WO2020155989A1 - 电池模块 - Google Patents

电池模块 Download PDF

Info

Publication number
WO2020155989A1
WO2020155989A1 PCT/CN2019/129293 CN2019129293W WO2020155989A1 WO 2020155989 A1 WO2020155989 A1 WO 2020155989A1 CN 2019129293 W CN2019129293 W CN 2019129293W WO 2020155989 A1 WO2020155989 A1 WO 2020155989A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode lead
battery
electrode
battery cell
connection
Prior art date
Application number
PCT/CN2019/129293
Other languages
English (en)
French (fr)
Inventor
刘小荣
赵宾
阳超
陈宗火
吴岸为
瞿志广
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020217024319A priority Critical patent/KR20210132013A/ko
Priority to JP2021543398A priority patent/JP7314284B2/ja
Publication of WO2020155989A1 publication Critical patent/WO2020155989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of batteries, in particular to a battery module.
  • the secondary battery includes a first electrode lead and a second electrode lead. Since the voltage and current of a single battery are small, it is often necessary to connect them in series and parallel. In this case, a plurality of first electrode leads and a plurality of second electrode leads need to be stacked in sequence for connection. Because the materials of the first electrode lead and the second electrode lead are different, there are multiple different welding layers during welding, namely the first electrode lead and the first electrode lead welding layer, the first electrode lead and the second electrode lead welding layer, The second electrode lead is welded to the second electrode lead.
  • the welding temperature of the first electrode lead and the first electrode lead and the welding temperature of the second electrode lead and the second electrode lead are different.
  • the high temperature welding layer will affect the low temperature welding layer, causing excessive plastic flow during welding.
  • the formation of cavitation problems affects the welding strength.
  • the present application provides a battery module to improve the connection reliability of electrode leads in the battery module.
  • An embodiment of the application provides a battery module, including a first battery unit and a second battery unit.
  • the first battery unit and the second battery unit respectively include N secondary batteries, where N is an integer greater than or equal to 2, and each secondary battery
  • the battery includes a first electrode lead and a second electrode lead with opposite polarities, the melting point of the first electrode lead is greater than the melting point of the second electrode lead, the N first electrode leads of the first battery cell and the N first electrode leads of the second battery cell
  • the two electrode leads form a laminated structure, wherein the battery module has a plurality of connection points distributed in the laminated structure, the number of connection points is greater than or equal to N, and each connection point connects a first electrode lead of the first battery cell to the second battery cell
  • the at least one second electrode lead is electrically connected.
  • the first electrode lead extends in the first direction
  • the N first electrode leads of the first battery cell have avoiding positions that avoid each other in the second direction
  • the connection points are arranged at the avoiding positions
  • the connection point connects one first electrode lead and at least one second electrode lead, and the second direction intersects the first direction.
  • the first electrode lead is a sheet-shaped lead extending in the first direction, and the projection of the N first electrode leads of the first battery cell on the surface of the second electrode lead of the second battery cell Misaligned in the second direction.
  • the N secondary batteries of the first battery unit are arranged in parallel, and the size of each first electrode lead in the second direction is less than or equal to 1/N of the size of the second electrode lead.
  • the first electrode lead is provided with a first connection part and a first hollow part.
  • the first hollow part of each first electrode lead is connected to other first electrode leads.
  • the first connection portion of the first electrode lead corresponds to the stacking direction, so that the first connection portion of the first electrode lead is exposed through the first hollow portion of the other first electrode lead, and the connection point is arranged at the first connection portion.
  • the first hollow portion is an opening opened on the first electrode lead.
  • the size of the first hollow portion in the first direction is greater than or equal to twice the size of the connection point in the first direction.
  • the size of the first connecting portion of each first electrode lead along the second direction is less than or equal to 1/N of the size of the second electrode lead along the second direction.
  • all the second electrode leads of the second battery unit are arranged in a position avoiding each other in the second direction, so that each connection point connects a first electrode lead of the first battery unit with the second battery.
  • a second electrode lead of the unit is electrically connected.
  • the battery module further includes: an electrical connector having a connection surface, and the first electrode lead of the first battery cell and the second electrode lead of the second battery cell are laminated on the connection surface of the electrical connector on.
  • the melting point of the first electrode lead of each secondary battery is greater than the melting point of the second electrode lead.
  • each Each connection point electrically connects one first electrode lead and at least one second electrode lead, so that during the welding process, there are only the welding surface of the low melting point electrode lead and the low melting point electrode lead, and the welding of the low melting point electrode lead and the high melting point electrode lead.
  • the welding surface of the high melting point electrode lead and the high melting point electrode lead is avoided at the same time. Therefore, in welding, the welding temperature only needs to be higher than the melting point of the low melting point electrode lead, and does not need to be higher than the melting point of the high melting point electrode lead. This avoids the effect of excessively high temperature on the welding surface including the low melting point electrode lead and avoids welding
  • the void problem caused by excessive plastic flow improves the welding strength and the connection reliability of the electrode lead.
  • FIG. 1 shows a three-dimensional schematic diagram of a battery module according to an embodiment of the present application
  • Figure 2 shows a three-dimensional exploded view of part of the structure in Figure 1;
  • FIG. 3a shows a three-dimensional schematic diagram of the first laminated structure of an embodiment of the present application
  • Figure 3b shows a three-dimensional exploded view of the first laminated structure of the embodiment of the present application
  • FIG. 4a shows a three-dimensional schematic diagram of a second laminated structure of an embodiment of the present application
  • FIG. 4b shows a three-dimensional exploded view of the second laminated structure of the embodiment of the present application
  • Figure 5a shows a three-dimensional schematic diagram of a third layered structure of an embodiment of the present application
  • FIG. 5b shows a three-dimensional exploded view of a third layered structure of an embodiment of the present application
  • FIG. 6 shows a three-dimensional exploded view of a fourth type of laminated structure according to an embodiment of the present application
  • FIG. 7a shows a three-dimensional schematic diagram of a fifth laminated structure of an embodiment of the present application.
  • FIG. 7b shows a three-dimensional exploded view of the fifth laminated structure of the embodiment of the present application.
  • FIG. 8a shows a three-dimensional schematic diagram of a sixth laminated structure according to an embodiment of the present application.
  • Fig. 8b shows a three-dimensional exploded view of the sixth laminated structure of the embodiment of the present application.
  • G1-first battery unit G2-second battery unit
  • 121-first electrode lead 121a-first connecting portion; 121b-first hollow portion;
  • 122-second electrode lead 122a-second connecting portion; 122b-second hollow portion;
  • FIG. 1 shows a three-dimensional schematic diagram of the battery module according to an embodiment of the present application
  • FIG. 2 shows a perspective exploded view of a part of the structure in FIG. 1.
  • the battery module includes a first battery unit G1 and a second battery unit G2.
  • the first battery unit G1 and the second battery unit G2 respectively include N secondary batteries 100, where N is an integer greater than or equal to 2, and each secondary battery 100 It includes a first electrode lead 121 and a second electrode lead 122 with opposite polarities.
  • the melting point of the first electrode lead 121 is greater than the melting point of the second electrode lead 122.
  • each first battery unit G1 includes two secondary batteries 100 and each second battery unit G2 also includes two secondary batteries 100 as an example for description.
  • Each first battery unit G1 includes two The two secondary batteries 100 are connected in parallel with each other, the two secondary batteries 100 included in each second battery unit G2 are connected in parallel with each other, and the first battery unit G1 and the second battery unit G2 are connected in series. It is understandable that, in some other embodiments, according to the design requirements of the battery module, the number of each first battery unit G1 including the secondary battery 100 can be three, four, etc., and the same applies to each second battery unit G1. The number of the battery cell G2 including the secondary battery 100 may be three, four, or other numbers.
  • the battery module may only include the first battery cell G1 and the second battery cell G2 connected in series, or the first battery cell G1 and the second battery cell G2 connected in series as repeating units, which are repeated in the thickness direction. They are stacked and formed in series, and in other embodiments, other battery cells may also be included.
  • melting point of the first electrode lead 121 and “melting point of the second electrode lead 122" herein can be specifically understood as the melting point of the surface material of the first electrode lead 121 and the surface material of the second electrode lead 122 The melting point.
  • the second electrode lead 122 is made of aluminum material, and the melting point of the second electrode lead 122 is the melting point of the aluminum material; in some embodiments, the surface of the first electrode lead 121 is nickel plated with copper material. If formed, the melting point of the first electrode lead 121 is the melting point of the nickel material.
  • the first electrode lead 121 is made of copper material, and the surface of the first electrode lead 121 has a plating layer, such as nickel plating, so as to avoid the sealing of the copper electrode lead and the battery module. Accelerated aging occurs among plastics.
  • the second electrode lead 122 is made of aluminum material
  • the thickness of the diffusion area of the copper-aluminum welding is about 20 microns.
  • the thickness of the plating layer (for example, a nickel layer) on the surface of the first electrode lead 121 is greater than or equal to 20 microns. Micron, to ensure that only aluminum and nickel diffusion is welded, and to ensure consistent welding and stability.
  • the N first electrode leads 121 of the first battery cell G1 and the N second electrode leads 122 of the second battery cell G2 form a laminated structure.
  • Figures 3a and 3b respectively show a three-dimensional schematic diagram and a three-dimensional exploded view of the first laminated structure of an embodiment of the present application.
  • the battery module has a plurality of connection points P distributed in the laminated structure, the number of connection points P is greater than or equal to N, and each connection point P connects a first electrode lead 121 of the first battery cell G1 and a second battery cell G2. At least one second electrode lead 122 is electrically connected.
  • connection point P can be a connection point formed during the welding process.
  • the welding process can be ultrasonic welding. During the welding process, the metal parts are subjected to a certain static pressure, and the welding metal interface is frictional and heated by ultrasonic high-frequency vibration. The plastic flow finally reaches the atomic stress range to form a metal bond.
  • the melting point of the first electrode lead 121 of each secondary battery 100 is greater than the melting point of the second electrode lead 122.
  • the temperature at which plastic flow is reached during welding (hereinafter referred to as welding temperature) is proportional to the melting point. Therefore, the welding temperature of the first electrode lead 121 is greater than that of the second electrode lead 122.
  • the first electrode lead 121 is the high melting point electrode lead
  • the second electrode lead 122 is a low melting point electrode lead.
  • the melting point of the high melting point electrode lead is recorded as T1
  • the melting point of the low melting point electrode lead is recorded as T2
  • T1-T2>50% T2 the welding stability of the low melting point electrode lead will be worse when welding the high melting point electrode lead. Big impact. Specifically, when high melting point and high melting point electrode leads and low melting point and low melting point electrode leads are welded at the same time, the welding temperature of the high melting point electrode leads is high, resulting in rapid plastic flow during welding of low melting point electrode leads, and cavitation is likely to occur.
  • each connection point P connects one first electrode lead 121 and at least one second electrode lead 122 is electrically connected, so that only the welding surface of the low melting point electrode lead and the low melting point electrode lead, the welding surface of the low melting point electrode lead and the high melting point electrode lead are present during the welding process, and avoid the simultaneous existence of the high melting point electrode lead and the high melting point electrode The welding surface of the lead. Therefore, in welding, the welding temperature only needs to be higher than the melting point of the low melting point electrode lead, and does not need to be higher than the melting point of the high melting point electrode lead. This avoids the effect of excessively high temperature on the welding surface including the low melting point electrode lead and avoids welding The void problem caused by excessive plastic flow improves the welding strength and the connection reliability of the electrode lead.
  • the first electrode lead 121 extends along the first direction X, and the N first electrode leads 121 of the first battery cell G1 have avoiding positions that avoid each other in the second direction Y ,
  • the connection point P is set at an avoiding position, so that the connection point P connects one first electrode lead 121 and at least one second electrode lead 122, wherein the second direction Y intersects the first direction X.
  • the second direction Y is perpendicular to the first direction X.
  • the multiple connection points P are located in the avoiding position, so that in the welding process, the above-mentioned multiple connection points P can be formed at the same time by one welding, that is, the N first in the laminated structure can be completed by one welding.
  • the electrode lead 121 and the N second electrode leads 122 improve the efficiency of the welding process.
  • a plurality of welding points corresponding to the plurality of connection points P may be provided on the welding device.
  • the first electrode lead 121 is provided with a first connecting portion 121a and a first hollow portion 121b.
  • the first electrode lead 121 The hollow portion 121b corresponds to the first connection portion 121a of the other first electrode lead 121 in the stacking direction, so that the first connection portion 121a of the first electrode lead 121 is exposed through the first hollow portion 121b of the other first electrode lead 121,
  • the connection point P is arranged at the first connection portion 121a, so that the welding device can directly weld each first electrode lead 121 and the second electrode lead 122 of the second battery cell G2, thereby improving the convenience of welding.
  • the first hollow portion 121b is an opening opened on the first electrode lead 121.
  • the first electrode lead 121 of the present embodiment may be formed by cutting on the electrode lead having the width of the first connecting portion 121a, wherein the cut-out portion forms the first hollow portion 121b on the electrode lead.
  • the first hollow portion 121b is formed by opening one edge of the first electrode lead 121 inwardly.
  • the size of the first hollow portion 121b along the first direction X is greater than or equal to twice the size of the connection point P along the first direction X, so that each first connection portion 121a passes through other first electrode leads.
  • the exposed area of the first hollow portion 121b of 121 is sufficient to complete the welding process and obtain the connection point P with reliable connection.
  • the size of the first connecting portion 121a of each first electrode lead 121 along the second direction Y is less than or equal to 1/N of the size of the second electrode lead 122 along the second direction Y, so as to facilitate N first
  • the first connecting portion 121a of the electrode lead 121 can be exposed through the first hollow portion 121b of the other first electrode lead 121, and avoid overlapping each other, which provides a guarantee for obtaining a stable welding connection point P.
  • each first electrode lead 121 of the first battery cell G1 is electrically connected to at least one second electrode lead 122 of the second battery cell G2, and the second battery cell G2
  • the N second electrode leads 122 are electrically connected to each other, so that the N first electrode leads 121 of the first battery cell G1 and the N second electrode leads 122 of the second battery cell G2 are electrically connected in the laminated structure.
  • other structures may be included to realize electrical connection between the electrode leads in the laminated structure.
  • the battery module of this embodiment further includes an electrical connector 200.
  • the electrical connector 200 has a connection surface 200a.
  • the first electrode lead 121 of the first battery cell G1 and the second electrode lead 122 of the second battery cell G2 are laminated on the connection surface 200a of the electrical connector 200, and each connection point P electrically connects one first electrode lead 121 of the first battery cell G1 and N second electrode leads 122 of the second battery cell G2 to the connecting surface 200a of the electrical connector 200 to realize the interconnection between the electrode leads in the laminated structure Electric connection.
  • the melting point of the first electrode lead 121 is greater than the melting point of the second electrode lead 122.
  • the N second electrode leads 122 of the second battery cell G2 are stacked on the electrical connector 200.
  • the N first electrode leads 121 of the first battery cell G1 are stacked on the N second electrode leads 122 of the second battery cell G2.
  • the electrical connector 200 can be used as a bus to connect the first battery cell G1 and the second battery cell G2 to the sampling circuit to facilitate data sampling and battery management.
  • each first battery cell G1 includes two secondary batteries 100 and each second battery cell G2 also includes two secondary batteries 100. It can be understood that the number of secondary batteries 100 included in each first battery cell G1 and each second battery cell G2 may also be other numbers.
  • FIGS 5a and 5b respectively show a three-dimensional schematic diagram and a three-dimensional exploded view of a third layered structure according to an embodiment of the present application.
  • Most of the structure of the layered structure is substantially the same as that of the second layered structure, and will not be described in detail.
  • the difference from the second laminated structure is that in the battery module of this embodiment, each first battery unit G1 includes three secondary batteries 100, and each second battery unit G2 also includes three secondary batteries 100.
  • the three secondary batteries 100 included in each first battery cell G1 are connected in parallel, and the three secondary batteries 100 included in each second battery cell G2 are connected in parallel with each other.
  • the first battery cell G1 and the second battery cell are connected in parallel. Series connection between G2.
  • the battery module has a plurality of connection points P distributed in the laminated structure.
  • the number of connection points P is greater than or equal to 3.
  • This embodiment includes three connection points P.
  • Each connection point P connects a first electrode of the first battery cell G1.
  • the lead 121 is electrically connected to at least one second electrode lead 122 of the second battery cell G2.
  • the first electrode lead 121 extends along the first direction X, the three first electrode leads 121 of the first battery cell G1 have avoiding positions that avoid each other in the second direction Y, and the connection point P is set at the avoiding position, where the second direction Y intersects the first direction X.
  • the three connection points P are located in the avoiding positions of the three first electrode leads 121 one-to-one, so that during the welding process, one welding can be used to simultaneously form the above three connection points P, namely
  • the three first electrode leads 121 and the three second electrode leads 122 in the laminated structure are completed by one welding, which improves the efficiency of the welding process.
  • the first hollow portion 121b is an opening opened on the first electrode lead 121.
  • the first hollow portion 121b in the above-mentioned embodiment is formed by opening one edge of the first electrode lead 121 inwardly.
  • the manner of forming the first hollow portion 121b in the opening on the first electrode lead 121 may not be limited to an example.
  • the first electrode lead 121 is provided with a first connecting portion 121a and a first Hollowed part 121b.
  • the first hollowed part 121b of each first electrode lead 121 corresponds to the first connection part 121a of the other first electrode lead 121 in the lamination direction, so that the first electrode lead
  • the first connection portion 121a of the 121 is exposed through the first hollow portion 121b of the other first electrode lead 121, and the connection point is disposed at the first connection portion 121a.
  • the first hollow part 121b is an opening opened on the first electrode lead 121.
  • the first hollow part 121b is formed by an opening inside the first electrode lead 121.
  • the first electrode lead 121 of this embodiment may be formed by punching inside the electrode lead having the width of the first connecting portion 121a, wherein the vacant portion formed by the punching forms the first hollow portion 121b, and the remaining first hole after the punching An electrode lead 121 forms a first connection portion 121a.
  • the size of the first connecting portion 121a of each first electrode lead 121 along the second direction Y is less than or equal to 1/N of the size of the second electrode lead 122 along the second direction Y, so as to facilitate N first
  • the first connecting portion 121a of the electrode lead 121 can be exposed through the first hollow portion 121b of the other first electrode lead 121, and avoid overlapping each other, which provides a guarantee for obtaining a stable welding connection point.
  • the second electrode lead 122 has a sheet shape as an example for illustration. In other embodiments, the second electrode lead 122 can be adjusted accordingly according to the design requirements of the battery module.
  • FIGS 7a and 7b respectively show a three-dimensional schematic diagram and a three-dimensional exploded view of a fifth type of laminated structure according to an embodiment of the present application. Most of the structure of the laminated structure is substantially the same as that of the second type of laminated structure, and will not be described in detail.
  • the battery module further includes an electrical connector 200 having a connection surface 200a.
  • the first electrode lead 121 of the first battery cell G1 and the second electrode lead 122 of the second battery cell G2 are laminated on the electrical connector 200. ⁇ 200a on.
  • the difference between this embodiment and the second laminated structure is that all the second electrode leads 122 of the second battery cell G2 are arranged to avoid each other in the second direction Y, so that each connection point P connects the first battery cell G1
  • One first electrode lead 121 is electrically connected to one second electrode lead 122 of the second battery cell G2.
  • the second electrode lead 122 is provided with a second connection part 122a and a second hollow part 122b.
  • the second hollow part 122b of each second electrode lead 122 is connected to the other second electrode lead 122
  • the first connecting portion 122a of ⁇ corresponds to the stacking direction.
  • a first connection part 121a and a first hollow part 121b are provided in combination with the first electrode lead 121, so that each connection point P connects the first connection part 122a of one first electrode lead 121 of the first battery cell G1 with the second battery cell
  • the second connection portion 122a of one second electrode lead 122 of G2 is electrically connected.
  • each connection point P also electrically connects the corresponding electrode lead to the connection surface 200a of the electrical connector 200, thereby achieving electrical connection of the electrode leads in the laminated structure.
  • each connection point P is connected to a first electrode lead 121 and a second electrode lead 122, thereby reducing the total thickness of the electrode lead connected to each connection point P and improving the welding at each connection point P The quality further improves the reliability of the electrical connection of each electrode lead in the laminated structure.
  • each first electrode lead 121 is provided with a first connection portion 121a and a first hollow portion 121b to provide a retreat position, and the connection point P is set at the retreat position.
  • other structures may also be used to provide avoidance positions.
  • Fig. 8a and Fig. 8b respectively show a three-dimensional schematic diagram and a three-dimensional exploded view of a sixth laminated structure of an embodiment of the present application.
  • the first electrode lead 121 extends along the first direction X
  • the N first electrode leads 121 of the first battery cell G1 have avoiding positions that avoid each other in the second direction Y
  • the connection point P is set at the avoiding position.
  • the first electrode lead 121 of this embodiment is a sheet-like lead extending along the first direction X, and the N first electrode leads 121 of the first battery cell G1 are located on the first battery cell G2.
  • the projections on the surface of the two electrode leads 122 are misaligned in the second direction Y.
  • the connection point P on each first electrode lead 121 is misaligned with the connection points P on the other first electrode leads 121 in the second direction Y, so that the welding device directly connects each first electrode lead 121 with the first electrode lead 121
  • the second electrode lead 122 of the second battery cell G2 is welded to improve the convenience of welding.
  • the N secondary batteries 100 of the first battery unit G1 are arranged in parallel, and the size of each first electrode lead 121 in the second direction Y is less than or equal to 1/N of the size of the second electrode lead 122 to Avoid overlapping between the N first electrode leads 121 to provide a guarantee for obtaining a stable welding connection point P.
  • the battery module of the embodiment of the present application may also include other different forms of laminated structure.
  • each connection point P to electrically connect one first electrode lead 121 and at least one second electrode lead 122, so that temperature can be avoided during the welding process. Too high affects the welding surface including the electrode lead with low melting point, avoids the void problem caused by excessive plastic flow during welding, and improves the welding strength and the connection reliability of the electrode lead.

Abstract

一种电池模块,该电池模块包括第一电池单元(G1)以及第二电池单元(G2),第一电池单元(G1)以及第二电池单元(G2)分别包括N个二次电池(100),N为大于或等于2的整数,每个二次电池(100)包括极性相反的第一电极引线(121)和第二电极引线(122),第一电极引线(121)的熔点大于第二电极引线(122)的熔点,第一电池单元(G1)的N个第一电极引线(121)与第二电池单元(G2)的N个第二电极引线(122)形成层叠结构,其中,电池模块具有分布于层叠结构的多个连接点,连接点的数量大于或等于N,每个连接点将第一电池单元(G1)的一个第一电极引线(121)与第二电池单元(G2)的至少一个第二电极引线(122)电连接。根据所述电池模块,能够避免焊接中塑性流动过度形成的空穴问题,提高了焊接强度以及电极引线的连接可靠性。

Description

电池模块
相关申请的交叉引用
本申请要求2019年1月28日提交的、申请号为201910080691.3、发明名称为“电池模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池领域,具体涉及一种电池模块。
背景技术
现有的二次电池之间通常采用U型连接片相互电连接,在实际操作过程中,U型连接片的一侧与相应的二次电池的电极引线焊接完成后,其另一侧在与相应的二次电池的电极引线进行焊接时,超声波的振动必定会拉扯先前的焊接区域,影响焊接强度,进而影响电池模块的使用安全及使用寿命。
为了避免二次焊接的第二次焊接对第一次焊接的影响,因此采用一次焊接,将需要电连接的电极引线弯折到一起进行焊接。二次电池包括第一电极引线和第二电极引线。由于单个电池的电压电流较小,常常需要对其进行串并联,此时需要多个第一电极引线和多个第二电极引线依次层叠进行连接。由于第一电极引线与第二电极引线的材质不同,焊接时,具有多个不同的焊接层,即第一电极引线与第一电极引线焊接层、第一电极引线与第二电极引线焊接层、第二电极引线与第二电极引线焊接层。超声波焊接时,第一电极引线与第一电极引线焊接以及第二电极引线与第二电极引线焊接的温度不同,温度高的焊接层会影响温度低的焊接层,造成焊接时,塑性流动过度,形成空穴问题,影响焊接强度。
发明内容
本申请提供一种电池模块,提高电池模块中电极引线的连接可靠性。
本申请实施例提供一种电池模块,包括第一电池单元以及第二电池单元,第一电池单元以及第二电池单元分别包括N个二次电池,N为大于等于2的整数,每个二次电池包括极性相反的第一电极引线和第二电极引线,第一电极引线的熔点大于第二电极引线的熔点,第一电池单元的N个第一电极引线与第二电池单元的N个第二电极引线形成层叠结构,其中,电池模块具有分布于层叠结构的多个连接点,连接点的数量大于等于N,每个连接点将第一电池单元的一个第一电极引线与第二电池单元的至少一个第二电极引线电连接。
根据本申请的前述任一实施方式,第一电极引线沿第一方向延伸,第一电池单元的N个第一电极引线具有在第二方向上相互避让的避让位置,连接点设置在避让位置,以使连接点连接一个第一电极引线和至少一个第二电极引线,第二方向与第一方向相交。
根据本申请的前述任一实施方式,第一电极引线为沿第一方向延伸的片状引线,第一电池单元的N个第一电极引线在第二电池单元的第二电极引线表面上的投影在第二方向上相互错位。
根据本申请的前述任一实施方式,第一电池单元的N个二次电池并联设置,在第二方向上每个第一电极引线的尺寸小于等于第二电极引线尺寸的1/N。
根据本申请的前述任一实施方式,第一电极引线设置有第一连接部和第一镂空部,在第一电池单元中,每个第一电极引线的第一镂空部与其他第一电极引线的第一连接部在层叠方向上对应,以使第一电极引线的第一连接部通过其他第一电极引线的第一镂空部裸露,且连接点设置于第一连接部。
根据本申请的前述任一实施方式,第一镂空部为开设在第一电极引线上的开口。
根据本申请的前述任一实施方式,第一镂空部沿第一方向上的尺寸大于等于连接点沿第一方向上的尺寸的两倍。
根据本申请的前述任一实施方式,每个第一电极引线的第一连接部沿第二方向的尺寸小于等于第二电极引线沿第二方向尺寸的1/N。
根据本申请的前述任一实施方式,第二电池单元的全部第二电极引线在第二方向上相互避位设置,使得每个连接点将第一电池单元的一个第一电极引线与第二电池单元的一个第二电极引线电连接。
根据本申请的前述任一实施方式,电池模块还包括:电连接件,具有连接面,第一电池单元的第一电极引线与第二电池单元的第二电极引线层叠于电连接件的连接面上。
根据本申请实施例的电池模块,每个二次电池的第一电极引线的熔点大于第二电极引线的熔点,在N个第一电极引线与N个第二电极引线形成的层叠结构中,每个连接点将一个第一电极引线与至少一个第二电极引线电连接,使得焊接过程中,仅存在低熔点电极引线与低熔点电极引线的焊接面、低熔点电极引线与高熔点电极引线的焊接面,而避免了同时存在高熔点电极引线与高熔点电极引线的焊接面。因而在焊接中,焊接温度仅满足高于低熔点电极引线的熔点即可,无需高于高熔点电极引线的熔点,避免了温度过高对包括低熔点电极引线的焊接面的影响,避免了焊接中塑性流动过度形成的空穴问题,提高了焊接强度以及电极引线的连接可靠性。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1示出本申请实施例的电池模块的立体示意图;
图2示出图1中部分结构的立体分解图;
图3a示出本申请实施例的第一种层叠结构的立体示意图;
图3b示出本申请实施例的第一种层叠结构的立体分解图;
图4a示出本申请实施例的第二种层叠结构的立体示意图;
图4b示出本申请实施例的第二种层叠结构的立体分解图;
图5a示出本申请实施例的第三种层叠结构的立体示意图;
图5b示出本申请实施例的第三种层叠结构的立体分解图;
图6示出本申请实施例的第四种层叠结构的立体分解图;
图7a示出本申请实施例的第五种层叠结构的立体示意图;
图7b示出本申请实施例的第五种层叠结构的立体分解图;
图8a示出本申请实施例的第六种层叠结构的立体示意图;
图8b示出本申请实施例的第六种层叠结构的立体分解图。
图中:
G1-第一电池单元;G2-第二电池单元;
X-第一方向;Y-第二方向;
P-连接点;
100-二次电池;
121-第一电极引线;121a-第一连接部;121b-第一镂空部;
122-第二电极引线;122a-第二连接部;122b-第二镂空部;
200-电连接件;
200a-连接面。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物 品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
应当理解,在描述部件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将部件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。
本申请实施例提供一种电池模块,图1示出本申请实施例的电池模块的立体示意图,图2示出图1中部分结构的立体分解图。该电池模块包括第一电池单元G1以及第二电池单元G2,第一电池单元G1以及第二电池单元G2分别包括N个二次电池100,N为大于等于2的整数,每个二次电池100包括极性相反的第一电极引线121和第二电极引线122。其中第一电极引线121的熔点大于第二电极引线122的熔点。
本实施例中以每个第一电池单元G1包括两个二次电池100、每个第二电池单元G2也包括两个二次电池100为例进行说明,每个第一电池单元G1包括的两个二次电池100之间相互并联,每个第二电池单元G2包括的两个二次电池100之间相互并联,第一电池单元G1与第二电池单元G2之间进行串联连接。可以理解的是,在其它一些实施例中,根据电池模块的设计需要,每个第一电池单元G1包括二次电池100的数量可以是三个、四个等其它数目,同理每个第二电池单元G2包括二次电池100的数量可以是三个、四个等其它数目。
此外,电池模块可以仅包括串联连接的第一电池单元G1和第二电池单元G2,也可以是以串联连接的第一电池单元G1和第二电池单元G2为重复单元,在厚度方向上进行重复堆叠并串联形成,在其它一些实施例中,还可以包括其它的电池单元。
需要说明的是,本文中的术语“第一电极引线121的熔点”、“第二电极引线122的熔点”,具体可以理解为第一电极引线121表面材料的熔点、第二电极引线122表面材料的熔点。例如,在一些实施例中,第二电 极引线122为铝材料制成,第二电极引线122的熔点即铝材料的熔点;在一些实施例中,第一电极引线121为铜材料的表面镀镍形成,则第一电极引线121的熔点即镍材料的熔点。
如上所述,在一些实施例中,第一电极引线121为铜材料制成,并且第一电极引线121的表面具有镀层,例如是镀镍,从而避免铜制电极引线与电池模块中包括的密封塑料之间发生加速老化的现象。当第二电极引线122为铝材料制成时,由于铜铝焊接的扩散区域厚度约20微米,在一些实施例中,第一电极引线121表面的镀层(例如是镍层)的厚度大于等于20微米,以保证焊接仅有铝镍扩散,保证焊接一致型和稳定性。
在本申请实施例中,第一电池单元G1的N个第一电极引线121与第二电池单元G2的N个第二电极引线122形成层叠结构。
图3a、图3b分别示出本申请实施例的第一种层叠结构的立体示意图、立体分解图。其中,电池模块具有分布于层叠结构的多个连接点P,连接点P的数量大于等于N,每个连接点P将第一电池单元G1的一个第一电极引线121与第二电池单元G2的至少一个第二电极引线122电连接。
前述的连接点P,可以是焊接过程中形成的连接点,其中焊接过程可以采用超声波焊接,焊接过程中使得金属件在一定静压力下,通过超声高频振动使焊接金属界面摩擦生热致其发生塑形流动最终达到原子应力范围形成金属键合。
本申请实施例中,每个二次电池100的第一电极引线121的熔点大于第二电极引线122的熔点,当第一电极引线121的熔点大于第二电极引线122之间的熔点时,由于焊接时达到塑性流动时的温度(以下简称焊接温度)与熔点成正比,因此第一电极引线121的焊接温度大于第二电极引线122的焊接温度,此时第一电极引线121即高熔点电极引线,第二电极引线122即低熔点电极引线。
如果高熔点电极引线的熔点记为T1,低熔点电极引线的熔点记为T2,当T1-T2>50%T2时,焊接高熔点电极引线时会对焊接低熔点电极引线的焊接稳定性造成较大的影响。具体的,高熔点与高熔点电极引线、低熔点与低熔点电极引线同时焊接时,高熔点电极引线的焊接温度高,导致低熔 点电极引线焊接时塑性流动快,容易产生空穴等问题。
根据本申请实施例的电池模块,在N个第一电极引线121与N个第二电极引线122形成的层叠结构中,每个连接点P将一个第一电极引线121与至少一个第二电极引线122电连接,使得焊接过程中,仅存在低熔点电极引线与低熔点电极引线的焊接面、低熔点电极引线与高熔点电极引线的焊接面,而避免了同时存在高熔点电极引线与高熔点电极引线的焊接面。因而在焊接中,焊接温度仅满足高于低熔点电极引线的熔点即可,无需高于高熔点电极引线的熔点,避免了温度过高对包括低熔点电极引线的焊接面的影响,避免了焊接中塑性流动过度形成的空穴问题,提高了焊接强度以及电极引线的连接可靠性。
在图3a、图3b所示的层叠结构中,第一电极引线121沿第一方向X延伸,第一电池单元G1的N个第一电极引线121具有在第二方向Y上相互避让的避让位置,连接点P设置在避让位置,以使连接点P连接一个第一电极引线121和至少一个第二电极引线122,其中第二方向Y与第一方向X相交。本实施例中,第二方向Y与第一方向X垂直。由于第一电极引线121具有避让位置,多个连接点P位于避让位置,使得焊接过程中,可以采用一次焊接同时形成上述的多个连接点P,即采用一次焊接完成层叠结构中N个第一电极引线121与N个第二电极引线122,提高焊接工艺效率。其中,焊接装置上可以设置与多个连接点P对应的多个焊接点。
在图3a、图3b所示的层叠结构中,第一电极引线121设置有第一连接部121a和第一镂空部121b,在第一电池单元G1中,每个第一电极引线121的第一镂空部121b与其他第一电极引线121的第一连接部121a在层叠方向上对应,以使第一电极引线121的第一连接部121a通过其他第一电极引线121的第一镂空部121b裸露,且连接点P设置于第一连接部121a,从而便于焊接装置直接将每个第一电极引线121与第二电池单元G2的第二电极引线122焊接,提高焊接的便利性。
在上述本实施例中,第一镂空部121b为开设在第一电极引线121上的开口。具体地,本实施例的第一电极引线121可以是在具有第一连接部121a宽度的电极引线上裁切形成,其中裁去的部分在电极引线上形成第一 镂空部121b。本实施例中第一镂空部121b通过在第一电极引线121的一个边缘向内开口形成。
在一些实施例中,第一镂空部121b沿第一方向X上的尺寸大于等于连接点P沿第一方向X上的尺寸的两倍,使得每个第一连接部121a通过其它第一电极引线121的第一镂空部121b裸露的区域足够完成焊接工艺,得到连接可靠的连接点P。
在一些实施例中,每个第一电极引线121的第一连接部121a沿第二方向Y的尺寸小于等于第二电极引线122沿第二方向Y尺寸的1/N,以方便N个第一电极引线121的第一连接部121a均能通过其它第一电极引线121的第一镂空部121b裸露,并且避免相互之间产生重叠,为得到稳定的焊接连接点P提供保障。
在上述图3a、图3b所示的层叠结构中,第一电池单元G1的每个第一电极引线121与第二电池单元G2的至少一个第二电极引线122电连接,第二电池单元G2的N个第二电极引线122相互电连接,从而实现层叠结构中第一电池单元G1的N个第一电极引线121与第二电池单元G2的N个第二电极引线122的电连接。在其它一些实施例中,还可以包括其它结构以实现层叠结构中各电极引线之间的电连接。
图4a、图4b分别示出本申请实施例的第二种层叠结构的立体示意图、立体分解图,该层叠结构中大部分结构与第一种层叠结构的结构大致相同,不再详述。其中,与第一层叠结构不同的是,本实施例的电池模块还包括电连接件200。该电连接件200具有连接面200a,第一电池单元G1的第一电极引线121与第二电池单元G2的第二电极引线122层叠于电连接件200的连接面200a上,并且每个连接点P将第一电池单元G1的一个第一电极引线121与第二电池单元G2的N个第二电极引线122电连接至电连接件200的连接面200a,实现层叠结构中各电极引线之间的电连接。
在一些实施例中,第一电极引线121的熔点大于第二电极引线122的熔点,在每个层叠结构中,第二电池单元G2的N个第二电极引线122层叠设置于电连接件200的连接面200a上,第一电池单元G1的N个第一电极引线121层叠设置于第二电池单元G2的N个第二电极引线122上。
在一些实施例中,电连接件200可以作为汇流件,将第一电池单元G1、第二电池单元G2与采样电路连接,以方便进行数据采样和电池管理。
在上述的层叠结构中,以每个第一电池单元G1包括两个二次电池100、每个第二电池单元G2也包括两个二次电池100为例进行了说明。可以理解的是,每个第一电池单元G1、每个第二电池单元G2分别包括的二次电池100也可以是其它数量。
图5a、图5b分别示出本申请实施例的第三种层叠结构的立体示意图、立体分解图,该层叠结构中大部分结构与第二种层叠结构的结构大致相同,不再详述。其中,与第二层叠结构不同的是,本实施例的电池模块中,每个第一电池单元G1包括三个二次电池100、每个第二电池单元G2也包括三个二次电池100。
每个第一电池单元G1包括的三个二次电池100之间相互并联,每个第二电池单元G2包括的三个二次电池100之间相互并联,第一电池单元G1与第二电池单元G2之间进行串联连接。
电池模块具有分布于层叠结构的多个连接点P,连接点P的数量大于等于3,本实施例中包括三个连接点P,每个连接点P将第一电池单元G1的一个第一电极引线121与第二电池单元G2的至少一个第二电极引线122电连接。第一电极引线121沿第一方向X延伸,第一电池单元G1的三个第一电极引线121具有在第二方向Y上相互避让的避让位置,连接点P设置在避让位置,其中第二方向Y与第一方向X相交。
由于第一电极引线121具有避让位置,三个连接点P一一对应位于三个第一电极引线121的避让位置,使得焊接过程中,可以采用一次焊接同时形成上述的三个连接点P,即采用一次焊接完成层叠结构中三个第一电极引线121与三个第二电极引线122,提高焊接工艺效率。
在上述实施例中,第一镂空部121b为开设在第一电极引线121上的开口。具体地,上述实施例中第一镂空部121b均通过在第一电极引线121的一个边缘向内开口形成。然而,在第一电极引线121上的开口形成第一镂空部121b的方式可以不限于示例。
图6示出本申请实施例的第四种层叠结构的立体分解图,该层叠结构 中大部分结构与前述第二种层叠结构类似,第一电极引线121设置有第一连接部121a和第一镂空部121b,在第一电池单元G1中,每个第一电极引线121的第一镂空部121b与其他第一电极引线121的第一连接部121a在层叠方向上对应,以使第一电极引线121的第一连接部121a通过其他第一电极引线121的第一镂空部121b裸露,且连接点设置于第一连接部121a。
第一镂空部121b为开设在第一电极引线121上的开口,在本实施例中,第一镂空部121b通过在第一电极引线121的内部开口形成。具体地,本实施例的第一电极引线121可以是在具有第一连接部121a宽度的电极引线内部打孔形成,其中打孔形成的空缺部分形成第一镂空部121b,打孔后剩余的第一电极引线121形成第一连接部121a。
在一些实施例中,每个第一电极引线121的第一连接部121a沿第二方向Y的尺寸小于等于第二电极引线122沿第二方向Y尺寸的1/N,以方便N个第一电极引线121的第一连接部121a均能通过其它第一电极引线121的第一镂空部121b裸露,并且避免相互之间产生重叠,为得到稳定的焊接连接点提供保障。
在上述实施例中,均以第二电极引线122为片状为例进行示例说明,在其它一些实施例中,可以根据电池模块的设计需要对第二电极引线122进行相应地调整。
图7a、图7b分别示出本申请实施例的第五种层叠结构的立体示意图、立体分解图,该层叠结构中大部分结构与第二种层叠结构的结构大致相同,不再详述。电池模块还包括电连接件200,该电连接件200具有连接面200a,第一电池单元G1的第一电极引线121与第二电池单元G2的第二电极引线122层叠于电连接件200的连接面200a上。
其中,本实施例与第二层叠结构不同的是,第二电池单元G2的全部第二电极引线122在第二方向Y上相互避位设置,使得每个连接点P将第一电池单元G1的一个第一电极引线121与第二电池单元G2的一个第二电极引线122电连接。
具体地,第二电极引线122设置有第二连接部122a和第二镂空部122b,在第二电池单元G2中,每个第二电极引线122的第二镂空部122b与其他 第二电极引线122的第一连接部122a在层叠方向上对应。
结合第一电极引线121设置有第一连接部121a和第一镂空部121b,使得每个连接点P将第一电池单元G1的一个第一电极引线121的第一连接部122a与第二电池单元G2的一个第二电极引线122的第二连接部122a电连接。进一步地,每个连接点P还将对应的电极引线电连接至电连接件200的连接面200a,从而实现层叠结构内各电极引线的电连接。
在本实施例中,每个连接点P连接一个第一电极引线121和一个第二电极引线122,从而降低每个连接点P所连接电极引线的总厚度,提高每个连接点P处的焊接质量,进一步提高层叠结构内各电极引线电连接的可靠性。
此外需要说明的是,在上述实施例中,每个第一电极引线121设置有第一连接部121a和第一镂空部121b,以提供避让位置,连接点P设置在避让位置。在其它实施例中,也可以通过其它结构提供避让位置。
图8a、图8b分别示出本申请实施例的第六种层叠结构的立体示意图、立体分解图。其中,第一电极引线121沿第一方向X延伸,第一电池单元G1的N个第一电极引线121具有在第二方向Y上相互避让的避让位置,连接点P设置在避让位置。
与前述实施例不同的是,本实施例的第一电极引线121为沿第一方向X延伸的片状引线,第一电池单元G1的N个第一电极引线121在第二电池单元G2的第二电极引线122表面上的投影在第二方向Y上相互错位。相应地,每个第一电极引线121上的连接点P与其它第一电极引线121上的连接点P在第二方向Y上错位,从而便于焊接装置直接将每个第一电极引线121与第二电池单元G2的第二电极引线122焊接,提高焊接的便利性。
在一些实施例中,第一电池单元G1的N个二次电池100并联设置,在第二方向Y上每个第一电极引线121的尺寸小于等于第二电极引线122尺寸的1/N,以避免N个第一电极引线121之间相互重叠,为得到稳定的焊接连接点P提供保障。
本申请实施例的电池模块还可以包括其它不同形式的层叠结构,通过 利用每个连接点P将一个第一电极引线121与至少一个第二电极引线122电连接,使得焊接过程中,可以避免温度过高对包括低熔点电极引线的焊接面的影响,避免了焊接中塑性流动过度形成的空穴问题,提高了焊接强度以及电极引线的连接可靠性。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该申请仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

  1. 一种电池模块,包括第一电池单元(G1)以及第二电池单元(G2),所述第一电池单元(G1)以及所述第二电池单元(G2)分别包括N个二次电池(100),N为大于等于2的整数,每个所述二次电池(100)包括极性相反的第一电极引线(121)和第二电极引线(122),
    所述第一电极引线(121)的熔点大于所述第二电极引线(122)的熔点,所述第一电池单元(G1)的N个所述第一电极引线(121)与所述第二电池单元(G2)的N个所述第二电极引线(122)形成层叠结构,
    其中,所述电池模块具有分布于所述层叠结构的多个连接点,所述连接点的数量大于等于N,每个所述连接点将所述第一电池单元(G1)的一个所述第一电极引线(121)与所述第二电池单元(G2)的至少一个所述第二电极引线(122)电连接。
  2. 根据权利要求1所述的电池模块,其中,所述第一电极引线(121)沿第一方向(X)延伸,所述第一电池单元(G1)的N个所述第一电极引线(121)具有在第二方向(Y)上相互避让的避让位置,所述连接点设置在所述避让位置,以使所述连接点连接一个所述第一电极引线(121)和至少一个所述第二电极引线(122),所述第二方向(Y)与所述第一方向(X)相交。
  3. 根据权利要求2所述的电池模块,其中,所述第一电极引线(121)为沿所述第一方向(X)延伸的片状引线,所述第一电池单元(G1)的N个所述第一电极引线(121)在所述第二电池单元(G2)的所述第二电极引线(122)表面上的投影在所述第二方向(Y)上相互错位。
  4. 根据权利要求3所述的电池模块,其中,所述第一电池单元(G1)的N个所述二次电池(100)并联设置,在所述第二方向(Y)上每个所述第一电极引线(121)的尺寸小于等于所述第二电极引线(122)尺寸的1/N。
  5. 根据权利要求2所述的电池模块,其中,所述第一电极引线(121)设置有第一连接部(121a)和第一镂空部(121b),在所述第一电池单元 (G1)中,每个所述第一电极引线(121)的所述第一镂空部(121b)与其他所述第一电极引线(121)的所述第一连接部(121a)在层叠方向上对应,以使所述第一电极引线(121)的所述第一连接部(121a)通过其他所述第一电极引线(121)的所述第一镂空部(121b)裸露,且所述连接点设置于所述第一连接部(121a)。
  6. 根据权利要求5所述的电池模块,其中,所述第一镂空部(121b)为开设在所述第一电极引线(121)上的开口。
  7. 根据权利要求5所述的电池模块,其中,所述第一镂空部(121b)沿第一方向(X)上的尺寸大于等于所述连接点沿第一方向(X)上的尺寸的两倍。
  8. 根据权利要求5所述的电池模块,其中,每个所述第一电极引线(121)的所述第一连接部(121a)沿所述第二方向(Y)的尺寸小于等于所述第二电极引线(122)沿所述第二方向(Y)尺寸的1/N。
  9. 根据权利要求2所述的电池模块,其中,所述第二电池单元(G2)的全部所述第二电极引线(122)在所述第二方向(Y)上相互避位设置,使得每个所述连接点将所述第一电池单元(G1)的一个所述第一电极引线(121)与所述第二电池单元(G2)的一个所述第二电极引线(122)电连接。
  10. 根据权利要求1所述的电池模块,还包括:
    电连接件(200),具有连接面(200a),所述第一电池单元(G1)的所述第一电极引线(121)与所述第二电池单元(G2)的所述第二电极引线(122)层叠于所述电连接件(200)的所述连接面(200a)上。
PCT/CN2019/129293 2019-01-28 2019-12-27 电池模块 WO2020155989A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217024319A KR20210132013A (ko) 2019-01-28 2019-12-27 전지 모듈
JP2021543398A JP7314284B2 (ja) 2019-01-28 2019-12-27 電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910080691.3A CN111490216A (zh) 2019-01-28 2019-01-28 电池模组
CN201910080691.3 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020155989A1 true WO2020155989A1 (zh) 2020-08-06

Family

ID=67874337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129293 WO2020155989A1 (zh) 2019-01-28 2019-12-27 电池模块

Country Status (7)

Country Link
US (1) US11088424B2 (zh)
EP (1) EP3686963B1 (zh)
JP (1) JP7314284B2 (zh)
KR (1) KR20210132013A (zh)
CN (2) CN113140877B (zh)
PL (1) PL3686963T3 (zh)
WO (1) WO2020155989A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010928A (ko) * 2010-07-27 2012-02-06 에스케이이노베이션 주식회사 배터리 모듈 및 전극 탭 용접 방법
CN206022463U (zh) * 2016-08-17 2017-03-15 万向一二三股份公司 一种电动汽车电池模块单元及电池模块
CN206293534U (zh) * 2016-12-28 2017-06-30 微宏动力系统(湖州)有限公司 一种电池模块
CN206742365U (zh) * 2017-04-21 2017-12-12 安徽欧鹏巴赫新能源科技有限公司 软包动力锂离子电池模组
CN108987655A (zh) * 2017-05-31 2018-12-11 东莞新能源科技有限公司 电池
CN208507761U (zh) * 2018-06-11 2019-02-15 华霆(合肥)动力技术有限公司 单体电芯、电池模组和新能源汽车

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154454B2 (ja) * 2006-03-06 2013-02-27 エルジー・ケム・リミテッド 電池モジュール
JP5177989B2 (ja) 2006-10-17 2013-04-10 日産自動車株式会社 組電池の製造方法及び組電池
US8460817B2 (en) 2009-05-06 2013-06-11 GM Global Technology Operations LLC Method for manufacture of battery pouch terminals
US20110052969A1 (en) 2009-09-01 2011-03-03 Gm Global Technology Operations, Inc. Cell tab joining for battery modules
KR101097227B1 (ko) 2010-02-08 2011-12-21 에스비리모티브 주식회사 배터리모듈 및 그 제조방법
US20120315531A1 (en) * 2011-06-10 2012-12-13 GM Global Technology Operations LLC Battery cell connection apparatus
CN103650208B (zh) 2011-07-13 2016-04-06 株式会社Lg化学 具有改善连接可靠性的电池模块和采用该电池模块的电池组
US9153811B2 (en) 2011-09-13 2015-10-06 GM Global Technology Operations LLC Method for joining multiple parallel tabs
CN203617377U (zh) 2013-11-11 2014-05-28 北汽福田汽车股份有限公司 电池组件
JP2015191796A (ja) * 2014-03-28 2015-11-02 株式会社東芝 電池
KR101736377B1 (ko) 2014-06-09 2017-05-16 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩
JP6949104B2 (ja) 2017-03-07 2021-10-13 株式会社エンビジョンAescジャパン 電池パック及び電池パックの製造方法
CN207134420U (zh) 2017-09-22 2018-03-23 宁德时代新能源科技股份有限公司 电池模组
CN209329019U (zh) * 2019-01-28 2019-08-30 宁德时代新能源科技股份有限公司 电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010928A (ko) * 2010-07-27 2012-02-06 에스케이이노베이션 주식회사 배터리 모듈 및 전극 탭 용접 방법
CN206022463U (zh) * 2016-08-17 2017-03-15 万向一二三股份公司 一种电动汽车电池模块单元及电池模块
CN206293534U (zh) * 2016-12-28 2017-06-30 微宏动力系统(湖州)有限公司 一种电池模块
CN206742365U (zh) * 2017-04-21 2017-12-12 安徽欧鹏巴赫新能源科技有限公司 软包动力锂离子电池模组
CN108987655A (zh) * 2017-05-31 2018-12-11 东莞新能源科技有限公司 电池
CN208507761U (zh) * 2018-06-11 2019-02-15 华霆(合肥)动力技术有限公司 单体电芯、电池模组和新能源汽车

Also Published As

Publication number Publication date
CN111490216A (zh) 2020-08-04
PL3686963T3 (pl) 2021-04-19
JP2022518811A (ja) 2022-03-16
US11088424B2 (en) 2021-08-10
US20200243831A1 (en) 2020-07-30
EP3686963B1 (en) 2020-12-16
CN113140877A (zh) 2021-07-20
CN113140877B (zh) 2022-03-15
JP7314284B2 (ja) 2023-07-25
KR20210132013A (ko) 2021-11-03
EP3686963A1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
KR100848788B1 (ko) 결합부에서 전극 탭들의 크기가 동일한 전극조립체 및 이를포함하고 있는 전기화학 셀
US9172109B2 (en) Electrode assembly and secondary battery using the same
WO2020024492A1 (zh) 电极构件、电极组件及二次电池
JP2018018600A (ja) 積層電池及びその製造方法
JP6715278B2 (ja) 燃料電池スタック
JP5374742B2 (ja) ラミネート式電池の外装材、ラミネート式電池の外装材製造方法及びラミネート式電池の製造方法
WO2021226756A1 (zh) 二次电池及其制造方法、电池模块以及装置
CN112821014A (zh) 电芯、电芯组件及电池
US20210028432A1 (en) Battery
CN112821012B (zh) 极耳结构、电芯以及电池
WO2020155968A1 (zh) 电池模块
KR101520168B1 (ko) 파우치형 리튬 이차 전지
WO2020155989A1 (zh) 电池模块
KR20170104826A (ko) 전극조립체 및 이를 포함하는 이차전지
CN209329019U (zh) 电池模组
JPWO2018163479A1 (ja) 電池パック及び電池パックの製造方法
JP7134543B2 (ja) 電極タブリード結合部に適用されるプラスチック部材を含む電極組立体及びこれを含む二次電池
JP2022522343A (ja) 電池モジュールおよびその製造方法
CN214848953U (zh) 极耳结构、电芯以及电池
JP2018195495A (ja) ラミネート型蓄電素子
JPWO2018163481A1 (ja) 電池パック及び電池パックの製造方法
JP2003243257A (ja) 固体電解コンデンサ
JP2015056341A (ja) 蓄電モジュール
CN217641441U (zh) 一种具台阶状特征的电芯卷绕极组结构
JP7327292B2 (ja) 組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913046

Country of ref document: EP

Kind code of ref document: A1