current and voltage of the stirrer.
  • an ammeter and/or voltage meter for monitoring the current and voltage of the stirrer.
  • the reactor 800 further includes a cooling device 840, which is used to cool the reactor 800 after starting the reaction to prevent the temperature of the reactor 800 from being too high, shortening the service life of the equipment and even causing danger.
  • the cooling device 840 may, for example, include at least one set of cooling jackets arranged outside the reactor shell 810.
  • the cooling jacket can include two parts, the two parts can be fixed by fixing holes and bolts, and each part can be filled with cooling water.
  • the cooling device in the embodiment of the present disclosure may include one or more sets of cooling jackets. When the equipment is running, the temperature of the reactor can be controlled by adjusting the number of cooling jackets in use.
  • the heating device of the embodiment of the present disclosure may include one or more sets of heating jackets. When the equipment is running, the temperature of the reactor can be controlled by adjusting the number of heating jackets in use.
  • the reactor shell 810 includes a first area 10 close to the oxidant feed port 811 and a second area 20 close to the discharge port 813, and the heating device 820 is disposed in the Outside the first area 10, the cooling device 840 is arranged outside the second area 20.
  • the supercritical water oxidation is completed in the first zone 10, and the product is cooled by the cooling device 840 when it flows to the discharge port 813 through the second zone 20, and the temperature when it reaches the discharge port is about 150 ⁇ 300°C.
  • the reactor housing 810 includes a first end wall 814, a side wall 815, and a second end wall 816 opposite to the first end wall 814, and the oxidant feed port 811 is provided in the With respect to the first end wall 814, the organic material inlet 812 is provided on the side wall 815, and the outlet 813 is provided on the second end wall 816.
  • the discharge port 813 may also be provided on the side wall 815.
  • the reactor 800 further includes an inner liner 850, which is arranged on the second end wall 816 and extends in the direction of the first end wall 814, and the discharge port 813 is arranged on the inner liner Inside the 850, the distance between the organic material inlet 812 and the first end wall 814 is greater than the distance between the organic material inlet 812 and the second end wall 816. That is, the organic material feed port 812 is closer to the second end wall 816. After the organic material enters the reactor 800, it moves in the direction of the first end wall 814 along the outside of the inner liner 850 until it reaches the vicinity of the oxidant feed port 811 and is in contact with the oxidant. Oxidation reaction occurs in supercritical water environment. This design enables the organic matter to be preheated between the lining and the shell, and prevents the temperature of the lining from being too high, prolonging the service life.
  • the material of the inner liner 850 may be, for example, a high-temperature alloy material GH4169, the inner diameter may be 40-133 mm, for example, 108 mm, and the length may be 1000-6000 mm, for example, 3500 mm.
  • the inner liner 850 is processed including aluminizing, shot peening, and spraying thermal barrier coating.
  • the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged. It is equivalent to forming an anticorrosive coating on the inner lining, and under the high temperature of supercritical water, a dense gel layer is formed on the inner lining to prevent the contact and corrosion of the supercritical water and the metal of the inner lining.
  • the key condition for forming a dense gel layer is that there is a dense layer of special metal atoms between the metal and the gel layer.
  • this special metal atom is connected to the bulk metal through a metal bond.
  • it is connected to the gel layer in the form of a chemical bond.
  • the embodiment of the present disclosure adopts nickel-based metal, first the metal body is aluminized, then the metal surface is forged with shot peening to form a dense metal aluminum atomic layer, and then the thermal barrier coating is sprayed , By alternately spraying 6-8 layers of metal aluminum and aluminum oxide ceramic layers, a thermal barrier coating is formed on the metal surface with a thickness of about 2 to 3mm. After the thermal barrier coating encounters supercritical water, this thermal barrier coating will transform into a dense gel layer. The gel layer can prevent the supercritical water from contacting and corroding the metal lining.
  • the reaction center temperature is 700°C-800°C
  • the surface temperature of the thermal barrier coating is maintained at 650°C-750°C
  • the temperature of the lining body is maintained at 550°C-650°C.
  • the reactor 800 may further include at least one temperature sensor for obtaining the temperature of at least one location of the supercritical water oxidation reactor.
  • the two ends and the middle of the lining 850 may be equipped with temperature probes, and a temperature probe may be provided between the heating device 820 and the reactor shell 810.
  • the reactor 800 further includes at least one pressure sensor for obtaining the pressure of at least one position of the reactor.
  • both ends of the reactor 800 may be equipped with pressure gauges for detecting the pressure inside the reactor 800.
  • the reactor 800 may use an oxidant supply device to provide an oxidant.
  • the oxidant may be, for example, liquid oxygen, oxygen, hydrogen peroxide, etc., and the embodiments of the present disclosure may use oxygen as the oxidant.
  • the oxidant supply device for supplying oxygen may include, for example, an oxygen cylinder group, an oxygen pressurizing pump, a high-pressure oxygen cylinder, and a one-way valve.
  • the reactor 800 can be fed with an organic material supply device.
  • the organic material supply device may include, for example, a first water tank, a second water tank, a peristaltic pump, a high-pressure pump, and a one-way valve.
  • the high-pressure pump is respectively communicated with the first water tank and the peristaltic pump, and the peristaltic pump is communicated with the second water tank.
  • the first water tank can be used to store organic wastewater
  • the second water tank can be used to store sucrose solution.
  • FIG. 9 schematically shows a schematic diagram of a supercritical water oxidation device 900 according to another embodiment of the present disclosure.
  • the supercritical water oxidation device 900 further includes a self-separating outer barrel 920.
  • the self-separating outer barrel 920 is provided with an evaporation pool 921, a condensation pool 922, and a condensation tube 923.
  • the reactor 910 is installed inside the self-separating outer barrel 920.
  • the reactor 910 includes an oxidant feed port 911, an organic material feed port 912, a discharge port 913, a stirring device 914, a heating device 916, a cooling device 915, etc., which can be referred to the embodiment described in FIG. 8 and will not be repeated here. .
  • the supercritical water oxidation device is an integrated device, with a small number of equipment, concentrated functions, and high processing capacity. Since the reactor is a high-temperature and high-pressure equipment, the self-separating outer barrel arranged outside the reactor can also protect the outside world.
  • the evaporation tank 921 is connected to the discharge port 913, and a back pressure valve 940 is provided between the evaporation tank 921 and the discharge port 913.
  • the condensation pool 922 is arranged above the evaporation pool 921, and the condensation pipe 923 is arranged above the condensation pool 922, so that the gas evaporated in the evaporation pool 921 is When the condenser tube 923 is liquefied, the liquid obtained by the liquefaction can fall back into the condenser 922.
  • the pressure after passing through the back pressure valve 940, the pressure gradually returns to normal pressure, and the effluent also returns from a supercritical state to a three-state gas-liquid-solid state.
  • the effluent of the reactor 910 is a high-temperature and high-pressure fluid, for example, the temperature of the effluent itself is 150-300°C and the pressure is 25MPa.
  • a cooling pipe 924 can be provided in the evaporation tank 921 to make the effluent flow The object can always be in a boiling state. That is, the cooling pipe 924 stabilizes the temperature of the liquid in the evaporation pool 921 within the target temperature range, for example, it may be about 100° C., so that the liquid can boil stably in the evaporation pool 921.
  • a slag discharge port 925 may be further provided in the evaporation tank 921 for discharging non-volatile salt residues in the evaporation tank 921.
  • the slag discharge port 925 may be provided with an online pH monitor. Under normal working conditions, due to the production of carbon dioxide, the pH value of the discharge from the slag discharge port is about 2. If there is a significant increase, the organic material supply can be reduced The feed flow rate of the device may increase the temperature or pressure of the reactor 910.
  • a drain 926 is provided in the condensing tank 922 for draining the water in the condensing tank 922.
  • the drainage device can include multiple radiant pipes and a ring pipe to improve drainage efficiency.
  • the discharged water is distilled water, and the concentration of harmful substances is less than one hundred thousandths.
  • a chemical oxygen demand (COD) online monitor can be installed at the drain 926 to monitor the water quality. If the COD content increases, the feed flow rate of the organic material supply device can be reduced or the temperature or pressure of the reactor 910 can be increased to make the reaction More fully.
  • the top of the self-separating outer barrel 920 is provided with an exhaust port 927 for exhausting purified gas such as carbon dioxide.
  • a gas filter device may be provided at the exhaust port 927, for example, it may include an activated carbon filter column and a high efficiency filter to ensure that the exhaust gas meets the emission standard.
  • a volatile organic compound (VOC) online monitor can be provided at the exhaust port 927 to monitor the gas. If the VOC content increases, the feed flow rate of the organic feed device can be reduced or the reaction can be increased. The temperature or pressure of the device 910 makes the reaction more complete.
  • VOC volatile organic compound
  • the supercritical water oxidation device 900 further includes a water chiller for supplying water to the condenser tube 923 and can also supply water to the cooling device 915 in the reactor 910.
  • the supercritical water oxidation reactor converts organic matter into carbon dioxide, water and inorganic salts, it generally needs to be processed by multiple equipment such as cooling equipment, gas-liquid separation equipment, liquid cooling equipment, and gas cooling equipment. Separation of carbon dioxide, water and inorganic salts.
  • This processing method not only has a long processing flow, a lot of equipment, but also a high cost.
  • a self-separating outer barrel is used to process the high-temperature (120-300°C) effluent, so that the salt residue is evaporated and concentrated at the bottom of the evaporation tank, and the water evaporates in the evaporation tank.
  • the clean gas can be discharged directly from the top of the separation equipment.
  • the separation equipment of the present disclosure can realize the separation of the mixture at the same time, not only has a short processing flow, but also effectively reduces one-time equipment investment and equipment operating costs, and realizes the largest reduction in the volume of radioactive waste.
  • Radioactive cesium and strontium Take radioactive cesium and strontium as examples. After the radioactive cesium is evaporated in the evaporation tank, the decontamination factor can reach 10 5 , and the cesium in the water vapor is less than one hundred thousandth of the concentration of cesium in the evaporation tank water. It can reach 10 9 , so the steam can be deeply purified.
  • the supercritical water oxidation system further includes a monitoring system, which includes at least one of the following: set on the reactor shell, in the evaporation tank, and in the condensation tank A sensor; a pressure sensor arranged in the reactor shell; a pH online monitor arranged at the slag discharge port; an online volatile organic compound monitor arranged at the exhaust port; and/or arranged at the On-line monitor of chemical oxygen demand at the drain.
  • a monitoring system which includes at least one of the following: set on the reactor shell, in the evaporation tank, and in the condensation tank A sensor; a pressure sensor arranged in the reactor shell; a pH online monitor arranged at the slag discharge port; an online volatile organic compound monitor arranged at the exhaust port; and/or arranged at the On-line monitor of chemical oxygen demand at the drain.
  • the supercritical water oxidation system also includes a control system for controlling at least one of the following in response to user input or in response to the monitoring result of the monitoring system: the pressure and/or flow rate of the oxide supply; Pressure and/or flow; the temperature of the reactor and/or the evaporation pool; and/or the state of the back pressure valve 940.
  • FIG. 10 schematically shows a schematic diagram of a sleeve 1010 according to an embodiment of the present disclosure.
  • the evaporation tank 1000 communicates with the reactor through the reactor outlet pipe (930 shown in Figure 9), the evaporation tank 1000 is provided with a sleeve 1010, and the reactor outlet pipe is connected to the reactor.
  • the sleeve 1010 small holes are provided on the sleeve 1010. The material discharged from the reactor is dispersed and discharged into the evaporation tank 1000 through a plurality of small holes.
  • the size and shape of the sleeve 1010 are not limited.
  • the diameter of the sleeve 1010 may be 42-50 mm
  • the wall thickness may be 4-6 mm
  • the shape may be a straight tube or a spiral tube.
  • the size of the small hole can be, for example, 2 to 3 mm in diameter, and its function is mainly to dissolve and disperse the high-speed fluid through the small hole on the outlet pipe and slowly release the pressure.
  • the self-separating outer barrel 920 is provided with a cooling inner barrel 950
  • the condensation pipe 923 is provided inside the cooling inner barrel 950
  • the condensation pool 922 is formed at the bottom of the cooling inner barrel 950
  • a plurality of holes 951 are provided on the barrel wall of the cooling inner barrel 950.
  • FIG. 11 schematically shows a schematic diagram of a cooling inner tub 1110 according to an embodiment of the present disclosure.
  • the barrel wall of the cooling inner barrel 1110 is provided with a plurality of holes 1113 for the vapor evaporated in the evaporation pool to enter the cooling inner barrel 1110.
  • cooling water for example, charged from the inlet 11111 and discharged from the outlet 11112
  • the condenser tube 1111 in the cooling inner tub 1110 can be filled into the condenser tube 1111 in the cooling inner tub 1110, so that the temperature in the cooling inner tub 1110 is lower than the temperature in the evaporation pool.
  • the temperature of the steam can be reduced after the condenser 1111 is filled with water.
  • water vapor, oxygen, and carbon dioxide evaporated in the evaporation tank can enter the cooling inner barrel 1110 from a plurality of holes 1113 provided on the barrel wall, in an upward flow direction as shown by an arrow in FIG. 11. After the steam meets the cold air, it condenses to form water droplets and falls into the condenser 1112, and then is discharged from the liquid drain 1114. The oxygen and carbon dioxide can be exhausted from the exhaust port 1115 at the top.
  • the volume of the condensing pool 1112 is not limited.
  • the volume of the condensing tank 1112 may be 50L to 500L, and the condensing tank 1112 may be connected to an external annular pipe through multiple radiant pipes, and the water conduction capacity may be 800kg/h to 8000kg/h.
  • the condenser tube 1111 may be a horizontally wound spiral cooling tube, and the size is not limited.
  • a plurality of holes 1113 are left on the wall of the barrel for gas to pass through.
  • the cooling of the inner barrel 1110 can make the water vapor above 100°C condense into water at 60°C to 90°C, and the condensing capacity can be 200kg/h ⁇ 2000kg/h.
  • the volume of the cooling coil area is not limited.
  • the volume can be 1000L, and the condensed water can be returned to the supercritical water oxidation reactor for reuse, or it can be used for other purposes or directly discharged.
  • Fig. 12 schematically shows a flowchart of an organic wastewater treatment method according to an embodiment of the present disclosure.
  • the method includes operations S1210 to S1240.
  • the organic waste water is fed into the reactor shell through the organic feed port, is oxidized in the supercritical water environment, and is discharged from the discharge port.
  • the reactor can be filled with water first, and the reactor can be preheated with an electric heating jacket so that the temperature in the reactor shell reaches the first temperature, for example, 300°C.
  • the first solution may be, for example, a sucrose solution.
  • the concentration of sucrose is gradually increased, and the sucrose solution is fed into the reactor through the oxide inlet and the oxidant is fed into the reactor at the same time.
  • the oxidant may be oxygen, for example. Under the condition of 300°C, the oxidant reacts with sucrose to generate heat, and the temperature of the reactor is continued to be heated to the second temperature.
  • sucrose solution used in the embodiments of the present disclosure can effectively increase the temperature of the supercritical water reaction chamber.
  • sucrose aqueous solution is a non-flammable and explosive material, and the combustion heat of concentrated sucrose aqueous solution is higher than that of propanol, which can increase the temperature of the supercritical water reaction zone to a certain temperature range of 550°C-800°C.
  • the reactor can withstand a higher temperature due to the aluminized, shot peened, and sprayed thermal barrier coating lining provided by the embodiments of the present disclosure, and the life of the reactor can be extended by 5 -10 years.
  • the second temperature is not less than 600°C.
  • the second temperature is between 650° C. and 800° C., which has a higher reaction temperature than other related supercritical water reaction technologies and effectively improves the reaction speed.
  • the reaction time is 10 times lower than that of traditional supercritical water, which greatly reduces the volume of equipment with the same processing capacity.
  • the organic material feeding device when the reaction conditions are reached, for example, the supercritical water oxidation temperature is maintained at 650°C to 750°C, and the pressure is maintained at 20-25Mpa, the organic material feeding device is activated. Under normal working conditions, the temperature of the part of the reactor lining near the oxidant feed inlet is 650°C ⁇ 800°C, and the temperature of the corresponding reactor shell part does not exceed 600°C.
  • the supercritical water oxidation reactor further includes a cooling device
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not Below 120°C.
  • the temperature of the first zone can be controlled between 650°C and 800°C.
  • concentration of organic matter is high, more heat of oxidation is released.
  • the reactor needs to be cooled by a cooling device to keep the temperature of the first zone within 800°C.
  • the temperature of the reaction product is reduced to 120°C to 300°C under the cooling action of the cooling device and the fluid between the lining and the shell.
  • the temperature of the discharge at the discharge port can be between 150°C To 300°C.
  • the temperature of the outlet of the embodiment of the present disclosure is higher, for example, it can reach 300°C, which reduces the cooling burden of the supercritical water reactor and makes the equipment The volume can be reduced while the efficiency can be improved.
  • the reactor further includes a stirrer, and the stirrer is configured with an ammeter and a voltmeter for detecting the current and voltage of the stirrer, respectively, and the method further includes When the current and/or voltage reach a predetermined value, the feed rate of at least one of the organic material feed port and the oxidant feed port is reduced.
  • the supercritical water oxidation system further includes a monitoring system
  • the method further includes controlling at least one of the following in response to a user input or in response to a monitoring result of the monitoring system: And/or flow rate; the pressure and/or flow rate of the organic material supply; the temperature of the reactor and/or the evaporation tank; and/or the state of the back pressure valve. Please refer to the description of the device above, which will not be repeated here.
  • the present disclosure in order to reduce the volume and harm of the radioactive waste liquid of nuclear power plants and other nuclear facilities, provides a supercritical water oxidation system and method.
  • the supercritical water oxidation system and method provided by the present disclosure The waste liquid can be converted into inorganic substances by supercritical water oxidation, and the residual temperature of the reaction can be used for self-evaporation to recover the radioactive metal elements in the organic substances, thus realizing the purpose of minimizing waste.
  • the supercritical water oxidation system and method of the embodiments of the present disclosure have a treatment capacity of 10L/h-100L/h for radioactive organic waste liquid, and a treatment capacity of 100-1000L/h for high-concentration radioactive organic wastewater.
  • the volume reduction ratio of solvents reaches 30-100 times, the volume reduction ratio of nuclear power waste oil reaches 50 times, the volume reduction ratio of liquid scintillation fluid reaches 90 times, and the volume reduction ratio of vacuum pump oil is not less than 100 times.
  • the conversion of high-concentration organic wastewater into distilled water can meet the treatment requirements of spent fuel reprocessing plant waste solvent treatment, nuclear power plant waste oil treatment, nuclear fuel manufacturing plant waste TBP solvent, and uranium purification TBP waste solvent.
  • FIGS. 13A and 13B schematically show schematic diagrams of a supercritical water oxidation system according to an embodiment of the present disclosure.
  • the supercritical water oxidation system includes an oxidant supply device, an organic material supply device, a reactor and a separator.
  • the reactor includes a reactor shell, and the reactor shell is provided with an oxidant feed port, an organic matter feed port, and a feed port, wherein the feed port is connected to the separator.
  • the water required by the reactor can be provided by an organic material supply device or an oxidizer supply device, or, alternatively, a separate water supply device, such as communication with the oxidizer feed port, can be used to supply water to the reactor. See Figure 13B for the structure of the separator.
  • the separator includes an evaporation tank, a condensation tank and a condensation tube.
  • the condensation pool is arranged above the evaporation pool
  • the condensation tube is arranged above the condensation pool, so that when the vaporized gas in the evaporation pool is liquefied at the condensation tube, the liquefied liquid can fall back into the condensation pool.
  • the solid-liquid-gas polymorphic substances are separated in the integrated machine, eliminating the need for cooling equipment, gas-liquid separation equipment, and liquid cooling.
  • Equipment and gas cooling equipment simplify the processing flow.
  • the evaporation tank is in communication with the discharge port of the reactor, and a back pressure valve is provided between the evaporation tank and the discharge port.
  • the temperature of the reaction product in the supercritical water oxidation reactor when it exits the reactor is not lower than 120°C. After entering the evaporation tank through the back pressure valve, it uses its own heat to achieve self-evaporation, separate harmful substances, and achieve volume reduction. After the organic matter is oxidized in the supercritical water reactor, the product is converted into inorganic salt, carbon dioxide and water. After the purification effluent is self-distilled, self-purified, and self-separated, the product is transformed into inorganic salt residue, distilled water and purified gas, and the radioactivity in the organic matter Elements, heavy metals, and polar elements Cl, S, P, etc.
  • the purified gas and water vapor move upwards, and the salt residue of harmful substances remains in the evaporation pond.
  • the radioactive elements, heavy metals and polar element halogens, S, P, etc. in the organic solvent are concentrated in the salt residue, laying a foundation for the treatment and reuse of these components.
  • Fig. 14 schematically shows a structural diagram of a reactor 1400 according to an embodiment of the present disclosure.
  • the reactor 1400 includes a reactor shell 1410, and the reactor shell 1410 is provided with an oxidant feed port 1412, an organic material feed port 1411 and a feed port 1413.
  • the embodiment of the present disclosure does not limit the shape, material, and size of the reactor shell 1410.
  • the reactor shell 1410 may be cylindrical, the material may be INCONEL 625, the inner diameter of the reactor shell 1410 may be 80-219 mm, and the length may be 1000-6000 mm.
  • the reactor 1400 further includes a turn-back tube 1460 disposed inside the reactor shell 1410.
  • the turn-back tube 1460 includes an inner tube 1461 with two ends open and an outer tube 1462 with one end open.
  • the outer tube 1462 is sleeved inside Outside of the tube 1461, the inner tube 1461 is in communication with the organic feed port 1411.
  • the turn-back tube 1460 is arranged in the reactor shell 1410.
  • the organic liquid enters from the organic material feed port 1411 through the inner tube 1461, flows to the other end of the inner tube, enters the outer tube 1462, and continues to flow in the opposite direction until it flows from the outer tube
  • One end of the opening of 1462 flows out, meets the oxidant inside the reactor shell 1410, and is oxidized in the supercritical water environment.
  • the turn-back tube 1460 can be arranged at the central axis of the reactor 1400, for example, so that the heating temperature can reach the highest.
  • the shape, material, and size of the inner tube 1461 and the outer tube 1462 are not limited.
  • the diameter of the inner tube 1461 can be ⁇ 25 ⁇ 42mm, the wall thickness can be 4-6mm, and the material can be INCONEL625; the diameter of the outer tube 1462 can be 42mm or more, the wall thickness can be 4-6mm, and the material can be GH4169; the length can be any Between 3000mm and 6000mm.
  • the turn-back tube 1460 has a moderate size, which can effectively reduce the production cost and is beneficial to market applications.
  • the residence time of the organic matter in the reentrant tube is at least 8 seconds, and at 600° C., the pyrolysis of the organic matter generally only takes about 1 second, which fully meets the theoretically required time.
  • the reactor 1400 further includes a heating device 1420, which is used to increase the temperature of the reactor shell 1410, and thereby heat the chamber formed in the reactor shell 1410.
  • a heating device 1420 which is used to increase the temperature of the reactor shell 1410, and thereby heat the chamber formed in the reactor shell 1410.
  • the embodiment of the present disclosure does not limit the type of the heating device 1420.
  • the heating device 1420 may be one or more sets of heating jackets.
  • the heating jacket may be set outside the reactor shell 1410 to transfer heat to the inside of the reactor shell 1410 through heat conduction.
  • the reactor 1400 further includes a cooling device 1440, which is used to cool the reactor 1400 after the reaction starts, so as to prevent the temperature of the reactor 1400 from being too high, shorten the service life of the equipment and even cause danger.
  • the cooling device 1440 may, for example, include at least one set of cooling jackets arranged outside the reactor shell 1410.
  • the cooling jacket can include two parts, the two parts can be fixed by fixing holes and bolts, and each part can be filled with cooling water.
  • the cooling device in the embodiment of the present disclosure may include one or more sets of cooling jackets. When the equipment is running, the temperature of the reactor can be controlled by adjusting the number of cooling jackets in use.
  • the heating device of the embodiment of the present disclosure may include one or more sets of heating jackets. When the equipment is running, the temperature of the reactor can be controlled by adjusting the number of heating jackets in use.
  • the reactor shell 1410 includes a first area 10 close to the organic material inlet 1411 and a second area 20 close to the outlet 1413, and the heating device 1420 is disposed in the Outside the first area 10, the cooling device 1440 is arranged outside the second area 20.
  • the supercritical water oxidation is completed in the first zone 10, and the product is cooled by the cooling device 1440 while flowing to the discharge port 1413 through the second zone 20, and the temperature at the discharge port is about 150 ⁇ 300°C.
  • the reactor 1400 may further include an agitator 1430 that includes a rotating shaft 1431 that passes through the reactor shell 1410.
  • the reactor 1400 can be installed obliquely, with a slope of 10%, the discharge port 1413 is at the bottom end, and the agitator 1430 is used to agitate the material in the reactor 1400.
  • the supercritical water reaction product is generally ultrafine particles, and there is no condition for crystal growth. As long as there is disturbance, the particles will not deposit or stick, which effectively prevents the ultrafine inorganic salt from forming crystals and blocking the discharge port 1413.
  • the agitator 1430 may include an inner magnetic rotor 1432 and an outer magnetic rotor 1433.
  • the inner magnetic rotor 1432 drives the rotating shaft 1431 and the stirrer to rotate.
  • the stirrer 1430 can maintain a rotation speed of 800 rpm for stirring, so that the supercritical water reaction product particles remain suspended without depositing.
  • the rotating shaft 1431 passes through the discharge port 1413.
  • the discharge port 1413 is L-shaped, and the rotating shaft 1431 passes through the reactor shell 1410 and partially penetrates the discharge port 1413 to extend into the reactor shell 1410, and stir near the discharge port 1413. , Prevent the discharge port 1413 from being blocked.
  • the agitator 1430 is equipped with an ammeter and/or a voltmeter for monitoring the current and voltage of the agitator.
  • an ammeter and/or a voltmeter for monitoring the current and voltage of the agitator.
  • the reactor housing 1410 includes a first end wall 1414, a side wall 1415, and a second end wall 1416 opposite to the first end wall 1414.
  • the organic feed port 1411 is provided in the The first end wall 1414, the oxidant inlet 1412 is provided on the side wall 1415, and the outlet 1413 is provided on the second end wall 1416.
  • the discharge port 1413 may also be provided on the side wall 1415.
  • the reactor 1400 further includes an inner liner 1450, which is arranged on the second end wall 1416 and extends in the direction of the first end wall 1414, and the turn-back tube 1460 is at least partially arranged on the inner liner 1450.
  • the outlet 1413 is arranged inside the lining 1450, wherein the distance between the oxidant inlet 1412 and the first end wall 1414 is greater than the distance between the oxidant inlet 1412 and the second The distance of the end wall 1416. That is, the oxidant feed port 1412 is closer to the second end wall 1416.
  • the oxidant After the oxidant enters the reactor 1400, it moves along the outside of the lining 1450 toward the first end wall 1414 until it reaches the vicinity of the outlet of the outer tube 1462 of the turn-back tube 1460. , And the waste liquid undergoes oxidation reaction in the supercritical water environment.
  • This design enables the oxidant to be preheated between the inner liner and the shell, and prevents the temperature of the inner liner from being too high, prolonging the service life.
  • the material of the lining 1450 may be, for example, a high-temperature alloy material GH4169, the inner diameter may be 40-133 mm, and the length may be 1000-6000 mm.
  • the inner liner 1450 is processed by aluminizing, shot peening, and spraying thermal barrier coating.
  • the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged. It is equivalent to forming an anticorrosive coating on the inner lining, and under the high temperature of supercritical water, a dense gel layer is formed on the inner lining to prevent the contact and corrosion of the supercritical water and the metal of the inner lining.
  • the key condition for forming a dense gel layer is that there is a dense layer of special metal atoms between the metal and the gel layer.
  • this special metal atom is connected to the bulk metal through a metal bond.
  • it is connected to the gel layer in the form of a chemical bond.
  • the embodiment of the present disclosure adopts nickel-based metal, first the metal body is aluminized, then the metal surface is forged with shot peening to form a dense metal aluminum atomic layer, and then the thermal barrier coating is sprayed , By alternately spraying 6-8 layers of metal aluminum and aluminum oxide ceramic layers, a thermal barrier coating is formed on the metal surface with a thickness of about 2 to 3mm. After the thermal barrier coating encounters supercritical water, this thermal barrier coating will transform into a dense gel layer. The gel layer can prevent the supercritical water from contacting and corroding the metal lining.
  • the reaction center temperature is 700°C-800°C
  • the surface temperature of the thermal barrier coating is maintained at 650°C-750°C
  • the temperature of the lining body is maintained at 550°C-650°C.
  • the reactor 1400 further includes a metal wire mesh, which is arranged between the inner liner 1450 and the side wall 1415, so that the heat dissipation area of the inner liner pipe is increased by 10-100 times, and the fluid is cross-flowed.
  • the effect makes the temperature of the lining pipeline drop quickly, effectively reducing the temperature of the lining pipeline, and reducing the corrosion tendency of the lining pipeline.
  • the reactor 1400 may further include at least one temperature sensor for obtaining the temperature of at least one location of the supercritical water oxidation reactor.
  • the two ends and the middle of the lining 1450 can be equipped with temperature probes, and the heating device 1420 and the reactor shell 1410 can be provided with temperature probes.
  • the reactor 1400 further includes at least one pressure sensor for obtaining the pressure of at least one position of the reactor.
  • both ends of the reactor 1400 may be equipped with pressure gauges for detecting the pressure inside the reactor 1400.
  • the supercritical water oxidation system further includes a protective device, the protective device including a reactor protective jacket, which protects the outside world when the high temperature and high pressure reactor is in danger.
  • FIG. 15 schematically shows a schematic diagram of a supercritical water oxidation system 1500 according to another embodiment of the present disclosure.
  • the supercritical water oxidation system 1500 includes a reactor 1510, a separator 1520, an oxidant feeding device 1530, and an organic matter feeding device 1540.
  • the discharge port of the reactor 1510 communicates with the evaporation pool of the separator 1520 through a back pressure valve 1560.
  • the reactor 1510 may refer to the reactor 1400 described in FIG. 14, for example, which will not be repeated here.
  • the supercritical water oxidation system 1500 may further include a water supply device 1550.
  • the water supply device 1550 may include, for example, a first water tank, a second water tank, a peristaltic pump, a high-pressure pump, and a one-way valve, wherein the high-pressure pump is in communication with the first water tank and the peristaltic pump, and the peristaltic pump is connected to the second water tank.
  • the first water tank can be used to store water
  • the second water tank can be used to store sucrose solution.
  • sucrose solution used in the embodiments of the present disclosure can effectively increase the temperature of the supercritical water reaction chamber.
  • sucrose aqueous solution is a non-flammable and explosive material, and the combustion heat of concentrated sucrose aqueous solution is higher than that of propanol, which can increase the temperature of the supercritical water reaction zone to a certain temperature range of 550°C-800°C.
  • the oxidant may be, for example, liquid oxygen, oxygen, hydrogen peroxide, etc.
  • the embodiment of the present disclosure may use liquid oxygen as the oxidant.
  • the oxidant supply device 1530 for supplying liquid oxygen may include, for example, a liquid oxygen dewar, a liquid oxygen pump, a one-way valve, a liquid oxygen bath vaporizer, and a high-pressure oxygen cylinder group.
  • the organic material supply device 1540 may include, for example, a liquid tank, a high-pressure pump, and a one-way valve.
  • the pressure after passing through the back pressure valve, the pressure gradually returns to normal pressure, and the effluent also returns from the supercritical state to the gas-liquid-solid three-state.
  • the effluent of the reactor is a high-temperature and high-pressure fluid
  • the temperature of the effluent itself is 150-300°C and the pressure is 25MPa.
  • a cooling pipe can be installed in the evaporation tank so that the effluent can always In a boiling state. That is, the cooling pipe stabilizes the temperature of the liquid in the evaporation pool within the target temperature range, for example, it can be about 100° C., so that the liquid can boil stably in the evaporation pool.
  • a slag discharge port may also be provided in the evaporation tank for discharging non-volatile salt slag in the evaporation tank.
  • the slag discharge port can be equipped with a pH online monitor 1583. Under normal working conditions, due to the production of carbon dioxide, the pH value of the discharge from the slag discharge port is about 2. If there is a significant increase, the organic material supply can be reduced The feed flow rate of the device may increase the temperature or pressure of the reactor.
  • a drain port is provided in the condensing pool for draining water in the condensing pool.
  • the drainage device can include multiple radiant pipes and a ring pipe to improve drainage efficiency.
  • the discharged water is distilled water, and the concentration of harmful substances is less than one hundred thousandths.
  • a chemical oxygen demand (COD) online monitor 1582 can be installed at the drain to monitor the water quality. If the COD content increases, the feed flow rate of the organic material supply device can be reduced or the temperature or pressure of the reactor can be increased to make the reaction more efficient. full.
  • an exhaust port is provided on the top of the separator for exhausting purified gas such as carbon dioxide.
  • a gas filter device may be provided at the exhaust port, for example, it may include an activated carbon filter column 1571 and a high efficiency filter 1572 to ensure that the exhaust gas meets the emission standard.
  • a volatile organic compound (VOC) online monitor 1581 can also be provided at the exhaust port to monitor the gas. If the VOC content increases, the feed flow rate of the organic feed device can be reduced or the reaction rate can be increased. The temperature or pressure of the reactor makes the reaction more complete.
  • VOC volatile organic compound
  • the supercritical water oxidation system further includes a water chiller for supplying water to the condensing tube, and can also supply water to the cooling device in the reactor at the same time.
  • the supercritical water oxidation reactor converts organic matter into carbon dioxide, water and inorganic salts, it generally needs to be processed by multiple equipment such as cooling equipment, gas-liquid separation equipment, liquid cooling equipment, and gas cooling equipment. Separation of carbon dioxide, water and inorganic salts.
  • This processing method not only has a long processing flow, a lot of equipment, but also a high cost.
  • the high-temperature (120-300°C) effluent is treated by the separator, so that the salt residue is evaporated and concentrated at the bottom of the evaporation tank, and the water evaporates in the evaporation tank, and is cooled by the condensation pipe, which can drain from the condensation tank.
  • the clean gas can be discharged directly from the top of the separation equipment.
  • the separation equipment of the present disclosure can realize the separation of the mixture at the same time, not only has a short processing flow, but also effectively reduces one-time equipment investment and equipment operating costs, and realizes the largest reduction in the volume of radioactive waste.
  • Radioactive cesium and strontium Take radioactive cesium and strontium as examples. After the radioactive cesium is evaporated in the evaporation tank, the decontamination factor can reach 10 5 , and the cesium in the water vapor is less than one hundred thousandth of the concentration of cesium in the evaporation tank water. It can reach 10 9 , so the steam can be deeply purified.
  • the supercritical water oxidation system further includes a monitoring system, which includes at least one of the following: set on the reactor shell, in the evaporation tank, and in the condensation tank A sensor; a pressure sensor arranged in the reactor shell; a pH online monitor arranged at the slag discharge port; an online volatile organic compound monitor arranged at the exhaust port; and/or arranged at the On-line monitor of chemical oxygen demand at the drain.
  • a monitoring system which includes at least one of the following: set on the reactor shell, in the evaporation tank, and in the condensation tank A sensor; a pressure sensor arranged in the reactor shell; a pH online monitor arranged at the slag discharge port; an online volatile organic compound monitor arranged at the exhaust port; and/or arranged at the On-line monitor of chemical oxygen demand at the drain.
  • the supercritical water oxidation system also includes a control system for controlling at least one of the following in response to user input or in response to the monitoring result of the monitoring system: the pressure and/or flow rate of the oxide supply; Pressure and/or flow rate; temperature of the reactor and/or evaporation pool; and/or the state of the back pressure valve 1560.
  • FIG. 16 schematically shows a schematic diagram of a sleeve 1610 according to an embodiment of the present disclosure.
  • the evaporation tank 1600 is connected to the reactor through a reactor outlet pipe.
  • the evaporation tank 1600 is provided with a sleeve 1610, and the reactor outlet pipe is connected to the sleeve 1610.
  • Small holes are provided on the sleeve 1610. The material discharged from the reactor is dispersed and discharged into the evaporation pond 1600 through a plurality of small holes.
  • the size and shape of the sleeve 1610 are not limited.
  • the diameter of the sleeve 1610 may be 42-50 mm
  • the wall thickness may be 4-6 mm
  • the shape may be a straight tube or a spiral tube.
  • the size of the small hole can be, for example, 2 to 3 mm in diameter, and its function is mainly to dissolve and disperse the high-speed fluid through the small hole on the outlet pipe and slowly release the pressure.
  • the separator is provided with a cooling inner barrel
  • the condenser tube is arranged inside the cooling inner barrel
  • the condensing pool is formed at the bottom of the cooling inner barrel and on the barrel wall of the cooling inner barrel.
  • FIG. 17 schematically shows a schematic diagram of a cooling inner tub 1710 according to an embodiment of the present disclosure.
  • the barrel wall of the cooling inner barrel 1710 is provided with a plurality of holes 1713 for the vapor evaporated in the evaporation pool to enter the cooling inner barrel 1710.
  • cooling water can be filled into the condenser tube 1711 in the cooling inner tub 1710 (for example, it is charged from the inlet 17111 and discharged from the outlet 17112), so that the temperature in the cooling inner tub 1710 is lower than the temperature in the evaporation pool. After the condenser 1711 is filled with water, the temperature of the steam can be lowered.
  • water vapor, oxygen, and carbon dioxide evaporated in the evaporation tank can enter the cooling inner barrel 1710 from a plurality of holes 1713 provided on the barrel wall, in the upward flow direction shown by the arrow in FIG. 17. After the steam meets the cold air, it condenses to form water droplets and falls into the condenser 1712, and then is discharged from the drain 1714. The oxygen and carbon dioxide can be exhausted from the exhaust port 1715 at the top.
  • the volume of the condensing pool 1712 is not limited.
  • the volume of the condensing tank 1712 may be 50L to 500L, and the condensing tank 1712 may be connected to an external annular pipe through multiple radiating pipes, and the water conduction capacity may be 800kg/h-8000kg/h.
  • the condenser tube 1711 may be a horizontally wound spiral cooling tube, and the size is not limited.
  • a plurality of holes 1713 are left on the barrel wall for gas to pass through, and the cooling inner barrel 1710 can make the water vapor above 100°C condense into water at 60°C to 90°C, and the condensing capacity can be 200kg/h ⁇ 2000kg/h.
  • the volume of the cooling coil area is not limited.
  • the volume can be 1000L, and the condensed water can be returned to the supercritical water oxidation reactor for reuse, or it can be used for other purposes or directly discharged.
  • FIG. 18 schematically shows a flowchart of a waste liquid treatment method according to an embodiment of the present disclosure.
  • the method includes operations S1810 to S1840.
  • the waste liquid is fed into the reactor shell through the organic material feed port, where the waste liquid passes through the inner tube and the outer tube of the turn-back tube in turn, reaches the opening of the outer tube, and is oxidized in the supercritical water environment. , And discharged from the discharge port, enter the evaporation pool of the separator, and realize the separation of harmful substances through self-evaporation.
  • the reactor can be filled with water first, and the reactor can be preheated with an electric heating jacket so that the temperature in the reactor shell reaches the first temperature, for example, 300°C.
  • the first solution may be, for example, a sucrose solution.
  • the concentration of sucrose is gradually increased, and the sucrose solution is fed into the reactor through the oxide inlet and the oxidant is fed into the reactor at the same time.
  • the oxidant may be liquid oxygen, for example. Under the condition of 300°C, the oxidant reacts with sucrose to generate heat, and the temperature of the reactor is continued to be heated to the second temperature.
  • the reactor can withstand a higher temperature due to the aluminized, shot peened, and sprayed thermal barrier coating lining provided by the embodiments of the present disclosure, and the life of the reactor can be extended by 5 -10 years.
  • the second temperature is not less than 600°C.
  • the second temperature is between 650° C. and 800° C., which has a higher reaction temperature than other related supercritical water reaction technologies and effectively improves the reaction speed.
  • the reaction time is 10 times lower than that of traditional supercritical water, which greatly reduces the volume of equipment with the same processing capacity.
  • a turn-back tube is set in the inner lining of the reactor. After the organic solvent flows into the turn-back tube, the temperature gradually increases, and the organic molecules are gradually pyrolyzed. When it reaches the exit of the outer tube of the turn-back tube, most of the organic matter is pyrolyzed into small molecules. Oxidation reaction occurs immediately, releasing a large amount of heat. When the heat flows through the outer wall of the turn-back tube, the heat is transferred to the organic matter, so that the heat of the oxidation reaction will be effectively used, and at the same time, the temperature of the tube wall is reduced, and the corrosion of the equipment is reduced.
  • the organic material supply device when the reaction conditions are reached, for example, the supercritical water oxidation temperature is maintained at 650°C to 750°C, and the pressure is maintained at 20-25Mpa, the organic material supply device is activated to remove the organic waste liquid. Enter the return pipe through the organic material inlet. Under normal working conditions, the temperature of the part of the reactor lining near the organics feed inlet is 650°C ⁇ 800°C, and the temperature of the corresponding reactor shell part does not exceed 600°C.
  • the supercritical water oxidation reactor further includes a cooling device
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not Below 120°C.
  • the temperature of the first zone can be controlled between 650°C and 800°C.
  • concentration of organic matter is high, more heat of oxidation is released.
  • the reactor needs to be cooled by a cooling device to keep the temperature of the first zone within 800°C.
  • the temperature of the reaction product is reduced to 120°C to 300°C under the cooling action of the cooling device and the fluid between the lining and the shell.
  • the temperature of the discharge at the discharge port can be between 150°C To 300°C.
  • the temperature of the outlet of the embodiment of the present disclosure is higher, for example, it can reach 300°C, which reduces the cooling burden of the supercritical water reactor and makes the equipment The volume can be reduced while the efficiency can be improved.
  • the reactor further includes a stirrer, and the stirrer is configured with an ammeter and a voltmeter for detecting the current and voltage of the stirrer, respectively, and the method further includes When the current and/or voltage reach a predetermined value, the feed rate of at least one of the organic material feed port and the oxidant feed port is reduced.
  • the supercritical water oxidation system further includes a monitoring system
  • the method further includes controlling at least one of the following in response to a user input or in response to a monitoring result of the monitoring system: And/or flow rate; the pressure and/or flow rate of the organic material supply; the temperature of the reactor and/or the evaporation tank; and/or the state of the back pressure valve. Please refer to the description of the system above, which will not be repeated here.
  • the embodiment of the present disclosure provides a reactor for supercritical water oxidation, including a reactor shell, the reactor shell is provided with an oxidant feed port, an organic matter feed port, and a feed port, and a heating device , Used to raise the temperature in the reactor shell, and a turn-back tube, arranged in the reactor shell, the turn-back tube includes an inner tube with two ends open and an outer tube with one end open, the outer tube is sleeved On the outside of the inner tube, the inner tube is in communication with the organic material inlet.
  • FIG. 19 schematically shows a schematic diagram of a reactor 1900 for supercritical water oxidation according to an embodiment of the present disclosure.
  • the reactor 1900 for supercritical water oxidation includes a reactor shell 1910, a heating device 1920 and a turn-back pipe 1930.
  • the reactor shell 1910 is provided with an oxidant feed port 1912, an organic material feed port 1911, and a feed port 1913.
  • the turn-back tube 1930 includes an inner tube 1931 with open ends and an outer tube 1932 with one end open, and the outer tube 1932 is sleeved outside the inner tube 1931.
  • the inner tube 1931 is in communication with the organic feed port 1911.
  • the embodiment of the present disclosure does not limit the shape, material, and size of the reactor shell 1910.
  • the reactor shell 1910 may be cylindrical, the material may be INCONEL 625, the inner diameter of the reactor shell 1910 may be 80-219 mm, and the length may be 1000-6000 mm.
  • the heating device 1920 is used to increase the temperature of the reactor shell 1910, thereby heating the chamber formed in the reactor shell.
  • the embodiment of the present disclosure does not limit the type of the heating device 1920.
  • the heating device 1920 may be one or more sets of heating jackets.
  • the heating jacket may be set outside the reactor shell 1910 to transfer heat to the inside of the reactor shell 1910 by means of heat conduction.
  • the turn-back tube 1930 is arranged in the reactor shell 1910.
  • the organic liquid enters from the organic material feed port 1911 through the inner tube 1931, flows to the other end of the inner tube and then enters the outer tube 1932, and continues to flow in the opposite direction until from the outer tube
  • One end of the opening of 1932 flows out, meets the oxidant inside the reactor shell 1910, and is oxidized in the supercritical water environment.
  • the organic liquid flows in the turn-back tube 1930, it can be fully preheated and increased, and even pyrolyzed into small molecular organic substances as much as possible, so that the oxidation efficiency is improved.
  • the turn-back tube 1930 can be arranged at the central axis of the reactor 1900, for example, so that the heating temperature can reach the highest.
  • the shape, material, and size of the inner tube 1931 and the outer tube 1932 are not limited.
  • the diameter of the inner tube 1931 can be ⁇ 25 ⁇ 42mm, the wall thickness can be 4-6mm, and the material can be INCONEL625; the diameter of the outer pipe 1932 can be 42mm or more, the wall thickness can be 4-6mm, and the material can be GH4169; the length can be any Between 3000mm and 6000mm.
  • the return tube 1930 has a moderate size, which can effectively reduce the production cost and is beneficial to market applications.
  • the residence time of the organic matter in the reentrant tube is at least 8 seconds, and at 600° C., the pyrolysis of the organic matter generally only takes about 1 second, which fully meets the theoretically required time.
  • the embodiment of the present disclosure does not limit the type of oxidant, for example, it may be liquid oxygen, oxygen, hydrogen peroxide, etc.
  • FIG. 19 The reactor shown in FIG. 19 will be further described below with reference to FIG. 20 and FIG. 21 in combination with specific embodiments.
  • FIG. 20 schematically shows a schematic diagram of a reactor 2000 for supercritical water oxidation according to another embodiment of the present disclosure.
  • the reactor shell 2010, heating device 2020, and turn-back tube 2030 in the embodiments of the present disclosure may refer to the description of the reactor shell 1910, heating device 1920, and turn-back tube 1930 in FIG. 19 in this disclosure, for For the sake of brevity, I won't repeat it here.
  • the reactor 2000 may further include a stirrer 2060 on the basis of the foregoing embodiment.
  • the stirrer 2060 includes a rotating shaft 2061, and the rotating shaft 2061 passes through the reactor shell 2010.
  • the reactor 2000 can be installed obliquely, with a slope of 10%, the discharge port 2013 is at the bottom end, and the agitator 2060 is used to agitate the materials in the reactor 2000.
  • the supercritical water reaction product is generally ultrafine particles, and there is no condition for crystal growth. As long as there is disturbance, the particles will not deposit or stick, which effectively prevents the ultrafine inorganic salt from forming crystals and blocking the discharge port 2013.
  • the stirrer 2060 may include an inner magnetic rotor 2062 and an outer magnetic rotor 2063.
  • the inner magnetic rotor 2062 drives the rotating shaft 2061 and the stirrer to rotate.
  • the stirrer 2060 can maintain a rotation speed of 800 rpm for stirring, so that the supercritical water reaction product particles remain suspended without depositing.
  • the rotating shaft 2061 passes through the discharge opening 2013.
  • the discharge port 2013 is L-shaped, and the rotating shaft 2061 passes through the reactor shell 2010 and partially penetrates the discharge port 2013 into the reactor shell 2010, and stirs near the discharge port 2013. , To prevent clogging of the discharge port 2013.
  • the agitator 2060 is equipped with an ammeter and/or a voltmeter for monitoring the current and voltage of the agitator.
  • an ammeter and/or a voltmeter for monitoring the current and voltage of the agitator.
  • the reactor housing 2010 includes a first end wall 2014, a side wall 2015, and a second end wall 2016 opposite to the first end wall 2014.
  • the organic feed port 2011 is provided in the As for the first end wall 2014
  • the oxidant inlet 2012 is provided on the side wall 2015
  • the outlet 2013 is provided on the second end wall 2016.
  • the discharge opening 2013 may also be provided on the side wall 2015.
  • the reactor 2000 further includes an inner liner 2050, which is arranged on the second end wall 2016 and extends in the direction of the first end wall 2014, and the turn-back tube 2030 is at least partially arranged on the inner liner 2050.
  • the discharge port 2013 is arranged inside the inner liner 2050, wherein the distance between the oxidant feed port 2012 and the first end wall 2014 is greater than the distance between the oxidant feed port 2012 and the second The distance of the end wall 2016. That is, the oxidant feed port 2012 is closer to the second end wall 2016.
  • the oxidant After the oxidant enters the reactor 2000, it moves along the outside of the lining 2050 to the direction of the first end wall 2014 until it reaches the vicinity of the exit of the outer tube 2032 of the turn-back tube 2030 , And the waste liquid undergoes oxidation reaction in the supercritical water environment.
  • This design enables the oxidant to be preheated between the inner liner and the shell, and prevents the temperature of the inner liner from being too high, prolonging the service life.
  • the material of the lining 2050 may be, for example, a high-temperature alloy material GH4169, the inner diameter may be 40-133 mm, and the length may be 1000-6000 mm.
  • the inner liner 2050 is processed by aluminizing, shot peening and spraying thermal barrier coating, and the thermal barrier coating includes a plurality of aluminum layers and a plurality of aluminum oxide layers alternately arranged. It is equivalent to forming an anticorrosive coating on the inner lining, and under the high temperature of supercritical water, a dense gel layer is formed on the inner lining to prevent the contact and corrosion of the supercritical water and the metal of the inner lining.
  • the key condition for forming a dense gel layer is that there is a dense layer of special metal atoms between the metal and the gel layer.
  • this special metal atom is connected to the bulk metal through a metal bond.
  • it is connected to the gel layer in the form of a chemical bond.
  • the embodiment of the present disclosure adopts nickel-based metal, first the metal body is aluminized, then the metal surface is forged with shot peening to form a dense metal aluminum atomic layer, and then the thermal barrier coating is sprayed , By alternately spraying 6-8 layers of metal aluminum and aluminum oxide ceramic layers, a thermal barrier coating is formed on the metal surface with a thickness of about 2 to 3mm. After the thermal barrier coating encounters supercritical water, this thermal barrier coating will transform into a dense gel layer. The gel layer can prevent the supercritical water from contacting and corroding the metal lining.
  • the reaction center temperature is 700°C-800°C
  • the surface temperature of the thermal barrier coating is maintained at 650°C-750°C
  • the temperature of the lining body is maintained at 550°C-650°C.
  • the reactor 2000 further includes a wire mesh, which is arranged between the inner lining 2050 and the side wall 2015, so that the heat dissipation area of the inner lining pipe is increased by 10-100 times, and the cross-flow of fluid The effect makes the temperature of the lining pipeline drop quickly, effectively reducing the temperature of the lining pipeline, and reducing the corrosion tendency of the lining pipeline.
  • the reactor further includes a cooling device, which is used to cool the reactor after the reaction is started, so as to prevent the temperature of the reactor from being too high, shorten the service life of the equipment and even cause danger.
  • the cooling device includes at least one set of cooling jackets arranged outside the reactor shell
  • the heating device includes at least one set of heating jackets arranged outside the reactor shell.
  • FIG. 21 schematically shows a schematic diagram of a cooling jacket 2110 according to another embodiment of the present disclosure.
  • the cooling jacket 2110 may include two parts 2111 and 2112, and the two parts can be fixed by fixing holes and bolts 2113. Each part 2111 and 2112 can be filled with cooling water.
  • the cooling device of the embodiment of the present disclosure may include one or more sets of cooling jackets 2110. When the equipment is running, the temperature of the reactor 2100 can be controlled by adjusting the number of cooling jackets in use.
  • the heating device of the embodiment of the present disclosure may include one or more sets of heating jackets. When the equipment is running, the temperature of the reactor can be controlled by adjusting the number of heating jackets in use.
  • the reactor shell 2010 includes a first area 10 close to the organic material feed port 2011 and a second area 20 close to the discharge port 2013, and the heating device 2020 is disposed in the Outside the first area 10, the cooling device 2040 is arranged outside the second area 20.
  • the supercritical water oxidation is completed in the first zone 10, and the product is cooled by the cooling device 2040 when it flows to the discharge port 2013 through the second zone 20, and the temperature when it reaches the discharge port is about 150 ⁇ 300°C.
  • the reactor 2000 may further include at least one temperature sensor for obtaining the temperature of at least one location of the supercritical water oxidation reactor.
  • the two ends and the middle of the lining 2050 can be equipped with temperature probes, and the temperature probe can be provided between the heating device 2020 and the reactor shell 2010.
  • the reactor 2000 further includes at least one pressure sensor for obtaining the pressure at at least one position of the reactor.
  • both ends of the reactor 2000 may be equipped with pressure gauges for detecting the pressure inside the reactor 2000.
  • the organic matter can be fully preheated, raised, and even pyrolyzed during the flow of the organic matter in the turn-back tube, thereby improving the reaction efficiency.
  • the embodiment of the present disclosure also provides a method for treating waste liquid using the above-mentioned reactor, which is described below with reference to the embodiment shown in FIG. 22.
  • Fig. 22 schematically shows a flowchart of a waste liquid treatment method according to an embodiment of the present disclosure.
  • the method includes operations S2210 to S2240.
  • the waste liquid is fed into the reactor shell through the organic material feed port, where the waste liquid passes through the inner tube and the outer tube of the turn-back tube in turn, reaches the opening of the outer tube, and is oxidized in the supercritical water environment. , And discharged from the discharge port.
  • the reactor can be filled with water first, and the reactor can be preheated with an electric heating jacket so that the temperature in the reactor shell reaches the first temperature, for example, 300°C.
  • the first solution may be, for example, a sucrose solution.
  • the concentration of sucrose is gradually increased, and the sucrose solution is fed into the reactor through the oxide inlet and the oxidant is fed into the reactor at the same time.
  • the oxidant may be liquid oxygen, for example. Under the condition of 300°C, the oxidant reacts with sucrose to generate heat, and the temperature of the reactor is continued to be heated to the second temperature.
  • sucrose solution used in the embodiments of the present disclosure can effectively increase the temperature of the supercritical water reaction chamber.
  • sucrose aqueous solution is a non-flammable and explosive material, and the combustion heat of concentrated sucrose aqueous solution is higher than that of propanol, which can increase the temperature of the supercritical water reaction zone to a certain temperature range of 550°C-800°C.
  • the reactor can withstand a higher temperature due to the aluminized, shot peened, and sprayed thermal barrier coating lining provided by the embodiments of the present disclosure, and the life of the reactor can be extended by 5 -10 years.
  • the second temperature is not less than 600°C.
  • the second temperature is between 650°C and 800°C.
  • the temperature range is higher, and the reaction speed is effectively improved.
  • the reaction time is 10 times lower than that of traditional supercritical water, which greatly reduces the volume of equipment with the same processing capacity.
  • a turn-back tube is set in the inner lining of the reactor. After the organic solvent flows into the turn-back tube, the temperature gradually increases, and the organic molecules are gradually pyrolyzed. When it reaches the exit of the outer tube of the turn-back tube, most of the organic matter is pyrolyzed into small molecules , The oxidation reaction occurs immediately, releasing a large amount of heat, and the heat is transferred to the organic matter when the fluid flows through the outer wall of the turn-back tube, so that the heat of the oxidation reaction will be effectively used, and at the same time, the temperature of the tube wall is reduced, and the corrosion of the equipment is reduced.
  • the organic material supply device when the reaction conditions are reached, for example, the supercritical water oxidation temperature is maintained at 650°C to 750°C, and the pressure is maintained at 20-25Mpa, the organic material supply device is activated to remove the organic waste liquid. Enter the return pipe through the organic material inlet. Under normal working conditions, the temperature of the part of the reactor lining near the organics feed inlet is 650°C ⁇ 800°C, and the temperature of the corresponding reactor shell part does not exceed 600°C.
  • the supercritical water oxidation reactor further includes a cooling device
  • the reactor shell includes a first area close to the organic material inlet and a second area close to the outlet.
  • the method further includes controlling the heating device and the cooling device so that the temperature of the first area is controlled within a predetermined range, and controlling the temperature of the second area so that the temperature of the discharge from the discharge port is not Below 120°C.
  • the temperature of the first zone can be controlled between 650°C and 800°C.
  • concentration of organic matter is high, more heat of oxidation is released.
  • the reactor needs to be cooled by a cooling device to keep the temperature of the first zone within 800°C.
  • the temperature of the reaction product is reduced to 120°C to 300°C under the cooling action of the cooling device and the fluid between the lining and the shell.
  • the temperature of the discharge at the discharge port can be between 150°C To 300°C.
  • the temperature of the outlet of the embodiment of the present disclosure is higher, for example, it can reach 300°C, which reduces the cooling burden of the supercritical water reactor and makes the equipment The volume can be reduced while the efficiency can be improved.
  • the reactor further includes a stirrer, and the stirrer is configured with an ammeter and a voltmeter for detecting the current and voltage of the stirrer, respectively, and the method further includes When the current and/or voltage reach a predetermined value, the feed rate of at least one of the organic material feed port and the oxidant feed port is reduced.
  • the embodiment of the present disclosure provides a separation device for separating a multi-phase mixture, including an evaporation tank for receiving the multi-phase mixture, wherein the evaporation tank is provided with a first cooling coil and a slag discharge port,
  • the cooling coil is used to stabilize the temperature of the solution in the evaporation tank within the target temperature range after the multi-phase mixture flows into the evaporation tank, and the slag discharge port is used to discharge solid substances in the multi-phase mixture; cooling the inner barrel, including the second The cooling coil and the condensing pool.
  • the second cooling coil is used to cool the evaporated steam in the evaporation pool.
  • the condensing pool is used to receive the liquid substance obtained after the second cooling coil cools the steam.
  • the condensing pool is provided with a drain for The liquid substance is discharged; wherein, the evaporation pool and the cooling inner barrel are enclosed in a shell, and the evaporation pool is arranged under the cooling inner barrel.
  • FIG. 23 schematically shows a schematic diagram of a separation device for separating a multi-phase mixture according to an embodiment of the present disclosure.
  • FIG. 23 is only an example of a separation device for separating polymorphic phase mixtures to which the embodiments of the present disclosure can be applied to help those skilled in the art understand the technical content of the present disclosure, but it does not imply the present disclosure.
  • the disclosed separation device for separating the multi-phase mixture cannot be constructed in other ways.
  • the separation device 2300 for separating the multi-phase mixture includes an evaporation tank 231 and a cooling inner barrel 232.
  • the evaporation tank 231 is used to receive the multi-phase mixture, wherein the evaporation tank 231 is provided with a first cooling coil 2311 and a slag outlet 2312, and the first cooling coil 2311 is used to After the mixture flows into the evaporation tank 231, the temperature of the solution in the evaporation tank 231 is stabilized within the target temperature range, and the slag discharge port 2312 is used to discharge the solid substances in the multi-phase mixture.
  • the evaporation tank 231 can receive the effluent of the supercritical water reactor, the effluent can be a multi-phase mixture, the evaporation tank 231 can evaporate and concentrate the effluent, and then recover the solid matter, and the steam rises to cool In the inner barrel 232.
  • the effluent of the supercritical water reactor may be a high temperature and high pressure fluid, for example, the temperature of the reacted effluent itself is 150-300°C and the pressure is 25 MPa.
  • a cooling coil is provided in the evaporation pool 231 so that the effluent can always be in a boiling state. That is, the first cooling coil 2311 stabilizes the temperature of the solution in the evaporation tank 231 within the target temperature range, for example, it may be about 100° C., so that the solution can boil stably in the evaporation tank 231.
  • the vaporized steam can rise into the cooling inner barrel 232, and for example, radioactive metal elements contained in the reaction effluent can flow out from the slag discharge port 2312 in the form of inorganic salts and be recovered.
  • the volume of the evaporation tank may be determined according to the processing flow rate of the multi-phase mixture.
  • the volume of the evaporation tank is 2 to 3 times the processing flow rate of the multi-phase mixture.
  • the volume of the evaporation tank 231 may be 100L to 5000L.
  • the evaporation pool 231 can be kept in a boiling state, for example, the temperature is maintained at about 100°C.
  • the evaporation rate is considered equal to the output of the polymorphic phase mixture, considering that the ratio of the evaporation rate of water at 100°C to its volume is 2 to 3 times, if the output of the polymorphic phase mixture is 150 kg/h, the volume of the evaporation tank 231 can be It is 300L.
  • the multi-phase mixture may include two or more substances among solid substances, liquid substances, and gaseous substances.
  • the multi-phase mixture contains both solid matter and gaseous matter, or contains solid matter, liquid matter and gaseous matter at the same time.
  • the multi-phase mixture may be a mixture obtained after the organic solvent distillation residue is treated by supercritical water oxidation technology, for example, may be obtained after the organic solvent distillation residue is treated by a supercritical water oxidation reactor
  • the effluent, generally supercritical water oxidation liquid effluent is salty wastewater, or radioactive wastewater, or inorganic brine.
  • the organic solvent distillation residue is the radioactive organic waste generated during the regeneration and reuse of the extractant in a large commercial reprocessing plant. Part of the dirty solvent from the main post-processing plant is returned to use after rapid distillation and extraction agent preparation.
  • the steam residue produced after flash distillation contains radiolysis products of TBP/kerosene (DBP, MBP, butanol, long-chain alkyl phosphates, organic nitro compounds, organic nitroso compounds, nitrate esters, high boiling point polymers, etc. ), the composition is complex, some of the radiolysis products have strong complexing ability to uranium, plutonium and fission products, and the distilled liquid has strong radioactivity, which almost concentrates all the radioactivity in the contaminated solvent.
  • the non-C, H, O (or radioactive elements, or heavy metals, or polar non-metals such as halogens, S, P, etc.) in the organic matter are processed by the separation device, and are then processed at the bottom of the evaporation tank 101. Evaporation is concentrated into salt slag, which is separated in the form of inorganic salt slag, which effectively realizes the maximum reduction of organic matter and lays the foundation for the treatment and reuse of inorganic salt slag.
  • the cooling inner tub 232 includes a second cooling coil 2321 and a condensing pool 2322.
  • the second cooling coil 2321 is used to cool the vapor evaporated in the evaporation pool 231, and the condensing pool 2322 is used to receive the second cooling coil.
  • the liquid substance obtained after the steam is cooled by 2321, the condensation pool 2322 is provided with a liquid discharge port 2323 for discharging the liquid substance; wherein, the evaporation pool 231 and the cooling inner barrel 232 are enclosed in a shell, and the evaporation pool 231 is arranged under the cooling inner barrel 232.
  • the liquid substance may be water
  • the second cooling coil 2321 cools the steam to obtain distilled water, which can realize the recycling of water resources.
  • the types of the first cooling coil 2311 and the second cooling coil 2321 are not limited.
  • it may be a spiral cooling pipe.
  • the arrangement of the first cooling coil 2311 and the second cooling coil 2321 is not limited, as long as the corresponding functions can be realized.
  • the top of the casing of the separation device 2300 is provided with an exhaust port 233 for exhausting gaseous substances in the multi-phase mixture.
  • the solid-liquid-gas polymorphic substances are separated in the integrated machine, eliminating the need for cooling equipment, gas-liquid separation equipment, and liquid cooling equipment , Gas cooling equipment simplifies the processing flow.
  • a separation device is used to process the multi-phase mixture, so that the solid matter in the multi-phase mixture is evaporated and concentrated at the bottom of the evaporation tank, for example, separated in the form of inorganic salt residue; so that the liquid in the multi-phase mixture
  • the substance evaporates in the evaporation tank and is cooled by the cooling inner barrel, and can be discharged from the drain of the condensing pool; so that the gaseous substance in the multi-phase mixture can be directly discharged from the top of the separation equipment.
  • the separation of the multi-phase mixture can be realized at the same time, the processing flow is not only short, but also the one-time investment of the equipment and the equipment operating cost are effectively reduced, and the maximum volume reduction of the multi-phase mixture is realized.
  • FIG. 23 The separation device shown in FIG. 23 will be further described below with reference to FIGS. 24 to 26 in combination with specific embodiments.
  • Fig. 24 schematically shows a schematic diagram of a cooling inner tub according to an embodiment of the present disclosure.
  • a plurality of holes 2411 are provided on the barrel wall of the cooling inner barrel 241 for the vapor evaporated in the evaporation pool to enter the cooling inner barrel 241.
  • cooling inner barrel 241 in the embodiment of the present disclosure may refer to the description of FIG. 23 in the present disclosure, and for the sake of brevity of description, details are not repeated here.
  • the second cooling coil 2412 in the cooling inner tub 241 can be filled with cooling water, so that the temperature in the cooling inner tub 241 is lower than the temperature in the evaporation pool, and the second cooling coil 2412 is filled with water Then the temperature of the steam can be lowered.
  • water vapor, oxygen, and carbon dioxide evaporated in the evaporation tank can enter the cooling inner barrel 241 from a plurality of holes 2411 provided on the barrel wall, in the upward flow direction shown by the arrow in FIG. 24. After the steam meets the cold air, it condenses to form water droplets and falls into the condensing pool 2413, and then is discharged from the drain 2414. The oxygen and carbon dioxide can be exhausted from the exhaust port 2415 at the top.
  • the volume of the condensing pool 2413 is not limited.
  • the volume of the condensing pool 2413 can be 50L to 500L, and the condensing pool 2413 can be connected to an external annular pipe through multiple radiation pipes, and the water conduction capacity can be 200kg/h to 2000kg/h.
  • the cooling coil 2412 may be a horizontally wound spiral cooling tube, and the size is not limited.
  • a plurality of holes 2411 are left on the wall of the barrel for gas to pass through, and the condensation inner barrel 241 can condense water vapor at 100°C into water at 60°C to 90°C, and the condensing capacity may be 200kg/h to 2000kg/h. h.
  • the volume of the cooling coil area is not limited. For example, the volume can be 1000L. Most of the condensed water is returned to the water supply tank of the supercritical water oxidation reactor for reuse, and a small amount can be discharged.
  • the separation of the multi-phase mixture can be realized at the same time, which not only has a short processing flow, but also effectively reduces the one-time equipment investment and equipment operating cost, and realizes the maximum volume reduction of the multi-phase mixture.
  • Fig. 25 schematically shows a schematic diagram of a sleeve according to an embodiment of the present disclosure.
  • the evaporation tank 251 is provided with a sleeve 2511 for receiving the polymorphic phase mixture.
  • a plurality of small holes 2512 are distributed on the wall of the sleeve 2511.
  • the polymorphic phase mixture is dispersed and discharged through the plurality of small holes 2512. Into the evaporation pond 251.
  • the size of the sleeve 2511 is not limited.
  • the diameter of the sleeve 2511 can be ⁇ 42 ⁇ 50mm, and the wall thickness can be 4 ⁇ 6mm.
  • the size of the small hole 2512 is not limited.
  • the diameter of the small hole can be 2 to 3 mm, and its function is mainly to dissolve and disperse the high-speed fluid through the small hole 2512 on the outlet pipe.
  • the type of the sleeve 2511 is not limited.
  • the sleeve 2511 may be a straight tube or a spiral tube.
  • the separation device may further include a back pressure valve 2513.
  • One end of the back pressure valve 2513 is connected to the sleeve 2511 through a pipe, and the other end of the back pressure valve 2513 is used to connect to the discharge port of the supercritical water oxidation reactor through the pipe.
  • the effluent temperature of the supercritical water oxidation reactor is much higher than the traditional effluent temperature.
  • the effluent of the supercritical water oxidation reactor that is, when the oxidation product is discharged from the discharge port, the temperature when the oxidation product is discharged from the discharge port can be between 150°C and 300°C, while the temperature of the traditional effluent is generally It is 100°C.
  • the separation device of the present disclosure is used to separate the oxidation product, the temperature of the oxidation product discharged from the supercritical water reactor can be made higher, and the burden of cooling the supercritical water reactor is reduced. After increasing the temperature of the effluent from the supercritical water oxidation reactor, the necessary conditions for spontaneous evaporation are created for the subsequent effluent separation equipment.
  • the oxidation product first enters the evaporation tank after being discharged from the discharge port of the supercritical water oxidation reactor, where the oxidation product relies on its own temperature to achieve the purpose of evaporation.
  • the effluent can be divided into three parts: radioactive metal salt residue, distilled water, and purified gas.
  • the radioactive elements in the effluent are intermittently discharged as salt slag in the form of metal salts.
  • the steam vaporized from the evaporation tank is cooled above the evaporation tank and recycled in the form of distilled water.
  • the oxygen and carbon dioxide in the effluent are It is purified after being washed by the evaporation pool and steam condensed water.
  • the decontamination factor can reach 10 5.
  • the cesium in the water vapor is less than one hundred thousandth of the concentration of cesium in the evaporation tank.
  • the decontamination factor can reach 10 9 , so the steam can be deeply purified.
  • FIG. 26 schematically shows a schematic diagram of a separation device for separating a multi-phase mixture according to another embodiment of the present disclosure.
  • the separation device 2600 for separating the multi-phase mixture includes an evaporation tank 261 and a cooling inner barrel 262.
  • the evaporation tank 261 is used to receive the multi-phase mixture, wherein the evaporation tank 261 is provided with a first cooling coil 2611 and a slag discharge port 2612, and the first cooling coil 2611 is used to After the mixture flows into the evaporation tank 261, the temperature of the solution in the evaporation tank 261 is stabilized within the target temperature range, and the slag discharge port 2612 is used to discharge the solid substances in the multi-phase mixture.
  • the evaporation pond 261 can receive the effluent of the supercritical water reactor, and the effluent can be a multi-phase mixture.
  • the evaporation pond 261 can evaporate and concentrate the effluent, and then recover the salt residue, and the steam rises to cool 262 in the inner barrel.
  • the cooling inner barrel 262 may include a second cooling coil 2621 and a condensing pool 2622.
  • the separation device 2600 may further include a back pressure valve 2613.
  • the evaporation tank 261, the cooling inner barrel 262, the first cooling coil 2611, the slag discharge port 2612, the second cooling coil 2621, the condensing pool 2622, etc. in the embodiment of the present disclosure can be referred to in this disclosure for reference to FIGS.
  • the description in FIG. 25 is not repeated here for the sake of brevity.
  • a volatile organic compound online monitor 263 (VOC) is provided at the exhaust port 2623.
  • the evaporation tank 261 and/or the cooling inner barrel 262 are equipped with a thermometer (not shown in FIG. 26) for monitoring the temperature of the solution in the evaporation pond 261 and/or the temperature in the cooling inner barrel 262.
  • the evaporation tank 261 is equipped with a level gauge (not shown in FIG. 26 ), and/or the evaporation tank 261 is equipped with a pH meter 265 for monitoring the pH value of the solution in the evaporation tank 261.
  • the pH meter 265 may be installed in the evaporation tank 261 or outside the evaporation tank 261, such as on a pipe connected to the slag discharge port 2612.
  • the separation device is equipped with an online chemical oxygen demand monitor 264 (COD) for detecting the chemical oxygen demand of the condensate discharged from the condensate pool 2622.
  • COD chemical oxygen demand monitor 264
  • the effluent from the supercritical water oxidation reactor flows through the back pressure valve through the pipeline. After the back pressure valve is opened, the effluent can spiral around the evaporation tank when passing through the evaporation tank through the sleeve. The heat is transferred to the water at 100°C. After that, it can be passed through the cooling inner barrel through a pipe and connected with the back pressure valve, and then returned to the evaporation tank after decompression, where the gas-water mixture is sprayed into the evaporation tank (100°C, normal pressure).
  • the cooling inner barrel can be equipped with a spiral cooling tube to condense the second-evaporated steam into liquid water.
  • the temperature of the liquid water is 65°C. Most of it can be reused as a source of water supply.
  • the excess oxygen in the reaction effluent (such as 50% excess ) Is discharged, and the evaporated ground objects in the evaporation pond are mainly salts of metal radioactive elements, which are discharged through the slag discharge pipeline to be collected, thus achieving the goal of recovery of radioactive elements in organic matter and inorganicization of organic matter.
  • a separation device is used to process the multi-phase mixture, so that the solid matter in the multi-phase mixture is evaporated and concentrated at the bottom of the evaporation tank, for example, separated in the form of inorganic salt residue; so that the liquid in the multi-phase mixture
  • the substance evaporates in the evaporation tank and is cooled by the cooling inner barrel, and can be discharged from the drain of the condensing pool; so that the gaseous substance in the multi-phase mixture can be directly discharged from the top of the separation equipment.
  • the separation of the multi-phase mixture can be realized at the same time, the processing flow is not only short, but also the one-time equipment investment and equipment operating cost are effectively reduced, and the maximum volume reduction of the multi-phase mixture is realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

本公开提供了一种超临界水氧化系统,包括超临界水氧化装置、氧化剂供料装置以及有机物供料装置。超临界水氧化装置包括反应器和自分离外桶;反应器设置于自分离外桶的内部,反应器包括反应器壳体,反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;自分离外桶内设置有蒸发池、冷凝池和冷凝管,蒸发池与出料口相连通,在蒸发池与出料口之间设有背压阀,冷凝池设置于蒸发池的上方,冷凝管设置于冷凝池的上方,使得在蒸发池中蒸发的气体于冷凝管处液化的情况下,液化得到的液体能够回落至冷凝池中。氧化剂供料装置与氧化剂进料口相连通。有机物供料装置与有机物进料口相连通。本公开还提供了一种废液处理方法。

Description

超临界水一体机与有机废液处理方法 技术领域
本公开涉及废液处理领域,具体是涉及超临界水氧化系统和废液处理方法。
背景技术
超临界水氧化法是一种新型的湿法氧化技术。通过利用有机废物、水、氧气在超临界水体系中完全混溶的特点,将有机物氧化分解为二氧化碳、水和无机盐等,从而完成对有机废液的处理。一般地,超临界水是指温度超过374℃、压力超过22Mpa的一种特殊状态的水。在超临界水状态下有机废物和氧气在超临界水体系中完全混溶,当超临界水温度超过550℃,无机盐在其中的溶解度为零。利用超临界水的这种性能,可以将有机物转化为二氧化碳、水和无机盐。
目前,研究认为,超临界水氧化法分解效率高、处理周期短、无明火、二次废物少、环境友好,适合处理多种有机废物,可以应用于环保、化工、煤气化、核电和火电、新材料合成等诸多领域中,是一种极具潜力的处理技术。
但是发明人在实现本公开的过程中发现,在相关技术中,利用超临界水氧化法处理放射性废液时存在以下问题:
放射性有机废液经超临界水氧化后转化为放射性废水,放射性废水体积是原有机废液体积的10倍,有机废液超临界水氧化后增容而不减容,无法工程应用;
反应产物中包含的无机盐在反应器中容易出现结晶生长的现象,进而沉积、粘结,堵塞管路;
处理过程一般是将氧化剂和废料直接在反应器内进行混合,然后待达到一定温度和压力之后才能发生反应,导致废料在超临界水氧化反应器中的反应时间长,影响处理效率;
通过超临界水氧化反应器将有机物转化为二氧化碳、水和无机盐之后,将二氧化碳、水和无机盐分离的过程复杂,所需设备多。例如,一般需要经过冷却设备、气液分离设备、液体冷却设备、气体冷却设备等等,不仅处理流程长,设备多,而且成本高。
发明内容
为了解决现有技术的以上和其他方面的问题,本公开的实施例提供一种超临界水氧化系统和废液处理方法。
本公开的一个方面提供了一种超临界水氧化系统,包括超临界水氧化装置、氧化剂供料装置以及有机物供料装置。超临界水氧化装置,包括反应器和自分离外桶,所述反应器设置于所述自分离外桶的内部。所述反应器包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口。所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述蒸发池与所述出料口相连通,在所述蒸发池与所述出料口之间设有背压阀,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落至所述冷凝池中。氧化剂供料装置与所述氧化剂进料口相连通。有机物供料装置与所述有机物进料口相连通。
根据本公开实施例,所述蒸发池内设置有冷却管。
根据本公开实施例,所述蒸发池内设置有排渣口。
根据本公开实施例,所述冷凝池内设置有排水口。
根据本公开实施例,所述自分离外桶的顶部设置有排气口。
根据本公开实施例,所述自分离外桶中设置有冷却内桶,所述冷凝管设置于所述冷却内桶的内部,所述冷凝池形成于所述冷却内桶的底部,所述冷却内桶的桶壁上设置有多个孔道。
根据本公开实施例,所述蒸发池通过反应器出口管与所述反应器连通,所述蒸发池中设置有套管,所述反应器出口管接入所述套管内,所述套管上设有小孔。
根据本公开实施例,所述氧化剂供料装置包括氧气瓶组、氧气加压泵、高压氧气瓶以及单向阀。
根据本公开实施例,所述有机物供料装置包括第一水箱、第二水箱、蠕动泵、高压泵以及单向阀,其中,所述高压泵分别与所述第一水箱和所述蠕动泵相连通,所述蠕动泵与所述第二水箱相连通。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述监测系统包括以下至少一种:设置在所述反应器壳体上、所述蒸发池内和/或所述冷凝池内的温度传感器;设置在所述反应器壳体内的压力传感器;设置在所述排渣口的pH在线监测计;设置在所述排气口处的挥发性有机物在线监测器;以及/或者设置在所述排水口的化学需氧量在线监测器。
根据本公开实施例,所述超临界水氧化系统还包括控制系统,用于响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或所述蒸发池的温度;以及/或者所述背压阀的状态。
根据本公开实施例,所述反应器还包括搅拌器,包括转轴,所述转轴穿过所述反应器壳体。
根据本公开实施例,所述转轴穿过所述出料口。
根据本公开实施例,所述搅拌器配置有电流表和/或电压表。
根据本公开实施例,所述反应器还包括加热装置,用于提升所述反应器壳体内的温度。
根据本公开实施例,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套。
根据本公开实施例,所述反应器还包括冷却装置,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套。所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
根据本公开实施例,所述反应器壳体包括第一端壁、侧壁以及与第一端壁相对的第二端壁,所述氧化剂进料口设置于所述第一端壁,所述有机物进料口设置于所述侧壁,所述出料口设置于所述第二端壁。
根据本公开实施例,所述反应器还包括内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述出料口设置于所述内衬的内部,其中,所述有机物进料口与所述第一端壁的距离大于所述有机物进料口与所述第二端壁的距离。
根据本公开实施例,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。
本公开的另一个方面提供了一种有机废水处理方法,用于通过上文所述的超临界水氧化反应系统处理有机废水,所述方法包括对所述反应器加热,在所述反应器壳体内的温度达到第一温度时,将第一溶液通过所述有机物进料口输入所述反应器壳体内,以及将氧化剂通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,其中,所述第二温度不小于600℃,在所述反应器壳体内的压力达到预定压力时,打开所述背压阀,将所述有机废水通过所述有机物进料口输入所 述反应器壳体内,其中,所述有机废水在超临界水环境下被氧化,并从所述出料口排出,进入所述蒸发池,通过自蒸发实现有害物质的分离。
根据本公开实施例,所述第二温度介于650℃至800℃之间。
根据本公开实施例,所述第一溶液包括蔗糖溶液。
根据本公开实施例,所述氧化剂包括氧气。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述氧化剂进料口和有机物进料口中的至少一个的进料速率。
根据本公开实施例,所述反应器还包括加热装置和冷却装置,所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃。
根据本公开实施例,所述出料口的排出物的温度介于150℃至300℃之间。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或所述蒸发池的温度;以及/或者所述背压阀的状态。
本公开的另一个方面提供了一种超临界水氧化装置,包括反应器,所述反应器包括反应器壳体、加热装置以及搅拌器。其中,反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口。加热装置用于提升所述反应器壳体内的温度。搅拌器,包括转轴,所述转轴穿过所述反应器壳体。
根据本公开实施例,所述转轴穿过所述出料口。
根据本公开实施例,所述搅拌器配置有电流表和/或电压表。
根据本公开实施例,所述反应器还包括冷却装置,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套,其中,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套,所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
根据本公开实施例,所述反应器壳体包括第一端壁、侧壁以及与第一端壁相对的 第二端壁,所述氧化剂进料口设置于所述第一端壁,所述有机物进料口设置于所述侧壁,所述出料口设置于所述第二端壁。
根据本公开实施例,所述反应器还包括内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述出料口设置于所述内衬的内部,其中,所述有机物进料口与所述第一端壁的距离大于所述有机物进料口与所述第二端壁的距离。
根据本公开实施例,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。
根据本公开实施例,所述超临界水氧化装置还包括自分离外桶,所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述反应器设置于所述自分离外桶的内部。
根据本公开实施例,所述蒸发池与所述出料口相连通,在所述蒸发池与所述出料口之间设有背压阀。
根据本公开实施例,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落至所述冷凝池中。
根据本公开实施例,所述蒸发池内设置有冷却管。
根据本公开实施例,所述蒸发池内设置有排渣口。
根据本公开实施例,所述冷凝池内设置有排水口。
根据本公开实施例,所述自分离外桶的顶部设置有排气口。
根据本公开实施例,所述自分离外桶内设置有冷却内桶,所述冷凝管设置于所述冷却内桶的内部,所述冷凝池形成于所述冷却内桶的底部,所述冷却内桶的桶壁上设置有多个孔道。
根据本公开实施例,所述蒸发池通过反应器出口管与所述反应器连通,所述蒸发池中设置有套管,所述反应器出口管接入所述套管内,所述套管上设有小孔。
根据本公开实施例,所述蒸发池内、冷凝池内、反应器壳体上设置有温度传感器。
根据本公开实施例,所述反应器壳体内设置有压力传感器。
根据本公开实施例,所述排渣口设置有pH在线监测计。
根据本公开实施例,所述排气口处设置有挥发性有机物在线监测器。
根据本公开实施例,所述排水口设置有化学需氧量在线监测器。
本公开的另一个方面提供了一种有机废水处理方法,通过上文所述的超临界水氧化装置处理有机废水,所述超临界水氧化反应器的出料口处设置有背压阀,所述方法 包括对所述反应器加热,在所述反应器壳体内的温度达到第一温度时,启动所述搅拌器,并将第一溶液通过所述有机物进料口输入所述反应器壳体内,将氧化剂通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,其中,所述第二温度不小于600℃,在所述反应器壳体内的压力达到预定压力时,打开所述背压阀,将所述有机废水通过所述有机物进料口输入所述反应器壳体内,其中,所述有机废水在超临界水环境下被氧化,并从所述出料口排出。
根据本公开实施例,所述第二温度介于650℃至800℃之间。
根据本公开实施例,所述第一溶液包括蔗糖溶液。
根据本公开实施例,所述氧化剂包括氧气。
根据本公开实施例,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述氧化剂进料口和有机物进料口中的至少一个的进料速率。
根据本公开实施例,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃。
根据本公开实施例,所述出料口的排出物的温度介于150℃至300℃之间。
根据本公开实施例,所述超临界水氧化装置还包括自分离外桶,所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述反应器设置于所述自分离外桶的内部,其中,所述蒸发池与所述出料口相连,在所述蒸发池与所述出料口之间设有背压阀,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液体能够回落至所述冷凝池中,所述超临界水氧化装置还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或所述蒸发池的温度;以及/或者所述背压阀的状态。
本公开的另一个方面提供了一种超临界水氧化系统,包括反应器、分离器、氧化剂供料装置以及有机物供料装置。反应器包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口。分离器包括蒸发池、冷凝池和冷凝管,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落到所 述冷凝池中,所述蒸发池与所述出料口连通,在所述蒸发池和所述出料口之间设置有背压阀。氧化剂供料装置,与所述氧化剂进料口相连通。有机物供料装置,与所述有机物进料口相连通。
根据本公开实施例,所述超临界水氧化系统还包括供水装置,与所述氧化剂进料口连通。
根据本公开实施例,所述超临界水氧化系统还包括冷水机组,用于向所述冷凝管供水。
根据本公开实施例,所述超临界水氧化系统还包括防护装置,所述防护装置包括反应器防护套。
根据本公开实施例,所述蒸发池内设置有冷却管。
根据本公开实施例,所述蒸发池内设置有排渣口。
根据本公开实施例,所述冷凝池内设置有排水口。
根据本公开实施例,所述分离器的顶部设置有排气口。
根据本公开实施例,所述超临界水氧化系统还包括气体过滤装置,与所述排气口连通。
根据本公开实施例,所述分离器中设置有冷却内桶,所述冷凝管设置于所述冷却内桶的内部,所述冷凝池形成于所述冷却内桶的底部,所述冷却内桶的桶壁上设置有多个孔道。
根据本公开实施例,所述蒸发池通过反应器出口管与所述反应器连通,所述蒸发池中设置有套管,所述反应器出口管接入所述套管内,所述套管上设有小孔。
根据本公开实施例,所述氧化剂供给装置包括液氧杜瓦瓶、液氧泵、单向阀、液氧水浴汽化器以及高压氧气瓶组。
根据本公开实施例,所述有机物供料装置包括料液箱、高压泵以及单向阀。
根据本公开实施例,所述供水装置包括第一水箱、第二水箱、蠕动泵、高压泵以及单向阀,其中,所述高压泵分别与第一水箱和蠕动泵相通,所述蠕动泵与所述第二水箱相通。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述监测系统包括以下至少一种:设置在所述反应器壳体上、蒸发池内、冷凝池内的温度传感器;设置在所述反应器壳体内的压力传感器;设置在所述排渣口的pH在线监测计;设置在所述排气口处的挥发性有机物在线监测器;以及/或者设置在所述排水口的化学需氧量在 线监测器。
根据本公开实施例,所述超临界水氧化系统还包括控制系统,用于响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或蒸发池的温度;以及/或者所述背压阀的状态。
根据本公开实施例,所述反应器还包括折返管,设置于所述反应器壳体内部,所述折返管包括两端开口的内管以及一端开口的外管,所述外管套设于所述内管的外部,所述内管与所述有机物进料口连通,所述折返管设置于所述反应器的中心轴位置。
根据本公开实施例,所述反应器还包括搅拌器,包括转轴,所述转轴穿过所述反应器壳体。
根据本公开实施例,所述转轴穿过所述出料口。
根据本公开实施例,所述搅拌器配置有电流表和/或电压表。
根据本公开实施例,所述反应器还包括加热装置,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套。
根据本公开实施例,所述反应器还包括冷却装置,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套。
根据本公开实施例,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
根据本公开实施例,所述反应器壳体包括第一端壁、侧壁以及与第一端壁相对的第二端壁,所述有机物进料口设置于所述第一端壁,所述氧化剂进料口设置于所述侧壁,所述出料口设置于所述第二端壁。
根据本公开实施例,所述反应器还包括内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述折返管至少部分地设置于所述内衬的内部,所述出料口设置于所述内衬的内部,其中,所述氧化剂进料口与所述第一端壁的距离大于所述氧化剂进料口与所述第二端壁的距离。
根据本公开实施例,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。
根据本公开实施例,所述反应器还包括金属丝网,设置在所述内衬和所述侧壁之间。
本公开的另一个方面提供了一种废液处理方法,用于通过上文所述的超临界水氧化系统处理废液,所述方法包括对所述反应器加热,在所述反应器壳体内的温度达到第一温度时,将第一溶液、氧化剂和水通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,其中,所述第二温度不小于600℃,在所述反应器壳体内的压力达到预定压力时,打开所述背压阀,将所述废液通过所述有机物进料口输入所述反应器壳体内,在超临界水环境下被氧化并从所述出料口排出,进入所述分离器的蒸发池,通过自蒸发实现有害物质的分离。
根据本公开实施例,所述第二温度介于650℃至800℃之间。
根据本公开实施例,所述第一溶液包括蔗糖溶液。
根据本公开实施例,所述氧化剂包括液氧。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述氧化剂进料口和有机物进料口中的至少一个的进料速率。
根据本公开实施例,所述反应器还包括加热装置和冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃。
根据本公开实施例,所述出料口的排出物的温度介于150℃至300℃之间。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或所述蒸发池的温度;以及/或者所述背压阀的状态。
本公开的另一个方面提供了一种用于超临界水氧化的反应器,包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;加热装置,用于提升所述反应器壳体内的温度;折返管,设置于所述反应器壳体内,所述折返管包括两端开口的内管以及一端开口的外管,所述外管套设于所述内管的外部,所述内管与所述有机物进料口连通。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器包括转轴,所述转轴穿过所述反应器壳体。
根据本公开实施例,所述转轴穿过所述出料口。
根据本公开实施例,所述搅拌器配置有电流表和/或电压表。
根据本公开实施例,所述反应器还包括至少一个温度传感器,用于获得所述超临界水氧化反应器的至少一个位置的温度。
根据本公开实施例,所述反应器还包括至少一个压力传感器,用于获得所述超临界水氧化反应器的至少一个位置的压力。
根据本公开实施例,所述反应器壳体包括第一端壁、侧壁以及与第一端壁相对的第二端壁,所述有机物进料口设置于所述第一端壁,所述氧化剂进料口设置于所述侧壁,所述出料口设置于所述第二端壁。
根据本公开实施例,所述反应器还包括内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述折返管至少部分地设置于所述内衬的内部,所述出料口设置于所述内衬的内部,其中,所述氧化剂进料口与所述第一端壁的距离大于所述氧化剂进料口与所述第二端壁的距离。
根据本公开实施例,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。
根据本公开实施例,所述超临界水氧化反应器还包括金属丝网,设置在所述内衬和所述侧壁之间。
根据本公开实施例,所述折返管设置于所述反应器的中心轴位置。
根据本公开实施例,所述反应器还包括冷却装置。
根据本公开实施例,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套。
根据本公开实施例,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
本公开的另一个方面提供了一种废液处理方法,通过上文所描述的反应器处理废液,所述反应器的出料口处设置有背压阀,所述方法包括对所述反应器加热,在所述反应器壳体内的温度达到第一温度时,将第一溶液通过所述有机物进料口输入所述反应器壳体内,将氧化剂和水通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,在所述反应器壳体内的压力达到预定压力时,打开所述背压阀,将所述废液通过所述有机物进料口输入所述反应器壳体内,其中,所 述废液在依次经过所述折返管的内管和外管之后,到达所述外管的开口处,在超临界水环境下被氧化,并从所述出料口排出。
根据本公开实施例,所述第二温度不小于600℃。
根据本公开实施例,所述第二温度介于650℃至800℃之间。
根据本公开实施例,所述第一溶液包括蔗糖溶液。
根据本公开实施例,所述氧化剂包括液氧。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述有机物进料口和氧化剂进料口中的至少一个的进料速率。
根据本公开实施例,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃,其中,所述出料口的排出物的温度介于150℃至300℃之间。
本公开的另一个方面提供了一种用于分离多态相混合物的分离设备,包括蒸发池,用于接收上述多态相混合物,其中,上述蒸发池内设置有第一冷却盘管和排渣口,上述第一冷却盘管用于在上述多态相混合物流入上述蒸发池之后,将上述蒸发池中溶液的温度稳定在目标温度范围内,上述排渣口用于排出上述多态相混合物中的固态物质;冷却内桶,包括第二冷却盘管和冷凝水池,上述第二冷却盘管用于冷却上述蒸发池中蒸发的蒸汽,上述冷凝水池用于接收上述第二冷却盘管冷却上述蒸汽后得到的液态物质,上述冷凝水池设置有排液口,用于排出上述液态物质;其中,上述蒸发池与上述冷却内桶封装在一壳体内,上述蒸发池设置在上述冷却内桶下方。
根据本公开的实施例,上述冷却内桶的桶壁上设置有多个孔道,用于供上述蒸发池中蒸发的蒸汽进入上述冷却内桶。
根据本公开的实施例,上述蒸发池内设置有用于接收上述多态相混合物的套管,上述套管的管壁上分布有多个小孔,上述多态相混合物通过上述多个小孔分散排入上述蒸发池内。
根据本公开的实施例,用于分离多态相混合物的分离设备还包括背压阀,其中,上述背压阀一端通过管道与上述套管连接,上述背压阀另一端用于通过管道与超临界 水氧化反应器的出料口连接。
根据本公开的实施例,上述壳体的顶部设置有排气口,用于排放上述多态相混合物中的气态物质。
根据本公开的实施例,上述排气口处设置有挥发性有机物在线监测器。
根据本公开的实施例,上述蒸发池和/或上述冷却内桶内配备有温度计,用于监测上述蒸发池中溶液的温度和/或上述冷却内桶内的温度。
根据本公开的实施例,上述蒸发池的体积为上述多态相混合物的处理流量的2至3倍。
根据本公开的实施例,上述蒸发池内配备有液位计,并且/或者,上述蒸发池配备有pH计,用于监测上述蒸发池中溶液的pH值。
根据本公开的实施例,上述分离设备配备有化学需氧量在线监测器。
本公开的超临界水氧化系统和方法可以实现最大限度的减容而不是转化为更多的放射性有机废水,利用反应后的温度实现自蒸发,提高系统效率,节省设备体积和能源,适用于工业应用。
本公开的超临界水氧化系统和方法可以通过搅拌器的扰动,有效防止产物中的无机盐在反应器中出现结晶生长,进而沉积、粘结,堵塞管路,提高设备使用寿命。
本公开的另一个方面提供了一种超临界水氧化系统,包括:超临界水氧化装置,包括反应器和自分离外桶;所述反应器设置于所述自分离外桶的内部,所述反应器包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述蒸发池与所述出料口相连通,在所述蒸发池与所述出料口之间设有背压阀,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落至所述冷凝池中;氧化剂供料装置,与所述氧化剂进料口相连通;以及有机物供料装置,与所述有机物进料口相连通;其中,所述超临界水氧化系统为一体化系统。
在相关技术中,超临界水氧化反应器的处理过程一般是将氧化剂和废料直接在反应器内进行混合,然后待氧化剂和废料的温度达到一定温度和压力之后才能发生反应。但是,由于有机废液中的有机物分子量大,分子空间结构稳定,难以在较短的时间内氧化。并且,从外部输入的废料还会降低反应区的温度,导致废料在超临界水氧化反应器中的反应时间长,降低反应效率。通过本公开的实施例,在反应器壳体内设置了 折返管,当反应器壳体内温度达到一定温度时,有机物在折返管内流动的过程中就可以进行充分预热,升温,甚至可以进行热解,从而提高反应效率。
在相关技术中,通过超临界水氧化反应器将有机物转化为二氧化碳、水和无机盐之后,一般需要经过冷却设备、气液分离设备、液体冷却设备、气体冷却设备等多个设备处理,才能将二氧化碳、水和无机盐分离。这种处理方式不仅处理流程长,设备多,而且成本高。通过本公开的实施例,利用分离设备处理多态相混合物,使得多态相混合物中的固态物质在蒸发池底部蒸发浓缩,例如以无机盐渣的形式分离出来;使得多态相混合物中的液态物质在蒸发池中蒸发,经过冷却内桶冷却,可以从冷凝水池的排液口中排出;使得多态相混合物中的气态物质直接可以从分离设备的顶部排出。通过本公开的分离设备,可以同时实现多态相混合物的分离,处理流程不仅短,而且达到了有效降低设备一次性投资和设备运行费用,实现了多态相混合物最大限度减容。
本公开的超临界水氧化系统能够将多个装置集成在一起,形成一体化系统,使得系统的结构紧凑、使用方便。
附图说明
为了更完整地理解本公开及其优势,现在将参考结合附图的以下描述,其中:
图1示意性示出了根据本公开实施例的超临界水氧化系统的示意图;
图2示意性示出了根据本公开另一实施例的超临界水氧化系统的示意图;
图3示意性示出了根据本公开另一实施例的反应器的示意图;
图4示意性示出了根据本公开实施例的套管的示意图;
图5示意性示出了根据本公开实施例的冷却内桶的示意图;
图6示意性示出了根据本公开实施例的有机废水处理方法的流程图;
图7示意性示出了根据本公开实施例的超临界水氧化装置的示意图;
图8示意性示出了根据本公开另一实施例的超临界水氧化装置的示意图;
图9示意性示出了根据本公开另一实施例的超临界水氧化装置的示意图;
图10示意性示出了根据本公开实施例的套管的示意图;
图11示意性示出了根据本公开实施例的冷却内桶的示意图;
图12示意性示出了根据本公开实施例的有机废水处理方法的流程图;
图13A示意性示出了根据本公开实施例的超临界水氧化系统的示意图;
图13B示意性示出了根据本公开实施例的分离器的示意图;
图14示意性示出了根据本公开实施例的反应器的结构示意图;
图15示意性示出了根据本公开另一实施例的超临界水氧化系统的示意图;
图16示意性示出了根据本公开实施例的套管的示意图;
图17示意性示出了根据本公开实施例的冷却内桶的示意图;
图18示意性示出了根据本公开实施例的废液处理方法的流程图;
图19示意性示出了根据本公开实施例的用于超临界水氧化的反应器的示意图;
图20示意性示出了根据本公开另一实施例的用于超临界水氧化的反应器的示意图;
图21示意性示出了根据本公开另一实施例的冷却装置的示意图;
图22示意性示出了根据本公开实施例的废液处理方法的流程图;
图23示意性示出了根据本公开实施例的用于分离多态相混合物的分离设备的示意图;
图24示意性示出了根据本公开实施例的冷却内桶的示意图;
图25示意性示出了根据本公开实施例的套管的示意图;以及
图26示意性示出了根据本公开另一实施例的用于分离多态相混合物的分离设备的示意图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该 按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。在使用类似于“A、B或C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B或C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。
根据本公开的实施例,为了实现核电站及其它核设施的放射性废液的减容减害,本公开提供了一种超临界水氧化系统和方法,可以将有机废水通过超临界水氧化转化为无机物,利用反应余温自蒸发,将有机物中放射性金属元素回收,实现了废物最小化的目的。在实际应用之中,本公开实施例的超临界水氧化系统和方法处理放射性有机废液处理能力达到1-10kg/h,减容比达到30-100倍,流出物为蒸馏水可复用,净化气体可以直接排放。
图1示意性示出了根据本公开实施例的超临界水氧化系统的示意图。
如图1所示,该超临界水氧化系统,包括超临界水氧化装置、氧化剂供料装置150以及有机物供料装置140。超临界水氧化装置包括反应器110和自分离外桶120,所述反应器110设置于所述自分离外桶120的内部。所述反应器110包括反应器壳体,所述反应器壳体上设置有氧化剂进料口111、有机物进料口112以及出料口113。所述自分离外桶120内设置有蒸发池121、冷凝池122和冷凝管123,所述蒸发池121与所述出料口113相连通,在所述蒸发池121与所述出料口113之间设有背压阀130,所述冷凝池122设置于所述蒸发池121的上方,所述冷凝管123设置于所述冷凝池122的上方,使得在所述蒸发池121中蒸发的气体于所述冷凝管123处液化的情况下,液化得到的液体能够回落至所述冷凝池122中。氧化剂供料装置150与所述氧化剂进料口111相连通。有机物供料装置140与所述有机物进料口112相连通。
下面结合图2~图5对超临界水氧化系统进行进一步的示例性说明。
图2示意性示出了根据本公开另一实施例的超临界水氧化系统的示意图。
根据本公开实施例,氧化剂例如可以是液氧、氧气、双氧水等,本公开实施例可以采用氧气作为氧化剂。根据本公开实施例,用于提供氧气的氧化剂供给装置270例如可以包括氧气瓶组、氧气加压泵、高压氧气瓶以及单向阀。
根据本公开实施例,有机物供料装置260例如可以包括第一水箱、第二水箱、蠕 动泵、高压泵以及单向阀,其中,所述高压泵分别与第一水箱和蠕动泵相连通,所述蠕动泵与所述第二水箱相连通。其中,第一水箱可以用于存储有机废水,第二水箱可以用于存储蔗糖溶液。
根据本公开实施例,自分离外桶220内设置有蒸发池221、冷凝池222和冷凝管223,所述反应器210设置于所述自分离外桶220的内部。该反应器210,包括氧化剂进料口211、有机物进料口212、出料口213、搅拌装置224、加热装置216、冷却装置215等,请参照图3描述的实施例,此处暂且不展开描述。该超临界水氧化装置为一体化装置,设备数量少,功能集中,处理能力高,由于反应器210是高温高压设备,设置在反应器210外部的自分离外桶220还能够对外界起到保护作用。
根据本公开实施例,蒸发池221与出料口213相连通,在所述蒸发池221与所述出料口213之间设有背压阀230。
根据本公开实施例,所述冷凝池222设置于所述蒸发池221的上方,所述冷凝管223设置于所述冷凝池222的上方,使得在所述蒸发池221中蒸发的气体于所述冷凝管223处液化的情况下,液化得到的液体能够回落至所述冷凝池222中。
根据本公开实施例,在经过背压阀230后,压力逐渐恢复为常压,流出物也由超临界态恢复为气液固三态。由于反应器210的流出物是高温高压流体,例如流出物本身的温度为150~300℃,压强为25MPa,为了能使高温高压流体平稳蒸发,可以在蒸发池221中设置冷却管224,使得流出物可以始终处于沸腾状态。即冷却管224将蒸发池221中液体的温度稳定在目标温度范围内,例如,可以是在100℃左右,使得液体可以在蒸发池221中稳定沸腾。
根据本公开实施例,蒸发池221内还可以设置有排渣口225,用于排出蒸发池221内的非挥发性的盐渣。在所述排渣口225可以设置有pH在线监测计,在正常工况下,由于产生二氧化碳,排渣口的排出物的pH值约为2左右,若出现明显上升,则可以降低有机物供料装置的供料流量或提高反应器210的温度或压力。
根据本公开实施例,所述冷凝池222内设置有排水口226,用于排出冷凝池222中的水。排水装置可以包括多根辐射管和一个环管,提高排水效率。排出的水为蒸馏水,有害物质浓度低于十万分之一。在排水口226可以设置化学需氧量(COD)在线监测器,对水质进行监测,若COD含量升高,可以降低有机物供料装置的供料流量或提高反应器210的温度或压力,使反应更充分。
根据本公开实施例,所述自分离外桶220的顶部设置有排气口227,用于排出二 氧化碳等净化气体。在排气口227处可以设置气体过滤装置,例如可以包括活性炭过滤柱和高效过滤器,以保证排出气体符合排放标准。根据本公开实施例,在排气口227处还可以设置挥发性有机物(VOC)在线监测器,对气体进行监测,若VOC含量升高,则可以降低有机物供料装置的供料流量或提高反应器210的温度或压力,使反应更充分。
根据本公开实施例,所述超临界水氧化装置还包括冷水机组,用于向所述冷凝管223供水,也可以向反应器210中的冷却装置215供水。
在相关技术中,通过超临界水氧化反应器将有机物转化为二氧化碳、水和无机盐之后,一般需要经过冷却设备、气液分离设备、液体冷却设备、气体冷却设备等多个设备处理,才能将二氧化碳、水和无机盐分离。这种处理方式不仅处理流程长,设备多,而且成本高。通过本公开的实施例,利用自分离外桶处理高温(120~300℃)的流出物,使得盐渣在蒸发池底部蒸发浓缩,水在蒸发池中蒸发,经过冷凝管冷却,可以从冷凝池的排水口排出,洁净气体直接可以从分离设备的顶部排出。本公开的分离设备可以同时实现混合物的分离,不仅处理流程短,而且达到了有效降低设备一次性投资和设备运行费用,实现了放射性废物最大限度地减容。以放射性铯和锶为例,放射性铯经过蒸发池蒸发后,去污因子可以达到10 5,水蒸气中的铯不到蒸发池水中铯浓度的十万分之一,蒸发对锶的去污因子可以达到10 9,因此蒸汽可以得到深度净化。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述监测系统包括上文所述的以下至少一种:设置在所述反应器壳体上、蒸发池内、冷凝池内的温度传感器;设置在所述反应器壳体内的压力传感器;设置在所述排渣口的pH在线监测计;设置在所述排气口处的挥发性有机物在线监测器;以及/或者设置在所述排水口的化学需氧量在线监测器。所述超临界水氧化系统还包括控制系统,用于响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或蒸发池的温度;以及/或者所述背压阀230的状态。
图3示意性示出了根据本公开另一实施例的反应器300的示意图。
如图3所示,该反应器300包括反应器壳体310,反应器壳体310上设置有氧化剂进料口311、有机物进料口312以及出料口313。
本公开实施例对反应器壳体310的形状、材质、尺寸大小不做限定。例如,反应器壳体310可以是圆柱型,材质可以是为INCONEL625,反应器壳体310内径可以是 80~219mm,例如可以是168mm、厚度例如可以约为25mm,长度可以是1000~6000mm,例如可以是3000mm。
根据本公开实施例,该反应器300还可以包括搅拌器330,该搅拌器330包括转轴331,转轴331穿过反应器壳体310。该反应器300可以倾斜安装,倾斜坡度为10%,出料口313处于最底端,该搅拌器330用于对反应器300中的物质进行搅动。超临界水反应产物一般为超细颗粒物,没有结晶生长的条件,只要有扰动,颗粒物不会沉积、粘结,有效防止超细无机盐结成晶体堵塞出料口313。例如,搅拌器330可以包括内磁转子332和外磁转子333,在通电的情况下,在外磁转子333的带动下,内磁转子332带动转轴331和搅拌子旋转。该搅拌器330例如可以保持800rpm的转速进行搅拌,使得超临界水反应产物颗粒保持悬浮而不会沉积。
根据本公开实施例,转轴331穿过所述出料口313。如图3所示,该出料口313为L型,转轴331通过反应器壳体310并且部分地穿过所述出料口313伸入反应器壳体310内,在出料口313附近搅拌,防止堵塞出料口313。
根据本公开实施例,所述搅拌器330配置有电流表和/或电压表,用于监测搅拌器的电流和电压,当搅拌器330的电流和电压升高并达到预定数值时,反应器300内部的压力较大,需要减小两个进料口311和312的进料流量,甚至暂停进料。
根据本公开实施例,所述反应器300还包括加热装置320,用于提高反应器壳体310的温度,进而对反应器壳体310内形成的腔室加热。本公开实施例对加热装置320的类型不做限定。例如,加热装置320可以是一组或多组加热套,本公开实施例可以将加热套套设在反应器壳体310的外部,通过热传导的方式向反应器壳体310内部传递热量。
根据本公开实施例,所述反应器300还包括冷却装置340,用于在开始反应后,对反应器300进行降温,防止反应器300的温度过高,缩短设备使用寿命甚至发生危险。所述冷却装置340例如可以包括设置在所述反应器壳体310外部的至少一组冷却套。冷却套可以包括两个部分,两个部分之间可以通过固定孔和螺栓固定,每个部分中可以充入冷却水。本公开实施例的冷却装置可以包括一组或多组冷却套,在设备运行时,可以通过调整使用状态的冷却套的数量实现对反应器的温度的控制。类似地,本公开实施例的加热装置可以包括一组或多组加热套,在设备运行时,可以通过调整使用状态的加热套的数量实现对反应器的温度的控制。
根据本公开实施例,所述反应器壳体310包括靠近所述氧化剂进料口311的第一 区域10以及靠近所述出料口313的第二区域20,所述加热装置320设置于所述第一区域10的外部,所述冷却装置340设置于所述第二区域20的外部。根据本公开实施例,超临界水氧化在第一区域10内完成,产物经第二区域20向出料口313流动的过程中,被冷却装置340冷却,到达出料口时的温度约为150~300℃。
如图3所示,根据本公开实施例,反应器壳体310包括第一端壁314、侧壁315以及与第一端壁314相对的第二端壁316,氧化剂进料口311设置于所述第一端壁314,有机物进料口312设置于所述侧壁315,出料口313设置于第二端壁316。可选地,出料口313也可以设置在侧壁315上。
根据本公开实施例,反应器300还包括内衬350,设置于所述第二端壁316,并向所述第一端壁314的方向延伸,所述出料口313设置于所述内衬350的内部,其中,所述有机物进料口312与所述第一端壁314的距离大于所述有机物进料口312与所述第二端壁316的距离。即,有机物进料口312更靠近第二端壁316,有机物进入反应器300后,沿内衬350的外部向第一端壁214的方向移动,直至到达氧化剂进料口311附近,与氧化剂在超临界水环境下发生氧化反应。该设计使得有机物能够在内衬和壳体之间进行预热,并且使得内衬的温度不至于过高,延长使用寿命。
根据本公开实施例,该内衬350的材质例如可以是高温合金材料GH4169,其内径可以是40-133mm,例如可以是108mm,长度可以是1000-6000mm,例如可以是3500mm。
根据本公开实施例,该内衬350经包括渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。相当于在内衬上生成了防腐涂层,并且在超临界水的高温作用下,内衬上形成一层致密的凝胶层,阻止超临界水与内衬金属的接触与腐蚀。
根据本公开的实施例,形成致密的凝胶层的关键条件是在金属与凝胶层之间有一层致密的特殊金属原子。一方面,这层特殊的金属原子通过金属键与本体金属相连。另一方面又以化学键的形式与凝胶层相连。为了制备这层金属原子,本公开的实施例采用镍基金属,首先对金属本体进行渗铝处理,之后用喷丸锻击金属表面,以便形成致密的金属铝原子层,之后喷涂热障涂层,通过金属铝、三氧化二铝陶瓷层的交替喷涂6~8层,金属表面形成热障涂层,厚度约2~3mm。热障涂层遇到超临界水后,这层热障涂层将转变为致密的凝胶层。凝胶层可以阻止超临界水与内衬金属的接触与腐蚀。当反应中心温度700℃-800℃时,热障涂层表面温度保持在650℃-750℃,内衬机体温 度保持在550℃-650℃。
根据本公开实施例,反应器300还可以包括至少一个温度传感器,用于获得所述超临界水氧化反应器的至少一个位置的温度。例如,内衬350的两端和中间可以配备温度探头,加热装置220与反应器壳体310之间可以设置温度探头。
根据本公开实施例,所述反应器300还包括至少一个压力传感器,用于获得所述反应器的至少一个位置的压力。例如,反应器300的两端可以配备压力表,用于检测反应器300内部的压力。
图4示意性示出了根据本公开实施例的套管410的示意图。
如图4所示,蒸发池400通过反应器出口管(图2所示的240)与所述反应器连通,所述蒸发池400中设置有套管410,所述反应器出口管接入所述套管410内,所述套管410上设有小孔。反应器排出的物质通过多个小孔分散排入蒸发池400内。
根据本公开的实施例,套管410的尺寸和形状不做限定,例如,套管410的直径可以42~50mm,壁厚可以是4~6mm,形状可以是直管,也可以是螺旋管。小孔大小例如可以是直径2~3mm,其作用主要是将高速流体通过出口管上的小孔得到消解与分散,缓慢释放压力。
返回参考图2。根据本公开实施例,所述自分离外桶220中设置有冷却内桶250,所述冷凝管223设置于所述冷却内桶250的内部,所述冷凝池222形成于所述冷却内桶250的底部,所述冷却内桶250的桶壁上设置有多个孔道251。下面结合图5,对本公开实施例的冷却内桶进行描述。
图5示意性示出了根据本公开实施例的冷却内桶510的示意图。
如图5所示,冷却内桶510的桶壁上设置有多个孔道513,用于供蒸发池中蒸发的蒸汽进入冷却内桶510。
根据本发明实施例,可以向冷却内桶510中的冷凝管511中充入冷却水(例如由入口5111充入,从出口5112排出),使得冷却内桶510中的温度相对于蒸发池中的温度低,冷凝管511充水后可以降低蒸汽的温度。
根据本公开实施例,例如,蒸发池中蒸发的水蒸汽、氧气和二氧化碳可以从桶壁上设置的多个孔道513进入冷却内桶510,如图5中箭头所示的向上流动方向。蒸汽遇到冷空气后,冷凝生成水珠并落入冷凝池512中,然后从排液口514排出。而氧气和二氧化碳可以从顶部的排气口515排出。
根据本发明的实施例,冷凝池512的体积不做限定。例如,冷凝池512的体积可 以是50L~500L,冷凝池512中可以通过多根辐射管道与外部的环形管道连接,导水能力可以是800kg/h~8000kg/h。冷凝管511可以是水平缠绕螺旋冷却管,尺寸大小不做限定。
根据本发明的实施例,桶壁上留有多个孔道513供气体穿过,冷却内桶510能够使得100℃以上的水蒸汽冷凝为60℃~90℃的水,冷凝能力可以是200kg/h~2000kg/h。冷却盘管区的体积不做限定,例如体积可以1000L,冷凝水可以返回超临界水氧化反应器中复用,也可以另作他用或直接排放。
图6示意性示出了根据本公开实施例的有机废水处理方法的流程图。
如图6所示,该方法包括操作S610~S640。
在操作S610,对反应器加热。
在操作S620,在所述反应器壳体内的温度达到第一温度时,将第一溶液通过所述有机物进料口输入所述反应器壳体内,以及将氧化剂通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度。
在操作S630,在反应器壳体内的压力达到预定压力时,打开反应器出料口处的背压阀。
在操作S640,将有机废水通过有机物进料口输入反应器壳体内,在超临界水环境下被氧化,并从出料口排出,进入所述蒸发池,通过自蒸发实现有害物质的分离。
根据本公开实施例,例如,可以先将反应器充满水,利用电加热套预热反应器,使反应器壳体内的温度达到第一温度,例如可以是300℃。根据本公开的实施例,第一溶液例如可以是蔗糖溶液,通过调节蔗糖溶液和水的比例,逐步升高蔗糖浓度,将蔗糖溶液通过氧化物入口输入反应器内,同时向反应器输入氧化剂。根据本公开实施例,该氧化剂例如可以是氧气。在300℃的条件下,氧化剂与蔗糖发生反应产生热量,将反应器温度继续加热到第二温度。
本公开实施例采用蔗糖溶液可以有效提高超临界水反应室温度。不同于丙醇,蔗糖水溶液是非易燃易爆物品,同时浓蔗糖水溶液的燃烧热高于丙醇的燃烧热,可以将超临界水反应区温度提高到一定温度区间550℃-800℃。
由于本公开实施例提供的经渗铝、喷丸锻击以及喷涂热障涂层处理的内衬,反应器相较于现有技术而言可以承受更高的温度,反应器的寿命可以延长5-10年。根据本公开实施例,所述第二温度不小于600℃。优选地,所述第二温度介于650℃至800℃之间,该温度范围相较于其它超临界水反应的相关技术而言反应温度高,有效提高了 反应速度。并且,由于反应温度高,反应所需时间比传统超临界水低10倍,使得相同处理能力的设备的体积大幅减少。
根据本公开的实施例,在达到反应条件的情况下,例如,超临界水氧化温度保持在650℃~750℃,压力保持在20~25Mpa的情况下,启动有机物供料装置。一般工况下,反应器内衬靠近氧化剂进料口部分温度为650℃~800℃,相对应反应器壳体部分温度不超过600℃。
根据本公开实施例,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃。
例如,可以控制第一区域的温度在650℃~800℃之间。当有机物浓度较高时,释放的氧化热较多,此时需要通过冷却装置对反应器降温,使第一区域的温度控制在800℃以内。另一方面,反应产物经过冷却装置和内衬与壳体之间的流体的冷却作用下,温度降低到120℃~300℃,可选地,出料口的排出物的温度可以介于150℃至300℃之间。相对于现有技术中反应器出料口的60℃左右的温度,本公开实施例的出料口的温度较高,例如可以达到300℃,减轻了超临界水反应器的冷却负担,使得设备体积可以缩小,同时效率可以提高。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述有机物进料口和氧化剂进料口中的至少一个的进料速率。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或所述蒸发池的温度;以及/或者所述背压阀的状态。请参考上文关于装置的描述,此处不再赘述。
根据本公开的实施例,为了实现核电站及其它核设施的放射性废液的减容减害,本公开提供了一种超临界水氧化装置和方法,通过本公开提供的超临界水氧化装置和方法,可以将有机废水通过超临界水氧化转化为无机物,利用反应余温自蒸发,将有机物中放射性金属元素回收,实现了废物最小化的目的。在实际应用之中,本公开实 施例的超临界水氧化系统和方法处理放射性有机废液处理能力达到1-10kg/h,减容比达到30-100倍,流出物为蒸馏水可复用,净化气体可以直接排放。
图7示意性示出了根据本公开实施例的超临界水氧化装置的示意图。
如图7所示,该超临界水氧化装置包括反应器700,所述反应器700包括反应器壳体710、加热装置720以及搅拌器730。其中,反应器壳体710上设置有氧化剂进料口711、有机物进料口712以及出料口713。加热装置720用于提升所述反应器壳体710内的温度。搅拌器730,包括转轴,所述转轴穿过所述反应器壳体。
本公开实施例对反应器壳体710的形状、材质、尺寸大小不做限定。例如,反应器壳体710可以是圆柱型,材质可以是为INCONEL625,反应器壳体710内径可以是80~219mm,例如可以是168mm、厚度例如可以约为25mm,长度可以是1000~6000mm,例如可以是3000mm。
根据本公开实施例,加热装置720用于提高反应器壳体710的温度,进而对反应器壳体710内形成的腔室加热。本公开实施例对加热装置720的类型不做限定。例如,加热装置720可以是一组或多组加热套,本公开实施例可以将加热套套设在反应器壳体710的外部,通过热传导的方式向反应器壳体710内部传递热量。
图8示意性示出了根据本公开另一实施例的超临界水氧化装置800的示意图。图8所示意的反应器壳体810、加热装置820以及搅拌器830可以参考图7所示意的反应器壳体710、加热装置720以及搅拌器730。
根据本公开实施例,搅拌器830例如可以包括转轴831,转轴831穿过反应器壳体810。该反应器800可以倾斜安装,倾斜坡度为10%,出料口813处于最底端,该搅拌器830用于对反应器800中的物质进行搅动。超临界水反应产物一般为超细颗粒物,没有结晶生长的条件,只要有扰动,颗粒物不会沉积、粘结,有效防止超细无机盐结成晶体堵塞出料口813。例如,搅拌器830可以包括内磁转子832和外磁转子833,在通电的情况下,在外磁转子833的带动下,内磁转子832带动转轴831和搅拌子旋转。该搅拌器830例如可以保持800rpm的转速进行搅拌,使得超临界水反应产物颗粒保持悬浮而不会沉积。
根据本公开实施例,转轴831穿过所述出料口813。如图8所示,该出料口813为L型,转轴831通过反应器壳体810并且部分地穿过所述出料口213伸入反应器壳体810内,在出料口813附近搅拌,防止堵塞出料口813。
根据本公开实施例,所述搅拌器830配置有电流表和/或电压表,用于监测搅拌器 的电流和电压,当搅拌器830的电流和电压升高并达到预定数值时,反应器800内部的压力较大,需要减小两个进料口811和812的进料流量,甚至暂停进料。
根据本公开实施例,所述反应器800还包括冷却装置840,用于在开始反应后,对反应器800进行降温,防止反应器800的温度过高,缩短设备使用寿命甚至发生危险。所述冷却装置840例如可以包括设置在所述反应器壳体810外部的至少一组冷却套。冷却套可以包括两个部分,两个部分之间可以通过固定孔和螺栓固定,每个部分中可以充入冷却水。本公开实施例的冷却装置可以包括一组或多组冷却套,在设备运行时,可以通过调整使用状态的冷却套的数量实现对反应器的温度的控制。类似地,本公开实施例的加热装置可以包括一组或多组加热套,在设备运行时,可以通过调整使用状态的加热套的数量实现对反应器的温度的控制。
根据本公开实施例,所述反应器壳体810包括靠近所述氧化剂进料口811的第一区域10以及靠近所述出料口813的第二区域20,所述加热装置820设置于所述第一区域10的外部,所述冷却装置840设置于所述第二区域20的外部。根据本公开实施例,超临界水氧化在第一区域10内完成,产物经第二区域20向出料口813流动的过程中,被冷却装置840冷却,到达出料口时的温度约为150~300℃。
如图8所示,根据本公开实施例,反应器壳体810包括第一端壁814、侧壁815以及与第一端壁814相对的第二端壁816,氧化剂进料口811设置于所述第一端壁814,有机物进料口812设置于所述侧壁815,出料口813设置于第二端壁816。可选地,出料口813也可以设置在侧壁815上。
根据本公开实施例,反应器800还包括内衬850,设置于所述第二端壁816,并向所述第一端壁814的方向延伸,所述出料口813设置于所述内衬850的内部,其中,所述有机物进料口812与所述第一端壁814的距离大于所述有机物进料口812与所述第二端壁816的距离。即,有机物进料口812更靠近第二端壁816,有机物进入反应器800后,沿内衬850的外部向第一端壁814的方向移动,直至到达氧化剂进料口811附近,与氧化剂在超临界水环境下发生氧化反应。该设计使得有机物能够在内衬和壳体之间进行预热,并且使得内衬的温度不至于过高,延长使用寿命。
根据本公开实施例,该内衬850的材质例如可以是高温合金材料GH4169,其内径可以是40-133mm,例如可以是108mm,长度可以是1000-6000mm,例如可以是3500mm。
根据本公开实施例,该内衬850经包括渗铝、喷丸锻击以及喷涂热障涂层处理, 所述热障涂层包括交替排布的多个铝层和多个氧化铝层。相当于在内衬上生成了防腐涂层,并且在超临界水的高温作用下,内衬上形成一层致密的凝胶层,阻止超临界水与内衬金属的接触与腐蚀。
根据本公开的实施例,形成致密的凝胶层的关键条件是在金属与凝胶层之间有一层致密的特殊金属原子。一方面,这层特殊的金属原子通过金属键与本体金属相连。另一方面又以化学键的形式与凝胶层相连。为了制备这层金属原子,本公开的实施例采用镍基金属,首先对金属本体进行渗铝处理,之后用喷丸锻击金属表面,以便形成致密的金属铝原子层,之后喷涂热障涂层,通过金属铝、三氧化二铝陶瓷层的交替喷涂6~8层,金属表面形成热障涂层,厚度约2~3mm。热障涂层遇到超临界水后,这层热障涂层将转变为致密的凝胶层。凝胶层可以阻止超临界水与内衬金属的接触与腐蚀。当反应中心温度700℃-800℃时,热障涂层表面温度保持在650℃-750℃,内衬机体温度保持在550℃-650℃。
根据本公开实施例,反应器800还可以包括至少一个温度传感器,用于获得所述超临界水氧化反应器的至少一个位置的温度。例如,内衬850的两端和中间可以配备温度探头,加热装置820与反应器壳体810之间可以设置温度探头。
根据本公开实施例,所述反应器800还包括至少一个压力传感器,用于获得所述反应器的至少一个位置的压力。例如,反应器800的两端可以配备压力表,用于检测反应器800内部的压力。
根据本公开实施例,该反应器800可以使用氧化剂供料装置对其提供氧化剂。氧化剂例如可以是液氧、氧气、双氧水等,本公开实施例可以采用氧气作为氧化剂。根据本公开实施例,用于提供氧气的氧化剂供给装置例如可以包括氧气瓶组、氧气加压泵、高压氧气瓶以及单向阀。
根据本公开实施例,该反应器800可以使用有机物供料装置对其进行供料,有机物供料装置例如可以包括第一水箱、第二水箱、蠕动泵、高压泵以及单向阀,其中,所述高压泵分别与第一水箱和蠕动泵相通,所述蠕动泵与所述第二水箱相通。其中,第一水箱可以用于存储有机废水,第二水箱可以用于存储蔗糖溶液。
图9示意性示出了根据本公开另一实施例的超临界水氧化装置900的示意图。
如图9所示,超临界水氧化装置900在前述实施例的基础上,还包括自分离外桶920,自分离外桶920内设置有蒸发池921、冷凝池922和冷凝管923,所述反应器910设置于所述自分离外桶920的内部。该反应器910,包括氧化剂进料口911、有机物进 料口912、出料口913、搅拌装置914、加热装置916、冷却装置915等,可以参照图8描述的实施例,此处不再赘述。该超临界水氧化装置为一体化装置,设备数量少,功能集中,处理能力高,由于反应器是高温高压设备,设置在反应器外部的自分离外桶还能够对外界起到保护作用。
根据本公开实施例,蒸发池921与出料口913相连通,在所述蒸发池921与所述出料口913之间设有背压阀940。
根据本公开实施例,所述冷凝池922设置于所述蒸发池921的上方,所述冷凝管923设置于所述冷凝池922的上方,使得在所述蒸发池921中蒸发的气体于所述冷凝管923处液化的情况下,液化得到的液体能够回落至所述冷凝池922中。
根据本公开实施例,在经过背压阀940后,压力逐渐恢复为常压,流出物也由超临界态恢复为气液固三态。由于反应器910的流出物是高温高压流体,例如流出物本身的温度为150~300℃,压强为25MPa,为了能使高温高压流体平稳蒸发,可以在蒸发池921中设置冷却管924,使得流出物可以始终处于沸腾状态。即冷却管924将蒸发池921中液体的温度稳定在目标温度范围内,例如,可以是在100℃左右,使得液体可以在蒸发池921中稳定沸腾。
根据本公开实施例,蒸发池921内还可以设置有排渣口925,用于排出蒸发池921内的非挥发性的盐渣。在所述排渣口925可以设置有pH在线监测计,在正常工况下,由于产生二氧化碳,排渣口的排出物的pH值约为2左右,若出现明显上升,则可以降低有机物供料装置的供料流量或提高反应器910的温度或压力。
根据本公开实施例,所述冷凝池922内设置有排水口926,用于排出冷凝池922中的水。排水装置可以包括多根辐射管和一个环管,提高排水效率。排出的水为蒸馏水,有害物质浓度低于十万分之一。在排水口926可以设置化学需氧量(COD)在线监测器,对水质进行监测,若COD含量升高,可以降低有机物供料装置的供料流量或提高反应器910的温度或压力,使反应更充分。
根据本公开实施例,所述自分离外桶920的顶部设置有排气口927,用于排出二氧化碳等净化气体。在排气口927处可以设置气体过滤装置,例如可以包括活性炭过滤柱和高效过滤器,以保证排出气体符合排放标准。根据本公开实施例,在排气口927处还可以设置挥发性有机物(VOC)在线监测器,对气体进行监测,若VOC含量升高,则可以降低有机物供料装置的供料流量或提高反应器910的温度或压力,使反应更充分。
根据本公开实施例,所述超临界水氧化装置900还包括冷水机组,用于向所述冷凝管923供水,也可以向反应器910中的冷却装置915供水。
在相关技术中,通过超临界水氧化反应器将有机物转化为二氧化碳、水和无机盐之后,一般需要经过冷却设备、气液分离设备、液体冷却设备、气体冷却设备等多个设备处理,才能将二氧化碳、水和无机盐分离。这种处理方式不仅处理流程长,设备多,而且成本高。通过本公开的实施例,利用自分离外桶处理高温(120~300℃)的流出物,使得盐渣在蒸发池底部蒸发浓缩,水在蒸发池中蒸发,经过冷凝管冷却,可以从冷凝池的排水口排出,洁净气体直接可以从分离设备的顶部排出。本公开的分离设备可以同时实现混合物的分离,不仅处理流程短,而且达到了有效降低设备一次性投资和设备运行费用,实现了放射性废物最大限度地减容。以放射性铯和锶为例,放射性铯经过蒸发池蒸发后,去污因子可以达到10 5,水蒸气中的铯不到蒸发池水中铯浓度的十万分之一,蒸发对锶的去污因子可以达到10 9,因此蒸汽可以得到深度净化。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述监测系统包括上文所述的以下至少一种:设置在所述反应器壳体上、蒸发池内、冷凝池内的温度传感器;设置在所述反应器壳体内的压力传感器;设置在所述排渣口的pH在线监测计;设置在所述排气口处的挥发性有机物在线监测器;以及/或者设置在所述排水口的化学需氧量在线监测器。所述超临界水氧化系统还包括控制系统,用于响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或蒸发池的温度;以及/或者所述背压阀940的状态。
图10示意性示出了根据本公开实施例的套管1010的示意图。
如图10所示,蒸发池1000通过反应器出口管(图9所示的930)与所述反应器连通,所述蒸发池1000中设置有套管1010,所述反应器出口管接入所述套管1010内,所述套管1010上设有小孔。反应器排出的物质通过多个小孔分散排入蒸发池1000内。
根据本公开的实施例,套管1010的尺寸和形状不做限定,例如,套管1010的直径可以42~50mm,壁厚可以是4~6mm,形状可以是直管,也可以是螺旋管。小孔大小例如可以是直径2~3mm,其作用主要是将高速流体通过出口管上的小孔得到消解与分散,缓慢释放压力。
返回参考图9。根据本公开实施例,所述自分离外桶920中设置有冷却内桶950,所述冷凝管923设置于所述冷却内桶950的内部,所述冷凝池922形成于所述冷却内 桶950的底部,所述冷却内桶950的桶壁上设置有多个孔道951。下面结合图11,对本公开实施例的冷却内桶进行描述。
图11示意性示出了根据本公开实施例的冷却内桶1110的示意图。
如图11所示,冷却内桶1110的桶壁上设置有多个孔道1113,用于供蒸发池中蒸发的蒸汽进入冷却内桶1110。
根据本发明实施例,可以向冷却内桶1110中的冷凝管1111中充入冷却水(例如由入口11111充入,从出口11112排出),使得冷却内桶1110中的温度相对于蒸发池中的温度低,冷凝管1111充水后可以降低蒸汽的温度。
根据本公开实施例,例如,蒸发池中蒸发的水蒸汽、氧气和二氧化碳可以从桶壁上设置的多个孔道1113进入冷却内桶1110,如图11中箭头所示的向上流动方向。蒸汽遇到冷空气后,冷凝生成水珠并落入冷凝池1112中,然后从排液口1114排出。而氧气和二氧化碳可以从顶部的排气口1115排出。
根据本发明的实施例,冷凝池1112的体积不做限定。例如,冷凝池1112的体积可以是50L~500L,冷凝池1112中可以通过多根辐射管道与外部的环形管道连接,导水能力可以是800kg/h~8000kg/h。冷凝管1111可以是水平缠绕螺旋冷却管,尺寸大小不做限定。
根据本发明的实施例,桶壁上留有多个孔道1113供气体穿过,冷却内桶1110能够使得100℃以上的水蒸汽冷凝为60℃~90℃的水,冷凝能力可以是200kg/h~2000kg/h。冷却盘管区的体积不做限定,例如体积可以1000L,冷凝水可以返回超临界水氧化反应器中复用,也可以另作他用或直接排放。
图12示意性示出了根据本公开实施例的有机废水处理方法的流程图。
如图12所示,该方法包括操作S1210~S1240。
在操作S1210,对反应器加热。
在操作S1220,在反应器壳体内的温度达到第一温度时,启动搅拌器,并将第一溶液通过所述有机物进料口输入反应器壳体内,将氧化剂通过所述氧化剂进料口输入反应器壳体内,直到反应器壳体内的温度达到第二温度。
在操作S1230,在反应器壳体内的压力达到预定压力时,打开反应器出料口处的背压阀。
在操作S1240,将有机废水通过有机物进料口输入反应器壳体内,在超临界水环境下被氧化,并从出料口排出。
根据本公开实施例,例如,可以先将反应器充满水,利用电加热套预热反应器,使反应器壳体内的温度达到第一温度,例如可以是300℃。根据本公开的实施例,第一溶液例如可以是蔗糖溶液,通过调节蔗糖溶液和水的比例,逐步升高蔗糖浓度,将蔗糖溶液通过氧化物入口输入反应器内,同时向反应器输入氧化剂。根据本公开实施例,该氧化剂例如可以是氧气。在300℃的条件下,氧化剂与蔗糖发生反应产生热量,将反应器温度继续加热到第二温度。
本公开实施例采用蔗糖溶液可以有效提高超临界水反应室温度。不同于丙醇,蔗糖水溶液是非易燃易爆物品,同时浓蔗糖水溶液的燃烧热高于丙醇的燃烧热,可以将超临界水反应区温度提高到一定温度区间550℃-800℃。
由于本公开实施例提供的经渗铝、喷丸锻击以及喷涂热障涂层处理的内衬,反应器相较于现有技术而言可以承受更高的温度,反应器的寿命可以延长5-10年。根据本公开实施例,所述第二温度不小于600℃。优选地,所述第二温度介于650℃至800℃之间,该温度范围相较于其它超临界水反应的相关技术而言反应温度高,有效提高了反应速度。并且,由于反应温度高,反应所需时间比传统超临界水低10倍,使得相同处理能力的设备的体积大幅减少。
根据本公开的实施例,在达到反应条件的情况下,例如,超临界水氧化温度保持在650℃~750℃,压力保持在20~25Mpa的情况下,启动有机物供料装置。一般工况下,反应器内衬靠近氧化剂进料口部分温度为650℃~800℃,相对应反应器壳体部分温度不超过600℃。
根据本公开实施例,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃。
例如,可以控制第一区域的温度在650℃~800℃之间。当有机物浓度较高时,释放的氧化热较多,此时需要通过冷却装置对反应器降温,使第一区域的温度控制在800℃以内。另一方面,反应产物经过冷却装置和内衬与壳体之间的流体的冷却作用下,温度降低到120℃~300℃,可选地,出料口的排出物的温度可以介于150℃至300℃之间。相对于现有技术中反应器出料口的60℃左右的温度,本公开实施例的出料口的温度较高,例如可以达到300℃,减轻了超临界水反应器的冷却负担,使得设备体积可以缩小,同时效率可以提高。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述有机物进料口和氧化剂进料口中的至少一个的进料速率。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或所述蒸发池的温度;以及/或者所述背压阀的状态。请参考上文关于装置的描述,此处不再赘述。
根据本公开的实施例,为了实现核电站及其它核设施的放射性废液的减容减害,本公开提供了一种超临界水氧化系统和方法,通过本公开提供的超临界水氧化系统和方法,可以将废液通过超临界水氧化转化为无机物,利用反应余温自蒸发,将有机物中放射性金属元素回收,实现了废物最小化的目的。在实际应用之中,本公开实施例的超临界水氧化系统和方法处理放射性有机废液处理能力达到10L/h-100L/h,放射性高浓有机废水的处理能力达到100-1000L/h,有机溶剂减容达到30-100倍,核电废油减容比达到50倍,液体闪烁液减容比达到90倍,真空泵油等减容比不低于100倍。高浓有机废水转变为蒸馏水,可以满足乏燃料后处理厂废溶剂处理、核电站废油处理、核燃料制造厂废TBP溶剂、铀矿提纯TBP废溶剂的处理要求。
图13A和图13B示意性示出了根据本公开实施例的超临界水氧化系统的示意图。
如图13A所示,超临界水氧化系统包括氧化剂供料装置、有机物供料装置、反应器和分离器。根据本公开实施例,反应器包括反应器壳体,反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口,其中,出料口与分离器相连。其中,反应器所需的水可以由有机物供料装置提供,也可以由氧化剂供料装置提供,或者,也可以通过单独的供水装置,例如与所述氧化剂进料口连通,向反应器供水。分离器的结构请参见图13B。
如图13B所示,该分离器包括蒸发池、冷凝池和冷凝管。冷凝池设置于蒸发池的上方,冷凝管设置于冷凝池的上方,使得在蒸发池中蒸发的气体于冷凝管处液化的情况下,液化得到的液体能够回落到冷凝池中。
根据本公开的实施例,通过将蒸发池、冷凝池和冷凝管封装在分离器内,实现了固液气多态物质在一体机内分离,省去了冷却设备、气液分离设备、液体冷却设备、 气体冷却设备,简化了处理流程。
根据本公开实施例,蒸发池与反应器的出料口连通,在蒸发池和出料口之间设置有背压阀。
在超临界水氧化的反应器中的反应产物在流出反应器时的温度不低于120℃,通过背压阀进入蒸发池后,利用自身热量实现自蒸发,分离有害物质,实现减容。有机物在超临界水反应器氧化后其产物转化为无机盐、二氧化碳和水,净化流出物自蒸馏、自净化、自分离后,产物转化为无机盐渣、蒸馏水和净化气体,有机物物中的放射性元素、重金属和极性元素Cl、S、P等均以无机盐的形式存在,这些组分总量很少,因此有机废物得到最大限度的减容。在自蒸发过程中,净化气体和水蒸气向上运动,有害物质的盐渣留在蒸发池中。经本工艺处理处理后,有机溶剂中的放射性元素、重金属和极性元素卤素、S、P等均被浓缩在盐渣内,为这些组分的处理、再利用奠定了基础。
本公开实施例的主工艺设备只有两台(反应器和分离器),相对现有技术而言工艺简化,设备体积小,处理能力高。对于放射性有机废液,其中的放射性元素最终以盐渣的形式得到完全分离、浓缩、收集,回收率达到99%以上,蒸馏水中残留的放射性元素浓度是蒸发池水中放射性元素的10 5分之一。
下面结合图14~图17对本公开实施例的超临界水氧化系统的各个部分进行示例性说明。
图14示意性示出了根据本公开实施例的反应器1400的结构示意图。
如图14所示,反应器1400包括反应器壳体1410,反应器壳体1410上设置有氧化剂进料口1412、有机物进料口1411以及出料口1413。
本公开实施例对反应器壳体1410的形状、材质、尺寸大小不做限定。例如,反应器壳体1410可以是圆柱型,材质可以是为INCONEL625,反应器壳体1410内径可以是80~219mm,长度可以是1000~6000mm。
根据本公开实施例,反应器1400还包括折返管1460,设置于反应器壳体1410内部,折返管1460包括两端开口的内管1461以及一端开口的外管1462,外管1462套设于内管1461的外部,内管1461与有机物进料口1411连通。
折返管1460设置在反应器壳体1410内,有机液体通过内管1461从有机物进料口1411进入,流动到内管的另一端后进入外管1462,向相反的方向继续流动,直至从外管1462的开口的一端流出,在反应器壳体1410内部与氧化剂相遇,在超临界水 环境下被氧化。有机液体在折返管1460中流动的过程中,就可以进行充分预热升温,甚至尽可能地热解为小分子有机物,使得氧化效率提高。折返管1460例如可以设置于所述反应器1400的中心轴位置,使其受热温度可以达到最高。
根据本公开实施例,内管1461和外管1462的形状、材质、尺寸大小不做限定。例如,内管1461直径可以是φ25~φ42mm,壁厚可以是4~6mm,材质可以是INCONEL625;外管1462直径可以是42mm以上,壁厚可以是4~6mm,材质可以是GH4169;长度都可以在3000mm~6000mm之间。根据本公开的实施例,折返管1460大小适中,可以有效降低生产成本,有利于市场应用。根据本公开实施例,当有机物流量为10L/h,有机物在折返管内的停留时间最少8s以上,而在600℃时,有机物热解一般仅需1秒左右,完全满足理论所需时间。
在现有技术中,不设置折返管,有机物直接进料,则有机物会冷却反应区温度,降低反应效果。当反应温度为600℃时,有机物热解需要时间为1s左右;当反应温度为550℃时,有机物热解所需时间则为5min,热解过程将严重影响反应效率。可见,本公开相比于现有技术,反应时间非常快,提高了处理效率。
根据本公开实施例,所述反应器1400还包括加热装置1420,用于提高反应器壳体1410的温度,进而对反应器壳体1410内形成的腔室加热。本公开实施例对加热装置1420的类型不做限定。例如,加热装置1420可以是一组或多组加热套,本公开实施例可以将加热套套设在反应器壳体1410的外部,通过热传导的方式向反应器壳体1410内部传递热量。
根据本公开实施例,所述反应器1400还包括冷却装置1440,用于在开始反应后,对反应器1400进行降温,防止反应器1400的温度过高,缩短设备使用寿命甚至发生危险。所述冷却装置1440例如可以包括设置在所述反应器壳体1410外部的至少一组冷却套。冷却套可以包括两个部分,两个部分之间可以通过固定孔和螺栓固定,每个部分中可以充入冷却水。本公开实施例的冷却装置可以包括一组或多组冷却套,在设备运行时,可以通过调整使用状态的冷却套的数量实现对反应器的温度的控制。类似地,本公开实施例的加热装置可以包括一组或多组加热套,在设备运行时,可以通过调整使用状态的加热套的数量实现对反应器的温度的控制。
根据本公开实施例,所述反应器壳体1410包括靠近所述有机物进料口1411的第一区域10以及靠近所述出料口1413的第二区域20,所述加热装置1420设置于所述第一区域10的外部,所述冷却装置1440设置于所述第二区域20的外部。根据本公开 实施例,超临界水氧化在第一区域10内完成,产物经第二区域20向出料口1413流动的过程中,被冷却装置1440冷却,到达出料口时的温度约为150~300℃。
根据本公开实施例,该反应器1400还可以包括搅拌器1430,该搅拌器1430包括转轴1431,转轴1431穿过反应器壳体1410。该反应器1400可以倾斜安装,倾斜坡度为10%,出料口1413处于最底端,该搅拌器1430用于对反应器1400中的物质进行搅动。超临界水反应产物一般为超细颗粒物,没有结晶生长的条件,只要有扰动,颗粒物不会沉积、粘结,有效防止超细无机盐结成晶体堵塞出料口1413。例如,搅拌器1430可以包括内磁转子1432和外磁转子1433,在通电的情况下,在外磁转子1433的带动下,内磁转子1432带动转轴1431和搅拌子旋转。该搅拌器1430例如可以保持800rpm的转速进行搅拌,使得超临界水反应产物颗粒保持悬浮而不会沉积。
根据本公开实施例,转轴1431穿过所述出料口1413。如图14所示,该出料口1413为L型,转轴1431通过反应器壳体1410并且部分地穿过所述出料口1413伸入反应器壳体1410内,在出料口1413附近搅拌,防止堵塞出料口1413。
根据本公开实施例,所述搅拌器1430配置有电流表和/或电压表,用于监测搅拌器的电流和电压,当搅拌器1430的电流和电压升高并达到预定数值时,反应器1400内部的压力较大,需要减小两个进料口1411和1412的进料流量,甚至暂停进料。
如图14所示,根据本公开实施例,反应器壳体1410包括第一端壁1414、侧壁1415以及与第一端壁1414相对的第二端壁1416,有机物进料口1411设置于所述第一端壁1414,所述氧化剂进料口1412设置于所述侧壁1415,所述出料口1413设置于所述第二端壁1416。可选地,出料口1413也可以设置在侧壁1415上。
根据本公开实施例,反应器1400还包括内衬1450,设置于所述第二端壁1416,并向所述第一端壁1414的方向延伸,折返管1460至少部分地设置于内衬1450的内部,所述出料口1413设置于所述内衬1450的内部,其中,所述氧化剂进料口1412与所述第一端壁1414的距离大于所述氧化剂进料口1412与所述第二端壁1416的距离。即,氧化剂进料口1412更靠近第二端壁1416,氧化剂进入反应器1400后,沿内衬1450的外部向第一端壁1414的方向移动,直至到达折返管1460的外管1462的出口附近,与废液在超临界水环境下发生氧化反应。该设计使得氧化剂能够在内衬和壳体之间进行预热,并且使得内衬的温度不至于过高,延长使用寿命。
根据本公开实施例,该内衬1450的材质例如可以是高温合金材料GH4169,其内径可以是40-133mm,长度可以是1000-6000mm。
根据本公开实施例,该内衬1450经包括渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。相当于在内衬上生成了防腐涂层,并且在超临界水的高温作用下,内衬上形成一层致密的凝胶层,阻止超临界水与内衬金属的接触与腐蚀。
根据本公开的实施例,形成致密的凝胶层的关键条件是在金属与凝胶层之间有一层致密的特殊金属原子。一方面,这层特殊的金属原子通过金属键与本体金属相连。另一方面又以化学键的形式与凝胶层相连。为了制备这层金属原子,本公开的实施例采用镍基金属,首先对金属本体进行渗铝处理,之后用喷丸锻击金属表面,以便形成致密的金属铝原子层,之后喷涂热障涂层,通过金属铝、三氧化二铝陶瓷层的交替喷涂6~8层,金属表面形成热障涂层,厚度约2~3mm。热障涂层遇到超临界水后,这层热障涂层将转变为致密的凝胶层。凝胶层可以阻止超临界水与内衬金属的接触与腐蚀。当反应中心温度700℃-800℃时,热障涂层表面温度保持在650℃-750℃,内衬机体温度保持在550℃-650℃。
根据本公开实施例,该反应器1400还包括金属丝网,设置在所述内衬1450和所述侧壁1415之间,使得内衬管道的散热面积增大10-100倍,借助流体错流作用,使得内衬管道温度降温很快,有效降低了内衬管道的温度,降低了内衬管道的腐蚀倾向。
根据本公开实施例,反应器1400还可以包括至少一个温度传感器,用于获得所述超临界水氧化反应器的至少一个位置的温度。例如,内衬1450的两端和中间可以配备温度探头,加热装置1420与反应器壳体1410之间可以设置温度探头。
根据本公开实施例,所述反应器1400还包括至少一个压力传感器,用于获得所述反应器的至少一个位置的压力。例如,反应器1400的两端可以配备压力表,用于检测反应器1400内部的压力。
根据本公开实施例,所述超临界水氧化系统还包括防护装置,所述防护装置包括反应器防护套,在高温高压的反应器发生危险时对外界起到保护作用。
图15示意性示出了根据本公开另一实施例的超临界水氧化系统1500的示意图。
如图15所示,该超临界水氧化系统1500包括反应器1510、分离器1520、氧化剂供料装置1530、有机物供料装置1540。反应器1510的出料口通过背压阀1560与分离器1520的蒸发池相连通。其中,反应器1510例如可以参考图14描述的反应器1400,此处不再赘述。
根据本公开实施例,该超临界水氧化系统1500还可以包括供水装置1550。供水 装置1550例如可以包括第一水箱、第二水箱、蠕动泵、高压泵以及单向阀,其中,所述高压泵分别与第一水箱和蠕动泵相通,所述蠕动泵与所述第二水箱相通。其中,第一水箱可以用于存储水,第二水箱可以用于存储蔗糖溶液。
本公开实施例采用蔗糖溶液可以有效提高超临界水反应室温度。不同于丙醇,蔗糖水溶液是非易燃易爆物品,同时浓蔗糖水溶液的燃烧热高于丙醇的燃烧热,可以将超临界水反应区温度提高到一定温度区间550℃-800℃。
根据本公开实施例,氧化剂例如可以是液氧、氧气、双氧水等,优选地,本公开实施例可以采用液氧作为氧化剂。根据本公开实施例,用于提供液氧的氧化剂供给装置1530例如可以包括液氧杜瓦瓶、液氧泵、单向阀、液氧水浴汽化器以及高压氧气瓶组。
根据本公开实施例,有机物供料装置1540例如可以包括料液箱、高压泵以及单向阀。
根据本公开实施例,在经过背压阀后,压力逐渐恢复为常压,流出物也由超临界态恢复为气液固三态。由于反应器的流出物是高温高压流体,例如流出物本身的温度为150~300℃,压强为25MPa,为了能使高温高压流体平稳蒸发,可以在蒸发池中设置冷却管,使得流出物可以始终处于沸腾状态。即冷却管将蒸发池中液体的温度稳定在目标温度范围内,例如,可以是在100℃左右,使得液体可以在蒸发池中稳定沸腾。
根据本公开实施例,蒸发池内还可以设置有排渣口,用于排出蒸发池内的非挥发性的盐渣。在所述排渣口可以设置有pH在线监测计1583,在正常工况下,由于产生二氧化碳,排渣口的排出物的pH值约为2左右,若出现明显上升,则可以降低有机物供料装置的供料流量或提高反应器的温度或压力。
根据本公开实施例,所述冷凝池内设置有排水口,用于排出冷凝池中的水。排水装置可以包括多根辐射管和一个环管,提高排水效率。排出的水为蒸馏水,有害物质浓度低于十万分之一。在排水口可以设置化学需氧量(COD)在线监测器1582,对水质进行监测,若COD含量升高,可以降低有机物供料装置的供料流量或提高反应器的温度或压力,使反应更充分。
根据本公开实施例,所述分离器的顶部设置有排气口,用于排出二氧化碳等净化气体。在排气口处可以设置气体过滤装置,例如可以包括活性炭过滤柱1571和高效过滤器1572,以保证排出气体符合排放标准。根据本公开实施例,在排气口处还可以设置挥发性有机物(VOC)在线监测器1581,对气体进行监测,若VOC含量升高,则 可以降低有机物供料装置的供料流量或提高反应器的温度或压力,使反应更充分。
根据本公开实施例,所述超临界水氧化系统还包括冷水机组,用于向所述冷凝管供水,也可以同时向反应器中的冷却装置供水。
在相关技术中,通过超临界水氧化反应器将有机物转化为二氧化碳、水和无机盐之后,一般需要经过冷却设备、气液分离设备、液体冷却设备、气体冷却设备等多个设备处理,才能将二氧化碳、水和无机盐分离。这种处理方式不仅处理流程长,设备多,而且成本高。通过本公开的实施例,利用分离器处理高温(120~300℃)的流出物,使得盐渣在蒸发池底部蒸发浓缩,水在蒸发池中蒸发,经过冷凝管冷却,可以从冷凝池的排水口排出,洁净气体直接可以从分离设备的顶部排出。本公开的分离设备可以同时实现混合物的分离,不仅处理流程短,而且达到了有效降低设备一次性投资和设备运行费用,实现了放射性废物最大限度地减容。以放射性铯和锶为例,放射性铯经过蒸发池蒸发后,去污因子可以达到10 5,水蒸气中的铯不到蒸发池水中铯浓度的十万分之一,蒸发对锶的去污因子可以达到10 9,因此蒸汽可以得到深度净化。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述监测系统包括上文所述的以下至少一种:设置在所述反应器壳体上、蒸发池内、冷凝池内的温度传感器;设置在所述反应器壳体内的压力传感器;设置在所述排渣口的pH在线监测计;设置在所述排气口处的挥发性有机物在线监测器;以及/或者设置在所述排水口的化学需氧量在线监测器。所述超临界水氧化系统还包括控制系统,用于响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或蒸发池的温度;以及/或者所述背压阀1560的状态。
图16示意性示出了根据本公开实施例的套管1610的示意图。
如图16所示,蒸发池1600通过反应器出口管与所述反应器连通,所述蒸发池1600中设置有套管1610,所述反应器出口管接入所述套管1610内,所述套管1610上设有小孔。反应器排出的物质通过多个小孔分散排入蒸发池1600内。
根据本公开的实施例,套管1610的尺寸和形状不做限定,例如,套管1610的直径可以42~50mm,壁厚可以是4~6mm,形状可以是直管,也可以是螺旋管。小孔大小例如可以是直径2~3mm,其作用主要是将高速流体通过出口管上的小孔得到消解与分散,缓慢释放压力。
根据本公开实施例,所述分离器中设置有冷却内桶,所述冷凝管设置于所述冷却 内桶的内部,所述冷凝池形成于所述冷却内桶的底部,所述冷却内桶的桶壁上设置有多个孔道。下面结合图17,对本公开实施例的冷却内桶进行描述。
图17示意性示出了根据本公开实施例的冷却内桶1710的示意图。
如图17所示,冷却内桶1710的桶壁上设置有多个孔道1713,用于供蒸发池中蒸发的蒸汽进入冷却内桶1710。
根据本发明实施例,可以向冷却内桶1710中的冷凝管1711中充入冷却水(例如由入口17111充入,从出口17112排出),使得冷却内桶1710中的温度相对于蒸发池中的温度低,冷凝管1711充水后可以降低蒸汽的温度。
根据本公开实施例,例如,蒸发池中蒸发的水蒸汽、氧气和二氧化碳可以从桶壁上设置的多个孔道1713进入冷却内桶1710,如图17中箭头所示的向上流动方向。蒸汽遇到冷空气后,冷凝生成水珠并落入冷凝池1712中,然后从排液口1714排出。而氧气和二氧化碳可以从顶部的排气口1715排出。
根据本发明的实施例,冷凝池1712的体积不做限定。例如,冷凝池1712的体积可以是50L~500L,冷凝池1712中可以通过多根辐射管道与外部的环形管道连接,导水能力可以是800kg/h~8000kg/h。冷凝管1711可以是水平缠绕螺旋冷却管,尺寸大小不做限定。
根据本发明的实施例,桶壁上留有多个孔道1713供气体穿过,冷却内桶1710能够使得100℃以上的水蒸汽冷凝为60℃~90℃的水,冷凝能力可以是200kg/h~2000kg/h。冷却盘管区的体积不做限定,例如体积可以1000L,冷凝水可以返回超临界水氧化反应器中复用,也可以另作他用或直接排放。
图18示意性示出了根据本公开实施例的废液处理方法的流程图。
如图18所示,该方法包括操作S1810~S1840。
在操作S1810,对反应器加热。
在操作S1820,在反应器壳体内的温度达到第一温度时,将第一溶液通过所述有机物进料口输入反应器壳体内,将氧化剂和水通过所述氧化剂进料口输入反应器壳体内,直到反应器壳体内的温度达到第二温度。
在操作S1830,在反应器壳体内的压力达到预定压力时,打开反应器出料口处的背压阀。
在操作S1840,将废液通过有机物进料口输入反应器壳体内,其中,废液在依次经过折返管的内管和外管之后,到达外管的开口处,在超临界水环境下被氧化,并从 出料口排出,进入所述分离器的蒸发池,通过自蒸发实现有害物质的分离。
根据本公开实施例,例如,可以先将反应器充满水,利用电加热套预热反应器,使反应器壳体内的温度达到第一温度,例如可以是300℃。根据本公开的实施例,第一溶液例如可以是蔗糖溶液,通过调节蔗糖溶液和水的比例,逐步升高蔗糖浓度,将蔗糖溶液通过氧化物入口输入反应器内,同时向反应器输入氧化剂。根据本公开实施例,该氧化剂例如可以是液氧。在300℃的条件下,氧化剂与蔗糖发生反应产生热量,将反应器温度继续加热到第二温度。
由于本公开实施例提供的经渗铝、喷丸锻击以及喷涂热障涂层处理的内衬,反应器相较于现有技术而言可以承受更高的温度,反应器的寿命可以延长5-10年。根据本公开实施例,所述第二温度不小于600℃。优选地,所述第二温度介于650℃至800℃之间,该温度范围相较于其它超临界水反应的相关技术而言反应温度高,有效提高了反应速度。并且,由于反应温度高,反应所需时间比传统超临界水低10倍,使得相同处理能力的设备的体积大幅减少。
在反应器的内衬之内设置了折返管,有机溶剂流进折返管后,温度逐渐增加,有机物分子逐渐热解,当到折返管的外管出口时,有机物大部分热解为小分子,立即发生氧化反应,放出大量热量,热量随流体流经折返管外壁时将热量传递给有机物,这样氧化反应的热量会被有效利用,同时又减低了管壁的温度,降低了设备的腐蚀。
根据本公开的实施例,在达到反应条件的情况下,例如,超临界水氧化温度保持在650℃~750℃,压力保持在20~25Mpa的情况下,启动有机物供料装置,将有机废液通过有机物进料口输入折返管。一般工况下,反应器内衬靠近有机物进料口部分温度为650℃~800℃,相对应反应器壳体部分温度不超过600℃。
根据本公开实施例,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃。
例如,可以控制第一区域的温度在650℃~800℃之间。当有机物浓度较高时,释放的氧化热较多,此时需要通过冷却装置对反应器降温,使第一区域的温度控制在800℃以内。另一方面,反应产物经过冷却装置和内衬与壳体之间的流体的冷却作用下,温度降低到120℃~300℃,可选地,出料口的排出物的温度可以介于150℃至300℃之间。相对于现有技术中反应器出料口的60℃左右的温度,本公开实施例的出料口的温度较 高,例如可以达到300℃,减轻了超临界水反应器的冷却负担,使得设备体积可以缩小,同时效率可以提高。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述有机物进料口和氧化剂进料口中的至少一个的进料速率。
根据本公开实施例,所述超临界水氧化系统还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:氧化物供料的压力和/或流量;有机物供料的压力和/或流量;所述反应器和/或所述蒸发池的温度;以及/或者所述背压阀的状态。请参考上文关于系统的描述,此处不再赘述。
本公开的实施例提供了一种用于超临界水氧化的反应器,包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口,加热装置,用于提升所述反应器壳体内的温度,以及折返管,设置于所述反应器壳体内,所述折返管包括两端开口的内管以及一端开口的外管,所述外管套设于所述内管的外部,所述内管与所述有机物进料口连通。
图19示意性示出了根据本公开实施例的用于超临界水氧化的反应器1900的示意图。
如图19所示,用于超临界水氧化的反应器1900包括反应器壳体1910,加热装置1920和折返管1930。反应器壳体1910上设置有氧化剂进料口1912、有机物进料口1911以及出料口1913。折返管1930包括两端开口的内管1931以及一端开口的外管1932,所述外管1932套设于所述内管1931的外部。所述内管1931与所述有机物进料口1911连通。
本公开实施例对反应器壳体1910的形状、材质、尺寸大小不做限定。例如,反应器壳体1910可以是圆柱型,材质可以是为INCONEL625,反应器壳体1910内径可以是80~219mm,长度可以是1000~6000mm。
加热装置1920用于提高反应器壳体1910的温度,进而对反应器壳体内形成的腔室加热。本公开实施例对加热装置1920的类型不做限定。例如,加热装置1920可以是一组或多组加热套,本公开实施例可以将加热套套设在反应器壳体1910的外部,通过热传导的方式向反应器壳体1910内部传递热量。
折返管1930设置在反应器壳体1910内,有机液体通过内管1931从有机物进料口1911进入,流动到内管的另一端后进入外管1932,向相反的方向继续流动,直至从外管1932的开口的一端流出,在反应器壳体1910内部与氧化剂相遇,在超临界水环境下被氧化。有机液体在折返管1930中流动的过程中,就可以进行充分预热升温,甚至尽可能地热解为小分子有机物,使得氧化效率提高。
根据本公开实施例,折返管1930例如可以设置于所述反应器1900的中心轴位置,使其受热温度可以达到最高。
根据本公开实施例,内管1931和外管1932的形状、材质、尺寸大小不做限定。例如,内管1931直径可以是φ25~φ42mm,壁厚可以是4~6mm,材质可以是INCONEL625;外管1932直径可以是42mm以上,壁厚可以是4~6mm,材质可以是GH4169;长度都可以在3000mm~6000mm之间。根据本公开的实施例,折返管1930大小适中,可以有效降低生产成本,有利于市场应用。根据本公开实施例,当有机物流量为10L/h,有机物在折返管内的停留时间最少8s以上,而在600℃时,有机物热解一般仅需1秒左右,完全满足理论所需时间。
在现有技术中,不设置折返管,有机物直接进料,则有机物会冷却反应区温度,降低反应效果。当反应温度为600℃时,有机物热解需要时间为1s左右;当反应温度为550℃时,有机物热解所需时间则为5min,热解过程将严重影响反应效率。可见,本公开相比于现有技术,反应时间非常快,提高了处理效率。
本公开实施例对氧化剂的种类不做限定,例如,可以是液氧、氧气、双氧水等。
下面参考图20和图21,结合具体实施例对图19所示的反应器做进一步说明。
图20示意性示出了根据本公开另一实施例的用于超临界水氧化的反应器2000的示意图。需要说明的是,本公开实施例中的反应器壳体2010、加热装置2020、折返管2030可以参考本公开对图19中的反应器壳体1910、加热装置1920、折返管1930的描述,为了描述的简洁起见,在此不再赘述。
如图20所示,该反应器2000在前述实施例的基础上,还可以包括搅拌器2060,该搅拌器2060包括转轴2061,转轴2061穿过反应器壳体2010。该反应器2000可以倾斜安装,倾斜坡度为10%,出料口2013处于最底端,该搅拌器2060用于对反应器2000中的物质进行搅动。超临界水反应产物一般为超细颗粒物,没有结晶生长的条件,只要有扰动,颗粒物不会沉积、粘结,有效防止超细无机盐结成晶体堵塞出料口2013。例如,搅拌器2060可以包括内磁转子2062和外磁转子2063,在通电的情况下,在外 磁转子2063的带动下,内磁转子2062带动转轴2061和搅拌子旋转。该搅拌器2060例如可以保持800rpm的转速进行搅拌,使得超临界水反应产物颗粒保持悬浮而不会沉积。
根据本公开实施例,转轴2061穿过所述出料口2013。如图20所示,该出料口2013为L型,转轴2061通过反应器壳体2010并且部分地穿过所述出料口2013伸入反应器壳体2010内,在出料口2013附近搅拌,防止堵塞出料口2013。
根据本公开实施例,所述搅拌器2060配置有电流表和/或电压表,用于监测搅拌器的电流和电压,当搅拌器2060的电流和电压升高并达到预定数值时,反应器2000内部的压力较大,需要减小两个进料口2011和2012的进料流量,甚至暂停进料。
如图20所示,根据本公开实施例,反应器壳体2010包括第一端壁2014、侧壁2015以及与第一端壁2014相对的第二端壁2016,有机物进料口2011设置于所述第一端壁2014,所述氧化剂进料口2012设置于所述侧壁2015,所述出料口2013设置于所述第二端壁2016。可选地,出料口2013也可以设置在侧壁2015上。
根据本公开实施例,反应器2000还包括内衬2050,设置于所述第二端壁2016,并向所述第一端壁2014的方向延伸,折返管2030至少部分地设置于内衬2050的内部,所述出料口2013设置于所述内衬2050的内部,其中,所述氧化剂进料口2012与所述第一端壁2014的距离大于所述氧化剂进料口2012与所述第二端壁2016的距离。即,氧化剂进料口2012更靠近第二端壁2016,氧化剂进入反应器2000后,沿内衬2050的外部向第一端壁2014的方向移动,直至到达折返管2030的外管2032的出口附近,与废液在超临界水环境下发生氧化反应。该设计使得氧化剂能够在内衬和壳体之间进行预热,并且使得内衬的温度不至于过高,延长使用寿命。
根据本公开实施例,该内衬2050的材质例如可以是高温合金材料GH4169,其内径可以是40-133mm,长度可以是1000-6000mm。
根据本公开实施例,该内衬2050经包括渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。相当于在内衬上生成了防腐涂层,并且在超临界水的高温作用下,内衬上形成一层致密的凝胶层,阻止超临界水与内衬金属的接触与腐蚀。
根据本公开的实施例,形成致密的凝胶层的关键条件是在金属与凝胶层之间有一层致密的特殊金属原子。一方面,这层特殊的金属原子通过金属键与本体金属相连。另一方面又以化学键的形式与凝胶层相连。为了制备这层金属原子,本公开的实施例 采用镍基金属,首先对金属本体进行渗铝处理,之后用喷丸锻击金属表面,以便形成致密的金属铝原子层,之后喷涂热障涂层,通过金属铝、三氧化二铝陶瓷层的交替喷涂6~8层,金属表面形成热障涂层,厚度约2~3mm。热障涂层遇到超临界水后,这层热障涂层将转变为致密的凝胶层。凝胶层可以阻止超临界水与内衬金属的接触与腐蚀。当反应中心温度700℃-800℃时,热障涂层表面温度保持在650℃-750℃,内衬机体温度保持在550℃-650℃。
根据本公开实施例,该反应器2000还包括金属丝网,设置在所述内衬2050和所述侧壁2015之间,使得内衬管道的散热面积增大10-100倍,借助流体错流作用,使得内衬管道温度降温很快,有效降低了内衬管道的温度,降低了内衬管道的腐蚀倾向。
根据本公开实施例,所述反应器还包括冷却装置,用于在开始反应后,对反应器进行降温,防止反应器的温度过高,缩短设备使用寿命甚至发生危险。
根据本公开实施例,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套。
图21示意性示出了根据本公开另一实施例的冷却套2110的示意图。
如图21所示,冷却套2110可以包括两个部分2111和2112,两个部分之间可以通过固定孔和螺栓2113固定,每个部分2111和2112中可以充入冷却水。本公开实施例的冷却装置可以包括一组或多组冷却套2110,在设备运行时,可以通过调整使用状态的冷却套的数量实现对反应器2100的温度的控制。类似地,本公开实施例的加热装置可以包括一组或多组加热套,在设备运行时,可以通过调整使用状态的加热套的数量实现对反应器的温度的控制。
请返回参考图20。根据本公开实施例,所述反应器壳体2010包括靠近所述有机物进料口2011的第一区域10以及靠近所述出料口2013的第二区域20,所述加热装置2020设置于所述第一区域10的外部,所述冷却装置2040设置于所述第二区域20的外部。根据本公开实施例,超临界水氧化在第一区域10内完成,产物经第二区域20向出料口2013流动的过程中,被冷却装置2040冷却,到达出料口时的温度约为150~300℃。
根据本公开实施例,反应器2000还可以包括至少一个温度传感器,用于获得所述超临界水氧化反应器的至少一个位置的温度。例如,内衬2050的两端和中间可以配备温度探头,加热装置2020与反应器壳体2010之间可以设置温度探头。
根据本公开实施例,所述反应器2000还包括至少一个压力传感器,用于获得所 述反应器的至少一个位置的压力。例如,反应器2000的两端可以配备压力表,用于检测反应器2000内部的压力。
根据本公开实施例,通过在反应器壳体内设置折返管,使得有机物在折返管内流动的过程中就可以进行充分预热,升温,甚至可以进行热解,从而提高反应效率。
本公开实施例还提供了一种利用上文所述的反应器处理废液的方法,下面参考图22所示意的实施例进行说明。
图22示意性示出了根据本公开实施例的废液处理方法的流程图。
如图22所示,该方法包括操作S2210~S2240。
在操作S2210,对反应器加热。
在操作S2220,在反应器壳体内的温度达到第一温度时,将第一溶液通过所述有机物进料口输入反应器壳体内,将氧化剂和水通过所述氧化剂进料口输入反应器壳体内,直到反应器壳体内的温度达到第二温度。
在操作S2230,在反应器壳体内的压力达到预定压力时,打开反应器出料口处的背压阀。
在操作S2240,将废液通过有机物进料口输入反应器壳体内,其中,废液在依次经过折返管的内管和外管之后,到达外管的开口处,在超临界水环境下被氧化,并从出料口排出。
根据本公开实施例,例如,可以先将反应器充满水,利用电加热套预热反应器,使反应器壳体内的温度达到第一温度,例如可以是300℃。根据本公开的实施例,第一溶液例如可以是蔗糖溶液,通过调节蔗糖溶液和水的比例,逐步升高蔗糖浓度,将蔗糖溶液通过氧化物入口输入反应器内,同时向反应器输入氧化剂。根据本公开实施例,该氧化剂例如可以是液氧。在300℃的条件下,氧化剂与蔗糖发生反应产生热量,将反应器温度继续加热到第二温度。
本公开实施例采用蔗糖溶液可以有效提高超临界水反应室温度。不同于丙醇,蔗糖水溶液是非易燃易爆物品,同时浓蔗糖水溶液的燃烧热高于丙醇的燃烧热,可以将超临界水反应区温度提高到一定温度区间550℃-800℃。
由于本公开实施例提供的经渗铝、喷丸锻击以及喷涂热障涂层处理的内衬,反应器相较于现有技术而言可以承受更高的温度,反应器的寿命可以延长5-10年。根据本公开实施例,所述第二温度不小于600℃。优选地,所述第二温度介于650℃至800℃之间,该温度范围相较于其它超临界水反应的相关技术而言反应温度高,有效提高了 反应速度。并且,由于反应温度高,反应所需时间比传统超临界水低10倍,使得相同处理能力的设备的体积大幅减少。
在反应器的内衬之内设置了折返管,有机溶剂流进折返管后,温度逐渐增加,有机物分子逐渐热解,当到折返管的外管出口时,有机物大部分热解为为小分子,立即发生氧化反应,放出大量热量,热量随流体流经折返管外壁时将热量传递给有机物,这样氧化反应的热量会被有效利用,同时又减低了管壁的温度,降低了设备的腐蚀。
根据本公开的实施例,在达到反应条件的情况下,例如,超临界水氧化温度保持在650℃~750℃,压力保持在20~25Mpa的情况下,启动有机物供料装置,将有机废液通过有机物进料口输入折返管。一般工况下,反应器内衬靠近有机物进料口部分温度为650℃~800℃,相对应反应器壳体部分温度不超过600℃。
根据本公开实施例,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃。
例如,可以控制第一区域的温度在650℃~800℃之间。当有机物浓度较高时,释放的氧化热较多,此时需要通过冷却装置对反应器降温,使第一区域的温度控制在800℃以内。另一方面,反应产物经过冷却装置和内衬与壳体之间的流体的冷却作用下,温度降低到120℃~300℃,可选地,出料口的排出物的温度可以介于150℃至300℃之间。相对于现有技术中反应器出料口的60℃左右的温度,本公开实施例的出料口的温度较高,例如可以达到300℃,减轻了超临界水反应器的冷却负担,使得设备体积可以缩小,同时效率可以提高。
根据本公开实施例,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述有机物进料口和氧化剂进料口中的至少一个的进料速率。
本公开的实施例提供了一种用于分离多态相混合物的分离设备,包括蒸发池,用于接收多态相混合物,其中,蒸发池内设置有第一冷却盘管和排渣口,第一冷却盘管用于在多态相混合物流入蒸发池之后,将蒸发池中溶液的温度稳定在目标温度范围内,排渣口用于排出多态相混合物中的固态物质;冷却内桶,包括第二冷却盘管和冷凝水 池,第二冷却盘管用于冷却蒸发池中蒸发的蒸汽,冷凝水池用于接收第二冷却盘管冷却蒸汽后得到的液态物质,冷凝水池设置有排液口,用于排出液态物质;其中,蒸发池与冷却内桶封装在一壳体内,蒸发池设置在冷却内桶下方。
图23示意性示出了根据本公开实施例的用于分离多态相混合物的分离设备的示意图。
需要注意的是,图23所示仅为可以应用本公开实施例的用于分离多态相混合物的分离设备的示例,以帮助本领域技术人员理解本公开的技术内容,但并不意味着本公开的用于分离多态相混合物的分离设备不可以是其它构造方式。
如图23所示,用于分离多态相混合物的分离设备2300包括蒸发池231和冷却内桶232。
根据本公开的实施例,蒸发池231用于接收多态相混合物,其中,蒸发池231内设置有第一冷却盘管2311和排渣口2312,第一冷却盘管2311用于在多态相混合物流入蒸发池231之后,将蒸发池231中溶液的温度稳定在目标温度范围内,排渣口2312用于排出多态相混合物中的固态物质。
根据本公开的实施例,蒸发池231可以接收超临界水反应器的流出物,流出物可以是多态相混合物,蒸发池231可以将流出物进行蒸发浓缩,然后回收固态物质,蒸汽上升到冷却内桶232中。
根据本公开的实施例,由于超临界水反应器的流出物可能是高温高压流体,例如反应的流出物本身的温度为150~300℃,压强为25MPa,为了能使高温高压流体平稳蒸发,可以在蒸发池231中设置冷却盘管,使得流出物可以始终处于沸腾状态。即第一冷却盘管2311将蒸发池231中溶液的温度稳定在目标温度范围内,例如,可以是在100℃左右,使得溶液可以在蒸发池231中稳定沸腾。蒸发的蒸汽可以上升到冷却内桶232中,反应流出物中所包含的例如放射性金属元素可以以无机盐的形式从排渣口2312流出并回收。
根据本公开的实施例,蒸发池的体积可以根据多态相混合物的处理流量进行确定,可选地,蒸发池的体积为多态相混合物的处理流量的2至3倍。
具体地,蒸发池231体积可以是100L到5000L。根据本公开的实施例,可以使得蒸发池231一直处于沸腾状态,如温度维持在100℃左右。假设蒸发速率认为等于多态相混合物的产量,考虑到100℃的水的蒸发速率与其体积的比例关系为2~3倍,如果多态相混合物的产量为150kg/h,则蒸发池231体积可以是300L。
根据本公开的实施例,多态相混合物可以是包含固态物质、液体物质和气态物质中的两种以上物质。例如,多态相混合物同时包含固态物质和气态物质,或者同时包含固态物质、液体物质和气态物质。
根据本公开的实施例,多态相混合物可以是有机溶剂蒸残液采用超临界水氧化技术处理后得到的混合物,例如,可以是采用超临界水氧化反应器处理有机溶剂蒸残液后得到的流出物,一般超临界水氧化液体流出物为含盐废水,或者为放射性废水,或者为无机盐水。
有机溶剂蒸残液是商业后处理大厂萃取剂再生复用过程中产生的放射性有机废物。来自后处理主工艺厂房中的污溶剂一部分经过急骤蒸馏、萃取剂配制后返回使用。急骤蒸馏后产生的蒸残液含有TBP/煤油的辐解产物(DBP、MBP、丁醇、长链烷基磷酸酯、有机硝基化合物、有机亚硝基化合物、硝酸酯、高沸点聚合物等),组成复杂,部分辐解产物对铀、钚及裂变产物络合能力强,蒸残液放射性强,几乎集中了污溶剂中的全部放射性。
根据本公开的实施例,有机物中的非C、H、O(或者放射性元素、或者重金属、或者极性非金属如卤素、S、P等)经过该分离设备处理后,在其蒸发池101底部蒸发浓缩为盐渣,以无机盐渣的形式分离出来,有效实现有机物最大限度减容,为无机盐渣的处理和再利用奠定了基础。
根据本公开的实施例,冷却内桶232包括第二冷却盘管2321和冷凝水池2322,第二冷却盘管2321用于冷却蒸发池231中蒸发的蒸汽,冷凝水池2322用于接收第二冷却盘管2321冷却蒸汽后得到的液态物质,冷凝水池2322设置有排液口2323,用于排出液态物质;其中,蒸发池231与冷却内桶232封装在一壳体内,蒸发池231设置在冷却内桶232下方。
根据本公开的实施例,液态物质可以是水,第二冷却盘管2321冷却蒸汽后得到蒸馏水,可以实现水资源的回收利用。
根据本公开的实施例,第一冷却盘管2311和第二冷却盘管2321的种类不做限定。例如,可以是螺旋式冷却管。第一冷却盘管2311和第二冷却盘管2321的设置方式不做限定,只要能够实现其对应的功能即可。
根据本发明的实施例,分离设备2300的壳体的顶部设置有排气口233,用于排放多态相混合物中的气态物质。
根据本公开的实施例,通过将蒸发池231与冷却内桶232封装在一壳体内,实现 了固液气多态物质在一体机内分离,省去了冷却设备、气液分离设备、液体冷却设备、气体冷却设备,简化了处理流程。
在相关技术中,通过超临界水氧化反应器将有机物转化为二氧化碳、水和无机盐之后,一般需要经过冷却设备、气液分离设备、液体冷却设备、气体冷却设备等多个设备处理,才能将二氧化碳、水和无机盐分离。这种处理方式不仅处理流程长,设备多,而且成本高。
通过本公开的实施例,利用分离设备处理多态相混合物,使得多态相混合物中的固态物质在蒸发池底部蒸发浓缩,例如以无机盐渣的形式分离出来;使得多态相混合物中的液态物质在蒸发池中蒸发,经过冷却内桶冷却,可以从冷凝水池的排液口中排出;使得多态相混合物中的气态物质直接可以从分离设备的顶部排出。通过本公开的分离设备,可以同时实现多态相混合物的分离,处理流程不仅短,而且达到了有效降低设备一次性投资和设备运行费用,实现了多态相混合物最大限度减容。
下面参考图24~图26,结合具体实施例对图23所示的分离设备做进一步说明。
图24示意性示出了根据本公开实施例的冷却内桶的示意图。
如图24所示,冷却内桶241的桶壁上设置有多个孔道2411,用于供蒸发池中蒸发的蒸汽进入冷却内桶241。
需要说明的是,本公开实施例中的冷却内桶241可以参考本公开对图23的描述,为了描述的简洁起见,在此不再赘述。
根据本发明的实施例,可以向冷却内桶241中的第二冷却盘管2412中充入冷却水,使得冷却内桶241中的温度相对于蒸发池中的温度低,第二冷却盘管2412充水后可以降低蒸汽的温度。
根据本公开的实施例,例如,蒸发池中蒸发的水蒸汽、氧气和二氧化碳可以从桶壁上设置的多个孔道2411进入冷却内桶241,如图24中箭头所示的向上流动方向。蒸汽遇到冷空气后,冷凝生成水珠并落入冷凝水池2413中,然后从排液口2414排出。而氧气和二氧化碳可以从顶部的排气口2415排出。
根据本发明的实施例,冷凝水池2413的体积不做限定。例如,冷凝水池2413的体积可以是50L~500L,冷凝水池2413中可以通过多根辐射管道与外部的环形管道连接,导水能力可以是200kg/h~2000kg/h。冷却盘管2412可以是水平缠绕螺旋冷却管,尺寸大小不做限定。
根据本发明的实施例,桶壁上留有多个孔道2411供气体穿过,冷凝内桶241能 够使得100℃水蒸汽冷凝为60℃~90℃的水,冷凝能力可以是200kg/h~2000kg/h。冷却盘管区的体积不做限定,例如体积可以1000L,冷凝水大部分返回超临界水氧化反应器供水箱中复用,少量可以排放。
通过本公开的分离设备,可以同时实现多态相混合物的分离,不仅处理流程短,而且达到了有效降低设备一次性投资和设备运行费用,实现了多态相混合物最大限度减容。
图25示意性示出了根据本公开实施例的套管的示意图。
需要说明的是,本公开实施例中的蒸发池251可以参考本公开对图23~图24的描述,为了描述的简洁起见,在此不再赘述。
如图25所示,蒸发池251内设置有用于接收多态相混合物的套管2511,套管2511的管壁上分布有多个小孔2512,多态相混合物通过多个小孔2512分散排入蒸发池251内。
根据本公开的实施例,套管2511的尺寸不做限定。例如,套管2511直径可以φ42~φ50mm,壁厚可以是4~6mm。小孔2512大小不做限定,例如,小孔直径可以是2~3mm,其作用主要是将高速流体通过出口管上的小孔2512得到消解与分散。
根据本公开的实施例,套管2511的种类不做限定。例如,套管2511可以是直管,也可以是螺旋管。
根据本公开的实施例,如图25所示,分离设备还可以包括背压阀2513。背压阀2513一端通过管道与套管2511连接,背压阀2513另一端用于通过管道与超临界水氧化反应器的出料口连接。
根据本公开的实施例,超临界水氧化反应器的流出物温度比传统流出物温度提高很多。一般地,超临界水氧化反应器的流出物,即氧化产物从出料口排出时,氧化产物从出料口排出时的温度为可以是150℃至300℃之间,而传统流出物温度一般是100℃。采用本公开的分离设备分离氧化产物时,可以使得超临界水反应器排出的氧化产物温度较高,减轻了超临界水反应器降温的负担。在提高超临界水氧化反应器流出物的温度后,为后面的流出物分离设备创造了自发蒸发的必要条件。
根据本公开的实施例,以放射性有机废料为例,氧化产物从超临界水氧化反应器的出料口排出后首先进入蒸发池,在蒸发池内氧化产物依靠自身温度达到蒸发的目的。经过蒸发后,流出物可以分为三部分:放射性金属盐渣、蒸馏水、净化气体。
根据本公开的实施例,流出物中放射性元素以金属盐的形式作为盐渣间歇排出, 蒸发池蒸出的蒸汽在蒸发池上方被冷却以蒸馏水的形式被回收利用,流出物中的氧气与二氧化碳则经过蒸发池水洗、蒸汽冷凝水洗后得到净化。
具体地,以放射性铯和锶为例,放射性铯经过蒸发池蒸发后,去污因子可以达到10 5,水蒸气中的铯不到蒸发池水中铯浓度的十万分之一,蒸发对锶的去污因子可以达到10 9,因此蒸汽可以得到深度净化。
图26示意性示出了根据本公开另一实施例的用于分离多态相混合物的分离设备的示意图。
如图26所示,用于分离多态相混合物的分离设备2600包括蒸发池261和冷却内桶262。
根据本公开的实施例,蒸发池261用于接收多态相混合物,其中,蒸发池261内设置有第一冷却盘管2611和排渣口2612,第一冷却盘管2611用于在多态相混合物流入蒸发池261之后,将蒸发池261中溶液的温度稳定在目标温度范围内,排渣口2612用于排出多态相混合物中的固态物质。
根据本公开的实施例,蒸发池261可以接收超临界水反应器的流出物,流出物可以是多态相混合物,蒸发池261可以将流出物进行蒸发浓缩,然后回收盐渣,蒸汽上升到冷却内桶262中。冷却内桶262可以包括第二冷却盘管2621和冷凝水池2622。
根据本公开的实施例,分离设备2600还可以包括背压阀2613。
需要说明的是,本公开实施例中的蒸发池261,冷却内桶262,第一冷却盘管2611,排渣口2612,第二冷却盘管2621,冷凝水池2622等可以参考本公开对图23~图25中的描述,为了描述的简洁起见,在此不再赘述。
根据本公开的实施例,如图26所示,排气口2623处设置有挥发性有机物在线监测器263(VOC)。
根据本公开的实施例,蒸发池261和/或冷却内桶262内配备有温度计(图26未示出),用于监测蒸发池261中溶液的温度和/或冷却内桶262内的温度。
根据本公开的实施例,蒸发池261内配备有液位计(图26未示出),并且/或者,蒸发池261配备有pH计265,用于监测蒸发池261中溶液的pH值。pH计265可以设置在蒸发池261内,也可以设置在蒸发池261外,如设置在与排渣口2612相连的管道上。
根据本公开的实施例,如图26所示,分离设备配备有化学需氧量在线监测器264(COD),用于检测冷凝水池2622中排出的冷凝水的化学需氧量。
根据本公开的实施例,超临界水氧化反应器的流出物通过管道流经背压阀,打开背压阀后,流出物通过套管经过蒸发池时可以以螺旋形式绕行于蒸发池内,将其中的热量传递给处于100℃的水中。之后还可以通过管道从冷却内桶中穿出并与背压阀门相连接,经过减压后又返回到蒸发池内,将其中的气水混合物喷入蒸发池内(100℃,常压)。
冷却内桶可以设置螺旋冷却管,将二次蒸发的蒸汽冷凝为液态水,液态水的温度65℃即可,大部分可以重新作为供水的来源利用,反应流出物中多余的氧气(如50%过量)被排出,蒸发池中的蒸发地物主要为金属放射性元素的盐类,通过排渣管路排出而被收集,这样便实现了有机物中放射性元素的回收、有机物无机化的目标。
通过本公开的实施例,利用分离设备处理多态相混合物,使得多态相混合物中的固态物质在蒸发池底部蒸发浓缩,例如以无机盐渣的形式分离出来;使得多态相混合物中的液态物质在蒸发池中蒸发,经过冷却内桶冷却,可以从冷凝水池的排液口中排出;使得多态相混合物中的气态物质直接可以从分离设备的顶部排出。可以同时实现多态相混合物的分离,处理流程不仅短,而且达到了有效降低设备一次性投资和设备运行费用,实现了多态相混合物最大限度减容。
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。
尽管已经参照本公开的特定示例性实施例示出并描述了本公开,但是本领域技术人员应该理解,在不背离所附权利要求及其等同物限定的本公开的精神和范围的情况下,可以对本公开进行形式和细节上的多种改变。因此,本公开的范围不应该限于上述实施例,而是应该不仅由所附权利要求来进行确定,还由所附权利要求的等同物来进行限定。

Claims (51)

  1. 一种超临界水氧化系统,包括:
    超临界水氧化装置,包括反应器和自分离外桶;所述反应器设置于所述自分离外桶的内部,所述反应器包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述蒸发池与所述出料口相连通,在所述蒸发池与所述出料口之间设有背压阀,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落至所述冷凝池中;
    氧化剂供料装置,与所述氧化剂进料口相连通;以及
    有机物供料装置,与所述有机物进料口相连通。
  2. 根据权利要求1所述的超临界水氧化系统,其中:
    所述蒸发池内设置有冷却管,所述蒸发池内设置有排渣口,所述冷凝池内设置有排水口,所述自分离外桶的顶部设置有排气口;
    所述自分离外桶中设置有冷却内桶,所述冷凝管设置于所述冷却内桶的内部,所述冷凝池形成于所述冷却内桶的底部,所述冷却内桶的桶壁上设置有多个孔道;
    所述蒸发池通过反应器出口管与所述反应器连通,所述蒸发池中设置有套管,所述反应器出口管接入所述套管内,所述套管上设有小孔;
    所述氧化剂供料装置包括氧气瓶组、氧气加压泵、高压氧气瓶以及单向阀;
    所述有机物供料装置包括第一水箱、第二水箱、蠕动泵、高压泵以及单向阀,其中,所述高压泵分别与所述第一水箱和所述蠕动泵相连通,所述蠕动泵与所述第二水箱相连通。
  3. 根据权利要求2所述的超临界水氧化系统,还包括监测系统,所述监测系统包括以下至少一种:
    设置在所述反应器壳体上、所述蒸发池内和/或所述冷凝池内的温度传感器;
    设置在所述反应器壳体内的压力传感器;
    设置在所述排渣口的pH在线监测计;
    设置在所述排气口处的挥发性有机物在线监测器;以及/或者
    设置在所述排水口的化学需氧量在线监测器。
  4. 根据权利要求3所述的超临界水氧化系统,还包括控制系统,用于响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:
    氧化物供料的压力和/或流量;
    有机物供料的压力和/或流量;
    所述反应器和/或所述蒸发池的温度;以及/或者
    所述背压阀的状态。
  5. 根据权利要求1所述的超临界水氧化系统,其中,所述反应器还包括:
    搅拌器,包括转轴,所述转轴穿过所述反应器壳体,其中,所述转轴穿过所述出料口,所述搅拌器配置有电流表和/或电压表;
    加热装置,用于提升所述反应器壳体内的温度,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套;以及/或者
    冷却装置,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套,所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
  6. 根据权利要求1所述的超临界水氧化系统,其中,所述反应器壳体包括第一端壁、侧壁以及与第一端壁相对的第二端壁,所述氧化剂进料口设置于所述第一端壁,所述有机物进料口设置于所述侧壁,所述出料口设置于所述第二端壁,所述反应器还包括:
    内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述出料口设置于所述内衬的内部,
    其中,所述有机物进料口与所述第一端壁的距离大于所述有机物进料口与所述第二端壁的距离,
    其中,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。
  7. 一种有机废水处理方法,用于通过权利要求1所述的超临界水氧化反应系统处理有机废水,所述方法包括:
    对所述反应器加热;
    在所述反应器壳体内的温度达到第一温度时,将第一溶液通过所述有机物进料口输入所述反应器壳体内,以及将氧化剂通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,其中,所述第二温度不小于600℃;
    在所述反应器壳体内的压力达到预定压力时,打开所述背压阀;
    将所述有机废水通过所述有机物进料口输入所述反应器壳体内,其中,所述有机废水在超临界水环境下被氧化,并从所述出料口排出,进入所述蒸发池,通过自蒸发实现有害物质的分离。
  8. 根据权利要求7所述的方法,其中,
    所述第二温度介于650℃至800℃之间,所述第一溶液包括蔗糖溶液,所述氧化剂包括氧气;并且/或者
    所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述氧化剂进料口和有机物进料口中的至少一个的进料速率。
  9. 根据权利要求7所述的方法,其中,所述反应器还包括加热装置和冷却装置,所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括:
    控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃,其中,所述出料口的排出物的温度介于150℃至300℃之间。
  10. 根据权利要求7所述的方法,其中,所述超临界水氧化系统还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:
    氧化物供料的压力和/或流量;
    有机物供料的压力和/或流量;
    所述反应器和/或所述蒸发池的温度;以及/或者
    所述背压阀的状态。
  11. 一种超临界水氧化装置,包括反应器,所述反应器包括:
    反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;
    加热装置,用于提升所述反应器壳体内的温度;以及
    搅拌器,包括转轴,所述转轴穿过所述反应器壳体。
  12. 根据权利要求11所述的超临界水氧化装置,其中:
    所述转轴穿过所述出料口;
    所述搅拌器配置有电流表和/或电压表;并且/或者
    所述反应器还包括冷却装置,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套,其中,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套,所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
  13. 根据权利要求11所述的超临界水氧化装置,其中,所述反应器壳体包括第一端壁、侧壁以及与第一端壁相对的第二端壁,所述氧化剂进料口设置于所述第一端壁,所述有机物进料口设置于所述侧壁,所述出料口设置于所述第二端壁,所述反应器还包括:
    内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述出料口设置于所述内衬的内部,
    其中,所述有机物进料口与所述第一端壁的距离大于所述有机物进料口与所述第二端壁的距离,
    其中,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层。
  14. 根据权利要求11所述的超临界水氧化装置,还包括:
    自分离外桶,所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述反应器设置于所述自分离外桶的内部,其中,所述蒸发池与所述出料口相连通,在所述蒸发池与所述出料口之间设有背压阀,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落至所述冷凝池中。
  15. 根据权利要求14所述的超临界水氧化装置,其中:
    所述蒸发池内设置有冷却管,所述蒸发池内设置有排渣口,所述冷凝池内设置有排水口,所述自分离外桶的顶部设置有排气口;
    所述自分离外桶内设置有冷却内桶,所述冷凝管设置于所述冷却内桶的内部,所述冷凝池形成于所述冷却内桶的底部,所述冷却内桶的桶壁上设置有多个孔道;并且/或者
    所述蒸发池通过反应器出口管与所述反应器连通,所述蒸发池中设置有套管,所述反应器出口管接入所述套管内,所述套管上设有小孔。
  16. 根据权利要求15所述的超临界水氧化装置,其中:
    所述蒸发池内、冷凝池内、反应器壳体上设置有温度传感器;
    所述反应器壳体内设置有压力传感器;
    所述排渣口设置有pH在线监测计;
    所述排气口处设置有挥发性有机物在线监测器;并且/或者
    所述排水口设置有化学需氧量在线监测器。
  17. 一种有机废水处理方法,通过权利要求11所述的超临界水氧化装置处理有机废水,所述超临界水氧化反应器的出料口处设置有背压阀,所述方法包括:
    对所述反应器加热;
    在所述反应器壳体内的温度达到第一温度时,启动所述搅拌器,并将第一溶液通过所述有机物进料口输入所述反应器壳体内,将氧化剂通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,其中,所述第二温度不小于600℃;
    在所述反应器壳体内的压力达到预定压力时,打开所述背压阀;
    将所述有机废水通过所述有机物进料口输入所述反应器壳体内,其中,所述有机废水在超临界水环境下被氧化,并从所述出料口排出。
  18. 根据权利要求17所述的方法,其中,
    所述第二温度介于650℃至800℃之间,所述第一溶液包括蔗糖溶液,所述氧化剂包括氧气;并且/或者
    所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述氧化剂进料口和有机物进料口中的至少一个的进料速率。
  19. 根据权利要求17所述的方法,其中,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述氧化剂进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括:
    控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃,其中,所述出料口的排出物的温度介于150℃至300℃之间。
  20. 根据权利要求17所述的方法,其中,所述超临界水氧化装置还包括自分离外桶,所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述反应器设置于所述自分离外桶的内部,其中,所述蒸发池与所述出料口相连,在所述蒸发池与所述出料口 之间设有背压阀,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液体能够回落至所述冷凝池中,所述超临界水氧化装置还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:
    氧化物供料的压力和/或流量;
    有机物供料的压力和/或流量;
    所述反应器和/或所述蒸发池的温度;以及/或者
    所述背压阀的状态。
  21. 一种超临界水氧化系统,包括:
    反应器,包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;
    分离器,包括蒸发池、冷凝池和冷凝管,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落到所述冷凝池中,所述蒸发池与所述出料口连通,在所述蒸发池和所述出料口之间设置有背压阀;
    氧化剂供料装置,与所述氧化剂进料口相连通;
    有机物供料装置,与所述有机物进料口相连通。
  22. 根据权利要求21所述的超临界水氧化系统,还包括以下至少一种:
    供水装置,与所述氧化剂进料口连通;
    冷水机组,用于向所述冷凝管供水;
    防护装置,包括反应器防护套,
    其中,
    所述蒸发池内设置有冷却管,所述蒸发池内设置有排渣口,所述冷凝池内设置有排水口,所述分离器的顶部设置有排气口,所述超临界水氧化系统还包括气体过滤装置,与所述排气口连通;
    所述分离器中设置有冷却内桶,所述冷凝管设置于所述冷却内桶的内部,所述冷凝池形成于所述冷却内桶的底部,所述冷却内桶的桶壁上设置有多个孔道;
    所述蒸发池通过反应器出口管与所述反应器连通,所述蒸发池中设置有套管,所述反应器出口管接入所述套管内,所述套管上设有小孔;
    所述氧化剂供给装置包括液氧杜瓦瓶、液氧泵、单向阀、液氧水浴汽化器以及高 压氧气瓶组;
    所述有机物供料装置包括料液箱、高压泵以及单向阀;并且/或者
    所述供水装置包括第一水箱、第二水箱、蠕动泵、高压泵以及单向阀,其中,所述高压泵分别与第一水箱和蠕动泵相通,所述蠕动泵与所述第二水箱相通。
  23. 根据权利要求21所述的超临界水氧化系统,还包括监测系统,所述监测系统包括以下至少一种:
    设置在所述反应器壳体上、蒸发池内、冷凝池内的温度传感器;
    设置在所述反应器壳体内的压力传感器;
    设置在所述排渣口的pH在线监测计;
    设置在所述排气口处的挥发性有机物在线监测器;以及/或者
    设置在所述排水口的化学需氧量在线监测器。
  24. 根据权利要求23所述的超临界水氧化系统,还包括控制系统,用于响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:
    氧化物供料的压力和/或流量;
    有机物供料的压力和/或流量;
    所述反应器和/或蒸发池的温度;以及/或者
    所述背压阀的状态。
  25. 根据权利要求21所述的超临界水氧化系统,其中,所述反应器还包括以下至少一种:
    折返管,设置于所述反应器壳体内部,所述折返管包括两端开口的内管以及一端开口的外管,所述外管套设于所述内管的外部,所述内管与所述有机物进料口连通,所述折返管设置于所述反应器的中心轴位置;
    搅拌器,包括转轴,所述转轴穿过所述反应器壳体,其中,所述转轴穿过所述出料口,所述搅拌器配置有电流表和/或电压表;
    加热装置,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套;
    冷却装置,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套,其中,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
  26. 根据权利要求21所述的超临界水氧化系统,其中,所述反应器壳体包括第 一端壁、侧壁以及与第一端壁相对的第二端壁,所述有机物进料口设置于所述第一端壁,所述氧化剂进料口设置于所述侧壁,所述出料口设置于所述第二端壁,所述反应器还包括:
    内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述折返管至少部分地设置于所述内衬的内部,所述出料口设置于所述内衬的内部,
    其中,所述氧化剂进料口与所述第一端壁的距离大于所述氧化剂进料口与所述第二端壁的距离,
    其中,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层,
    其中,所述反应器还包括金属丝网,设置在所述内衬和所述侧壁之间。
  27. 一种废液处理方法,用于通过权利要求21所述的超临界水氧化系统处理废液,所述方法包括:
    对所述反应器加热;
    在所述反应器壳体内的温度达到第一温度时,将第一溶液、氧化剂和水通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,其中,所述第二温度不小于600℃;
    在所述反应器壳体内的压力达到预定压力时,打开所述背压阀;
    将所述废液通过所述有机物进料口输入所述反应器壳体内,在超临界水环境下被氧化并从所述出料口排出,进入所述分离器的蒸发池,通过自蒸发实现有害物质的分离。
  28. 根据权利要求27所述的方法,其中:
    所述第二温度介于650℃至800℃之间,所述第一溶液包括蔗糖溶液,所述氧化剂包括液氧;并且/或者
    所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述氧化剂进料口和有机物进料口中的至少一个的进料速率。
  29. 根据权利要求27所述的方法,其中,所述反应器还包括加热装置和冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括:
    控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内, 以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃,其中,所述出料口的排出物的温度介于150℃至300℃之间。
  30. 根据权利要求27所述的方法,其中,所述超临界水氧化系统还包括监测系统,所述方法还包括响应于用户输入或响应于所述监测系统的监测结果,控制以下至少一种:
    氧化物供料的压力和/或流量;
    有机物供料的压力和/或流量;
    所述反应器和/或所述蒸发池的温度;以及/或者
    所述背压阀的状态。
  31. 一种用于超临界水氧化的反应器,包括:
    反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;
    加热装置,用于提升所述反应器壳体内的温度;以及
    折返管,设置于所述反应器壳体内,所述折返管包括两端开口的内管以及一端开口的外管,所述外管套设于所述内管的外部,所述内管与所述有机物进料口连通。
  32. 根据权利要求31所述的反应器,还包括:
    搅拌器,包括转轴,所述转轴穿过所述反应器壳体,其中,所述转轴穿过所述出料口,所述搅拌器配置有电流表和/或电压表;
    至少一个温度传感器,用于获得所述反应器的至少一个位置的温度;以及/或者
    至少一个压力传感器,用于获得所述反应器的至少一个位置的压力。
  33. 根据权利要求31所述的反应器,其中,所述反应器壳体包括第一端壁、侧壁以及与第一端壁相对的第二端壁,所述有机物进料口设置于所述第一端壁,所述氧化剂进料口设置于所述侧壁,所述出料口设置于所述第二端壁。
  34. 根据权利要求33所述的反应器,还包括:
    内衬,设置于所述第二端壁,并向所述第一端壁的方向延伸,所述折返管至少部分地设置于所述内衬的内部,所述出料口设置于所述内衬的内部,
    其中,所述氧化剂进料口与所述第一端壁的距离大于所述氧化剂进料口与所述第二端壁的距离,
    其中,所述内衬经渗铝、喷丸锻击以及喷涂热障涂层处理,所述热障涂层包括交替排布的多个铝层和多个氧化铝层,
    其中,所述反应器还包括金属丝网,设置在所述内衬和所述侧壁之间。
  35. 根据权利要求31~34中任意一项所述的反应器,其中,所述折返管设置于所述反应器的中心轴位置。
  36. 根据权利要求31所述的反应器,还包括:
    冷却装置,所述冷却装置包括设置在所述反应器壳体外部的至少一组冷却套,
    其中,所述加热装置包括设置在所述反应器壳体外部的至少一组加热套,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述加热装置设置于所述第一区域的外部,所述冷却装置设置于所述第二区域的外部。
  37. 一种废液处理方法,通过权利要求31所述的反应器处理废液,所述反应器的出料口处设置有背压阀,所述方法包括:
    对所述反应器加热;
    在所述反应器壳体内的温度达到第一温度时,将第一溶液通过所述有机物进料口输入所述反应器壳体内,将氧化剂和水通过所述氧化剂进料口输入所述反应器壳体内,直到所述反应器壳体内的温度达到第二温度,其中,所述第二温度不小于600℃;
    在所述反应器壳体内的压力达到预定压力时,打开所述背压阀;
    将所述废液通过所述有机物进料口输入所述反应器壳体内,其中,所述废液在依次经过所述折返管的内管和外管之后,到达所述外管的开口处,在超临界水环境下被氧化,并从所述出料口排出。
  38. 根据权利要求37所述的方法,其中,所述第二温度介于650℃至800℃之间,所述第一溶液包括蔗糖溶液,所述氧化剂包括液氧。
  39. 根据权利要求37所述的方法,其中,所述反应器还包括搅拌器,所述搅拌器配置有电流表和电压表,分别用于检测所述搅拌器的电流和电压,所述方法还包括在所述搅拌器的电流和/或电压达到预定数值时,降低所述有机物进料口和氧化剂进料口中的至少一个的进料速率。
  40. 根据权利要求37所述的方法,其中,所述超临界水氧化反应器还包括冷却装置,所述反应器壳体包括靠近所述有机物进料口的第一区域以及靠近所述出料口的第二区域,所述方法还包括:
    控制所述加热装置以及所述冷却装置,使所述第一区域的温度控制在预定范围内,以及控制所述第二区域的温度使所述出料口的排出物的温度不低于120℃,其中,所述出料口的排出物的温度介于150℃至300℃之间。
  41. 一种用于分离多态相混合物的分离设备,包括:
    蒸发池,用于接收所述多态相混合物,其中,所述蒸发池内设置有第一冷却盘管和排渣口,所述第一冷却盘管用于在所述多态相混合物流入所述蒸发池之后,将所述蒸发池中溶液的温度稳定在目标温度范围内,所述排渣口用于排出所述多态相混合物中的固态物质;
    冷却内桶,包括第二冷却盘管和冷凝水池,所述第二冷却盘管用于冷却所述蒸发池中蒸发的蒸汽,所述冷凝水池用于接收所述第二冷却盘管冷却所述蒸汽后得到的液态物质,所述冷凝水池设置有排液口,用于排出所述液态物质;
    其中,所述蒸发池与所述冷却内桶封装在一壳体内,所述蒸发池设置在所述冷却内桶下方。
  42. 根据权利要求41所述的分离设备,其中,所述冷却内桶的桶壁上设置有多个孔道,用于供所述蒸发池中蒸发的蒸汽进入所述冷却内桶。
  43. 根据权利要求41所述的分离设备,其中,所述蒸发池内设置有用于接收所述多态相混合物的套管,所述套管的管壁上分布有多个小孔,所述多态相混合物通过所述多个小孔分散排入所述蒸发池内。
  44. 根据权利要求43所述的分离设备,还包括背压阀,其中,所述背压阀一端通过管道与所述套管连接,所述背压阀另一端用于通过管道与超临界水氧化反应器的出料口连接。
  45. 根据权利要求41所述的分离设备,其中,所述壳体的顶部设置有排气口,用于排放所述多态相混合物中的气态物质。
  46. 根据权利要求45所述的分离设备,其中,所述排气口处设置有挥发性有机物在线监测器。
  47. 根据权利要求41所述的分离设备,其中,所述蒸发池和/或所述冷却内桶内配备有温度计,用于监测所述蒸发池中溶液的温度和/或所述冷却内桶内的温度。
  48. 根据权利要求41所述的分离设备,其中,所述蒸发池的体积为所述多态相混合物的处理流量的2至3倍。
  49. 根据权利要求41所述的分离设备,其中,所述蒸发池内配备有液位计,并且/或者,所述蒸发池配备有pH计,用于监测所述蒸发池中溶液的pH值。
  50. 根据权利要求41所述的分离设备,其中,所述分离设备配备有化学需氧量在线监测器。
  51. 一种超临界水氧化系统,包括:
    超临界水氧化装置,包括反应器和自分离外桶;所述反应器设置于所述自分离外桶的内部,所述反应器包括反应器壳体,所述反应器壳体上设置有氧化剂进料口、有机物进料口以及出料口;所述自分离外桶内设置有蒸发池、冷凝池和冷凝管,所述蒸发池与所述出料口相连通,在所述蒸发池与所述出料口之间设有背压阀,所述冷凝池设置于所述蒸发池的上方,所述冷凝管设置于所述冷凝池的上方,使得在所述蒸发池中蒸发的气体于所述冷凝管处液化的情况下,液化得到的液体能够回落至所述冷凝池中;
    氧化剂供料装置,与所述氧化剂进料口相连通;以及
    有机物供料装置,与所述有机物进料口相连通;
    其中,所述超临界水氧化系统为一体化系统。
PCT/CN2020/073315 2019-02-03 2020-01-20 超临界水一体机与有机废液处理方法 WO2020156337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20747667.2A EP3919448A4 (en) 2019-02-03 2020-01-20 ALL-IN-ONE SUPERCRITICAL WATER TREATMENT MACHINE AND ORGANIC WASTEWATER TREATMENT METHOD

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201910108888.3A CN109851129B (zh) 2019-02-03 2019-02-03 用于分离多态相混合物的分离设备
CN201910108888.3 2019-02-03
CN201910108900.0A CN109851031B (zh) 2019-02-03 2019-02-03 用于超临界水氧化的反应器及废液处理方法
CN201910108900.0 2019-02-03
CN201910108899.1 2019-02-03
CN201910108875.6 2019-02-03
CN201910108875.6A CN109851128B (zh) 2019-02-03 2019-02-03 超临界水氧化系统和废液处理方法
CN201910108889.8A CN109851130B (zh) 2019-02-03 2019-02-03 超临界水氧化系统和有机废水处理方法
CN201910108899.1A CN109851131B (zh) 2019-02-03 2019-02-03 超临界水氧化装置和有机废水处理方法
CN201910108889.8 2019-02-03

Publications (1)

Publication Number Publication Date
WO2020156337A1 true WO2020156337A1 (zh) 2020-08-06

Family

ID=71841218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073315 WO2020156337A1 (zh) 2019-02-03 2020-01-20 超临界水一体机与有机废液处理方法

Country Status (2)

Country Link
EP (1) EP3919448A4 (zh)
WO (1) WO2020156337A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221186A (zh) * 2020-11-13 2021-01-15 山东钢铁股份有限公司 一种油箱排油烟回收装置及回收方法
CN112645524A (zh) * 2020-12-22 2021-04-13 安徽环境科技集团股份有限公司 一种高浓度有机废水处理方法及装置
CN113436773A (zh) * 2021-06-09 2021-09-24 中广核工程有限公司 核电厂废树脂连续处理系统及核电厂废树脂连续处理方法
CN115180706A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种处理含大颗粒有机废弃物的超临界水氧化系统
CN115259341A (zh) * 2022-08-31 2022-11-01 青岛科技大学 一种用于高盐废水处理的超临界水氧化装置
CN115465994A (zh) * 2022-09-20 2022-12-13 张敏 一种含盐浓度高的有机废水处理系统及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736234A (en) * 1970-06-18 1973-05-29 Toshin Ind Machine Co Ltd High-purity distilled water producing apparatus
JPH11226584A (ja) * 1998-02-17 1999-08-24 Japan Organo Co Ltd 超臨界水酸化方法及び反応装置
US20080135496A1 (en) * 2000-10-10 2008-06-12 Christophe Joussot-Dubien Device for supercritical water oxidation of materials
CN101629028A (zh) * 2009-08-27 2010-01-20 北京科技大学 一种多功能的氧化铝/金属微叠层涂层
CN105782995A (zh) * 2016-05-17 2016-07-20 山东大学 一种超临界水氧化有机物的射流燃烧装置及方法
CN105152509B (zh) * 2015-09-10 2017-11-14 新奥科技发展有限公司 超临界反应器、超临界反应系统及污泥的超临界处理方法
CN109851128A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化系统和废液处理方法
CN109848182A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化系统和处理固体可燃物的方法
CN109851130A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化系统和有机废水处理方法
CN109851129A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 用于分离多态相混合物的分离设备
CN109851031A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 用于超临界水氧化的反应器及废液处理方法
CN109851131A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化装置和有机废水处理方法
CN109851030A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化反应器及处理放射性有机废物的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505099B1 (ko) * 2002-02-07 2005-08-04 문순식 수정제조장치
CH708160B1 (fr) * 2013-06-13 2019-11-29 Granit Tech And Engineering Grt Sa Procédé et installation de traitement par oxydation par voie humide de déchets organiques dangereux, notamment radioactifs, pouvant contenir des charges minérales.
CN109179825B (zh) * 2018-08-07 2020-11-13 广州中国科学院先进技术研究所 一种高盐高cod废水零排放系统及废水零排放工艺

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736234A (en) * 1970-06-18 1973-05-29 Toshin Ind Machine Co Ltd High-purity distilled water producing apparatus
JPH11226584A (ja) * 1998-02-17 1999-08-24 Japan Organo Co Ltd 超臨界水酸化方法及び反応装置
US20080135496A1 (en) * 2000-10-10 2008-06-12 Christophe Joussot-Dubien Device for supercritical water oxidation of materials
CN101629028A (zh) * 2009-08-27 2010-01-20 北京科技大学 一种多功能的氧化铝/金属微叠层涂层
CN105152509B (zh) * 2015-09-10 2017-11-14 新奥科技发展有限公司 超临界反应器、超临界反应系统及污泥的超临界处理方法
CN105782995A (zh) * 2016-05-17 2016-07-20 山东大学 一种超临界水氧化有机物的射流燃烧装置及方法
CN109851128A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化系统和废液处理方法
CN109848182A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化系统和处理固体可燃物的方法
CN109851130A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化系统和有机废水处理方法
CN109851129A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 用于分离多态相混合物的分离设备
CN109851031A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 用于超临界水氧化的反应器及废液处理方法
CN109851131A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化装置和有机废水处理方法
CN109851030A (zh) * 2019-02-03 2019-06-07 中国原子能科学研究院 超临界水氧化反应器及处理放射性有机废物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919448A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221186A (zh) * 2020-11-13 2021-01-15 山东钢铁股份有限公司 一种油箱排油烟回收装置及回收方法
CN112221186B (zh) * 2020-11-13 2024-03-15 山东钢铁股份有限公司 一种油箱排油烟回收装置及回收方法
CN112645524A (zh) * 2020-12-22 2021-04-13 安徽环境科技集团股份有限公司 一种高浓度有机废水处理方法及装置
CN112645524B (zh) * 2020-12-22 2021-10-29 安徽环境科技集团股份有限公司 一种高浓度有机废水处理方法及装置
CN113436773A (zh) * 2021-06-09 2021-09-24 中广核工程有限公司 核电厂废树脂连续处理系统及核电厂废树脂连续处理方法
CN115180706A (zh) * 2022-07-06 2022-10-14 深圳市华尔信环保科技有限公司 一种处理含大颗粒有机废弃物的超临界水氧化系统
CN115259341A (zh) * 2022-08-31 2022-11-01 青岛科技大学 一种用于高盐废水处理的超临界水氧化装置
CN115465994A (zh) * 2022-09-20 2022-12-13 张敏 一种含盐浓度高的有机废水处理系统及方法
CN115465994B (zh) * 2022-09-20 2023-09-08 浙江宣达环境科技股份有限公司 一种含盐浓度高的有机废水处理系统及方法

Also Published As

Publication number Publication date
EP3919448A4 (en) 2023-01-25
EP3919448A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020156337A1 (zh) 超临界水一体机与有机废液处理方法
CN109851128B (zh) 超临界水氧化系统和废液处理方法
WO2020156336A1 (zh) 超临界水氧化处理放射性有机固体废物
CN103508589B (zh) 超临界水氧化或气化处理高含盐有机废水的反应器
CN109848182B (zh) 超临界水氧化系统和处理固体可燃物的方法
CN109851130B (zh) 超临界水氧化系统和有机废水处理方法
US11149940B2 (en) Heat exchanger using non-pure water for steam generation
CN108206066A (zh) 一种处理放射性固体有机废物的方法
JP2017512638A (ja) 材料を処理する方法
US20230348306A1 (en) Process for the supercritical oxidation of sewage sludge and other waste streams
CN105601017A (zh) 一种高浓度有机废水及污泥的近零排放处理系统及方法
JP5651885B2 (ja) イオン交換樹脂の減容処理システムおよびイオン交換樹脂の減容処理方法
CN111417598B (zh) 一种处理高盐高有机废水并回收能量的系统及方法
CN109851030B (zh) 超临界水氧化反应器及处理放射性有机废物的方法
RU2543619C1 (ru) Устройство для переработки резиновых отходов
US20170241218A1 (en) Well fluid treatment and steam generation using cavitation
CN109851131B (zh) 超临界水氧化装置和有机废水处理方法
KR101549959B1 (ko) 초임계수를 이용한 폐액 처리 시스템 및 처리 방법
KR101224725B1 (ko) 방사성 액체폐기물 처리방법 및 장치
JP2017526529A (ja) 真空蒸留装置
CN109851129B (zh) 用于分离多态相混合物的分离设备
JP3198807U (ja) トリチウムからの液体放射性廃棄物の精製装置
US20090226351A1 (en) Supercritical Oxidation Process for the Treatment of Corrosive Materials
KR101067405B1 (ko) 추진기관용 고체 추진제의 재처리장치 및 재처리방법
JP5289825B2 (ja) バナジウム回収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020747667

Country of ref document: EP

Effective date: 20210902